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The Yang-Baxter (YB) deformations of Wess-Zumino-Witten (WZW) model
on the Heisenberg Lie group (H4) are examined. We proceed to ob-
tain the nonequivalent solutions of (modified) classical Yang-Baxter equation
((m)CYBE) for the h4 Lie algebra by using its corresponding automorphism
transformation. Then we show that YB deformations of H4 WZW model are
splitted into ten nonequivalent backgrounds including metric and B-field such
that some of the metrics of these backgrounds can be transformed to the metric
of H4 WZW model while the antisymmetric B-fields are changed. The rest of
the deformed metrics have a different isometric group structure than the H4

WZW model metric. As an interesting result, it is shown that all new integrable
backgrounds of the YB deformed H4 WZW model are conformally invariant up
to two-loop order. In this way, we obtain the general form of the dilaton fields
satisfying the vanishing beta-function equations of the corresponding σ-models.
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1 Introduction

The study of integrable two dimensional σ-models and their deformations have always remarkable
attentions of people from early times of their presentation [1, 2]. Integrable deformations of SU(2)
principal chiral model firstly presented in [3–5]. Then, YB (or η) deformation of chiral model was
introduced by Klimcik [6–8] as the generalization of [4,5] while the model proposed in [3] was generalized
as λ-deformation in [9]. The relation between these integrable deformations was studied in [10,11]. The
YB integrable deformations [6] are based on R-operators satisfying the mCYBE and the generalization
to models with R-operators satisfying the CYBE (homogeneous YB deformations) was also studied
in [12]. The application of these integrable deformation to string theory specially the AdS5×S5 string
model has presented in [13–15] (see also [16–18]). For homogeneous YB deformed models it has been
shown that [19] there is no Weyl anomaly if the R-operators are unimodular (see also [20] up to
two-loop, and [21]). In [22], the relationship between unimodularity condition on R-matrices with
the divergence-free of the noncommutative parameter Θ of the dual noncommutative gauge theory
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has been discussed; moreover, it has been shown that [23] the equations of motion of the generalized
supergravity reproduce the CYBE in such a way that Θ is the most general r-matrix solution built
from antisymmetric products of Killing vectors. The r-matrices may be divided into Abelian and
non-Abelian, and it has been proved that Abelian r-matrices correspond to T-duality shift T-duality
transformations [24], thus ensuring that the corresponding YB deformation is a supergravity solution.
In the case of non-Abelian r-matrices, the unimodularity condition on the r-matrix [19] distinguishes
valid supergravity backgrounds [25] from the generalized supergravity solutions [26, 27]. The Weyl
invariance of bosonic string theories on generalized supergravity backgrounds was shown at one-loop
order by constructing a local counterterm [28,29].

The generalization to YB σ-models with WZW term has also carried out in [30–34]. In most of the
works, the models have been constructed on semisimple or compact Lie groups. In Ref. [31], the YB
models on the Nappi-Witten group was constructed. There, it has been shown that the Nappi-Witten
model is the unique conformal theory within the class of the YB deformations preserving the conformal
invariance. Lately, YB deformation of the Nappi-Witten background based on the mCYBE has been
used in order to find a one-parameter family of supergravity solutions which contains the Nappi-Witten
background and the flat Minkowski space [35]. Here we particularly focus on the YB σ-models with
WZW term on the H4 Lie group obtaining from R-operators satisfying the (m)CYBE. We show that
YB deformations of H4 WZW model are splitted into ten nonequivalent backgrounds including metric
and B-field such that some of the metrics of these backgrounds can be transformed to the metric of
H4 WZW model while the antisymmetric B-fields are changed.

The plan of the paper is as follows: In order to present the notations, we review in general the YB
deformations of chiral and WZW models in Sec. 2. In Sec. 3, after a review of the construction of
WZW model based on the H4 Lie group [36,37], by using the automorphism group of the h4 Lie algebra
we obtain the solutions of the (m)CYBE, i.e. corresponding nonequivalent classical r-matrices. We
prove that in general the equivalent classical r-matrices (r-matrices related by automorphism group)
lead to equivalent models. After then, we classify all backgrounds of YB deformed WZW model on
H4 in subSec. 3.3. The use of the convenient coordinate transformations (similar to YB deformed
WZW model on the Nappi-Witten group [31]) in order to transform the metrics of some deformed
backgrounds to the metric of H4 WZW model is given at the end of Sec. 3. The one-loop conformal
invariance of the deformed models is investigated in subSec. 4.1 in such a way that the corresponding
dilaton fields are found. In subSec. 4.2, we immediately check the conformal invariance of the models
up to two-loop order and conclude that two-loop beta-function equations are satisfied with the same
previous dilaton fields. Some concluding remarks are given in the last section. We tabulate the nonzero
components of tensors Hμνρ, (H

2)μν , Rμν and Riemann tensor field related to the backgrounds of YB
deformed H4 WZW model in Appendix A. Finally, in Appendix B, by following our present method
we classify all nonequivalent classical r-matrices and corresponding YB deformed WZW models based
on the Nappi-Witten group [31]; moreover, we show that all deformed backgrounds are conformally
invariant up to two-loop order.
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2 A review of YB σ-model and YB deformations of WZW model

Before proceeding to review the YB deformations of WZW model, let us introduce the YB deformation
of the principal chiral model on the Lie groups.

2.1 YB σ-model

In order to make the paper somewhat self-contained, let us first start with the YB deformation of the
principal chiral model on a Lie group G (with Lie algebra G ), giving [6]

S = −1

2

∫
Σ

d2σTr
[
(g−1∂−g)

1

1− ηR
(g−1∂+g)

]
, (2.1)

where ∂± = ∂τ ±∂σ are the derivatives with respect to the standard lightcone variables σ± = (τ ±σ)/2
on the worldsheet Σ, and g−1∂±g are components of the left-invariant Maurer-Cartan one-forms which
are defined by means of an element g : Σ → G in the following formula

g−1∂±g ≡ L± = Li
± Ti , (2.2)

in which Ti , i = 1, ..., dimG are the bases of Lie superalgebra G . In Eq. (2.1), η is a real parameter by
which deformation is measured. If one puts η = 0, the action reduces to the principal chiral model [1,2].
In addition, the linear operator4R : G → G is the solution of equation [12]

[R(X), R(Y )]−R
(
[R(X), Y ] + [X,R(Y )]

