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Abstract

The Yang-Baxter (YB) deformations of Wess-Zumino-Witten (WZW) model on the Heisenberg Lie 
group (H4) are examined. We proceed to obtain the nonequivalent solutions of (modified) classical Yang-
Baxter equation ((m)CYBE) for the h4 Lie algebra by using its corresponding automorphism transforma-
tion. Then we show that YB deformations of H4 WZW model are split into ten nonequivalent backgrounds 
including metric and B-field such that some of the metrics of these backgrounds can be transformed to the 
metric of H4 WZW model while the antisymmetric B-fields are changed. The rest of the deformed metrics 
have a different isometric group structure than the H4 WZW model metric. As an interesting result, it is 
shown that all new integrable backgrounds of the YB deformed H4 WZW model are conformally invariant 
up to two-loop order. In this way, we obtain the general form of the dilaton fields satisfying the vanishing 
beta-function equations of the corresponding σ -models.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The study of integrable two dimensional σ -models and their deformations have always re-
markable attentions of people from early times of their presentation [1,2]. Integrable deforma-
tions of SU(2) principal chiral model firstly presented in [3–5]. Then, YB (or η) deformation 
of chiral model was introduced by Klimcik [6–8] as the generalization of [4,5] while the model 
proposed in [3] was generalized as λ-deformation in [9]. The relation between these integrable 
deformations was studied in [10,11]. The YB integrable deformations [6] are based on R-op-
erators satisfying the mCYBE and the generalization to models with R-operators satisfying the 
CYBE (homogeneous YB deformations) was also studied in [12]. The application of these inte-
grable deformation to string theory specially the AdS5×S5 string model has presented in [13–15]
(see also [16–18]). For homogeneous YB deformed models it has been shown that [19] there is 
no Weyl anomaly if the R-operators are unimodular (see also [20] up to two-loop, and [21]). In 
[22], the relationship between unimodularity condition on R-matrices with the divergence-free of 
the noncommutative parameter � of the dual noncommutative gauge theory has been discussed; 
moreover, it has been shown that [23] the equations of motion of the generalized supergrav-
ity reproduce the CYBE in such a way that � is the most general r-matrix solution built from 
antisymmetric products of Killing vectors. The r-matrices may be divided into Abelian and non-
Abelian, and it has been proved that Abelian r-matrices correspond to T-duality shift T-duality 
transformations [24], thus ensuring that the corresponding YB deformation is a supergravity so-
lution. In the case of non-Abelian r-matrices, the unimodularity condition on the r-matrix [19]
distinguishes valid supergravity backgrounds [25] from the generalized supergravity solutions 
[26,27]. The Weyl invariance of bosonic string theories on generalized supergravity backgrounds 
was shown at one-loop order by constructing a local counterterm [28,29].

The generalization to YB σ -models with WZW term has also carried out in [30–34]. In 
most of the works, the models have been constructed on semisimple or compact Lie groups. 
In Ref. [31], the YB models on the Nappi-Witten group was constructed. There, it has been 
shown that the Nappi-Witten model is the unique conformal theory within the class of the YB 
2
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deformations preserving the conformal invariance. Lately, YB deformation of the Nappi-Witten 
background based on the mCYBE has been used in order to find a one-parameter family of su-
pergravity solutions which contains the Nappi-Witten background and the flat Minkowski space 
[35]. Here we particularly focus on the YB σ -models with WZW term on the H4 Lie group ob-
taining from R-operators satisfying the (m)CYBE. We show that YB deformations of H4 WZW 
model are split into ten nonequivalent backgrounds including metric and B-field such that some 
of the metrics of these backgrounds can be transformed to the metric of H4 WZW model while 
the antisymmetric B-fields are changed.

The plan of the paper is as follows: In order to present the notations, we review in general the 
YB deformations of chiral and WZW models in Sec. 2. In Sec. 3, after a review of the construc-
tion of WZW model based on the H4 Lie group [36,37], by using the automorphism group of the 
h4 Lie algebra we obtain the solutions of the (m)CYBE, i.e. corresponding nonequivalent clas-
sical r-matrices. We prove that in general the equivalent classical r-matrices (r-matrices related 
by automorphism group) lead to equivalent models. After then, we classify all backgrounds of 
YB deformed WZW model on H4 in subSec. 3.3. The use of the convenient coordinate trans-
formations (similar to YB deformed WZW model on the Nappi-Witten group [31]) in order to 
transform the metrics of some deformed backgrounds to the metric of H4 WZW model is given 
at the end of Sec. 3. The one-loop conformal invariance of the deformed models is investigated 
in subSec. 4.1 in such a way that the corresponding dilaton fields are found. In subSec. 4.2, we 
immediately check the conformal invariance of the models up to two-loop order and conclude 
that two-loop beta-function equations are satisfied with the same previous dilaton fields. Some 
concluding remarks are given in the last section. We tabulate the nonzero components of ten-
sors Hμνρ, (H 2)μν, Rμν and Riemann tensor field related to the backgrounds of YB deformed 
H4 WZW model in Appendix A. Finally, in Appendix B, by following our present method we 
classify all nonequivalent classical r-matrices and corresponding YB deformed WZW models 
based on the Nappi-Witten group [31]; moreover, we show that all deformed backgrounds are 
conformally invariant up to two-loop order.

2. A review of YB σ -model and YB deformations of WZW model

Before proceeding to review the YB deformations of WZW model, let us introduce the YB 
deformation of the principal chiral model on the Lie groups.

2.1. YB σ -model

In order to make the paper somewhat self-contained, let us first start with the YB deformation 
of the principal chiral model on a Lie group G (with Lie algebra G ), giving [6]

S = −1

2

∫

�

d2σT r
[
(g−1∂−g)

1

1 − ηR
(g−1∂+g)

]
, (2.1)

where ∂± = ∂τ ± ∂σ are the derivatives with respect to the standard lightcone variables σ± =
(τ ± σ)/2 on the worldsheet �, and g−1∂±g are components of the left-invariant Maurer-Cartan 
one-forms which are defined by means of an element g : � → G in the following formula

g−1∂±g ≡ L± = Li± Ti, (2.2)
3
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in which Ti, i = 1, ..., dim G are the bases of Lie superalgebra G . In Eq. (2.1), η is a real pa-
rameter by which deformation is measured. If one puts η = 0, the action reduces to the principal 
chiral model [1,2]. In addition, the linear operator1 R : G → G is the solution of equation [12]

[R(X),R(Y )] − R
([R(X),Y ] + [X,R(Y )]) = ω[X,Y ], (2.3)

for all X, Y ∈ G . Here ω is constant parameter which can be normalized by rescaling R. When 
ω = 0, the equation (2.3) is called the CYBE. This equation can be generalized to the mCYBE 
with ω = ±1. The skew-symmetric condition of operator R is written as

T r(R(X)Y ) + T r(XR(Y )) = 0. (2.4)

The integrability of the model (2.1) is an important property of the model such that the corre-
sponding Lax pair is given by2 [12]

L±(λ) = 1

1 ± λ

(
1 − ληR

1 ± ηR

)
L±, (2.5)

where λ is a spectral parameter.

