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A R T I C L E I N F O A B S T R A C T

Editor: Hubert Saleur We consider 9 Gaussian matrix ensembles characterized by single symmetry among the 38-fold 
symmetry classification classes of non-Hermitian random matrices, and establish exact duality 
formulae of certain observables between them. Particularly, averaged products of 𝐾 characteristic 
polynomials in an 𝑁 ×𝑁 matrix ensemble can be expressed in terms of another 𝐾 ×𝐾 matrix 
ensemble. Our method is to combine matrix-valued heat equations and differential identities for 
determinants and Pfaffians and has more possible applications.
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Table 1

Single symmetry classes, matrix form and Gaussian ensembles.

Class Matrix form Gaussian measure

A 𝑋 ∶𝑁 ×𝑁 complex GinUE (dGinUE)

AI(D†) 𝑋 ∶𝑁 ×𝑁 real GinOE

AII(C†) 𝑋 =
[
𝑋1 𝑋2
−𝑋2 𝑋1

]
, 𝑋1&𝑋2 ∶𝑁 ×𝑁 complex GinSE

AI† 𝑋 ∶𝑁 ×𝑁 complex symmetric dGinSE

AII† 𝑋 = 𝕁𝑁𝑌 ,𝑌 ∶ 2𝑁 × 2𝑁 complex antisymmetric dGinOE

D 𝑋 ∶ 2𝑁 × 2𝑁 complex antisymmetric Antisymmetric GinUE

C 𝑋 = 𝕁𝑁𝑌 , 𝑌 ∶ 2𝑁 × 2𝑁 complex symmetric symplectica dGinSE

AIII 𝑋 = 𝐼𝑘,𝑁−𝑘𝐻 , 𝐻 ∶𝑁 ×𝑁 Hermitianb pseudo GUE

AIII† 𝑋 =
[

0 𝑋1
𝑋2 0

]
,𝑋1&𝑋2 ∶𝑁 ×𝑁 complex Chiral GinUE

a “Symplectic” in the name comes from the left multiplication matrix by 𝕁𝑁 .
b It is equivalent to pseudo-Hermiticity and the unitary matrix 𝐼𝑘,𝑁−𝑘 = diag(𝕀𝑘, −𝕀𝑁−𝑘), 

1 < 𝑘 <𝑁 .

1. Introduction

Ginibre in 1965 introduced three classical examples of non-Hermitian random matrices in his seminal work [22], Ginibre’s 
Orthogonal Ensemble (GinOE), Ginibre’s Unitary Ensemble (GinUE) and Ginibre’s Symplectic Ensemble (GinSE) by imposing Gaussian 
measures on real, complex or quaternion matrix spaces. These ensembles have complex spectra and can be treated as non-Hermitian 
counterparts of the Dyson’s threefold symmetry classes–Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE), 
and Gaussian Symplectic Ensemble (GSE), by dropping the Hermiticity constraint. Near the end of the first paragraph in [22], 
Ginibre wrote, “Apart from the intrinsic interest of the problem, one may hope that the methods and results will provide further insight in the 
cases of physical interest or suggest as yet lacking applications.” Now, non-Hermitian random matrices have proven to be as important 
as their Hermitian counterparts from the physical point of view, as remarked by Akemann and Kanzieper in [2, Section 2.2]. Their 
applications include dissipative quantum maps, quantum chromodynamics, quantum chaos, quantum Hall effect, stability of complex 
ecological and neural networks; see e.g. [2,7,14,15,29] and references therein.

Symmetry and universality are two primary concepts in mathematical and physical systems, especially in Random Matrix Theory 
(RMT). For Hermitian random matrices (or Hamiltonians), by introducing three key internal symmetries: time-reversal symmetry, 
particle-hole symmetry and chiral symmetry, Altland and Zirnbauer have extended Dyson’s threefold way to tenfold classification 
classes for topological insulators and superconductors [6]. However, non-Hermiticity crucially changes the nature of symmetry and 
universality, which causes the two distinctions between complex conjugation and transposition symmetry, and between chiral sym-

metry (pseudo-Hermiticity) and sublattice symmetry for non-Hermitian random matrices (Hamiltonians). Recently, it is shown in 
[27,38] that symmetry ramifies the Altland-Zirnbauer 10-fold classification in Hermitian physics to the 38-fold symmetry classifica-

tion in non-Hermitian physics; see also the most recent arXiv version v2 of [8]. This particularly includes 9 non-Hermitian symmetry 
classes characterized only by a single symmetry [27], labeled by A, AI, AII, AI†, AII†, D, C, AIII and AIII†, as shown in Table 1; see 
[25] for more details about relevant symmetry operators. Surprisingly, the level-spacing statistics of all the three Ginibre ensembles 
in the bulk of the spectrum away from the real axis are characterized by the same universality class. In contrast, the three Wigner-

Dyson classes-GOE, GUE and GSE, display distinct universal patterns in the bulk and actually govern all Altland-Zirnbauer 10-fold 
classes. Quite recently, based on heuristic arguments and numerical simulations, Hamazaki, Kawabata, Kura and Ueda have found 
that GinUE class and two further classes AI† (complex symmetric matrices, dual GinSE) and AII† (relevant to complex anti-

symmetric matrices, dual GinOE), which possess additional transposition symmetries, display only three distinct universal 
statistics in the bulk of the spectrum among the 38 symmetry classes [25]. The three universality classes are marked in Red, 
Green and Blue ensemble, see Table 1. Independently, the breaking of spectral statistics of AI† towards the Ginibre ensemble was 
also found in [26]. Besides, the two new classes AI† and AII† have been established in 2D Coulomb gases at inverse temperature 
𝛽 = 1.4, 2.6 [3], in non-Hermitian Dirac operator [28], non-Hermitian many-body quantum chaos [21] and many-body Lindbladians 
[36].

This HKKU conjecture underscores a fundamental role of transposition symmetry and paves the way toward understanding 
universality in non-Hermitian systems. However, exact eigenvalue correlation functions exist only for a very few of 38 classes of 
Gaussian matrix ensembles, for instances, three Ginibre and chiral GinUE ensembles (A, AI, AII, AIII†) in Table 1; see [14,15,34]. 
Particularly, as far as we know, no exact results are known about the joint densities for complex eigenvalues of classes AI† and AII†. 
Our goal in this paper is to investigate duality relationships hidden in the Gaussian matrix ensembles with external source for the 
9 single symmetry classes. These further imply auto-correlation functions of characteristic polynomials. Duality and characteristic 
polynomials are not only very important objects [1,4,5,17–20], but can be used to derive eigenvalue correlation functions [31,32]. 
Meanwhile, characteristic polynomials are found to be related to number theory [10,11], integrable systems [16] and log-correlated 
Gaussian field [30,35].

