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The singly Cabibbo-suppressed decay A/ — nzt is observed for the first time with a statistical
significance of 7.3¢ by using 3.9 fb~! of e* e~ collision data collected at center-of-mass energies between
4.612 and 4.699 GeV with the BESIII detector at BEPCII. The branching fraction of A} — nzt is
measured to be (6.6 & 1.2, £ 0.4,,) ¥ 10~*. By taking the upper limit of branching fractions of A} —
pa° from the Belle experiment, the ratio of branching fractions between A7 — nz™ and A} — pa° is
calculated to be larger than 7.2 at the 90% confidence level, which disagrees with most predictions of the
available phenomenological models. In addition, the branching fractions of the Cabibbo-favored
decays Al — Az" and Af — Xz are measured to be (1.31 £ 0.084, +0.05.) x 107> and
(1.22 £ 0.08, £ 0.07 ) ¥ 1072, respectively, which are consistent with previous results.

DOI: 10.1103/PhysRevLett.128.142001

The decay of the ground state charmed baryon A, plays

an essential role in studying the nature of both strong and

weak interactions in heavy-to-light baryonic transitions [1].

Published by the American Physical Society under the terms of  The hadronic decay amplitudes of Al consist of factoriz-
the Creative Commons Attribution 4.0 International license. 410 anq nonfactorizable components, in which the non-
Further distribution of this work must maintain attribution to . .. .
the author(s) and the published article’s title, journal citation, factorizable effects arising from W exchange and internal

and DOI. Funded by SCOAP’. W emission play an essential role [2,3]. Therefore, studies

142001-3


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.142001&domain=pdf&date_stamp=2022-04-04
https://doi.org/10.1103/PhysRevLett.128.142001
https://doi.org/10.1103/PhysRevLett.128.142001
https://doi.org/10.1103/PhysRevLett.128.142001
https://doi.org/10.1103/PhysRevLett.128.142001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 128, 142001 (2022)

of nonfactorizable components are critical to understanding
the underlining dynamics of charmed baryon decays.

In the last three decades, several different phenomeno-
logical models, e.g., current algebra [4,5] and SU(3) flavor
symmetry [6-8], have been employed as tools to reveal the
dynamics of charmed baryon decays. The nonfactorizable
contributions are important in these decays, in contrast to
the meson case, and can be constrained by measurements.
Studies of singly Cabibbo-suppressed (SCS) decay modes
containing both factorizable and nonfactorizable contribu-
tions will provide information about their interference;
therefore comprehensive and precise experimental inputs
are required for an improved understanding of the validity
of the different phenomenological models. Experimentally,
great progress has been made in the study of charmed-
baryon decays recently, particularly for Cabibbo-favored
(CF) decays [9-12]; for example, the branching fraction of
the golden mode A} — pK~z* and the neutron final-state
decay A — anﬂ'+ have been measured with a precision
of better than 10% [13—15]. However, experimental studies
of the SCS decays are still quite challenging due to their
small branching fractions of 10~ or below.

The two-body SCS decay A} — nz*, together with
A = pr® and A — pn, are of great interest and have
been studied extensively in the context of various phe-
nomenological models [6,7,16-23]. Compared to
A = pn, the decays A} — nzt and A} — pa® are
expected to be suppressed due to the destructive interfer-
ence between the factorizable and nonfactorizable
amplitudes [18]. Different phenomenological models
predict quite different decay rates for A} — pz° and
A}l — nx', and distinguishing between these models with
experimental results is highly desirable. The ratio of the
branching fractions between A7 — na™ and Al — pa° is
a particularly sensitive observable in comparing these
models, since correlated uncertainties in theoretical calcu-
lation can be canceled. This ratio is predicted to be 2 by the
SU(3) flavor symmetry model [6,7,19], 4.5 or 8.0 by the
constituent quark model [16], 3.5 by a dynamical calcu-
lation based on pole model and current-algebra [18], 4.7 by
the SU(3) flavor symmetry including the contributions
from O(15) [20], and 9.6 by the topological-diagram
approach [23].