2.2. YB deformation of WZW model

In this subsection we shall consider the YB deformation of the WZW model [30]. The cor-
responding action consists of standard principal chiral model and WZW term based on a Lie 
group G, giving [30,31]

SYB
WZW(g) = 1

2

∫

�

d2σ �ijL
i−J

j
+ + κ

2

∫

B3

d3σ �kl f l
ij Li

ξL
j
+Lk−, (2.6)

in which κ is a constant parameter, B is a three-manifold bounded by worldsheet �, and �kl

defined by �kl =< Tk, Tl > is a non-degenerate ad-invariant symmetric bilinear form on Lie 
algebra G with structure constants f k

ij which satisfies the following relation [38]

f l
ij �lk + f l

ik �lj = 0. (2.7)

Here the deformed currents J± are defined in the following way

J± = (1 + ωη2)
1 ± ÃR

1 − η2R2 L±, (2.8)

where η and Ã measure a deformation of WZW model. One can see that when η = Ã = 0 and 
k = 0 (k = 1) we recover the action of the principal chiral model (undeformed WZW model)
[30], and for Ã = ±η, k = 0 one recovers the YB deformation of chiral model [1,2]. In general, 
the constant parameter ω classifies integrable deformations so that one may consider ω = 0, ±1

1 One can associate the R-operator to a classical r-matrix [12].
2 Note that the Lax pair in (2.5) is the one for ω = 0. One can find a general form of the Lax pair for an arbitrary ω

rather than (2.5), giving [12]

L±(λ) = 1

1 ± λ

(
1 ∓ λη(ηω ± R)

1 ± ηR

)
L±.
4
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[1,2]. In [30], it was shown that in general the model (2.6) is integrable. This model was then 
considered for the Nappi-Witten group [31]. In the next section, we will consider the model (2.6)
for the H4 Lie group.

3. YB deformations of WZW model based on the H4 Lie group and their classification

In this section, we shall solve the mCYBE to obtain the classical r-matrices of the h4 Lie al-
gebra. Since our goal is the classification of all nonequivalent r-matrices, we prove a Proposition. 
This Proposition states that two r-matrices r and r ′ equivalent if one can be obtained from the 
other by means of a change of basis which is an automorphism A of Lie algebra G . We then cal-
culate all linear R-operators corresponding to nonequivalent r-matrices in order to construct the 
YB deformations of the H4 WZW model. Finally, by performing convenient coordinate transfor-
mations on some of the deformed backgrounds we show the invariance of the H4 WZW model 
metric under arbitrary YB deformations, up to antisymmetric B-fields. This means that the effect 
coming from the deformations is reflected only as the coefficient of B-field.

3.1. WZW model based on the H4 Lie group

In this subsection we shall consider the WZW model on the H4 Lie group [36,37]. Before 
proceeding to construct model, let us first introduce the h4 Lie algebra of H4. The Lie algebra h4
is defined by the set of generators (T1, T2, T3, T4) with the following nonzero Lie brackets

[T1, T2] = T2, [T1, T3] = −T3, [T3, T2] = T4. (3.1)

The action of ungauged and undeformed WZW model on a Lie group G is given by

SWZW(g) = 1

2

∫

�

dσ+dσ− �ijL
i+ L

j
− + 1

12

∫

B

d3σ εγαβ �ik f k
jl Li

γ Lj
αLl

β . (3.2)

Accordingly, one needs a non-degenerate bilinear form �ij on Lie algebra G of G. Using (3.1)
and also formula (2.7), one can get the non-degenerate bilinear form on the h4, giving [37]

�ij =

⎛
⎜⎜⎝

ρ 0 0 −λ

0 0 λ 0
0 λ 0 0

−λ 0 0 0

⎞
⎟⎟⎠ , (3.3)

where ρ and λ are some real constants. To construct the WZW action (3.2) on the H4, we param-
eterize an element of the H4 as

g = evT4 euT3 exT1 eyT2 , (3.4)

where xμ = (x, y, u, v) stand for the coordinates of the H4 group manifold. Using (3.1) and (3.4)
the corresponding left-invariant one-forms components are obtained to be [37]

L1± = ∂±x, L2± = y∂±x + ∂±y, L3± = ex ∂±u, L4± = yex ∂±u + ∂±v. (3.5)

Finally, the WZW action on the H4 is found to be of the form [37]

SWZW(g) = 1

2

∫
dσ+dσ−[

ρ ∂+x∂−x − ∂+x∂−v − ∂+v∂−x + ex
(
∂+y∂−u + ∂+u∂−y

+ y∂+u∂−x − y∂+x∂−u
)]

. (3.6)
5
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Here we have set λ = 1. Identifying the action (3.6) with the σ -model of the form3

S = 1

4πα′

∫

�

dτdσ
√−h

(
hαβGμν + εαβBμν

)
∂αxμ∂βxν, (3.7)

we can read off the spacetime metric Gμν and the antisymmetric B-field. They are then given by 
the following relations

ds2 = ρ dx2 − 2 dx dv + 2ex dy du, (3.8)

B = −yex dx ∧ du. (3.9)

The metric (3.8) has an isometry group, where the generators of the corresponding Lie algebra 
can be expressed in terms of the Killing vectors Ki of the target space geometry. Therefore it is 
crucial for our further considerations to obtain the Lie algebra of Killing vectors of (3.8). This 
metric admits a seven-dimensional Lie algebra of Killing vectors, which can be generated by

K1 = − ∂

∂x
+ u

∂

∂u
− ρ

∂

∂v
, K2 = e−x ∂

∂y
− u

∂

∂v
,

K3 = ∂

∂y
, K4 = y

∂

∂y
− u

∂

∂u
,

K5 = e−x ∂

∂u
− y

∂

∂v
, K6 = ∂

∂u
,

K7 = − ∂

∂v
. (3.10)

One can easily check that the Lie algebra spanned by these vectors is

[K1,K2] = K2, [K1,K6] = −K6, [K2,K4] = K2, [K2,K6] = −K7,

[K3,K4] = K3, [K3,K5] = K7, [K4,K5] = K5, [K4,K6] = K6, (3.11)

with the center K7. The generator K4 can be interpreted as dilation in y, u. As it is seen, the h4
Lie algebra, e.g. generated by (K1, K2, K6, K7), is a subalgebra of (3.11).