Our long arXiv preprint [31] has been divided into three parts for better readability. Part I and II are devoted to phase transition 
of eigenvalues at the edge of the spectrum under finite-rank perturbations, respectively in the deformed GinUE and GinSE ensem-
2

bles. This Part III focuses on duality formulae between Gaussian random matrix ensembles chosen from 9 single symmetry classes. 
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Although the most results in the present paper are taken from [31], there are some differences: (1) the dual ensemble of GinOE is 
redefined as AII† such that the dual Ginibre ensembles consist of the universal classes, see Definition 2.2; (2) Duality formulae related 
to classes D, C, AIII and AIII† are new.

This paper is organized as follows. In Section 2, the Gaussian matrix ensembles are defined and duality formulae between them are 
stated. In Section 3, we provide the proofs of main results via matrix-valued heat equations and elementary algebraic and differential 
operations. In the last section 4, we will conclude with some remarks on possible applications and with future questions for further 
investigation.

2. Duality formulae

In Hermitian RMT there exist certain dual relationships between 𝛽 and 4∕𝛽 matrix ensembles, e.g., GOE, GUE and GSE ensembles; 
see [10,11,17] and references therein. Also, some analogous dual relationships are known in non-Hermitian RMT, see [12,13,18,23]. 
This section is devoted to duality formulae of certain observables (or functionals) between deformed GinOE, GinUE, GinSE, complex 
symmetric, antisymmetric matrix ensembles and the other four Gaussian matrix ensembles.

2.1. Non-Hermitian Gaussian ensembles

By convention, the conjugate, transpose, and conjugate transpose of a complex matrix 𝐴 are denoted by 𝐴, 𝐴𝑡 and 𝐴∗, respec-

tively. The trace of a square matrix with real, complex or real quaternion elements (corresponding to Dyson index 𝛽 = 1, 2, 4) is 
redefined as

Tr𝛽 ∶=

{
Tr, 𝛽 = 1,2;
1
2Tr, 𝛽 = 4.

Throughout the present paper, a real quaternion matrix of size 𝑁 will always be identified as its complex representation, that is, 
a complex 2𝑁 × 2𝑁 matrix 𝑋 that satisfies the relation 𝑋𝕁𝑁 = 𝕁𝑁𝑋, where

𝕁𝑁 = 𝐽𝑁,𝑁 , 𝐽𝑘,𝑙 =
[
0𝑙×𝑘 𝕀𝑙
−𝕀𝑘 0𝑘×𝑙

]
. (2.1)

In this case it has the form

𝑋 =

[
𝑋(1) 𝑋(2)

−𝑋(2) 𝑋(1)

]
, (2.2)

where both 𝑋(1) and 𝑋(2) are 𝑁 ×𝑁 complex matrices; see e.g. [33,37].

Our objects in considerations are additive and multiplicative deformations of the Ginibre ensembles.

Definition 2.1. A random real, complex or real quaternion 𝑁 ×𝑁 matrix 𝑋, denoted respectively by Dyson index 𝛽 = 1, 2, 4, is said 
to belong to the deformed Ginibre ensemble, if the joint density function for matrix entries is given by

𝑃𝑁,𝛽 (𝜏;𝑋,𝑋0) =
1
𝑍𝑁,𝛽

exp
{
−1
𝜏
Tr𝛽

(
Σ−1(𝑋 −𝑋0)Γ−1(𝑋 −𝑋0)∗

)}
, (2.3)

with the normalization constant

𝑍𝑁,𝛽 =

{
(det(ΣΓ))𝛽𝑁∕2 (𝜋𝜏)𝛽𝑁

2∕2 , 𝛽 = 1,2;
(det(ΣΓ))𝑁 (𝜋𝜏)2𝑁

2
, 𝛽 = 4,

(2.4)

where 𝜏 > 0, correspondingly Σ, Γ and 𝑋0 are real, complex or real quaternion 𝑁 ×𝑁 matrices, and both Σ and Γ are positive 
definite. Particularly when both Σ and Γ are identity matrices, the density is rewritten as 𝑃 (null)

𝑁,𝛽
(𝜏; 𝑋, 𝑋0).

Definition 2.2. (i) A complex symmetric, complex, or complex 𝐾 ×𝐾 matrix 𝑌 such that 𝐽[𝐾∕2],𝐾−[𝐾∕2]𝑌 is antisymmetric, is said 
to be the dual Ginibre orthogonal, unitary or symplectic ensemble (dGinOE, dGinUE or dGinSE, Dyson index 𝛽 = 1, 2, 4) with mean 
𝑌0, if the joint density function is given by

𝑃𝐾,𝛽 (𝜏;𝑌 ,𝑌0) =
1
𝑍𝐾,𝛽

exp
{
−1
𝜏
Tr4∕𝛽 (𝑌 − 𝑌0)(𝑌 − 𝑌0)∗

}
, (2.5)

where the normalization constant

𝑍𝐾,𝛽 =
⎧⎪⎨2
𝐾 (𝜋𝜏)𝐾(𝐾+1)∕2 , 𝛽 = 1;

(𝜋𝜏)𝐾
2
, 𝛽 = 2; (2.6)
3

⎪⎩(𝜋𝜏∕2)𝐾(𝐾−1)∕2 , 𝛽 = 4.
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(ii) A complex antisymmetric 𝐾 × 𝐾 matrix 𝑌 is said to be the antisymmetric Ginibre unitary ensemble, if the joint density 
function is given by

𝑃
(CA)
𝐾

(𝜏;𝑌 ,𝑌0) =
1

𝑍
(CA)
𝐾

exp
{
− 1
2𝜏

Tr(𝑌 − 𝑌0)(𝑌 − 𝑌0)∗
}
, (2.7)

where the normalization constant

𝑍
(CA)
𝐾

= (2𝜋𝜏)𝐾(𝐾−1)∕2 . (2.8)

Also, we need to introduce certain observables. For this, let’s recall the notions of the Pfaffian and the tensor product. For a 
2𝑚 × 2𝑚 complex anti-symmetric matrix 𝐴 = [𝑎𝑖,𝑗 ], the Pfaffian

Pf(𝐴) = 1
2𝑚𝑚!

∑
𝜎∈𝑆2𝑚

sgn(𝜎)
𝑚∏
𝑖=1
𝑎𝜎(2𝑖−1),𝜎(2𝑖).

A well-known transformation property by a 2𝑚 × 2𝑚 complex matrix 𝐵 is

Pf(𝐵𝐴𝐵𝑡) = det(𝐵) Pf(𝐴).

The tensor product, or Kronecker product, of an 𝑚 ×𝑚 matrix 𝐴 = [𝑎𝑖𝑗 ] and a 𝑞 × 𝑞 matrix 𝐵 is a block matrix

𝐴⊗𝐵 =
[ 𝑎11𝐵 ⋯ 𝑎1𝑚𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑚𝐵

]
.

Moreover, 𝐴 ⊗𝐵 is similar to 𝐵 ⊗𝐴 by a permutation matrix.