To date, the branching fractions of only a few SCS decay
modes have been measured, and all with limited precision
[24], and those involving a neutron in the final state have
never been measured. BESIII and Belle have reported the
branching fractions of A — pn and the upper limit for
AF — pa® [25,26], where for A} — pa® some tension
exists between measurement and some of the predictions
[6,7,16,19]. Therefore, an observation of the decay Al —
nx is essential for validating and constraining different
dynamical models.

In this Letter, the first observation of the SCS decay
A} — nrt is reported using 3.9 fb~! e*e~ collision data

collected with the BESIII detector at six center-of-mass
(c.m.) energies between 4.612 and 4.699 GeV. The inte-
grated luminosities of the data samples at 4.612, 4.628,
4.641, 4.661, 4.682, and 4.699 GeV are 103.5, 519.9,
548.2, 527.6, 1664.3, and 534.4 pb™' [27], respectively.
Throughout this Letter, charge-conjugate modes are implic-
itly included.

A detailed description of the design and performance of
the BESIII detector can be found in Ref. [28]. Simulated
samples are produced with a GEANT4-based [29]
Monte Carlo (MC) package, which includes the geometric
description of the BESIII detector. The signal MC samples
of ete™ — AFA; with A7 decaying into ten specific tag
modes (as described below and listed in Table I) and
A} = nat, Ax*, and X027, which are used to determine
the detection efficiencies, are generated for each individual
c.m. energy by the generator KKMC [30] by incorporating
initial-state radiation (ISR) effects and the beam energy
spread. The inclusive MC sample, which consists of A7 A7
events, D) production, ISR return to lower-mass y states,
and continuum processes ete” — qg (g =u, d, s), is
generated to estimate the potential background, in which all
the known decay modes of charmed hadrons and charmo-
nia are modeled with EVTGEN [31,32] using branching
fractions taken from the Particle Data Group [24], and the
remaining unknown decays are modeled with LUNDCHARM
[33]. Final-state radiation from charged final-state particles
is incorporated using PHOTOS [34].

A double-tag (DT) approach [35] is implemented to
search for Af — nz*. A data sample of A baryons,
referred to as the single-tag (ST) sample, is reconstructed
with ten exclusive hadronic decay modes, as listed in
Table I, where the intermediate particles K9, A, £0, -,
and 7° are reconstructed with the decays K% — n'n™,
A= prt, Z0 - yA, £~ — pa°, and 7° — yy, respecti-
vely. Those events in which the signal decay Al — na' is

TABLE 1. AFE requirement, the ST yield, and the detection
efficiency of the ST and DT A — na' selections for each tag
mode of the data sample at \/s = 4.682 GeV. The uncertainty on
the ST yield is statistical only.

AE (MeV) NST eT (%) €PT (%)
PRt~ (=34,20) 17,415+145 473 37.0
PKS (=20, 20) 3,353 + 61 48.1 38.8
pKtz~2®  (=30,20) 4,005 £ 95 14.5 13.4
pK3n° (=30,20) 1,454 £ 52 16.5 14.4
pKSxta~  (=20,20) 1,261 449 17.7 14.8
Az~ (=20, 20) 2,012 +47 37.8 31.0
An=7° (=30, 20) 3,576 £71 14.6 12.9
Arntn~  (=20,20) 1,818 £ 52 12.3 10.3
207~ (=20, 20) 1,047 & 34 19.3 17.4
S atn (=30, 20) 2,275+ 63 16.2 16.1
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reconstructed in the system recoiling against the A;
candidates of the ST sample are denoted as DT candidates.

Charged tracks detected in the helium-based main drift
chamber (MDC) are required to be within a polar angle (9)
range of | cos 8] < 0.93, where @ is defined with respect to
the beam direction. Except for those from K (s) and A decays,
their distances of the closest approach to the interaction
point (IP) are required to be within 10 cm along the beam
direction and 1 cm in the plane perpendicular to the beam
(referred to as tight track hereafter). The particle identi-
fication (PID) is implemented by combining measurements
of the energy deposited in the MDC (dE/dx) and the flight
time in the time-of-flight system, and every charged track is
assigned a particle type of pion, kaon or proton, according
to which assignment has the highest probability.