3.2. Classical r-matrices for h4 Lie algebra

According to the formulas (2.6) and (2.8), to obtain the YB deformations of the H4 WZW 
model one needs the linear operators R associated to classical r-matrices of the h4 Lie algebra. 
Before proceeding to this, let us consider the general form of classical r-matrix of a given Lie 
algebra G with the basis {Ti} [39]

r = 1

2
rij (Ti ⊗ Tj − Tj ⊗ Ti), (3.12)

where rij is an antisymmetric matrix. One may associate a linear operator R to an r-matrix that 
satisfies the mCYBE (2.3). This operator can be defined in the following way [31]

R(Tk) =< r, (1 ⊗ Tk) >= rij�jk Ti . (3.13)

3 hαβ and εαβ are the induced metric and antisymmetric tensor on the worldsheet, respectively, such that h = dethαβ

and the indices α, β run over (τ, σ). The dimensionful coupling constant α′ turns out to be the inverse string tension.
6
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Based on this, the action of R on any element X = xkTk ∈ G is written as

R(X) = xkR(Tk) = rij�jkx
k Ti . (3.14)

Considering

R(Tk) = Rk
i Ti, (3.15)

and then comparing (3.13) and (3.15), one gets

Rk
i = rij�jk. (3.16)

Now, making use of formulas (2.7) and (3.14) and after some algebraic calculations, one can 
write Eq. (2.3) in the following form [31]

flm
krlirmj + flm

irlj rmk + flm
j rlkrmi − ωflm

k�li�mj = 0. (3.17)

This equation can be used in order to calculate the r-matrices for a given Lie algebra G . But, for 
obtaining the nonequivalent r-matrices one must use the automorphism group of Lie algebra G . 
The action of the automorphism A on G is given by the following transformation

T ′
i = A(Ti) = Ai

j Tj , (3.18)

where T ′
i are the changed basis by the automorphism A. Since the automorphism preserves the 

structure constants, the basis T ′
i must obey the same commutation relations as Ti , i.e.,

[T ′
i , T

′
j ] = fij

k T ′
k. (3.19)

Inserting the transformation (3.18) into (3.19) we find that the elements of automorphism group 
A satisfy the following relation

Ai
m fmn

k Aj
n = fij

l Al
k. (3.20)

In order to calculate the elements Ai
j of Lie algebra G it would be helpful to further write the 

matrix form of (3.20), giving4 [40]

A YkAt = Y lA k
l , (3.21)

where (Yk)ij = −fij
k are the adjoint representations of G . It is also useful to obtain matrix form 

of Eq. (3.17) by using the adjoint representations (Yk)ij = −fij
k and (Xi )j

k = −fij
k . It is then 

read

rYkr + r(Xl r
lk) − (rklX t

l )r = −ω(�−1Yk�−1). (3.22)

In order to determine the nonequivalent r-matrices for a given Lie algebra G we give Proposi-
tion 3.1.

Proposition 3.1. Let r and r ′ be two r-matrices as solutions of the (m)CYBE (3.17). If there exists 
an automorphism A of G such that

r = At r ′ A, (3.23)

then the matrices r and r ′ of Lie algebra G are equivalent.

4 Here “t” denotes transposition.
7
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Proof. Let {Ti} and {T ′
i } be the bases of G such that T ′

i = Ai
j Tj in which Ai

j is an element of 
automorphism group Aut(G ). Since an automorphism A of G preserves the structure constants, 
one may use (2.7) to conclude that �ij =< T ′

i , T
′
j >. Then, using (3.18) it is simply shown that

Ai
k �kj = �il (A−1)j

l . (3.24)

On the one hand, according to (3.15) for the changed basis we find R(T ′
i ) = R′

i
j T ′

j =
R′

i
j Aj

k Tk . In addition, one can write R(T ′
i ) = Ai

l Rl
k Tk . Putting these relations together, 

one obtains that

R′
i
j = Ai

k Rk
l (A−1)l

j , (3.25)

on the other hand, one may use (3.16) and (3.24) to write (3.25) as

r ′jn
�ni = Ai

k �kp rlp (A−1)l
j

= �in (A−1)p
n rlp (A−1)l

j . (3.26)

Multiplying both sides of the above equation in �im, we finalize that

r ′jm = (A−1)l
j rlp (A−1)p

m, (3.27)

and this is nothing but (3.23). One can show that the r ′ satisfies the (m)CYBE (3.22) if the r be 
a solution of (3.22). We note that (3.23) is an equivalence relation. �

In the following, we shall solve the (m)CYBE (3.17) (or equivalently (3.22)) for h4 Lie alge-
bra to obtain the corresponding r-matrices. In this respect, we consider two r-matrices r and r ′
equivalent if one can be obtained from the other by means of a change of basis which is an auto-
morphism A of Lie algebra G . Indeed, the solutions that relate to each other through Eq. (3.23)
are equivalent. In fact, one can use (3.23) to obtain all nonequivalent r-matrices. Before proceed-
ing further, let us calculate the automorphism group of the particular Lie algebra h4. Using the 
structure constants given by (3.1) and then applying (3.21) the automorphism A can be easily 
obtained. The result is given by the following statement.

Proposition 3.2. The automorphism groups of the h4 Lie algebra are expressed as matrices in 
basis (T1, · · · , T4) as [41,42]

Aut(h4) =

⎧⎪⎪⎨
⎪⎪⎩

A1 =

⎛
⎜⎜⎝

1 c d e

0 a 0 ad

0 0 b bc

0 0 0 ab

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

−1 c d e

0 0 a −ac

0 b 0 −bd

0 0 0 −ab

⎞
⎟⎟⎠ ; ab �= 0

⎫⎪⎪⎬
⎪⎪⎭

(3.28)

for some real constants a, b, c, d, e.