Definition 2.3. For an 𝑁 ×𝑁 matrix 𝑋 and a 𝐾 × 𝐾 matrix 𝑌 respectively corresponding to Dyson index 𝛽 and 4∕𝛽, define an 
observable 𝑄𝛽 (𝐴; 𝑋, 𝑌 ) as

𝑄1(𝐴;𝑋,𝑌 ) ∶= Pf

(
𝐴+

[(
𝐽[𝐾∕2],𝐾−[𝐾∕2]𝑌

)
⊗ Σ −𝕀𝐾 ⊗𝑋

𝕀𝐾 ⊗𝑋𝑡
(
𝐽[𝐾∕2],𝐾−[𝐾∕2]𝑌

)∗
⊗ Γ

])
, (2.9)

𝑄2(𝐴;𝑋,𝑌 ) ∶= det

(
𝐴+

[
−𝕀𝐾 ⊗𝑋 −𝑌 ∗ ⊗ Σ
𝑌 ⊗ Γ −𝕀𝐾 ⊗𝑋∗

])
, (2.10)

and

𝑄4(𝐴;𝑋,𝑌 ) ∶= Pf

(
𝐴+

[
𝑖𝑌 ⊗

(
Σ𝕁𝑁

)
−𝕀𝐾 ⊗𝑋

𝕀𝐾 ⊗𝑋𝑡 𝑖𝑌 ∗ ⊗
(
𝕁𝑁Γ

)]), (2.11)

where a complex square matrix 𝐴 is anti-symmetric when 𝛽 = 1, 4.

It is worth emphasizing that the observable 𝑄2 in (2.10) has essentially been introduced in [12,23], where Σ = Γ = 𝕀𝑁 , and 
𝐴 = diag(𝐴1, 𝐴2) with 𝐴1, 𝐴2 being tensor products of two matrices; see [23, eqn (36)].

2.2. Duality between Gaussian ensembles

Duality formulas between the Ginibre ensembles and the dual Ginibre ensembles given in Definition 2.2 can be stated as follows.

Theorem 2.4. With the same notations as in Definitions 2.1, 2.2 and 2.3, for 𝛽 = 1, 2 and 4 we have

∫ 𝑄𝛽 (𝐴;𝑋,𝑌0)𝑃𝑁,𝛽 (𝜏;𝑋,𝑋0)d𝑋 = ∫ 𝑄𝛽 (𝐴;𝑋0, 𝑌 )𝑃𝐾,4∕𝛽 (𝜏;𝑌 ,𝑌0)d𝑌 , (2.12)

where d𝑋 and d𝑌 denote Lebesgue measures on associated linear matrix spaces.

Theorem 2.5. With the deformed GinSE in Definition 2.1 and with the antisymmetric GinUE and the dual GinOE in Definition 2.2, we have

∫ 𝑄̃4(𝐴;𝑋,𝑌0)𝑃
(null)
𝑁,4 (𝜏;𝑋,𝑋0)d𝑋 = ∫ 𝑄̃4(𝐴;𝑋0, 𝑌 )𝑃

(CA)
𝐾

(𝜏;𝑌 ,𝑌0)d𝑌 , (2.13)

and with even 𝐾

∫ 𝑄̂4(𝐴;𝑋,𝑌0)𝑃
(null)
𝑁,4 (𝜏;𝑋,𝑋0)d𝑋 = ∫ 𝑄̂4(𝐴;𝑋0, 𝑌 )𝑃𝐾,1(𝜏;𝑌 ,𝑌0)d𝑌 , (2.14)
4

where
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𝑄̃4(𝐴;𝑋,𝑌 ) ∶= Pf

⎛⎜⎜⎜⎜⎝
𝐴+

⎡⎢⎢⎢⎢⎣
0 −𝑌 ⊗ 𝕀𝑁 𝕀𝐾 ⊗𝑋(1) 𝕀𝐾 ⊗𝑋(2)

𝑌 𝑡 ⊗ 𝕀𝑁 0 −𝕀𝐾 ⊗𝑋(2) 𝕀𝐾 ⊗𝑋(1)

−𝕀𝐾 ⊗𝑋(1)𝑡 −𝕀𝐾 ⊗𝑋(2)∗ 0 −𝑌 ∗ ⊗ 𝕀𝑁
−𝕀𝐾 ⊗𝑋(2)𝑡 −𝕀𝐾 ⊗𝑋(1)∗ 𝑌 ⊗ 𝕀𝑁 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠
, (2.15)

and

𝑄̂4(𝐴;𝑋,𝑌 ) ∶= Pf

⎛⎜⎜⎜⎜⎜⎜⎝
𝐴+

⎡⎢⎢⎢⎢⎢⎢⎣

0 −
(
𝕁𝐾

2
𝑌
)
⊗ 𝕀𝑁 𝕀𝐾 ⊗𝑋(1) 𝕁𝐾

2
⊗𝑋(2)(

𝕁𝐾
2
𝑌
)𝑡
⊗ 𝕀𝑁 0 −𝕁𝐾

2
⊗𝑋(2) 𝕀𝐾 ⊗𝑋(1)

−𝕀𝐾 ⊗𝑋(1)𝑡 −𝕁𝐾
2
⊗𝑋(2)∗ 0 −

(
𝕁𝐾

2
𝑌
)∗
⊗ 𝕀𝑁

𝕁𝐾
2
⊗𝑋(2)𝑡 −𝕀𝐾 ⊗𝑋(1)∗ (

𝕁𝐾
2
𝑌
)
⊗ 𝕀𝑁 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
, (2.16)

with a complex antisymmetric matrix 𝐴 and 𝑋 given in (2.2).

Recall that the GUE matrix ensemble with source refers to the joint density for matrix entries

𝑃
(gue)
𝑁

(𝜏;𝐻,𝐻0) =
1

(
√
2𝜋𝜏)𝑁2

exp
{
− 1
2𝜏

Tr(𝐻 −𝐻0)2
}
, (2.17)

where 𝐻0 is a fixed 𝑁 ×𝑁 matrix.

Theorem 2.6. Let 𝐴 and 𝐵 be complex matrices of size 𝐾𝑁 and 𝑁 respectively, then

∫ det
(
𝐴− 𝕀𝐾 ⊗ (𝐵𝐻) +

√
−1𝐻̂0⊗𝐵

)
𝑃
(gue)
𝑁

(𝜏;𝐻,𝐻0)d𝐻

= ∫ det
(
𝐴− 𝕀𝐾 ⊗ (𝐵𝐻0) +

√
−1𝐻̂ ⊗𝐵

)
𝑃
(gue)
𝐾

(𝜏; 𝐻̂, 𝐻̂0)d𝐻̂. (2.18)