)
= ω[X,Y ], (2.3)

for all X,Y ∈ G . Here ω is constant parameter which can be normalized by rescaling R. When ω = 0,
the equation (2.3) is called the CYBE. This equation can be generalized to the mCYBE with ω = ±1.
The skew-symmetric condition of operator R is written as

Tr(R(X)Y ) + Tr(XR(Y )) = 0. (2.4)

The integrability of the model (2.1) is an important property of the model such that the corresponding
Lax pair is given by5 [12]

L±(λ) =
1

1± λ

(
1− ληR

1± ηR

)
L± , (2.5)

where λ is a spectral parameter.
4One can associate the R-operator to a classical r-matrix [12].
5Note that the Lax pair in (2.5) is the one for ω = 0. One can find a general form of the Lax pair for an arbitrary ω

rather than (2.5), giving [12]

L±(λ) =
1

1± λ

(
1∓ λη(ηω ±R)

1± ηR

)
L± .
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2.2 YB deformation of WZW model

In this subsection we shall consider the YB deformation of the WZW model [30]. The corresponding
action consists of standard principal chiral model and WZW term based on a Lie group G, giving [30,31]

S
Y B

WZW
(g) =

1

2

∫
Σ

d2σ ΩijL
i
−J

j
+ +

κ

2

∫
B3

d3σ Ωkl f
l

ij Li
ξL

j
+L

k
−, (2.6)

in which κ is a constant parameter, B is a three-manifold bounded by worldsheet Σ, and Ωkl defined
by Ωkl =< Tk, Tl > is a non-degenerate ad-invariant symmetric bilinear form on Lie algebra G with
structure constants f k

ij which satisfies the following relation [38]

f l
ij Ωlk + f l

ik Ωlj = 0. (2.7)

Here the deformed currents J± are defined in the following way

J± = (1 + ωη2)
1± ÃR

1− η2R2
L±, (2.8)

where η and Ã measure a deformation of WZW model. One can see that when η = Ã = 0 and
k = 0(k = 1) we recover the action of the principal chiral model(undeformed WZW model) [30], and
for Ã = ±η, k = 0 one recovers the YB deformation of chiral model [1, 2]. In general, the constant
parameter ω classifies integrable deformations so that one may consider ω = 0,±1 [1, 2]. In [30],
it was shown that in general the model (2.6) is integrable. This model was then considered for the
Nappi-witten group [31]. In the next section, we will consider the model (2.6) for the H4 Lie group.

3 YB deformations of WZW model based on the H4 Lie group and
their classification

In this section, we shall solve the mCYBE to obtain the classical r-matrices of the h4 Lie algebra. Since
our goal is the classification of all nonequivalent r-matrices, we prove a Proposition. This Proposition
states that two r-matrices r and r′ equivalent if one can be obtained from the other by means of
a change of basis which is an automorphism A of Lie algebra G . We then calculate all linear R-
operators corresponding to nonequivalent r-matrices in order to construct the YB deformations of
the H4 WZW model. Finally, by performing convenient coordinate transformations on some of the
deformed backgrounds we show the invariance of the H4 WZW model metric under arbitrary YB
deformations, up to antisymmetric B-fields. This means that the effect coming from the deformations
is reflected only as the coefficient of B-field.

3.1 WZW model based on the H4 Lie group

In this subsection we shall consider the WZW model on the H4 Lie group [36, 37]. Before proceeding
to construct model, let us first introduce the h4 Lie algebra of H4. The Lie algebra h4 is defined by
the set of generators (T1, T2, T3, T4) with the following nonzero Lie brackets

[T1, T2] = T2, [T1, T3] = − T3, [T3, T2] = T4. (3.1)
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The action of ungauged and undeformed WZW model on a Lie group G is given by

SWZW (g) =
1

2

∫
Σ

dσ+dσ− ΩijL
i
+ Lj

− +
1

12

∫
B

d3σ εγαβ Ωik f k
jl Li

γ
Lj

α
Ll

β
. (3.2)

Accordingly, one needs a non-degenerate bilinear form Ωij on Lie algebra G of G. Using (3.1) and also
formula (2.7), one can get the non-degenerate bilinear form on the h4, giving [37]

Ωij =

⎛
⎜⎜⎝

ρ 0 0 -λ
0 0 λ 0
0 λ 0 0
-λ 0 0 0

⎞
⎟⎟⎠ , (3.3)

where ρ and λ are some real constants. To construct the WZW action (3.2) on the H4, we parameterize
an element of the H4 as

g = evT4 euT3 exT1 eyT2 , (3.4)

where xμ = (x, y, u, v) stand for the coordinates of the H4 group manifold. Using (3.1) and (3.4) the
corresponding left-invariant one-forms components are obtained to be [37]

L1± = ∂±x, L2± = y∂±x+ ∂±y, L3± = ex ∂±u, L4± = yex ∂±u+ ∂±v. (3.5)

Finally, the WZW action on the H4 is found to be of the form [37]

SWZW (g) =
1

2

∫
dσ+dσ−

[
ρ ∂+x∂−x− ∂+x∂−v − ∂+v∂−x+ ex

(
∂+y∂−u+ ∂+u∂−y

+ y∂+u∂−x− y∂+x∂−u
)]
. (3.6)

Here we have set λ = 1. Identifying the action (3.6) with the σ-model of the form6

S =
1

4πα′

∫
Σ

dτdσ
√
−h

(
hαβGμν + εαβBμν

)
∂αx

μ
∂βx

ν
, (3.7)

we can read off the spacetime metric Gμν and the antisymmetric B-field. They are then given by the
following relations

ds2 = ρ dx2 − 2 dx dv + 2ex dy du, (3.8)
B = −yex dx ∧ du. (3.9)

The metric (3.8) has an isometry group, where the generators of the corresponding Lie algebra can be
expressed in terms of the Killing vectors Ki of the target space geometry. Therefore it is crucial for

6hαβ and εαβ are the induced metric and antisymmetric tensor on the worldsheet, respectively, such that h = dethαβ

and the indices α, β run over (τ, σ). The dimensionful coupling constant α′ turns out to be the inverse string tension.
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our further considerations to obtain the Lie algebra of Killing vectors of (3.8). This metric admits a
seven-dimensional Lie algebra of Killing vectors, which can be generated by

K1 = − ∂

∂x
+ u

∂

∂u
− ρ

∂

∂v
, K2 = e−x ∂

∂y
− u

∂

∂v
,

K3 =
∂

∂y
, K4 = y

∂

∂y
− u

∂

∂u
,

K5 = e−x ∂

∂u
− y

∂

∂v
, K6 =

∂

∂u
,

K7 = − ∂

∂v
. (3.10)

One can easily check that the Lie algebra spanned by these vectors is

[K1,K2] = K2, [K1,K6] = −K6, [K2,K4] = K2, [K2,K6] = −K7,

[K3,K4] = K3, [K3,K5] = K7, [K4,K5] = K5, [K4,K6] = K6, (3.11)

with the center K7. The generator K4 can be interpreted as dilation in y, u. As it is seen, the h4 Lie
algebra, e.g. generated by (K1,K2,K6,K7), is a subalgebra of (3.11).