In order to solve the (m)CYBE (3.17) for h4 Lie algebra, let us assume that rij has the fol-
lowing general form:

rij =

⎛
⎜⎜⎝

0 m1 m2 m3
−m1 0 m4 m5
−m2 −m4 0 m6
−m −m −m 0

⎞
⎟⎟⎠ , (3.29)
3 5 6

8



A. Eghbali, T. Parvizi and A. Rezaei-Aghdam Nuclear Physics B 967 (2021) 115423
for some real constants m1, · · · , m6. By substituting (3.29) into (3.17) and then by using (3.1)
together with (3.3), the general solution of (3.17) is split into three classes such that the solutions 
are, in terms of the constants λ, ω and m1, · · · , m6, given by

r1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 m3

0 0 ±
√

− ω
λ2 m5

0 ∓
√

− ω
λ2 0 m6

−m3 −m5 −m6 0

⎞
⎟⎟⎟⎟⎠ , r2 =

⎛
⎜⎜⎝

0 m1 0 −�16
−m1 0 �16 m5

0 −�16 0 m6
�16 −m5 −m6 0

⎞
⎟⎟⎠ ,

r3 =

⎛
⎜⎜⎝

0 0 m2 �25
0 0 �25 m5

−m2 −�25 0 m6
−�25 −m5 −m6 0

⎞
⎟⎟⎠ , (3.30)

where �16 =
√

m1m6 − ω
λ2 and �25 =

√
m2m5 − ω

λ2 for all ω in R. Now by using the auto-

morphisms group elements A ∈ Aut(h4) of (3.28) and by employing formula (3.23) of Propo-
sition 3.1, one concludes that r-matrices given by (3.30) are split into ten nonequivalent classes 
such that the results5 are summarized in Theorem 3.1.

Theorem 3.1. Any r-matrix of the h4 Lie algebra as a solution the (m)CYBE (3.17) belongs just 
to one of the following ten nonequivalent classes

rI =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , rII =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 −1 −1 0

⎞
⎟⎟⎠ , rIII =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

rIV =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎟⎠ , rV =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 1
0 −1 0 0
1 −1 0 0

⎞
⎟⎟⎠ , rV I =

⎛
⎜⎜⎝

0 1 0 −1
−1 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

rV II =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , rV III =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

rIX =

⎛
⎜⎜⎝

0 0 0 q2

0 0 1 0
0 −1 0 0

−q2 0 0 0

⎞
⎟⎟⎠ , rX =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ,

where q2 �= 0, 1.

5 In Ref. [43], all coboundary Lie bialgebras of the h4 Lie algebra have been obtained and classified into three multi-
parametric families. Accordingly, their corresponding r-matrices have been also found as multiparametric. Here we have 
exactly found the r-matrices of h4. However, our results are in agreement with those of Ref. [43].
9
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It should be noted that:

• Both the solutions rI and rII can be obtained from the matrix r3 by putting ω = 0, m2 =
m6 = 0, m5 = 1 and ω = 0, m2 = 0, m5 = m6 = 1, respectively; moreover, one can obtain 
rX from r3 by putting ω = −1, λ = 1, m2 = m5 = m6 = 0. Using (3.23) we have checked 
that all three of the solutions rI , rII and rX are, under both automorphisms A1 and A2, 
nonequivalent.

• The rIII , rV I and rV II are just obtained from the matrix r2 by putting ω = 0, m5 = m6 = 0, 
m1 = 1 and ω = −1, λ = 1, m5 = m6 = 0, m1 = 1, and ω = λ = 1, m5 = 0, m1 = m6 = 1, 
respectively; moreover, the solution rV can be obtained from r2 by putting ω = −1, λ = 1, 
m1 = m6 = 0, m5 = 1. We have also checked that all four of the solutions rIII , rV , rV I and 
rV II are, under both automorphisms A1 and A2, nonequivalent.

• All three of the solutions rIV , rV III and rIX are obtained from the matrix r1 by putting 
ω = 0, m5 = m6 = 0, m3 = 1 and ω = −1, λ = 1, m3 = m5 = m6 = 0, and ω = −1, λ = 1, 
m5 = m6 = 0, m3 = q2, respectively. One can show that these solutions are, under both 
automorphisms A1 and A2, nonequivalent.

According to above explanations the r-matrices rI , rII , rIII and rIV of the h4 Lie algebra are all 
solutions of CYBE with ω = 0 while solutions of the mCYBE are the rV , rV I , rV II , rV III , rIX

and rX with ω = ±1. Now one may use formulas (3.3), (3.15) and (3.16) to obtain all linear 
R-operators corresponding to the nonequivalent r-matrices. R-operators are one of the basic 
tools for calculating the deformed currents J± and then constructing the YB deformed WZW 
models. In the next subsection, we will classify all YB deformations of the H4 WZW model.

Before closing this subsection, it is useful to comment on the fact that the YB deformed 
WZW model (2.6) is, under the automorphism transformation (3.18), invariant. First of all, the 
invariance of the left invariant one-forms Lα under (3.18) requires that

L′ i
α = Lj

α (A−1)j
i . (3.31)

Then, using relations (3.20) and (3.24) one can deduce that the second term (WZW term) of 
action (2.6) is invariant with respect to the transformation (3.18). To investigate the invariance of 
the first term of (2.6), we need to know how the currents J± change under (3.18). To this end, 
one may write down (2.8) in the following form

J i± − η2J k± Rk
l Rl

i = (1 + ωη2)
[
Li± ± ÃLk± Rk

i
]
. (3.32)

Using (3.25) and (3.31) we find that relation (3.32) does remain invariant with respect to the 
transformation (3.18) if the following relation is held

J ′ i± = J
j
± (A−1)j

i . (3.33)

Finally, one verifies the invariance of the first term of (2.6) under (3.18) by applying formulas 
(3.24), (3.31) together with (3.33).

3.3. Backgrounds for YB deformations of the H4 WZW model

As was mentioned earlier, by using (3.3), (3.15) and (3.16) we can obtain all linear R-oper-
ators corresponding to the nonequivalent r-matrices of the h4 Lie algebra. Having R-operators, 
we can find the deformed currents J± from Eq. (2.8). In this way, one uses (2.6) to obtain YB de-
formations of the H4 WZW model. For the sake of clarity the results obtained in this subsection 
10
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are summarized in Table 1; we display the deformed backgrounds including metric and B-field, 
together with the related comments. It should be noted that the symbol of each background, e.g. 

H
(κ,η,Ã)
4 .I I I , indicates the YB deformed background derived by rIII ; roman numbers I , II

etc. distinguish between several possible deformed backgrounds of the H4 WZW model, and the 
parameters (κ, η, Ã) indicate the deformation ones of each background.