Photon candidates are identified using showers in the
electromagnetic calorimeter (EMC). The deposited energy
of each shower must be more than 25 MeV in the barrel
region (| cos 8| < 0.80) or more than 50 MeV in the end-cap
region (0.86 < |cosf| <0.92). To suppress electronic
noise and showers unrelated to the event, the difference
between the EMC time and the event start time is required
to be within (0, 700) ns. The z° candidate is reconstructed
with a photon pair within the invariant-mass region
(0.115,0.150) GeV/c?. To improve the resolution and
keep a high signal efficiency, a kinematic fit is performed
by constraining the invariant mass of the photon pair to be
the 7° mass and requiring the corresponding y? of the fit to
be less than 200. The momenta updated by the kinematic fit
are used in the further analysis.

Candidates for K and A mesons are reconstructed in
their decays to #7z~ and pzt, respectively, where the
charged tracks must have distances of closest approaches to
the IP that are within +20 cm along the beam direction
(referred to as loose track hereafter). To improve the signal
purity, PID is applied to the (anti)proton candidate, while
the charged pion is not subjected to a PID requirement. A
secondary vertex fit is performed to each Kg or A
candidate, and the momenta updated by the fit are used
in the further analysis. To keep a high signal efficiency, a
K% or A candidate is accepted by requiring the y? of the
secondary vertex fit to be less than 100. Furthermore, the
decay vertex is required to be separated from the IP by a
distance of at least twice the fitted vertex resolution, and the
invariant mass to be within (0.487,0.511) GeV/c? for
atx or (1.111,1.121) GeV/c? for pat. The £° and £~
candidates are reconstructed with the yA and pz° final
states, requiring the invariant masses to lie within (1.179,
1.203) and (1.176, 1.200) GeV/c?, respectively.

The ST A; candidates are identified using the vari-

ables of beam-constrained invariant mass Mpc =

\/ Efeun/¢* — |Pa-1?/c* and energy difference AE =

Eyeam — Ex-, where Epe,y is the beam energy, Ex- and

Pi. are the energy and momentum of the A7 candidate,
respectively. The A7 candidate is required to satisfy tag-
mode dependent AE requirements, the asymmetric inter-
vals of which take into account the effects of ISR and
correspond to three times the resolution around the peak, as
summarized in Table I. If there is more than one candidate
satisfying the above requirements for a specific tag mode,
the one with the smallest |AE| is kept.

For the A7 — pK%z° ST mode, candidate events
with M.+ € (1.110,1.125) GeV/c? and M, € (1.170,
1.200) GeV/c? are vetoed to avoid double counting with
the A7 = Az~ 7% or A7 —» £ 2"z~ ST modes, respec-
tively. For the A7 — ¥ ztz~ ST mode, candidate
events with M.~ € (0.490,0.510) GeV/c? and M, €
(1.110,1.125) GeV/c? are rejected to avoid double count-
ing with the A7 — pK32° or Ay - Az~2° ST modes,
respectively. In the Ay — pKOz" 7z~ and Az~n" 7z~ selecti-
ons, candidate events with M.+ € (1.110,1.125) GeV/c?
and M.~ € (0.490,0.510) GeV/c? are rejected, res-
pectively.

The My distributions of surviving candidates for the ten
ST modes are illustrated in Fig. 1 for the data sample at
/s = 4.682 GeV, where clear A7 signals are observed in
each sample. No peaking backgrounds are found with the
investigation of the inclusive MC sample. To obtain the ST
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FIG. 1. The My distributions of the ST modes for data sample
at /s = 4.682 GeV. The points with error bars represent data.
The (red) solid curves indicate the fit results and the (blue) dashed
curves describe the background shapes. The signal ranges are
between green dashed lines.
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yields, unbinned maximum likelihood fits on these Mpc
distributions are performed, where the signal shapes are
modeled with the MC-simulated shape convolved with a
Gaussian function representing the resolution difference
between data and MC simulation, and the background
shapes are described by an ARGUS function [36]. The
candidates with My € (2.275,2.31) GeV/c? are retained
for further analysis, and the signal yields for the individual
ST modes are summarized in Table I. The same procedure
is performed for the other five data samples at different c.m.
energies. The ST yields of the other five samples with
different c.m. energies are summarized in Supplemental
Material [37]. The sum of the ST yields for all the six
data samples is 90,692 + 359, where the uncertainty is
statistical.