Theorem 2.7. Let

𝑄̃2(𝐴;𝑋1,𝑋2, 𝑌1, 𝑌2) ∶= det
⎛⎜⎜⎜⎝𝐴−

⎡⎢⎢⎢⎣
0 𝕀𝐾 ⊗𝑋1 𝑌1 ⊗ 𝕀𝑁 0

𝕀𝐾 ⊗𝑋2 0 0 𝑌2 ⊗ 𝕀𝑁
𝑌 ∗
2 ⊗ 𝕀𝑁 0 0 𝕀𝐾 ⊗𝑋∗

2
0 𝑌 ∗

1 ⊗ 𝕀𝑁 𝕀𝐾 ⊗𝑋∗
1 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ (2.19)

where 𝐴 is a complex matrix of size 4𝐾𝑁 , then

∬ 𝑄̃2(𝐴;𝑋1,𝑋2, 𝑌10, 𝑌20)𝑃
(null)
𝑁,2 (𝜏;𝑋1,𝑋10)𝑃

(null)
𝑁,2 (𝜏;𝑋2,𝑋20)d𝑋1d𝑋2

=∬ 𝑄̃2(𝐴;𝑋10,𝑋20, 𝑌1, 𝑌2)𝑃
(null)
𝐾,2 (𝜏;𝑌1, 𝑌10)𝑃

(null)
𝐾,2 (𝜏;𝑌2, 𝑌20)d𝑌1d𝑌2. (2.20)

By choosing an appropriate form of 𝐴, we can immediately derive autocorrelation functions of characteristic polynomials in all 
nine classes of Gaussian matrix ensembles from the above theorems. Here we just state corresponding results in the three Ginibre 
ensembles.

Corollary 2.8. Let 𝑍 = diag
(
𝑧1,⋯ , 𝑧𝐾1

)
and 𝑊 = diag

(
𝑤1,⋯ ,𝑤𝐾2

)
with complex diagonal entries, then

∫
𝐾1∏
𝑗=1

det
(
𝑧𝑗 −𝑋

) 𝐾2∏
𝑘=1

det
(
𝑤𝑘 −𝑋∗) 𝑃𝑁,𝛽 (𝜏;𝑋,𝑋0)d𝑋

= 𝑐𝛽 ∫ 𝑄𝛽 (𝐴;𝑋0, 𝑌 )𝑃𝐾,4∕𝛽 (𝜏;𝑌 ,0)d𝑌 ,

(2.21)

with

𝐴 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
0 diag

(
𝑍 ⊗ 𝕀𝑁,𝑊 ∗ ⊗ 𝕀𝑁

)
−diag

(
𝑍 ⊗ 𝕀𝑁,𝑊 ∗ ⊗ 𝕀𝑁

)
0

]
, 𝛽 = 1;

diag
(
𝑍 ⊗ 𝕀𝑁,𝑊 ∗ ⊗ 𝕀𝑁

)
, 𝛽 = 2;[

0 diag
(
𝑍 ⊗ 𝕀2𝑁,𝑊 ∗ ⊗ 𝕀2𝑁

)
−diag

(
𝑍 ⊗ 𝕀2𝑁,𝑊 ∗ ⊗ 𝕀2𝑁

)
0

]
, 𝛽 = 4.

(2.22)
5

Here 𝐾 =𝐾1 +𝐾2 for 𝛽 = 1, 4 and 𝐾 =𝐾1 =𝐾2 for 𝛽 = 2, while 𝑐𝛽 = (−1)𝐾𝑁(𝐾𝑁−1)∕2, 1, (−1)𝐾𝑁 for 𝛽 = 1, 2, 4.
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Proof. Choose 𝑌0 as a zero matrix in (2.12) and use the identity for the Pfaffian

Pf
[

0𝑛 𝐵

−𝐵𝑡 0𝑛

]
= (−1)𝑛(𝑛−1)∕2 det𝐵, (2.23)

where 𝐵 is a complex 𝑛 × 𝑛 matrix, we can rewrite the product of the determinants as 𝑄𝛽 up to some sign. This thus completes the 
proof. □

Remark 2.9. Some special cases of Corollary 2.8 have been studied by Afanasiev [1], Akemann-Phillips-Sommers [5], Grela [23], 
Forrester-Rains [18], Fyodorov [19] and so on. In the case of the real Ginibre ensemble, that is, 𝛽 = 1, Σ = Γ = 𝕀𝑁, 𝑋0 = 0, see [5]

for the product of two characteristic polynomials and [1] for the product of arbitrarily finite characteristic polynomials. In the case 
of 𝛽 = 2, Σ = Γ = 𝕀𝑁 and any finite 𝐾 , or general Σ, Γ and 𝐾 = 1, see [23]. For 𝛽 = 1, 2, 4 but with 𝑋0 = 0, Γ = 𝕀𝑁 and general Σ, 
see [18] for the moments of characteristic polynomials. Besides, for the deformed complex Ginibre ensemble given in Definition 2.1, 
the average ratio of two “generalized” characteristic polynomials and the spectral density has been exactly evaluated as a double 
integral [24]; for certain rank-one deviation from the real Ginibre ensemble the average modulus of the characteristic polynomial is 
also evaluated [9, Appendix B]. These very interesting results are expected to hold in the more general ensemble as in Definition 2.1.

3. Diffusion method without SUSY

3.1. New ideas and differential identities

Diffusion method that is based on matrix-valued heat equations has important applications in RMT, see Mehta’s classical book 
[33] or Grela’s recent survey [23]. Supersymmetry (SUSY) method which concern Grassmann variables and integrals also seems 
indispensable for many problems in RMT, particularly for the first finding of dual formulas, see e.g. [10,11] for Hermitian RMT 
and [5,12,13,23] for non-Hermitian RMT. For the deformed GinUE ensemble in Definition 2.1 but with Σ = Γ = 𝕀𝑁 , Grela in [23]

combines the diffusion method and SUSY technique to obtain Corollary 2.8. In the present paper we introduce a new method that is 
the combination of diffusion method and elementary matrix operations for determinants and Pfaffians, instead of SUSY technique. A 
key step is to verify the identity

Δ𝑋𝑄(𝑋,𝑌 ) = 𝑐Δ𝑌 𝑄(𝑋,𝑌 ), (3.1)

for some 𝑐 > 0, proper observables 𝑄(𝑋, 𝑌 ) and certain matrix Laplacians Δ𝑋, Δ𝑌 .

This new idea has many potential applications both in Hermitian and non-Hermitian Gaussian matrix ensembles, except for all the 
stated results in Section 2.2. For instances, duality formulae in the GOE, GUE and GSE ensembles [10,11,17] can also been derived 
too. Very detailed proofs will be presented only for Theorem 2.4 with 𝛽 = 1, 2, 4 in this section, since the most interesting 
Ginibre and dual Ginibre ensembles are involved and Theorems 2.5, 2.6 and 2.7 can be tackled in similar ways. The following 
two differential identities are of primary importance.

For a matrix-valued function 𝐴 ∶= 𝐴(𝑥) =
[
𝑎𝑖𝑗 (𝑥)

]𝑛
𝑖,𝑗=1 of variable 𝑥 without symmetry, and for some 1 ≤ 𝑝 ≤ 𝑛 deleting 𝑝 rows 

and 𝑝 columns respectively indexed by 𝐼 =
{
𝑖1,⋯ , 𝑖𝑝

}
and 𝐽 =

{
𝑗1,⋯ , 𝑗𝑝

}
as two subsets of {1, 2, … , 𝑛}, the resulting sub-matrix is 

denoted by 𝐴 [𝐼 ;𝐽 ]. By definition of determinant it’s easy to find an identity

d
d𝑥

det(𝐴) =
𝑛∑
𝑖,𝑗=1

(−1)𝑖+𝑗
d𝑎𝑖𝑗 (𝑥)
d𝑥

det(𝐴[𝑖; 𝑗]) . (3.2)

For the Pfaffian, we have a similar identity.