3.3.1. About of the deformed backgrounds

The backgrounds H(κ)
4 .I, H(κ,η)

4 .I I and H(κ,Ã)
4 .X. As it is seen from Table 1, the metrics of 

H
(κ)
4 .I and H(κ,Ã)

4 .X have not, under the deformation, been changed, i.e. in these cases, the H4
WZW model metric remains, under the deformation, invariant while corresponding B-fields have 
been changed. In the case of the background H(κ,η)

4 .I I , by shifting ρ → ρ′ = ρ − 2η2 one can 

easily show that this background is the same as H(κ)
4 .I . But, considering the same values of ρ in 

both backgrounds we are faced with a deformed metric of the H(κ,η)
4 .I I .

The backgrounds H(κ,η,Ã)
4 .IV , H(κ,η,Ã)

4 .V , H(κ,η)
4 .V III and H(κ,η,Ã)

4,q .IX. It is also interesting 
to note the fact that under some coordinate transformations one concludes that all deformed 
metrics of backgrounds H(κ,η,Ã)

4 .IV , H(κ,η,Ã)
4 .V , H(κ,η)

4 .V III and H(κ,η,Ã)
4,q .IX can be turned 

into the same metric of the H4 WZW model, while corresponding B-fields are changed. One 
may show that the Lie algebra of Killing vectors corresponding to metrics of these backgrounds 
is isomorphic to those of (3.8), i.e. (3.11). Accordingly, it would be interesting to try to reveal 
the relation between the above backgrounds and H4 WZW model.

By performing the following coordinate transformation

x′ = 1

1 − η2 x, y′ = y e
−η2

1−η2 x
, u′ = u, v′ = v, (3.34)

and also by applying ρ′ = ρ(1 −η2), we see that the metric of the background H(κ,η,Ã)
4 .IV turns 

into the same metric of the H4 WZW model, while B-field have been changed as mentioned 
above. In like manner, by using the linear transformation

x′ = x, y′ = y − 2η2

1 − η2 x, u′ = u, v′ = v, (3.35)

and without any shift in ρ, one can easily show that the metric of H(κ,η,Ã)
4 .V is nothing but 

the same (3.8). The background H(κ,η)
4 .V III can be also simplified by performing a coordinate 

transformation

x′ = (1 − η2)x, y′ = y eη2x, u′ = u, v′ = v. (3.36)

After performing the transformation (3.36) and using ρ′ = ρ/(1 − η2), the resulting metric takes 
the same form as in (3.8).

Finally, we find that the metric of background H(κ,η,Ã)
4,q .IX can be equal to (3.8) if one applies 

the transformation

x′ = 1 − η2

2 4 x, y′ = y e
η2(1−q4)

1−η2q4 x
, u′ = u, v′ = v, (3.37)
1 − η q

11
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Table 1
YB deformed backgrounds of the H4 WZW model.*

Background symbol Backgrounds including metric and B-field Comments

H
(κ)
4 .I ds2 = ρdx2 − 2dxdv + 2exdydu,

B = κyexdu ∧ dx ω = 0, λ = 1

H
(κ,η)
4 .I I ds2 = (ρ − 2η2)dx2 − 2dxdv + 2exdydu,

B = κyexdu ∧ dx ω = 0, λ = 1

H
(κ,η,Ã)
4 .I I I ds2 = ρdx2 − 2dxdv + 2exdydu − ρη2e2xdu2,

B = κyexdu ∧ dx + Ãexdv ∧ du ω = 0, λ = 1

H
(κ,η,Ã)
4 .IV ds2 = 1

1−η2

[
ρdx2 − 2dxdv − 2η2yexdxdu

] + 2exdydu,

B = (κ − Ã

1−η2 )yexdu ∧ dx ω = 0, λ = 1

H
(κ,η,Ã)
4 .V ds2 = ρdx2 − 2dxdv + 2exdydu − 4η2

1−η2 exdxdu,

B = (κ + Ã)yexdu ∧ dx ω = −1, λ = 1

H
(κ,η,Ã)
4 .V I ds2 = ρdx2 − 2dxdv + 2exdydu − 2ρη2

1−η2 exdxdu − ρη2

1−η2 e2xdu2,

B = (κ + Ã)yexdu ∧ dx + Ãexdv ∧ du ω = −1, λ = 1

H
(κ,η,Ã)
4 .V II ds2 = ρ

1+η2 dx2 − 2dxdv + 2exdydu − ρη2

1+η2 e2xdu2,

B = κyexdu ∧ dx + Ãexdv ∧ du ω = 1, λ = 1

H
(κ,η)
4 .V III ds2 = (1 − η2)(ρdx2 − 2dxdv) + 2exdydu + 2η2yexdxdu,

B = κyexdu ∧ dx ω = −1, λ = 1

H
(κ,η,Ã)
4,q

.IX ds2 = 1−η2

1−η2q4 (ρdx2 − 2dxdv) + 2exdydu + 2η2(1−q4)

1−η2q4 yexdxdu,

B =
[
κ − Ãq2(1−η2)

1−η2q4

]
yexdu ∧ dx ω = −1, λ = 1

H
(κ,Ã)
4 .X ds2 = ρdx2 − 2dxdv + 2exdydu,

B = (κ − Ã)yexdu ∧ dx ω = −1, λ = 1

* Here we have ignored the total derivative terms that appeared in the B-fields part.

and also ρ′ = ρ(1 − η2q4)/(1 − η2). Thus, we showed that, in some cases of the deformed 
backgrounds, the H4 WZW model metric is, under arbitrary YB deformations, invariant up to 
antisymmetric B-fields.

The backgrounds H(κ,η,Ã)
4 .I I I, H(κ,η,Ã)

4 .V I and H(κ,η,Ã)
4 .V II . In order to clarify the structure 

of the metrics of H(κ,η,Ã)
4 .I I I, H(κ,η,Ã)

4 .V I and H(κ,η,Ã)
4 .V II one may find isometry group of 

the metrics, where the generators of the corresponding Lie algebra can be expressed in terms of 
the Killing vectors. One immediately finds that the metrics of these backgrounds admit a six-
dimensional Lie algebra of Killing vectors, which it cannot evidently be isomorphic to those of 
(3.11). Accordingly, these backgrounds cannot be turned into the H4 WZW model.