3.2 Classical r-matrices for h4 Lie algebra

According to the formulas (2.6) and (2.8), to obtain the YB deformations of the H4 WZW model one
needs the linear operators R associated to classical r-matrices of the h4 Lie algebra. Before proceeding
to this, let us consider the general form of classical r-matrix of a given Lie algebra G with the basis
{Ti} [39]

r =
1

2
rij(Ti ⊗ Tj − Tj ⊗ Ti), (3.12)

where rij is an antisymmetric matrix. One may associate a linear operator R to a r-matrix that satisfies
the mCYBE (2.3). This operator can be defined in the following way [31]

R(Tk) =< r, (1⊗ Tk) >= rijΩjk Ti. (3.13)

Based on this, the action of R on any element X = xkTk ∈ G is written as

R(X) = xkR(Tk) = rijΩjkx
k Ti. (3.14)

Considering

R(Tk) = Rk
i Ti, (3.15)

and then comparing (3.13) and (3.15), one gets

Rk
i = rijΩjk. (3.16)
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Now, making use of formulas (2.7) and (3.14) and after some algebraic calculations, one can write Eq.
(2.3) in the following form [31]

flm
krlirmj + flm

irljrmk + flm
jrlkrmi − ωflm

kΩliΩmj = 0. (3.17)

This equation can be used in order to calculate the r-matrices for a given Lie algebra G . But, for
obtaining the nonequivalent r-matrices one must use the automorphism group of Lie algebra G . The
action of the automorphism A on G is given by the following transformation

T ′
i = A(Ti) = A j

i Tj , (3.18)

where T ′
i are the changed basis by the automorphism A. Since the automorphism preserves the struc-

ture constants, the basis T ′
i must obey the same commutation relations as Ti, i.e.,

[T ′
i , T

′
j ] = fij

k T ′
k. (3.19)

Inserting the transformation (3.18) into (3.19) we find that the elements of automorphism group A
satisfy the following relation

A m
i fmn

k A n
j = fij

l A k
l . (3.20)

In order to calculate the elements A j
i of Lie algebra G it would be helpful to further write the matrix

form of (3.20), giving7 [40]

A YkAt = Y lA k
l , (3.21)

where (Yk)ij = −fij
k are the adjoint representations of G . It is also useful to obtain matrix form of

Eq. (3.17) by using the adjoint representations (Yk)ij = −fij
k and (Xi)

k
j = −fij

k. It is then read

rYkr + r(Xlr
lk)− (rklX t

l )r = −ω(Ω−1YkΩ−1). (3.22)

In order to determine the nonequivalent r-matrices for a given Lie algebra G we give Proposition 3.1.

Proposition 3.1. Let r and r′ be two r-matrices as solutions of the (m)CYBE (3.17). If there
exists an automorphism A of G such that

r = At r′ A, (3.23)

then the matrices r and r′ of Lie algebra G are equivalent.
Proof. Let {Ti} and {T ′

i} be the bases of G such that T ′
i = A j

i Tj in which A j
i is an element of

automorphism group Aut(G ). Since an automorphism A of G preserves the structure constants, one
may use (2.7) to conclude that Ωij =< T ′

i , T
′
j >. Then, using (3.18) it is simply shown that

A k
i Ωkj = Ωil (A

−1) l
j . (3.24)

7Here “t” denotes transposition.
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On the one hand, according to (3.15) for the changed basis we find R(T ′
i ) = R′ j

i T ′
j = R′ j

i A k
j Tk. In

addition, one can write R(T ′
i ) = A l

i R k
l Tk. Putting these relations together, one obtain that

R′ j
i = A k

i R l
k (A−1) j

l , (3.25)

on the other hand, one may use (3.16) and (3.24) to write (3.25) as

r′
jn

Ωni = A k
i Ωkp rlp (A−1) j

l

= Ωin (A−1) n
p rlp (A−1) j

l . (3.26)

Multiplying both sides of the above equation in Ωim, we finalize that

r′
jm

= (A−1) j
l rlp (A−1) m

p , (3.27)

and this is nothing but (3.23). One can show that the r′ satisfies the (m)CYBE (3.22) if the r be a
solution of (3.22). We note that (3.23) is an equivalence relation.

In the following, we shall solve the (m)CYBE (3.17) (or equivalently (3.22)) for h4 Lie algebra to
obtain the corresponding r-matrices. In this respect, we consider two r-matrices r and r′ equivalent
if one can be obtained from the other by means of a change of basis which is an automorphism A
of Lie algebra G . Indeed, the solutions that relate to each other through Eq. (3.23) are equivalent.
In fact, one can use (3.23) to obtain all nonequivalent r-matrices. Before proceeding further, let us
calculate the automorphism group of the particular Lie algebra h4. Using the structure constants given
by (3.1) and then applying (3.21) the automorphism A can be easily obtained. The result is given by
the following statement.

Proposition 3.2. The automorphism groups of the h4 Lie algebra are expressed as matrices in basis
(T1, · · · , T4) as [41, 42]

Aut(h4) =

⎧⎪⎪⎨
⎪⎪⎩
A1 =

⎛
⎜⎜⎝

1 c d e
0 a 0 ad
0 0 b bc
0 0 0 ab

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

-1 c d e
0 0 a -ac
0 b 0 -bd
0 0 0 -ab

⎞
⎟⎟⎠ ; ab �= 0

⎫⎪⎪⎬
⎪⎪⎭

(3.28)

for some real constants a, b, c, d, e.