Proposition 3.1. Let 𝐴 =
[
𝑎𝑖𝑗 (𝑥)

]2𝑚
𝑖,𝑗=1 be an antisymmetric complex matrix, whose entries are differentiable functions of variable 𝑥, then

d
d𝑥

Pf(𝐴) =
∑

1≤𝑖<𝑗≤2𝑚
(−1)𝑖+𝑗+1

d𝑎𝑖𝑗 (𝑥)
d𝑥

Pf(𝐴 [𝑖, 𝑗; 𝑖, 𝑗]) . (3.3)

Proof. Introduce independent variables 
{
𝑥𝑖𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 2𝑚

}
and treat 𝑎𝑖𝑗 = −𝑎𝑗𝑖 = 𝑎𝑖𝑗 (𝑥𝑖𝑗 ) as a function of 𝑥𝑖𝑗 whenever 𝑖 < 𝑗, 

while all 𝑎𝑖𝑖 = 0. By definition of the Pfaffian,

𝜕

𝜕𝑥𝑖𝑗
Pf

(
[𝑎𝑘𝑙(𝑥𝑘𝑙)]2𝑚𝑘,𝑙=1

)
= (−1)𝑖+𝑗+1

d𝑎𝑖𝑗 (𝑥𝑖𝑗 )
d𝑥𝑖𝑗

Pf
( [
𝑎𝑘𝑙(𝑥𝑘𝑙)

]
𝑘,𝑙≠𝑖,𝑗

)
,

so it suffices to prove

d
d𝑥

Pf (𝐴) =
(∑
𝑖<𝑗

𝜕

𝜕𝑥𝑖𝑗
Pf

(
[𝑎𝑘𝑙(𝑥𝑘𝑙)]2𝑚𝑘,𝑙=1

))||||all𝑥𝑖𝑗=𝑥. (3.4)
6

Taking the derivative with respect to 𝑥𝑖𝑗 on both sides
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Pf
(
[𝑎𝑘𝑙(𝑥𝑘𝑙)]2𝑚𝑘,𝑙=1

)
=

∑
𝜎∈𝐴2𝑚

sgn(𝜎)
𝑚∏
𝑘=1
𝑎𝜎(2𝑘−1)𝜎(2𝑘)

(
𝑥𝜎(2𝑘−1)𝜎(2𝑘)

)
,

where

𝐴2𝑚 =
{
𝜎 ∈ 𝑆2𝑚 ∶ 𝜎(1) < 𝜎(3) <⋯ < 𝜎(2𝑚− 1), 𝜎(2𝑘− 1) < 𝜎(2𝑘),∀𝑘

}
,

and summing them together, we have∑
𝑖<𝑗

𝜕

𝜕𝑥𝑖𝑗
Pf

(
[𝑎𝑘𝑙(𝑥𝑘𝑙)]2𝑚𝑘,𝑙=1

)
=

∑
𝜎∈𝐴2𝑚

sgn(𝜎)
∑
𝑖<𝑗

𝜕

𝜕𝑥𝑖𝑗

(
𝑚∏
𝑘=1
𝑎𝜎(2𝑘−1)𝜎(2𝑘)(𝑥𝜎(2𝑘−1)𝜎(2𝑘))

)

=
∑
𝜎∈𝐴2𝑚

sgn(𝜎)
𝑚∑
𝑘=1

d𝑎𝜎(2𝑘−1)𝜎(2𝑘)(𝑥𝜎(2𝑘−1)𝜎(2𝑘))
d𝑥𝜎(2𝑘−1)𝜎(2𝑘)

𝑚∏
𝑙=1,𝑙≠𝑘

𝑎𝜎(2𝑙−1)𝜎(2𝑙)(𝑥𝜎(2𝑙−1)𝜎(2𝑙)).

On the right hand side, set 𝑥𝑖𝑗 = 𝑥 for all 𝑖 < 𝑗, (3.4) immediately follows from the definition of the Pfaffian. This thus completes the 
proof. □

The Laplace operator

𝜕2

𝜕𝑥2
+ 𝜕

2

𝜕𝑦2
= 4 𝜕

2

𝜕𝑧𝜕𝑧
(3.5)

will be used frequently, where 𝑧 = 𝑥 + i𝑦 and 𝑧 = 𝑥 − i𝑦.

3.2. Proof of Theorem 2.4: 𝛽 = 1

On the left-hand side of (2.12) use change of variables 𝑋 to Σ1∕2𝑋Γ1∕2, while on both sides of (2.12) replace nonrandom matrices 
𝑋0 by Σ1∕2𝑋0Γ1∕2 and 𝐴 by diag

(
𝕀𝐾 ⊗ Σ1∕2, 𝕀𝐾 ⊗ Γ1∕2

)
𝐴 diag

(
𝕀𝐾 ⊗ Σ1∕2, 𝕀𝐾 ⊗ Γ1∕2

)
, respectively, divide both sides by 

√
det(ΣΓ), 

we then see that the resulting duality identity is independent of Σ and Γ. Without loss of generality, we may assume Σ = Γ = 𝕀𝑁 .

On the other hand, on both sides of (2.12) change 𝑌 , 𝑌0 to −𝐽𝐾−[𝐾∕2],[𝐾∕2]𝑌 , −𝐽𝐾−[𝐾∕2],[𝐾∕2]𝑌0 so that the resulting 𝑌 and 𝑌0 are 
antisymmetric. Moreover, the density (2.5) has the same form and 𝑄1(𝐴; 𝑋, 𝑌 ) reduces to

𝑄1(𝐴;𝑋,𝑌 ) ∶= Pf

(
𝐴+

[
𝑌 ⊗ Σ −𝕀𝐾 ⊗𝑋
𝕀𝐾 ⊗𝑋𝑡 𝑌 ∗ ⊗ Γ

])
. (3.6)

We will derive the desired result in the simplified situation.

Write

𝑄1(𝜏;𝐴,𝑌0) ∶= ∫ 𝑄1(𝐴;𝑋,𝑌0)𝑃𝑁,1(𝜏;𝑋,𝑋0)d𝑋, (3.7)

noting that when Σ = Γ = 𝕀𝑁 the density given in (2.3) satisfies the heat equation

𝜕𝜏𝑃𝑁,1(𝜏;𝑋,𝑋0) =
1
4
Δ1,𝑋𝑃𝑁,2(𝜏;𝑋,𝑋0), Δ1,𝑋 ∶=

𝑁∑
𝑎,𝑏=1

𝜕2𝑥𝑎,𝑏
, (3.8)

using integration by parts one finds

𝜕𝜏𝑄1(𝜏;𝐴,𝑌0) = ∫ 𝑄1(𝐴;𝑋,𝑌0)𝜕𝜏𝑃𝑁,1(𝜏;𝑋,𝑋0)d𝑋

= 1
4 ∫ 𝑄1(𝐴;𝑋,𝑌0)

(
Δ1,𝑋𝑃𝑁,1(𝜏;𝑋,𝑋0)

)
d𝑋

= 1
4 ∫

(
Δ1,𝑋𝑄1(𝐴;𝑋,𝑌0)

)
𝑃𝑁,1(𝜏;𝑋,𝑋0)d𝑋.