4. Conformal invariance of the backgrounds up to two-loop

In the σ -model context, the conformal invariance conditions of the σ -model are provided by 
the vanishing of the beta-function equations [25]. The study of the conformal invariance has led 
to the covering of string theory, since one- and two-loop domains in string theory correspond 
to formulating on worldsheets of nontrivial topology. It is well known that the conditions for 
conformal invariance can be interpreted as effective field equations for Gμν , Bμν and dilaton 
field � of the string effective action [25]. The dilaton field is only one more massless degree of 
12
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freedom of the bosonic string theory. This gives a contribution to the action (3.7) in the form of 
1

8π

∫
dτdσR(2)�(xμ) in which R(2) is the curvature scalar on the string worldsheet. This term 

breaks Weyl invariance on a classical level as do the one-loop corrections to G and B . Below, 
we shall solve the one- and two-loop beta-function equations for all YB deformed backgrounds 
of Table 1 to obtain the corresponding dilaton fields.6

4.1. Conditions for one-loop solution

The conditions for conformal invariance to hold in the σ -model in the lowest nontrivial ap-
proximation are the vanishing of the one-loop beta-function. The equations for the vanishing of 
the one-loop beta-function are given by [25]

0 = Rμν − (H 2)μν + ∇μ∇ν�,

0 = −∇λHλμν + H λ
μν ∇λ�,

0 = 2� + ∇2�′ − (∇�′)2 + 2

3
H 2, (4.1)

where Rμν is the Ricci tensor of the metric Gμν , Hμνρ defined by

Hμνρ = 1

2

(
∂μBνρ + ∂νBρμ + ∂ρBμν

)
, (4.2)

is the torsion of the antisymmetric B-field, and � is a cosmological constant which vanishes for 
critical strings. We have also used the conventional notations (H 2)μν = Hμρσ H

ρσ
ν and H 2 =

HμνρHμνρ . We now solve the field equations (4.1) for all YB deformed backgrounds of Table 1. 
In this way, we find the dilaton fields that guarantee the conformal invariance of the backgrounds 
at one-loop level. In all cases, the cosmological constant vanishes. In order to get more clarity, 
the results obtained for the dilaton fields are summarized in Table 2.

4.2. Conditions for two-loop solution

In order for the fields (G, B, �) to provide a consistent string background at low-energy up 
to two-loop order, they must satisfy the following equations [44,45]

0 = Rμν − (H 2)μν + ∇μ∇ν� + 1

2
α′[RμρσλR

ρσλ
ν + 2Rμρσν(H

2)ρσ

+ 2Rρσλ(μH λδ
ν) H

ρσ
δ + 1

3
(∇μHρσλ)(∇νH

ρσλ) − (∇λHρσμ)(∇λHρσ
ν )

+ 2Hμρσ HνλδH
ηδσ H λρ

η + 2HμσλH
λ

νρ (H 2)ρσ
]
+O(α′2),

0 = ∇λHλμν − (∇λ�′)Hμνλ + α′[∇λH
ρσ
[μRν]λρσ − (∇λHρμν)(H

2)λρ

− 2(∇λH
ρσ
[μ)Hν]ρδH

δ
λσ

]
+O(α′2),

6 Notice that there is a one-to-one correspondence between the r-matrices rI , rII , rIV as solutions of the CYBE and 
two-dimensional Abelian subalgebra. These solutions satisfy the unimodularity condition of [19,20] while for the case 
of rIII , two-dimensional subalgebra is non-Abelian; accordingly, the unimodularity condition is not satisfied. Anyway 
we still have a solution for which the conformal invariance condition is satisfied at one-loop level, as well as two-loop. 
Also, one can check the two-loop conformal invariance conditions for YB deformed backgrounds constructed from the 
matrices rV , ..., rX . Here we do not have the condition of [19], because of the existence of a WZW term.
13
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Table 2
The dilaton fields making the H4 deformed backgrounds conformal up to one-loop order.*

Background symbol Dilaton fields Comments

H
(κ)
4 .I 1

4 (1 − κ2)x2 + c1x + c2

H
(κ,η)
4 .I I 1

4 (1 − κ2)x2 + c1x + c2

H
(κ,η,Ã)
4 .I I I 1

4

(
1 − κ2)

x2 + c1x + c2 Ã = 0

H
(κ,η,Ã)
4 .IV 1

4

[
1

(η2−1)2 − (
κ + Ã

η2−1

)2
]
x2 + c1x + c2

H
(κ,η,Ã)
4 .V 1

4

[
1 − (κ + Ã)2

]
x2 + c1x + c2

H
(κ,η,Ã)
4 .V I 1

4

(
1 − κ2)

x2 + c1x + c2 Ã = 0

H
(κ,η,Ã)
4 .V II 1

4

(
1 − κ2)

x2 + c1x + c2 Ã = 0

H
(κ,η)
4 .V III 1

4

[
(1 − η2)2 − κ2]

x2 + c1x + c2

H
(κ,η,Ã)
4,q

.IX 1
4

[
(

1−η2

1−η2q4 )2 − (
κ − Ãq2(1−η2)

1−η2q4

)2
]
x2 + c1x + c2

H
(κ,Ã)
4 .X 1

4

[
1 − (Ã − κ)2]

x2 + c1x + c2

* Here c1 and c2 are some arbitrary constants.

0 = 2� + ∇2�′ − (∇�′)2 + 2

3
H 2 − α′[1

4
RμρσλR

μρσλ

− 1

3
(∇λHμνρ)(∇λHμνρ) − 1

2
H

μν
λ HρσλRμνρσ − Rμν(H

2)μν + 3

2
(H 2)μν(H

2)μν

+ 5

6
HμνρH

μ
σλH

νσ
δ Hρλδ

]
+O(α′2), (4.3)

where Rμνρσ is the Riemann tensor field of the metric Gμν , (H 2)μν = Hμρσ H ν
ρσ , and in sec-

ond equation of (4.3) �′ = � + α′qH 2 for some coefficient q [44]. We note that round brackets 
denote the symmetric part on the indicated indices whereas square brackets denote the anti-
symmetric part. Using the above equations we check the conformal invariance conditions of 
the backgrounds of Table 1 up to two-loop order. In fact, we introduce some new solutions for 
two-loop beta-function equations of the σ -model with a non-vanishing field strength H and the 
dilaton field in the absence of a cosmological constant �. The field equations (4.3) are satisfied 
for all backgrounds of Table 1 with the same dilaton fields given in Table 2.