In order to solve the (m)CYBE (3.17) for h4 Lie algebra, let us assume that rij has the following
general form:

rij =

⎛
⎜⎜⎝

0 m1 m2 m3

-m1 0 m4 m5

-m2 -m4 0 m6

-m3 -m5 -m6 0

⎞
⎟⎟⎠ , (3.29)

for some real constants m1, · · · ,m6. By substituting (3.29) into (3.17) and then by using (3.1) together
with (3.3), the general solution of (3.17) is splitted into three classes such that the solutions are, in

8



terms of the constants λ, ω and m1, · · · ,m6, given by

r1 =

⎛
⎜⎜⎝

0 0 0 m3

0 0 ±
√
− ω

λ2 m5

0 ∓
√
− ω

λ2 0 m6

-m3 -m5 -m6 0

⎞
⎟⎟⎠ , r2 =

⎛
⎜⎜⎝

0 m1 0 -Δ16

-m1 0 Δ16 m5

0 -Δ16 0 m6

Δ16 -m5 -m6 0

⎞
⎟⎟⎠ ,

r
3 =

⎛
⎜⎜⎝

0 0 m2 Δ25

0 0 Δ25 m5

-m2 -Δ25 0 m6

-Δ25 -m5 -m6 0

⎞
⎟⎟⎠ , (3.30)

where Δ16 =
√

m1m6 − ω
λ2 and Δ25 =

√
m2m5 − ω

λ2 for all ω in R. Now by using the automorphisms
group elements A ∈ Aut(h4) of (3.28) and by employing formula (3.23) of Proposition 3.1, one con-
cludes that r-matrices given by (3.30) are splitted into ten nonequivalent classes such that the results8
are summarized in Theorem 3.1.

Theorem 3.1. Any r-matrix of the h4 Lie algebra as a solution the (m)CYBE (3.17) belongs just
to one of the following ten nonequivalent classes

r
I
=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 -1 0 0

⎞
⎟⎟⎠ , r

II
=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 -1 -1 0

⎞
⎟⎟⎠ , r

III
=

⎛
⎜⎜⎝

0 1 0 0
-1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , r

IV
=

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
-1 0 0 0

⎞
⎟⎟⎠ ,

r
V
=

⎛
⎜⎜⎝

0 0 0 -1
0 0 1 1
0 -1 0 0
1 -1 0 0

⎞
⎟⎟⎠ , r

V I
=

⎛
⎜⎜⎝

0 1 0 -1
-1 0 1 0
0 -1 0 0
1 0 0 0

⎞
⎟⎟⎠ , r

V II
=

⎛
⎜⎜⎝

0 1 0 0
-1 0 0 0
0 0 0 1
0 0 -1 0

⎞
⎟⎟⎠ , r

V III
=

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 -1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

r
IX

=

⎛
⎜⎜⎝

0 0 0 q2

0 0 1 0
0 -1 0 0

-q2 0 0 0

⎞
⎟⎟⎠ , r

X
=

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 -1 0 0
-1 0 0 0

⎞
⎟⎟⎠ ,

where q2 �= 0, 1.
It should be noted that:

• Both the solutions rI and rII can be obtained from the matrix r3 by putting ω = 0,m2 = m6 =
0,m5 = 1 and ω = 0,m2 = 0,m5 = m6 = 1, respectively; moreover, one can obtain rX from r3
by putting ω = −1, λ = 1,m2 = m5 = m6 = 0. Using (3.23) we have checked that all three of
the solutions rI , rII and rX are, under both automorphisms A1 and A2, nonequivalent.

8In Ref. [43], all coboundary Lie bialgebras of the h4 Lie algebra have been obtained and classified into three multi-
parametric families. Accordingly, their corresponding r-matrices have been also found as multiparametric. Here we have
exactly found the r-matrices of h4. However, our results are in agreement with those of Ref. [43].
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• The rIII , rV I and rV II are just obtained from the matrix r2 by putting ω = 0,m5 = m6 =
0,m1 = 1 and ω = −1, λ = 1,m5 = m6 = 0,m1 = 1, and ω = λ = 1,m5 = 0,m1 = m6 = 1,
respectively; moreover, the solution rV can be obtained from r2 by putting ω = −1, λ = 1,m1 =
m6 = 0,m5 = 1. We have also checked that all four of the solutions rIII , rV , rV I and rV II are,
under both automorphisms A1 and A2, nonequivalent.

• All three of the solutions rIV , rV III and rIX are obtained from the matrix r1 by putting ω =
0,m5 = m6 = 0,m3 = 1 and ω = −1, λ = 1,m3 = m5 = m6 = 0, and ω = −1, λ = 1,m5 = m6 =
0,m3 = q2, respectively. One can show that these solutions are, under both automorphisms A1

and A2, nonequivalent.

According to above explanations the r-matrices rI , rII , rIII and rIV of the h4 Lie algebra are all solutions
of CYBE with ω = 0 while solutions of the mCYBE are the rV , rV I , rV II , rV III , rIX and rX with ω = ±1.
Now one may use formulas (3.3), (3.15) and (3.16) to obtain all linear R-operators corresponding to the
nonequivalent r-matrices. R-operators are one of the basic tools for calculating the deformed currents
J± and then constructing the YB deformed WZW models. In the next subsection, we will classify all
YB deformations of the H4 WZW model.

Before closing this subsection, it is useful to comment on the fact that the YB deformed WZW
model (2.6) is, under the automorphism transformation (3.18), invariant. First of all, the invariance
of the left invariant one-forms Lα under (3.18) requires that

L′i
α
= Lj

α
(A−1) i

j . (3.31)

Then, using relations (3.20) and (3.24) one can deduce that the second term (WZW term) of action
(2.6) is invariant with respect to the transformation (3.18). To investigate the invariance of the first
term of (2.6), we need to know how the currents J± change under (3.18). To this end, one may write
down (2.8) in the following form

J i
± − η2Jk

± R l
k R i

l = (1 + ωη2)
[
Li

± ± ÃLk
± R i

k

]
. (3.32)

Using (3.25) and (3.31) we find that relation (3.32) does remain invariant with respect to the transfor-
mation (3.18) if the following relation is held

J ′i
± = J j

± (A−1) i
j . (3.33)

Finally, one verifies the invariance of the first term of (2.6) under (3.18) by applying formulas (3.24),
(3.31) together with (3.33).

3.3 Backgrounds for YB deformations of the H4 WZW model

As was mentioned earlier, by using (3.3), (3.15) and (3.16) we can obtain all linear R-operators corre-
sponding to the nonequivalent r-matrices of the h4 Lie algebra. Having R-operators, we can find the
deformed currents J± from Eq. (2.8). In this way, one uses (2.6) to obtain YB deformations of the
H4 WZW model. For the sake of clarity the results obtained in this subsection are summarized in
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Table 1; we display the deformed backgrounds including metric and B-field, together with the related
comments. It should be noted that the symbol of each background, e.g. H

(κ,η,Ã)
4 .III, indicates the YB

deformed background derived by rIII ; roman numbers I, II etc. distinguish between several possible
deformed backgrounds of the H4 WZW model, and the parameters (κ, η, Ã) indicate the deformation
ones of each background.