(3.9)

Rewrite the antisymmetric complex matrix 𝑌0 as 𝑌0 = [𝑦𝑗,𝑘] = [𝑎𝑗,𝑘 + i𝑏𝑗,𝑘], and let

Δ𝑌0 ∶=
∑

1≤𝑗<𝑘≤𝐾
(
𝜕2𝑎𝑗,𝑘

+ 𝜕2
𝑏𝑗,𝑘

)
.

We claim that

Δ1,𝑋𝑄1(𝐴;𝑋,𝑌0) =
1
2
Δ𝑌0𝑄1(𝐴;𝑋,𝑌0). (3.10)

If so, one obtains a heat equation from (3.9) that
7

𝜕𝜏𝑄1(𝜏;𝐴,𝑌0) =
1
8
Δ𝑌0𝑄1(𝜏;𝐴,𝑌0).
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Together with the initial boundary condition

𝑄1(0;𝐴,𝑌0) =𝑄1(𝐴;𝑋0, 𝑌0),

the solution is thus given by

𝑄1(𝜏;𝐴,𝑌0) = ∫ 𝑄1(𝐴;𝑋0, 𝑌 )𝑃𝐾,4(𝜏;𝑌 ,𝑌0)d𝑌 ,

from which the desired result immediately follows.

The remaining task is to verify the identity (3.10). Put

𝑇1 =𝐴+
[
𝑌0 ⊗ 𝕀𝑁 −𝕀𝐾 ⊗𝑋
𝕀𝐾 ⊗𝑋𝑡 𝑌 ∗

0 ⊗ 𝕀𝑁

]
,

one sees from (3.5) that it suffices to prove

Δ1,𝑋Pf
(
𝑇1

)
= 2

∑
1≤𝛼<𝛽≤𝐾

𝜕2

𝜕𝑦𝛼,𝛽𝜕𝑦𝛼,𝛽
Pf

(
𝑇1

)
. (3.11)

By use of (3.3), for 1 ≤ 𝑎, 𝑏 ≤𝑁 one has

𝜕𝑥𝑎,𝑏Pf
(
𝑇1

)
= (−1)𝐾𝑁+𝑎+𝑏

𝐾∑
𝛼=1

Pf
(
𝑇1

[
𝐼0,1;𝐼0,1

])
,

where

𝐼0,1 = {(𝛼 − 1)𝑁 + 𝑎, (𝐾 + 𝛼 − 1)𝑁 + 𝑏} .

Further use leads to

𝜕𝑥𝑎,𝑏Pf
(
𝑇1

[
𝐼0,1;𝐼0,1

])
= (−1)𝐾𝑁+𝑎+𝑏+1

𝐾∑
𝛽≠𝛼

Pf
(
𝑇1

[
𝐼1;𝐼1

])
,

where

𝐼1 = {(𝛼 − 1)𝑁 + 𝑎, (𝛽 − 1)𝑁 + 𝑎, (𝛼 +𝐾 − 1)𝑁 + 𝑏, (𝛽 +𝐾 − 1)𝑁 + 𝑏} .

Hence,

𝑁∑
𝑎,𝑏=1

𝜕2𝑥𝑎𝑏
Pf

(
𝑇1

)
= −2

∑
1≤𝛼<𝛽≤𝐾

𝑁∑
𝑎,𝑏=1

Pf
(
𝑇1

[
𝐼1;𝐼1

])
.

On the other hand, for 𝛼 < 𝛽 it’s easy to get

𝜕2

𝜕𝑦𝛼,𝛽𝜕𝑦𝛼,𝛽
Pf

(
𝑇1

)
= −

𝑁∑
𝑎,𝑏=1

Pf
(
𝑇1

[
𝐼1;𝐼1

])
,

from which the summation over 𝛼 and 𝛽 implies (3.11). This thus completes the proof.

3.3. Proof of Theorem 2.4: 𝛽 = 4

We proceed in a similar way as in the real case. On the left-hand side of (2.12) use change of variables 𝑋 to Σ1∕2𝑋Γ1∕2, while on 
both sides of (2.12) replace nonrandom matrices 𝑋0 and 𝐴 by Σ1∕2𝑋0Γ1∕2 and diag

(
𝕀𝐾 ⊗Σ1∕2, 𝕀𝐾 ⊗Γ1∕2

)
𝐴 diag

(
𝕀𝐾 ⊗Σ1∕2, 𝕀𝐾 ⊗Γ1∕2

)
, 

respectively, divide both sides by 
√
det(ΣΓ), we then see from the relations

Σ𝕁𝑁 = Σ1∕2𝕁𝑁
(
Σ1∕2)𝑡, 𝕁𝑁Γ =

(
Γ1∕2

)𝑡𝕁𝑁Γ1∕2
that the resulting duality identity is independent of Σ and Γ. Without loss of generality, we may assume Σ = Γ = 𝕀2𝑁 .

Write

𝑄4(𝜏;𝐴,𝑌0) ∶= ∫ 𝑄4(𝐴;𝑋,𝑌0)𝑃𝑁,4(𝜏;𝑋,𝑋0)d𝑋, (3.12)

where 𝑋 is given in (2.2) with 𝑋(𝑗) = [𝑥(𝑗)
𝑎,𝑏
] (𝑗 = 1, 2), noting that when Σ = Γ = 𝕀2𝑁 the density given in (2.3) satisfies the heat 

equation

𝜕𝜏𝑃 (𝜏;𝑋,𝑋 ) = 1Δ 𝑃 (𝜏;𝑋,𝑋 ), Δ ∶=
2∑ 𝑁∑ (

𝜕2 + 𝜕2
)
. (3.13)
8

𝑁,4 0 4 4,𝑋 𝑁,4 0 4,𝑋
𝑗=1 𝑎,𝑏=1 ℜ𝑥(𝑗)

𝑎,𝑏
ℑ𝑥(𝑗)
𝑎,𝑏
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By integration by parts one finds

𝜕𝜏𝑄4(𝜏;𝐴,𝑌0) = ∫ 𝑄4(𝐴;𝑋,𝑌0)𝜕𝜏𝑃𝑁,4(𝜏;𝑋,𝑋0)d𝑋

= 1
4 ∫ 𝑄4(𝐴;𝑋,𝑌0)

(
Δ4,𝑋𝑃𝑁,1(𝜏;𝑋,𝑋0)

)
d𝑋

= 1
4 ∫

(
Δ4,𝑋𝑄4(𝐴;𝑋,𝑌0)

)
𝑃𝑁,4(𝜏;𝑋,𝑋0)d𝑋.