5. Summary and concluding remarks

Using automorphism group of the h4 Lie algebra we have classified all corresponding classical 
r-matrices as the solutions of (m)CYBE. Then, we obtained all YB deformed WZW models 
based on the H4 Lie group. We have, in some cases, shown that the metric of the H4 WZW 
model is invariant under possible YB deformations while the antisymmetric B-fields are changed. 
We have also shown that all new integrable backgrounds of YB deformed H4 WZW model 
are conformally invariant up to two-loop in the absence of a cosmological constant �. In this 
respect, we have derived the general form of the dilaton fields satisfying the vanishing beta-
function equations. In fact, the YB deformed backgrounds that are conformal at one-loop remain 
conformal at two-loop with the same dilaton fields. Most importantly, it has been shown that 
the H4 WZW model is a conformal theory within the class of the YB deformations preserving 
the conformal invariance up to two-loop order. It is also straightforward to determine the dilaton 
in the YB deformed Nappi-Witten model [31] by following our present analysis and method. 
14



A. Eghbali, T. Parvizi and A. Rezaei-Aghdam Nuclear Physics B 967 (2021) 115423
As it has been indicated in Appendix B, we have classified all nonequivalent r-matrices of the 
Nappi-Witten Lie algebra in order to study the corresponding YB deformation of WZW model.

As a future direction, it would be interesting to generalize the YB deformation formulation of 
WZW model from Lie groups to Lie supergroups. As we know already, in order to construct the 
YB deformations of WZW model on a Lie group G one needs the r-matrices of Lie algebra G
of G. Fortunately, the classical r-matrices related to some of the Lie superalgebras are available 
[46–49] (see also [50]). One can use these to construct new backgrounds of YB deformed WZW 
models. We hope that in future it will be possible to find YB deformed WZW models even for 
physically interesting backgrounds. The generalization of YB deformation of WZW model to 
Lie supergroups is currently under investigation.
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Appendix A. Some computational results related to YB deformations of the H4 WZW 
model

In this appendix, we tabulate the nonzero components of tensors Hμνρ, (H 2)μν, Rμν and Rie-
mann tensor field related to the backgrounds of YB deformed H4 WZW model representing in 
Table 1. We note that for all backgrounds one quickly finds that R = H 2 = 0; moreover, the only 
nonzero component of Rμν is Rxx which is indicated for all backgrounds in Table 3.

Appendix B. More on YB deformations of the Nappi-Witten WZW model

B.1. Nonequivalent r-matrices

In this appendix, using automorphism group of the Nappi-Witten Lie algebra [41,42] we find 
all nonequivalent r-matrices as solutions of the (m)CYBE (3.22). We then find all YB deforma-
tions of WZW model on the Nappi-Witten Lie group. Before proceeding to get nonequivalent 
r-matrices, let us introduce the Nappi-Witten Lie algebra. It is spanned by the set of generators 
Ti = (P1, P2, J, T ) which fulfill the following nonzero commutation rules [38]:

[J,P1] = P2, [J,P2] = −P1, [P1,P2] = T . (B.1)

This algebra is a central extension of the 2D Poincaré algebra to which it reduces if one sets 
T = 0. Using (B.1) together with (2.7), one obtains the non-degenerate ad-invariant bilinear 
form �ij on the Nappi-Witten Lie algebra, giving
15
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Table 3
The nonzero components of tensors Rμν, Rμνρσ , Hμνρ and (H 2)μν related to the backgrounds represented in Table 1.

Background 
symbol

Rxx Rμνρσ Hμνρ (H 2)μν

H
(κ
4 .I − 1

2 Rxyxu = −ex

4 Hxyu = κex

2 (H 2)xx = −κ2

2

H
(κ,η)
4 .I I − 1

2 Rxyxu = −ex

4 Hxyu = κex

2 (H 2)xx = − κ2

2

H
(κ,η,Ã)
4 .I I I − 1

2 Rxyxu = −ex

4 , Hxyu = κex

2 (H 2)xx = −κ2

2

Rxuxu = 5ρη2e2x

4 Hxuv = −Ãex

2 (H 2)xu = −κÃ
2 ex

(H 2)uu = −Ã2

2 e2x

H
(κ,η,Ã)
4 .IV − 1

2(1−η2)2 Rxyxu = −ex

4(1−η2)2 Hxyu = 1
2 (κ − Ã

1−η2 )ex (H 2)xx = −1
2

(
κ − Ã

1−η2

)2

H
(κ,η,Ã)
4 .V − 1

2 Rxyxu = − ex

4 Hxyu = 1
2 (κ + Ã)ex (H 2)xx = −(κ+Ã)2

2

H
(κ,η,Ã)
4 .V I − 1

2 Rxyxu = −ex

4 , Hxyu = 1
2 (κ + Ã)ex (H 2)xx = −(κ+Ã)2

2

Rxuxu = 5ρη2e2x

4(1−η2)
Hxuv = −Ãex

2 (H 2)xu = −(κ+Ã)Ãex

2

(H 2)uu = −Ã2

2 e2x

H
(κ,η,Ã)
4 .V II − 1

2 Rxyxu = −ex

4 , Hxyu = κex

2 (H 2)xx = −κ2

2

Rxuxu = 5ρη2e2x

4(1+η2)
Hxuv = −Ãex

2 (H 2)xu = −κÃex

2

(H 2)uu = −Ã2

2 e2x

H
(κ,η)
4 .V III − (1−η2)2

2 Rxyxu = − ex (1−η2)2

4 Hxyu = κex

2 (H 2)xx = − κ2

2

H
(κ,η,Ã)
4,q .IX − 1

2

( 1−η2

1−η2q4

)2
Rxyxu = − 1

4

( 1−η2

1−η2q4

)2
ex Hxyu = ex

2

(
κ − Ãq2(1−η2)

1−η2q4

)
(H 2)xx = − 1

2

(
κ − Ãq2(1−η2)

1−η2q4

)2

H
(κ,Ã)
4 .X − 1

2 Rxyxu = −ex

4 Hxyu = 1
2 (κ − Ã)ex (H 2)xx = −1

2 (κ − Ã)2

�ij =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 b 1
0 0 1 0

⎞
⎟⎟⎠ , (B.2)

where b is a real constant. In order to calculate the left-invariant one-forms Lα we parameterize 
the Nappi-Witten group with coordinates xμ = (a1, a2, u, v) so that its elements can be written 
as

g = exp
(
a1P1 + a2P2

)
exp

(
uJ + v T

)
. (B.3)