3.3.1 About of the deformed backgrounds

The backgrounds H
(κ)
4 .I,H

(κ,η)
4 .II and H

(κ,Ã)
4 .X. As it is seen from Table 1, the metrics of H(κ)

4 .I

and H
(κ,Ã)
4 .X have not, under the deformation, been changed, i.e. in these cases, the H4 WZW model

metric remains, under the deformation, invariant while corresponding B-fields have been changed. In
the case of the background H

(κ,η)
4 .II, by shifting ρ → ρ′ = ρ − 2η2 one can easily show that this

background is the same as H
(κ)
4 .I. But, considering the same values of ρ in both backgrounds we are

faced with a deformed metric of the H
(κ,η)
4 .II.

The backgrounds H
(κ,η,Ã)
4 .IV,H

(κ,η,Ã)
4 .V,H

(κ,η)
4 .V III and H(κ,η,Ã)

4,q
.IX. It is also interesting to

note the fact that under some coordinate transformations one concludes that all deformed metrics of
backgrounds H

(κ,η,Ã)
4 .IV,H

(κ,η,Ã)
4 .V,H

(κ,η)
4 .V III and H(κ,η,Ã)

4,q
.IX can be turned into the same metric

of the H4 WZW model, while corresponding B-fields are changed. One may show that the Lie algebra
of Killing vectors corresponding to metrics of these backgrounds is isomorphic to those of (3.8), i.e.
(3.11). Accordingly, it would be interesting to try to reveal the relation between the above backgrounds
and H4 WZW model.

By performing the following coordinate transformation

x
′
=

1

1− η2
x, y

′
= y e

−η2

1−η2
x
, u

′
= u, v

′
= v, (3.34)

and also by applying ρ′ = ρ(1− η2), we see that the metric of the background H
(κ,η,Ã)
4 .IV turns into

the same metric of the H4 WZW model, while B-field have been changed as mentioned above. In like
manner, by using the linear transformation

x
′
= x, y

′
= y − 2η2

1− η2
x, u

′
= u, v

′
= v, (3.35)

and without any shift in ρ, one can easily show that the metric of H(κ,η,Ã)
4 .V is nothing but the same

(3.8). The background H
(κ,η)
4 .V III can be also simplified by performing a coordinate transformation

x
′
= (1− η2)x, y

′
= y eη

2x, u
′
= u, v

′
= v. (3.36)

After performing the transformation (3.36) and using ρ′ = ρ/(1 − η2), the resulting metric takes the
same form as in (3.8).
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Table 1. YB deformed backgrounds of the H4 WZW model∗

Background
symbol

Backgrounds including metric and B-field Comments

H
(κ)
4 .I ds2 = ρdx2 − 2dxdv + 2exdydu,

B = κyexdu ∧ dx ω = 0, λ = 1

H
(κ,η)
4 .II ds2 = (ρ− 2η2)dx2 − 2dxdv + 2exdydu,

B = κyexdu ∧ dx ω = 0, λ = 1

H
(κ,η,Ã)
4 .III ds2 = ρdx2 − 2dxdv + 2exdydu− ρη2e2xdu2,

B = κyexdu ∧ dx+ Ãexdv ∧ du ω = 0, λ = 1

H
(κ,η,Ã)
4 .IV ds2 = 1

1−η2

[
ρdx2 − 2dxdv − 2η2yexdxdu

]
+ 2exdydu,

B = (κ− Ã
1−η2 )ye

xdu ∧ dx ω = 0, λ = 1

H
(κ,η,Ã)
4 .V ds2 = ρdx2 − 2dxdv + 2exdydu− 4η2

1−η2 e
xdxdu,

B = (κ+ Ã)yexdu ∧ dx ω = −1, λ = 1

H
(κ,η,Ã)
4 .V I ds2 = ρdx2 − 2dxdv + 2exdydu− 2ρη2

1−η2 e
xdxdu− ρη2

1−η2 e
2xdu2,

B = (κ+ Ã)yexdu ∧ dx+ Ãexdv ∧ du ω = −1, λ = 1

H
(κ,η,Ã)
4 .V II ds2 = ρ

1+η2 dx
2 − 2dxdv + 2exdydu− ρη2

1+η2 e
2xdu2,

B = κyexdu ∧ dx+ Ãexdv ∧ du ω = 1, λ = 1

H
(κ,η)
4 .V III ds2 = (1− η2)(ρdx2 − 2dxdv) + 2exdydu+ 2η2yexdxdu,

B = κyexdu ∧ dx ω = −1, λ = 1

H
(κ,η,Ã)
4,q .IX ds2 = 1−η2

1−η2q4
(ρdx2 − 2dxdv) + 2exdydu+

2η2(1−q4)

1−η2q4
yexdxdu,

B =
[
κ− Ãq2(1−η2)

1−η2q4

]
yexdu ∧ dx ω = −1, λ = 1

H
(κ,Ã)
4 .X ds2 = ρdx2 − 2dxdv + 2exdydu,

B = (κ− Ã)yexdu ∧ dx ω = −1, λ = 1

∗Here we have ignored the total derivative terms that appeared in the B-fields part.

Finally, we find that the metric of background H(κ,η,Ã)
4,q

.IX can be equal to (3.8) if one applies the
transformation

x
′
=

1− η2

1− η2q4
x, y

′
= y e

η2(1−q4)

1−η2q4
x
, u

′
= u, v

′
= v, (3.37)

and also ρ′ = ρ(1− η2q4)/(1− η2). Thus, we showed that, in some cases of the deformed backgrounds,
the H4 WZW model metric is, under arbitrary YB deformations, invariant up to antisymmetric B-fields.