(3.14)

Rewrite the complex symmetric matrix 𝑌0 as 𝑌0 = [𝑦𝑗𝑘] = [𝑎𝑗,𝑘 + i𝑏𝑗,𝑘], and let

Δ𝑌0 ∶=
∑

1≤𝑗≤𝑘≤𝐾
(
𝜕2𝑎𝑗,𝑘

+ 𝜕2
𝑏𝑗,𝑘

)
+
𝐾∑
𝑗=1

(
𝜕2𝑎𝑗,𝑗

+ 𝜕2
𝑏𝑗,𝑗

)
.

We claim that

Δ4,𝑋𝑄4(𝐴;𝑋,𝑌0) = Δ𝑌0𝑄4(𝐴;𝑋,𝑌0). (3.15)

If so, one obtains a heat equation from (3.14) that

𝜕𝜏𝑄4(𝜏;𝐴,𝑌0) =
1
4
Δ𝑌0𝑄4(𝜏;𝐴,𝑌0).

Together with the initial boundary condition

𝑄4(0;𝐴,𝑌0) =𝑄4(𝐴;𝑋0, 𝑌0),

the solution is thus given by

𝑄4(𝜏;𝐴,𝑌0) = ∫ 𝑄4(𝐴;𝑋0, 𝑌 )𝑃𝐾,1(𝜏;𝑌 ,𝑌0)d𝑌 ,

from which the desired result immediately follows.

The remaining task is to verify the identity (3.15). Put

𝑇4 =𝐴+
[
i𝑌0 ⊗ 𝕁𝑁 −𝕀𝐾 ⊗𝑋
𝕀𝐾 ⊗𝑋𝑡 i𝑌 ∗

0 ⊗ 𝕁𝑁

]
,

one sees from (3.5) that it suffices to prove

𝑁∑
𝑎,𝑏=1

⎛⎜⎜⎜⎝
𝜕2

𝜕𝑥
(1)
𝑎,𝑏
𝜕𝑥

(1)
𝑎,𝑏

+ 𝜕2

𝜕𝑥
(2)
𝑎,𝑏
𝜕𝑥

(2)
𝑎,𝑏

⎞⎟⎟⎟⎠Pf
(
𝑇4

)
=

(∑
𝛼<𝛽

𝜕2

𝜕𝑦𝛼,𝛽𝜕𝑦𝛼,𝛽
+ 2

𝐾∑
𝛼=1

𝜕2

𝜕𝑦𝛼,𝛼𝜕𝑦𝛼,𝛼

)
Pf

(
𝑇4

)
.

(3.16)

By use of (3.3), for 𝛼 < 𝛽 one has

𝜕

𝜕𝑦𝛼,𝛽
Pf

(
𝑇4

)
=
𝑁∑
𝑎=1

(−1)𝑁 i
{
−Pf

(
𝑇4

[
𝐼4,0;𝐼4,0

])
+ Pf

(
𝑇4

[
𝐽4,0;𝐽4,0

])}
,

where

𝐼4,0 = {2(𝛼 − 1)𝑁 + 𝑎, (2𝛽 − 1)𝑁 + 𝑎} , 𝐽4,0 = {(2𝛼 − 1)𝑁 + 𝑎,2(𝛽 − 1)𝑁 + 𝑎} ,

and further

𝜕2

𝜕𝑦𝛼,𝛽𝜕𝑦𝛼,𝛽
Pf

(
𝑇4

)
=

𝑁∑
𝑎,𝑏=1

{
Pf

(
𝑇4

[
𝐽 4
𝛼𝛽
;𝐽 4
𝛼𝛽

])
− Pf

(
𝑇4

[
𝐼4
𝛼𝛽
;𝐼4
𝛼𝛽

])}
+

𝑁∑
𝑎,𝑏=1

{
Pf

(
𝑇4

[
𝐽 4
𝛽𝛼
;𝐽 4
𝛽𝛼

])
− Pf

(
𝑇4

[
𝐼4
𝛽𝛼
;𝐼4
𝛽𝛼

])}
,

where

𝐼4
𝛼𝛽

= {2(𝛼 − 1)𝑁 + 𝑎, (2𝛽 − 1)𝑁 + 𝑎,2(𝛼 +𝐾 − 1)𝑁 + 𝑏, (2𝛽 + 2𝐾 − 1)𝑁 + 𝑏} ,
9

𝐽 4
𝛼𝛽

= {2(𝛼 − 1)𝑁 + 𝑎, (2𝛽 − 1)𝑁 + 𝑎, (2𝛼 + 2𝐾 − 1)𝑁 + 𝑏,2(𝛽 +𝐾 − 1)𝑁 + 𝑏} .
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For 1 ≤ 𝛼 ≤𝐾 , one has

𝜕2

𝜕𝑦𝛼,𝛼𝜕𝑦𝛼,𝛼
Pf

(
𝑇4

)
= −

𝑁∑
𝑎,𝑏=1

Pf
(
𝑇4

[
𝐼4𝛼𝛼 ;𝐼

4
𝛼𝛼

])
.

Hence,(∑
𝛼<𝛽

𝜕2

𝜕𝑦𝛼,𝛽𝜕𝑦𝛼,𝛽
+ 2

𝐾∑
𝛼=1

𝜕2

𝜕𝑦𝛼,𝛼𝜕𝑦𝛼,𝛼

)
Pf

(
𝑇4

)
= −2

𝑁∑
𝑎,𝑏=1

𝐾∑
𝛼=1

Pf
(
𝑇4

[
𝐼4𝛼𝛼 ;𝐼

4
𝛼𝛼

])
+

𝑁∑
𝑎,𝑏=1

∑
𝛼≠𝛽

{
Pf

(
𝑇4

[
𝐽 4
𝛼𝛽
;𝐽 4
𝛼𝛽

])
− Pf

(
𝑇4

[
𝐼4
𝛼𝛽
;𝐼4
𝛼𝛽

])}
.

On the other hand, for 1 ≤ 𝑎, 𝑏 ≤𝑁 one gets

𝜕2

𝜕𝑥
(1)
𝑎,𝑏
𝜕𝑥

(1)
𝑎,𝑏

Pf
(
𝑇4

)
= −

𝐾∑
𝛼,𝛽=1

Pf
(
𝑇4

[
𝐼4
𝛼𝛽
;𝐼4
𝛼𝛽

])
and

𝜕2

𝜕𝑥
(2)
𝑎,𝑏
𝜕𝑥

(2)
𝑎,𝑏

Pf
(
𝑇4

)
= −

𝐾∑
𝛼=1

Pf
(
𝑇4

[
𝐼4𝛼𝛼 ;𝐼

4
𝛼𝛼

])
+

∑
𝛼≠𝛽

Pf
(
𝑇4

[
𝐽 4
𝛼𝛽
;𝐽 4
𝛼𝛽

])
,

from which the summation over 𝑎 and 𝑏 implies (3.16). This thus completes the proof.