The decay A} — nz™ is searched for among the remain-
ing tracks recoiling against the ST A7 candidates. Only one
tight charged track is allowed, which is then assigned to be
the # from the signal decay. To suppress contamination
from long-lifetime particles in the final state, the candidate
events are further required to be without any loose tracks. It
reduces the signal efficiency of A} — nz™ by 6% and
background level by 50%. Meanwhile, the signal yields for
A} — Azt and X%z will decrease significantly as the A
and X0 decays with charged particles in the final state are
highly suppressed, and their decays with neutral ones
mostly pass this requirement. To improve detection effi-
ciency, the neutron is selected through the recoiling mass
(M) against the ST A7 and 7*:

Mrzec = (Ebeam - E”+)2/C4 - |,0 ' 1—7)0 - ﬁn+|2/C2’ (l)

where E+ and p,+ are the energy and momentum of the z™
candidate, p = \/Ef)eam/cz—mf\j ¢?, and py = —p4-/|P4-
is the unit direction opposite to the ST A.

After imposing all selection conditions mentioned
above, the distribution of M. of the accepted DT candi-
date events from the combined six data samples at different
c.m. energies is shown in Fig. 2, where a peak at the
neutron mass is observed, representing the A — nx'
signal. Additionally, there are two prominent structures
peaking at the A and X% mass regions, which represent the
CF processes Af — Az and A — X0z, respectively.

The potential backgrounds can be classified into two
categories: those directly originating from continuum
hadron production in the e*e~ annihilation (referred to
as ¢ background hereafter) and those from ete™ — AF A~
events (referred to as A} A7 background hereafter), exclud-
ing contributions from A — na™, Az*, and X%z signals.
The distributions and magnitudes of gg and A} A. back-
grounds are estimated with the inclusive MC sample, as
shown in Fig. 2, where no peaking backgrounds are
observed. The understanding of the ¢gg background is also
validated with candidate events in the My sideband region
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FIG. 2. The M, distribution of the accepted DT candidate
events from the combined six data samples. The black points with
error bars are data. The red, blue, and green dashed lines indicate
the curves for the neutron, A, and X peaks, respectively. The
brown and gray shaded histograms for the two background
components are from the inclusive MC sample, and the dark
brown dashed line indicates the curve that describes the two
background components from fitting. The black line is the sum
over all the components in the fit. The inset shows the M.
distribution in the ST My sideband region, and the gray dashed
line indicates the curve that describes the gg background.

(2.235,2.270) GeV/c? of ST candidates in data; here also,
no peaking background is observed.

The signal yield N, is obtained by performing an
unbinned maximum-likelihood fit on the M. distribution.
The neutron, A and X° signals are modeled by the
MC-simulated shapes convolved with Gaussian functions
that account for the resolution difference between data and
MC simulation, and where the three Gaussian functions
share the same width parameters. The gg background is
described by a second-order Chebyshev function with fixed
parameters, which are obtained by fitting the corresponding
distribution of events in the ST Mpc sideband region. The
shape of the A} A7 background is taken from the inclusive
MC sample. The fit distributions are depicted in Fig. 2, and
correspond to signal yields of 50 9, 376 4 22, and 343 +
22 for the decays A — nxt, Az*, and 7", respectively,
where the uncertainties are statistical. The statistical sig-
nificance of Al — nxt is 7.36, which is calculated from
the change of the likelihood values between fits with and
without the signal component included, and accounting for
the change in the number of degrees of freedom.

The A} decay branching fractions (B) are determined as

Nobs
9
ZijN?iT(eBT/G%'T)

where the subscripts i and j represent the ST modes and
the data samples at different c.m. energies, respectively.
The parameters N7T, €T, and ep' are the ST yields,

ij > “ij o
ST efficiencies, respectively.