The backgrounds H
(κ,η,Ã)
4 .III,H

(κ,η,Ã)
4 .V I and H

(κ,η,Ã)
4 .V II. In order to clarify the structure

of the metrics of H(κ,η,Ã)
4 .III,H

(κ,η,Ã)
4 .V I and H

(κ,η,Ã)
4 .V II one may find isometry group of the met-

rics, where the generators of the corresponding Lie algebra can be expressed in terms of the Killing
vectors. One immediately find that the metrics of these backgrounds admit a six-dimensional Lie al-
gebra of Killing vectors, which it cannot evidently be isomorphic to those of (3.11). Accordingly, these
backgrounds cannot be turned into the H4 WZW model.
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4 Conformal invariance of the backgrounds up to two-loop

In the σ-model context, the conformal invariance conditions of the σ-model are provided by the van-
ishing of the beta-function equations [25]. The study of the conformal invariance has led to the
covering of string theory, since one- and two-loop domains in string theory correspond to formulating
on worldsheets of nontrivial topology. It is well known that the conditions for conformal invariance
can be interpreted as effective field equations for Gμν , Bμν and dilaton field Φ of the string effective
action [25]. The dilaton field is only one more massless degree of freedom of the bosonic string theory.
This gives a contribution to the action (3.7) in the form of 1

8π

∫
dτdσR

(2)
Φ(xμ) in which R

(2) is the
curvature scalar on the string worldsheet. This term breaks Weyl invariance on a classical level as
do the one-loop corrections to G and B. Below, we shall solve the one- and two-loop beta-function
equations for all YB deformed backgrounds of Table 1 to obtain the corresponding dilaton fields9.

4.1 Conditions for one-loop solution

The conditions for conformal invariance to hold in the σ-model in the lowest nontrivial approximation
are the vanishing of the one-loop beta-function. The equations for the vanishing of the one-loop
beta-function are given by [25]

0 = Rμν − (H2)μν +∇μ∇νΦ,

0 = −∇λHλμν +H λ
μν ∇λΦ,

0 = 2Λ +∇2Φ′ − (∇Φ′)2 +
2

3
H2, (4.1)

where Rμν is the Ricci tensor of the metric Gμν , Hμνρ defined by

Hμνρ =
1

2

(
∂μBνρ + ∂νBρμ + ∂ρBμν

)
, (4.2)

is the torsion of the antisymmetric B-field, and Λ is a cosmological constant which vanishes for critical
strings. We have also used the conventional notations (H2)μν = HμρσH

ρσ
ν and H2 = HμνρH

μνρ. We
now solve the field equations (4.1) for all YB deformed backgrounds of Table 1. In this way, we find
the dilaton fields that guarantee the conformal invariance of the backgrounds at one-loop level. In all
cases, the cosmological constant vanishes. In order to get more clarity, the results obtained for the
dilaton fields are summarized in Table 2.

9Notice that there is a one-to-one correspondence between the r-matrices rI , rII , rIV as solutions of the CYBE and
two-dimensional Abelian subalgebra. These solutions satisfy the unimodularity condition of [19,20] while for the case of
rIII , two-dimensional subalgebra is non-Abelian; accordingly, the unimodularity condition is not satisfied. Anyway we
still have a solution for which the conformal invariance condition is satisfied at one-loop level, as well as two-loop. Also,
one can check the two-loop conformal invariance conditions for YB deformed backgrounds constructed from the matrices
rV , ..., rX . Here we do not have the condition of [19], because of the existence of a WZW term.
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Table 2. The dilaton fields making the H4 deformed backgrounds conformal up to one-loop order∗

Background
symbol

Dilaton fields Comments

H
(κ)
4 .I 1

4
(1− κ2)x2 + c1x+ c2

H
(κ,η)
4 .II 1

4
(1− κ2)x2 + c1x+ c2

H
(κ,η,Ã)
4 .III 1

4

(
1− κ2

)
x2 + c1x+ c2 Ã = 0

H
(κ,η,Ã)
4 .IV 1

4

[
1

(η2−1)2
−

(
κ+ Ã

η2−1

)2]
x2 + c1x+ c2

H
(κ,η,Ã)
4 .V 1

4

[
1− (κ+ Ã)2

]
x2 + c1x+ c2

H
(κ,η,Ã)
4 .V I 1

4

(
1− κ2

)
x2 + c1x+ c2 Ã = 0

H
(κ,η,Ã)
4 .V II 1

4

(
1− κ2

)
x2 + c1x+ c2 Ã = 0

H
(κ,η)
4 .V III 1

4

[
(1− η2)2 − κ2

]
x2 + c1x+ c2

H(κ,η,Ã)
4,q

.IX 1
4

[
( 1−η2

1−η2q4
)2 −

(
κ− Ãq2(1−η2)

1−η2q4

)2]
x2 + c1x+ c2

H
(κ,Ã)
4 .X 1

4

[
1− (Ã− κ)2

]
x2 + c1x+ c2

∗ Here c1 and c2 are some arbitrary constants.

4.2 Conditions for two-loop solution

In order for the fields (G,B,Φ) to provide a consistent string background at low-energy up to two-loop
order, they must satisfy the following equations [44, 45]

0 = Rμν − (H2)μν +∇μ∇νΦ+
1

2
α′
[
RμρσλR

ρσλ
ν + 2Rμρσν(H

2)ρσ

+2Rρσλ(μH
λδ

ν) Hρσ
δ
+

1

3
(∇μHρσλ)(∇νH

ρσλ)− (∇λHρσμ)(∇λHρσ
ν)

+2HμρσHνλδH
ηδσH λρ

η + 2HμσλH
λ

νρ (H2)ρσ
]
+O(α′2),

0 = ∇λHλμν − (∇λΦ′)Hμνλ + α′
[
∇λHρσ

[μRν]λρσ − (∇λHρμν)(H
2)λρ

−2(∇λHρσ
[μ)Hν]ρδH

δ
λσ

]
+O(α′2),

0 = 2Λ +∇2Φ′ − (∇Φ′)2 +
2

3
H2 − α′

[1
4
RμρσλR

μρσλ

− 1

3
(∇λHμνρ)(∇λHμνρ)− 1

2
Hμν

λH
ρσλRμνρσ −Rμν(H

2)μν +
3

2
(H2)μν(H

2)μν

+
5

6
HμνρH

μ
σλH

νσ
δH

ρλδ
]
+O(α′2), (4.3)

where Rμνρσ is the Riemann tensor field of the metric Gμν , (H2)μν = HμρσH ν
ρσ , and in second equation

of (4.3) Φ′ = Φ+α′qH2 for some coefficient q [44]. We note that round brackets denote the symmetric
part on the indicated indices whereas square brackets denote the antisymmetric part. Using the above
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equations we check the conformal invariance conditions of the backgrounds of Table 1 up to two-loop
order. In fact, we introduce some new solutions for two-loop beta-function equations of the σ-model
with a non-vanishing field strength H and the dilaton field in the absence of a cosmological constant
Λ. The field equations (4.3) are satisfied for all backgrounds of Table 1 with the same dilaton fields
given in Table 2.