3.4. Proof of Theorem 2.4: 𝛽 = 2

On the left-hand side of (2.12) use change of variables 𝑋 to Σ1∕2𝑋Γ1∕2, while on both sides of (2.12) replace nonrandom matrices 
𝑋0, 𝐴1 and 𝐴2 by Σ1∕2𝑋0Γ1∕2, 

(
𝕀𝐾1
⊗ Σ1∕2

)
𝐴1

(
𝕀𝐾1
⊗ Γ1∕2

)
and 

(
𝕀𝐾2
⊗ Γ1∕2

)
𝐴2

(
𝕀𝐾2
⊗ Σ1∕2

)
respectively, divide both sides by 

det(ΣΓ), we then see the resulting duality identity is independent of Σ and Γ. Without loss of generality, we may assume Σ = Γ = 𝕀𝑁
and general 𝐴.

Write

𝑄2(𝜏;𝐴,𝑌0) ∶= ∫ 𝑄2(𝐴;𝑋,𝑌0)𝑃𝑁,2(𝜏;𝑋,𝑋0)d𝑋, (3.17)

noting that when Σ = Γ = 𝕀𝑁 the density given in (2.3) satisfies the heat equation

𝜕𝜏𝑃𝑁,2(𝜏;𝑋,𝑋0) =
1
4
Δ2,𝑋𝑃𝑁,2(𝜏;𝑋,𝑋0), Δ2,𝑋 ∶=

𝑁∑
𝑎,𝑏=1

(𝜕2ℜ𝑥𝑎,𝑏 + 𝜕
2
ℑ𝑥𝑎,𝑏

), (3.18)

using integration by parts one finds

𝜕𝜏𝑄2(𝜏;𝐴,𝑌0) = ∫ 𝑄2(𝐴;𝑋,𝑌0)𝜕𝜏𝑃𝑁,2(𝜏;𝑋,𝑋0)d𝑋

= 1
4 ∫ 𝑄2(𝐴;𝑋,𝑌0)

(
Δ2,𝑋𝑃𝑁,2(𝜏;𝑋,𝑋0)

)
d𝑋

= 1
4 ∫

(
Δ2,𝑋𝑄2(𝐴;𝑋,𝑌0)

)
𝑃𝑁,2(𝜏;𝑋,𝑋0)d𝑋.

(3.19)

Rewrite the 𝐾2 ×𝐾1 complex matrix 𝑌0 as 𝑌0 = [𝑦𝑗,𝑘] = [𝑎𝑗,𝑘 + i𝑏𝑗,𝑘], and let

Δ𝑌0 ∶=
𝐾2∑
𝑗=1

𝐾1∑
𝑘=1

(
𝜕2𝑎𝑗,𝑘

+ 𝜕2
𝑏𝑗,𝑘

)
.

We claim that

Δ2,𝑋𝑄2(𝐴;𝑋,𝑌0) = Δ𝑌0𝑄2(𝐴;𝑋,𝑌0). (3.20)

If so, one obtains a heat equation from (3.19) that

𝜕𝜏𝑄2(𝜏;𝐴,𝑌0) =
1
4𝑁

Δ𝑌0𝑄2(𝜏;𝐴,𝑌0).
10

Together with the initial boundary condition
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𝑄2(0;𝐴,𝑌0) =𝑄2(𝐴;𝑋0, 𝑌0),

the unique solution is thus given by

𝑄2(𝜏;𝐴,𝑌0) = ∫ 𝑄2(𝐴;𝑋0, 𝑌 )𝑃𝐾,2(𝜏;𝑌 ,𝑌0)d𝑌 ,

from which the desired result follows.

The remaining task is to verify the identity (3.20). Denote

𝑇2 =𝐴+
[
−𝕀𝐾1

⊗𝑋 −𝑌 ∗
0 ⊗ 𝕀𝑁

𝑌0 ⊗ 𝕀𝑁 −𝕀𝐾2
⊗𝑋∗

]
,

by use of (3.5), it suffices to prove

𝑁∑
𝑎,𝑏=1

𝜕2

𝜕𝑥𝑎𝑏𝜕𝑥𝑎𝑏
det

(
𝑇2

)
=

𝐾∑
𝛼,𝛽=1

𝜕2

𝜕𝑦𝛼,𝛽𝜕𝑦𝛼,𝛽
det

(
𝑇2

)
. (3.21)

One uses (3.2) to obtain

𝑁∑
𝑎,𝑏=1

𝜕2

𝜕𝑥𝑎𝑏𝜕𝑥𝑎𝑏
det

(
𝑇2

)
=

𝑁∑
𝑎,𝑏=1

𝐾∑
𝛼,𝛽=1

det
(
𝑇2

[
𝐼2;𝐽2

])
,

where

𝐼2 = {(𝛽 − 1)𝑁 + 𝑎, (𝐾 + 𝛼 − 1)𝑁 + 𝑏} , 𝐽2 = {(𝛽 − 1)𝑁 + 𝑏, (𝐾 + 𝛼 − 1)𝑁 + 𝑎} .

On the other hand, for 1 ≤ 𝛼, 𝛽 ≤𝐾 simple calculation shows

𝜕

𝜕𝑦𝛼,𝛽
det

(
𝑇2

)
=
𝑁∑
𝑏=1

(−1)𝐾1𝑁+(𝛼+𝛽)𝑁 det
(
𝑇2

[
𝐼2,0;𝐽2,0

])
,

where

𝐼2,0 =
{
(𝐾1 + 𝛼 − 1)𝑁 + 𝑏

}
, 𝐽2,0 = {(𝛽 − 1)𝑁 + 𝑏} ,

and

𝜕

𝜕𝑦𝛼,𝛽
det

(
𝑇2

[
𝐼2,0;𝐽2,0

])
=
𝑁∑
𝑎=1

(−1)𝐾𝑁+(𝛼+𝛽)𝑁 det
(
𝑇2

[
𝐼2;𝐽2

])
.

So it’s easy to obtain (3.21). The proof is thus complete.

4. Conclusion

Non-Hermitian random matrices have been classified into the 38-fold symmetry classes and 9 of them are characterized by 
single symmetry classes. Only three universality classes due to transposition symmetry are conjectured to exist for the dual Ginibre 
ensembles. We have studied 9 corresponding Gaussian matrix ensembles and established duality formulae of certain observables. 
These allow us to evaluate averaged products of 𝐾 characteristic polynomials in an 𝑁 ×𝑁 matrix ensemble in terms of another 
𝐾 ×𝐾 matrix ensemble, from which asymptotic analysis in the large matrix limit looks feasible. Our method is to make full use of 
two differential identities for determinants and Pfaffians and has more possible applications.

We just establish duality formulae for 9 Gaussian matrix ensembles and will return to the other 29 symmetry classes in the 
future. The most challenging open problems are to evaluate scaling limits for averaged products of 𝐾 characteristic polynomials. 
In particular, whether or not new universality classes appear in the dual GinOE, GinUE and GinSE ensembles for local limits of 
characteristic polynomials?
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