B= (2)

and DT efficiencies,
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The detection efficiency elsz is estimated from MC samples

with A7 decaying into ten specific tag modes and A
decaying inclusively, and €)' is derived from signal MC
samples, where the key distributions of the ST modes have
been reweighted to agree with those of the data. The ST and
DT efficiencies are summarized in Table I for data samples
at a c.m. energy of 4.682 GeV. The detection efficiencies
for the other data samples are summarized in Supplemental
Material [37]. The branching fractions are determined
tobe B(Af —» nat) = (6.6 £1.2+0.4) x 1074, B(Af —
Art) = (1.31 £0.08 £ 0.05) x 1072, and B(A} —
¥07z+) = (1.22 £ 0.08 +0.07) x 1072, where the first
uncertainties are statistical and the second systematic.

The systematic uncertainties for the branching fraction
measurements comprise those associated with the ST
yields, the z* tracking and PID efficiencies, the require-
ment of zero loose tracks, the determination of the DT
signal yields, the decay branching fractions of A and X° (for
A} — Azt and X077 only) and the statistical uncertainties
from the MC samples. The DT approach on which the
measurement is based means that uncertainties associated
with the ST selection efficiency cancel out [38].

The uncertainty in the ST yields is 0.5%, which arises
from the statistical uncertainty and a systematic component
coming from the fit to the Mpc distribution. The uncer-
tainties associated with the z™ tracking and PID efficiencies
are determined from studies of a control sample J/y —
atz~ " decays, as explained in Ref. [39], and are assigned
to be 1.0% and 2.0%, respectively. The uncertainty due to
the zero loose-track requirement is 1.7%, which is assigned
from studies of a control sample of ete™ — AFA- with
A} = pK~z" and the A7 decaying into ten tag decay
modes. The uncertainties from the determination of the DT
yields are 5.6%, 2.5%, and 2.1% for the decays A} — nza™,
An*t, and X7, respectively, including those from the fit
range and the modeling of gg and AFA. backgrounds,
which are estimated from varying the range and alternative
polynomial descriptions for the gg and AfAI back-
grounds, respectively. The uncertainties in the DT efficien-
cies due to the branching fractions of A and X° are 1.4%
and 1.4% for the decays A} — Az* and X%z, respec-
tively. Uncertainties arising from the MC modeling are
investigated by reweighting the MC distribution to data,
and comparing the results obtained between the original
and reweighted samples. The resultant uncertainties in
the MC modeling are 0.8% for Al — nz™ and 3.8% for
Af — 2%2%, but negligible for A7 — Az*. The un-
certainties associated with the finite size of the signal
MC samples are 0.2%. All other uncertainties are negli-
gible. Assuming that all the sources of bias are uncorre-
lated, the total uncertainties are then taken to be the
quadratic sum of the individual values, which are 6.3%,
4.0%, and 5.4% for the decays A} — na*, Ax*, and %7+,
respectively.

In summary, the singly Cabibbo-suppressed decay A} —
nz' is observed with a statistical significance of 7.3¢ by
using e e~ collision data samples corresponding to a total
integrated luminosity of 3.9 fb~! collected at c.m. energies
between 4.612 and 4.699 GeV with the BESIII detector.
The branching fraction of A} — nz* is measured to
be (6.6 4 1.2, + 0.44) x 1074, which is a first-time
measurement. Meanwhile, the branching fractions of
the Cabibbo-favored decays A} — Az* and A} — X0z
are measured to be (1.31 £ 0.08,, & 0.05,,) x 1072 and
(1.22 £ 0.08,, + O.O7Syst) x 1072, respectively, which are
consistent with previous BESIII results [14]. The measured
branching fraction of Al — nzt is consistent with the
prediction in Ref. [20], but twice as large as that in
Ref. [18], implying that the nonfactorization contributions
are overestimated. Taking the upper limit of the branching
fraction of A; — pz from the Belle experiment, B(A} —
pzro) < 8.0 x 107 at the 90% confidence level [26], the
ratio of branching fractions between A7 — nz™ and A} —
pn® is calculated to be larger than 7.2 at the 90%
confidence level, which disagrees with most predictions
of the phenomenological models [6,7,16,18-20,23]. The
results from this analysis provide an essential input for the
phenomenological studies on the underlying dynamics of
charmed baryon decays. In order to obtain an improved
understanding it is desirable to perform improved studies of
these decays, in particular concerning the A} — pz®
branching fraction in the future [40].
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