We then obtain

Lα = g−1 ∂αg = (
cosu∂αa1 + sinu∂αa2

)
P1 + (

cosu∂αa2 − sinu∂αa1
)
P2

+ ∂αuJ + (
∂αv + 1

2
a2 ∂αa1 − 1

2
a1 ∂αa2

)
T . (B.4)

Using the above results together with the general form of the WZW model action (3.2), the 
spacetime metric and antisymmetric B-field are, respectively, found to be

ds2 = 2dudv + b du2 + da1
2 + da2

2 − a1 da2du + a2 da1du,

B = u da1 ∧ da2. (B.5)
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According to (2.6), (2.8) and (3.13) to construct the YB deformation of WZW model on the 
Nappi-Witten group we need to find the corresponding nonequivalent r-matrices. Using relations 
(B.1) and (B.2) one may obtain the general solution of the (m)CYBE (3.22) as follows [31]

rij =

⎛
⎜⎜⎝

0 ±√
ω 0 m3

∓√
ω 0 0 m5

0 0 0 m6
−m3 −m5 −m6 0

⎞
⎟⎟⎠ , (B.6)

for some real constants m3, m5, m6. As was mentioned earlier, to obtain the nonequivalent r-ma-
trices one must use the automorphism group of the Nappi-Witten algebra. Using (B.1) and (3.21)
the automorphism groups of the Nappi-Witten algebra are expressed as matrices in the following 
form [41,42]

A1 =

⎛
⎜⎜⎝

a b 0 −ac − bd

−b a 0 −ad + bc

c d 1 e

0 0 0 a2 + b2

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

a b 0 ac + bd

b −a 0 −ad + bc

c d −1 e

0 0 0 −(a2 + b2)

⎞
⎟⎟⎠ , a2 + b2 �= 0,

(B.7)

where a, b, c, d and e are some arbitrary constants. Ultimately, by employing formula (3.23)
of Proposition 3.1, the r-matrices for the Nappi-Witten algebra are split into the following six 
nonequivalent families

r ′
1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎟⎠ , r ′

2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , r ′

3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

r ′
4 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , r ′

5 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 p2

0 0 −p2 0

⎞
⎟⎟⎠ , r ′

6 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −p2

0 0 p2 0

⎞
⎟⎟⎠ ,

(B.8)

where p is a nonzero constant.

B.2. Backgrounds for YB deformations of the Nappi-Witten WZW model

Hence it is straightforward to study YB deformations of the Nappi-Witten WZW model. Sim-
ilar to the YB deformations of the H4 WZW model in Sec. 3, we use formulas (3.15), (3.16)
and (B.2) to obtain all linear R-operators corresponding to the nonequivalent r-matrices of the 
Nappi-Witten algebra. Then, by using (2.6) together with (2.8) one obtains all YB deformed 
backgrounds of the Nappi-Witten WZW model. The deformed backgrounds including metric 
and B-field are summarized in Table 4.

B.3. Conformal invariance of the backgrounds up to one- and two-loop orders

In order to guarantee the conformal invariance of the YB deformed backgrounds of the Nappi-
Witten WZW model of Table 4, at least at the one-loop level, one must show that they satisfy the 
vanishing beta-function equations (4.1).
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Table 4
YB deformed backgrounds of the Nappi-Witten WZW model.*

Nonequivalent 
r-matrices

Backgrounds Comments

r ′
1 ds2 = da2

1 + da2
2 + (b − η2)du2 + 2dudv + a2da1du − a1da2du,

B = κ uda1 ∧ da2 ω = 0

r ′
2 ds2 = da2

1 + da2
2 + 1

1−η2

[
bdu2 + 2dudv + a2da1du − a1da2du

]
,

B = κ uda1 ∧ da2 + Ã

2(1−η2)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 0

r ′
3 ds2 = da2

1 + da2
2 + 1

1−η2

[
bdu2 + 2dudv + a2da1du − a1da2du

]
,

B = κ uda1 ∧ da2 − Ã

2(1−η2)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 0

r ′
4 ds2 = da2

1 + da2
2 + (1 + η2)

[
bdu2 + 2dudv + a2da1du − a1da2du

]
,

B = κ uda1 ∧ da2 ω = 1

r ′
5 ds2 = da2

1 + da2
2 + 1+η2

1−η2p4

[
bdu2 + 2dudv + a2da1du − a1da2du

]
,

B = κ uda1 ∧ da2 + Ãp2(1+η2)

2(1−η2p4)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 1

r ′
6 ds2 = da2

1 + da2
2 + 1+η2

1−η2p4

[
bdu2 + 2dudv + a2da1du − a1da2du

]
,

B = κ uda1 ∧ da2 − Ãp2(1+η2)

2(1−η2p4)

[
a2 du ∧ da1 + a1 da2 ∧ du

]
ω = 1

* Here we have ignored the total derivative terms that appeared in the B-fields part.

Table 5
The dilaton fields making the Nappi-Witten deformed backgrounds conformal up to the one- and two-loop orders.

Nonequivalent 
r-matrices

Dilaton fields

r ′
1

1
4 (κ2 − 1)u2 + c1u + c2

r ′
2

1
4

[
κ2 − 2κÃ

η2−1
− (1−Ã2)

(η2−1)2

]
u2 + c1u + c2

r ′
3

1
4

[
κ2 + 2κÃ

η2−1
− (1−Ã2)

(η2−1)2

]
u2 + c1u + c2

r ′
4

1
4

[
κ2 − (1 + η2)2]

u2 + c1u + c2

r ′
5

1
4(1−η2p4)2

[
κ2(1 − η2p4)2 + 2κÃp2(1 + η2)(1 − η2p4) − (1 − Ã2p4)(1 + η2)2

]
u2 + c1u + c2

r ′
6

1
4(1−η2p4)2

[
κ2(1 − η2p4)2 − 2κÃp2(1 + η2)(1 − η2p4) − (1 − Ã2p4)(1 + η2)2

]
u2 + c1u + c2

From solving Eqs. (4.1) we find the general form of the dilaton fields that make the YB 
deformed backgrounds conformal up to the one-loop order. The results obtained for dilaton fields 
are represented in Table 5. It would also be interesting to consider the conformal invariance of 
the Nappi-Witten deformed backgrounds up to the two-loop order. To this end, we solve the field 
equations (4.3) and show the YB deformed backgrounds that are conformal at one-loop remain 
conformal at two-loop with the same dilaton fields given in Table 5. In this way, the cosmological 
constant vanishes.
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