5 Summary and concluding remarks

Using automorphism group of the h4 Lie algebra we have classified all corresponding classical r-matrices
as the solutions of (m)CYBE. Then, we obtained all YB deformed WZW models based on the H4 Lie
group. We have, in some cases, shown that the metric of the H4 WZW model is invariant under
possible YB deformations while the antisymmetric B-fields are changed. We have also shown that all
new integrable backgrounds of YB deformed H4 WZW model are conformally invariant up to two-loop
in the absence of a cosmological constant Λ. In this respect, we have derived the general form of the
dilaton fields satisfying the vanishing beta-function equations. In fact, the YB deformed backgrounds
that are conformal at one-loop remain conformal at two-loop with the same dilaton fields. Most
importantly, it has been shown that the H4 WZW model is a conformal theory within the class of the
YB deformations preserving the conformal invariance up to two-loop order. It is also straightforward to
determine the dilaton in the YB deformed Nappi-Witten model [31] by following our present analysis
and method. As it has been indicated in Appendix B, we have classified all nonequivalent r-matrices
of the Nappi-Witten Lie algebra in order to study the corresponding YB deformation of WZW model.

As a future direction, it would be interesting to generalize the YB deformation formulation of
WZW model from Lie groups to Lie supergroups. As we know already, in order to construct the
YB deformations of WZW model on a Lie group G one needs the r-matrices of Lie algebra G of G.
Fortunately, the classical r-matrices related to some of the Lie superalgebras are available [46–49] (see
also [50]). One can use these to construct new backgrounds of YB deformed WZW models. We hope
that in future it will be possible to find YB deformed WZW models even for physically interesting
backgrounds. The generalization of YB deformation of WZW model to Lie supergroups is currently
under investigation.
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A Some computational results related to YB deformations of the H4

WZW model

In this Appendix, we tabulate the nonzero components of tensors Hμνρ, (H
2)μν , Rμν and Riemann

tensor field related to the backgrounds of YB deformed H4 WZW model representing in Table 1.
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We note that for all backgrounds one quickly finds that R = H2 = 0; moreover, the only nonzero
component of Rμν is Rxx which is indicated for all backgrounds in Table 3.

Table 3. The nonzero components of tensors Rμν , Rμνρσ , Hμνρ and (H2)μν related to the backgrounds represented in Table 1

Background
symbol

Rxx Rμνρσ Hμνρ (H2)μν

H
(κ
4 .I - 1

2
Rxyxu = −ex

4
Hxyu = κex

2
(H2)xx = −κ2

2

H
(κ,η)
4 .II - 1

2
Rxyxu = −ex

4
Hxyu = κex

2
(H2)xx = −κ2

2

H
(κ,η,Ã)
4 .III - 1

2
Rxyxu = −ex

4
, Hxyu = κex

2
(H2)xx = −κ2

2

Rxuxu = 5ρη2e2x

4
Hxuv = −Ãex

2
(H2)xu = −κÃ

2
ex

(H2)uu = −Ã2

2
e2x

H
(κ,η,Ã)
4 .IV - 1

2(1−η2)2
Rxyxu = −ex

4(1−η2)2
Hxyu = 1

2
(κ− Ã

1−η2 )e
x (H2)xx = −1

2

(
κ− Ã

1−η2

)2

H
(κ,η,Ã)
4 .V - 1

2
Rxyxu = − ex

4
Hxyu = 1

2
(κ+ Ã)ex (H2)xx =

−(κ+Ã)2

2

H
(κ,η,Ã)
4 .V I - 1

2
Rxyxu = −ex

4
, Hxyu = 1

2
(κ+ Ã)ex (H2)xx =

−(κ+Ã)2

2

Rxuxu = 5ρη2e2x

4(1−η2)
Hxuv = −Ãex

2
(H2)xu =

−(κ+Ã)Ãex

2

(H2)uu = −Ã2

2
e2x

H
(κ,η,Ã)
4 .V II - 1

2
Rxyxu = −ex

4
, Hxyu = κex

2
(H2)xx = −κ2

2

Rxuxu = 5ρη2e2x

4(1+η2)
Hxuv = −Ãex

2
(H2)xu = −κÃex

2

(H2)uu = −Ã2

2
e2x

H
(κ,η)
4 .V III - (1−η2)2

2
Rxyxu = − ex(1−η2)2

4
Hxyu = κex

2
(H2)xx = −κ2

2

H
(κ,η,Ã)
4,q .IX - 1

2

( 1−η2

1−η2q4

)2
Rxyxu = − 1

4

( 1−η2

1−η2q4

)2
ex Hxyu = ex

2

(
κ− Ãq2(1−η2)

1−η2q4

)
(H2)xx = − 1

2

(
κ− Ãq2(1−η2)

1−η2q4

)2

H
(κ,Ã)
4 .X - 1

2
Rxyxu = −ex

4
Hxyu = 1

2
(κ− Ã)ex (H2)xx = −1

2
(κ− Ã)2

B More on YB deformations of the Nappi-Witten WZW model

B.1 Nonequivalent r-matrices

In this Appendix, using automorphism group of the Nappi-Witten Lie algebra [41, 42] we find all
nonequivalent r-matrices as solutions of the (m)CYBE (3.22). We then find all YB deformations of
WZW model on the Nappi-Witten Lie group. Before proceeding to get nonequivalent r-matrices, let
us introduce the Nappi-Witten Lie algebra. It is spanned by the set of generators Ti = (P1 , P2 , J, T )
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which fulfill the following nonzero commutation rules [38]:

[J, P1 ] = P2 , [J, P2 ] = −P1 , [P1 , P2 ] = T. (B.1)

This algebra is a central extension of the 2D Poincaré algebra to which it reduces if one sets T = 0.
Using (B.1) together with (2.7), one obtains the non-degenerate ad-invariant bilinear form Ωij on the
Nappi-Witten Lie algebra, giving

Ωij =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 b 1
0 0 1 0

⎞
⎟⎟⎠ , (B.2)

where b is a real constant. In order to calculate the left-invariant one-forms Lα we parameterize the
Nappi-Witten group with coordinates xμ = (a1 , a2 , u, v) so that its elements can be written as

g = exp
(
a1P1 + a2P2

)
exp

(
uJ + v T

)
. (B.3)

We then obtain

Lα = g−1 ∂αg =
(
cosu ∂αa1 + sinu ∂αa2

)
P1 +

(
cosu ∂αa2 − sinu ∂αa1

)
P2

+∂αuJ +
(
∂αv +

1

2
a2 ∂αa1 −

1

2
a1 ∂αa2

)
T. (B.4)

Using the above results together with the general form of the WZW model action (3.2), the spacetime
metric and antisymmetric B-field are, respectively, found to be

ds2 = 2dudv + b du2 + da1
2 + da2

2 − a1 da2du+ a2 da1du,

B = u da1 ∧ da2 . (B.5)

According to (2.6), (2.8) and (3.13) to construct the YB deformation of WZW model on the Nappi-
Witten group we need to find the corresponding nonequivalent r-matrices. Using relations (B.1) and
(B.2) one may obtain the general solution of the (m)CYBE (3.22) as follows [31]

rij =

⎛
⎜⎜⎝

0 ±
√
ω 0 m3

∓
√
ω 0 0 m5

0 0 0 m6

-m3 -m5 -m6 0

⎞
⎟⎟⎠ , (B.6)

for some real constants m3,m5,m6. As was mentioned earlier, to obtain the nonequivalent r-matrices
one must use the automorphism group of the Nappi-Witten algebra. Using (B.1) and (3.21) the
automorphism groups of the Nappi-Witten algebra are expressed as matrices in the following form
[41,42]

A1 =

⎛
⎜⎜⎝

a b 0 -ac -bd
-b a 0 -ad+bc
c d 1 e
0 0 0 a2 + b2

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

a b 0 ac +bd
b -a 0 -ad+bc
c d -1 e
0 0 0 -(a2 + b2)

⎞
⎟⎟⎠ , a2 + b2 �= 0, (B.7)
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where a, b, c, d and e are some arbitrary constants. Ultimately, by employing formula (3.23) of Propo-
sition 3.1, the r-matrices for the Nappi-Witten algebra are splitted into the following six nonequivalent
families

r′
1
=

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
-1 0 0 0

⎞
⎟⎟⎠ , r′

2
=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 -1 0

⎞
⎟⎟⎠ , r′

3
=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 -1
0 0 1 0

⎞
⎟⎟⎠ ,

r′
4
=

⎛
⎜⎜⎝

0 1 0 0
-1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , r′

5
=

⎛
⎜⎜⎝

0 1 0 0
-1 0 0 0
0 0 0 p2

0 0 -p2 0

⎞
⎟⎟⎠ , r′

6
=

⎛
⎜⎜⎝

0 -1 0 0
1 0 0 0
0 0 0 -p2

0 0 p2 0

⎞
⎟⎟⎠ , (B.8)

where p is a nonzero constant.

B.2 Backgrounds for YB deformations of the Nappi-Witten WZW model

Hence it is straightforward to study YB deformations of the Nappi-Witten WZW model. Similar to
the YB deformations of the H4 WZW model in Sec. 3, we use formulas (3.15), (3.16) and (B.2)
to obtain all linear R-operators corresponding to the nonequivalent r-matrices of the Nappi-Witten
algebra. Then, by using (2.6) together with (2.8) one obtains all YB deformed backgrounds of the
Nappi-Witten WZW model. The deformed backgrounds including metric and B-field are summarized
in Table 4.

Table 4. YB deformed backgrounds of the Nappi-Witten WZW model∗

Nonequivalent
r-matrices

Backgrounds Comments

r′
1

ds2 = da21 + da22 + (b− η2)du2 + 2dudv + a2da1du− a1da2du,

B = κu da1 ∧ da2 ω = 0

r′
2

ds2 = da21 + da22 + 1
1−η2

[
bdu2 + 2du dv + a2da1du− a1da2du

]
,

B = κu da1 ∧ da2 + Ã
2(1−η2)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 0

r′
3

ds2 = da21 + da22 + 1
1−η2

[
bdu2 + 2du dv + a2da1du− a1da2du

]
,

B = κu da1 ∧ da2 − Ã
2(1−η2)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 0

r′
4

ds2 = da21 + da22 + (1 + η2)
[
bdu2 + 2du dv + a2da1du− a1da2du

]
,

B = κu da1 ∧ da2 ω = 1

r′
5

ds2 = da21 + da22 + 1+η2

1−η2p4

[
bdu2 + 2du dv + a2da1du− a1da2du

]
,

B = κu da1 ∧ da2 +
Ãp2(1+η2)

2(1−η2p4)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 1

r′
6

ds2 = da21 + da22 + 1+η2

1−η2p4

[
bdu2 + 2du dv + a2da1du− a1da2du

]
,

B = κu da1 ∧ da2 − Ãp2(1+η2)

2(1−η2p4)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 1

∗Here we have ignored the total derivative terms that appeared in the B-fields part.
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B.3 Conformal invariance of the backgrounds up to one- and two-loop orders

In order to guarantee the conformal invariance of the YB deformed backgrounds of the Nappi-Witten
WZW model of Table 4, at least at the one-loop level, one must show that they satisfy the vanishing
beta-function equations (4.1).

Table 5. The dilaton fields making the Nappi-Witten deformed backgrounds conformal up to the one- and two-loop orders

Nonequivalent
r-matrices

Dilaton fields

r′
1

1
4
(κ2 − 1)u2 + c1u+ c2

r′
2

1
4

[
κ2 − 2κÃ

η2−1
− (1−Ã2)

(η2−1)2

]
u2 + c1u+ c2

r′
3

1
4

[
κ2 + 2κÃ

η2−1
− (1−Ã2)

(η2−1)2

]
u2 + c1u+ c2

r′
4

1
4

[
κ2 − (1 + η2)2

]
u2 + c1u+ c2

r′
5

1
4(1−η2p4)2

[
κ2(1− η2p4)2 + 2κÃp2(1 + η2)(1− η2p4)− (1− Ã2p4)(1 + η2)2

]
u2 + c1u+ c2

r′
6

1
4(1−η2p4)2

[
κ2(1− η2p4)2 − 2κÃp2(1 + η2)(1− η2p4)− (1− Ã2p4)(1 + η2)2

]
u2 + c1u+ c2

From solving Eqs. (4.1) we find the general form of the dilaton fields that make the YB deformed
backgrounds conformal up to the one-loop order. The results obtained for dilaton fields are represented
in Table 5. It would also be interesting to consider the conformal invariance of the Nappi-Witten
deformed backgrounds up to the two-loop order. To this end, we solve the field equations (4.3) and
show the YB deformed backgrounds that are conformal at one-loop remain conformal at two-loop with
the same dilaton fields given in Table 5. In this way, the cosmological constant vanishes.
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