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Abstract We investigate the low energy properties of an
effective local model with flipped SU (5) × U (1)χ gauge
group, constructed within the framework of F-theory. Its ori-
gin is traced back to the SO(10) symmetry – associated
with a geometric singularity of the compactification mani-
fold – broken by an internal flux which is turned on along
the seven-brane in the U (1)χ direction. Topological proper-
ties and the choice of flux parameters determine the mass-
less spectrum of the model to be that of the minimal flipped
SU (5) supplemented with an extra right-handed electron-
type state and its complex conjugate, Ec + Ēc, as well as
neutral singlet fields. The subsequent symmetry breaking to
the SU (3) × SU (2) × U (1)Y gauge group occurs with a
Higgs pair in 10 + 10 representations of SU (5). Next we
proceed to the phenomenological analysis of the resulting
effective model and the salient outcomes are: The Ec + Ēc

pair acquires a mass of few TeV and as such could solve
the gμ − 2 discrepancy. Neutrino couplings to extra neu-
tral singlets lead to an inverse seesaw mechanism where an
extra light state could be a suitable dark matter candidate.
The predictions of the model for the 0νββ decay rate could
be tested in near future experiments. There are non-unitarity
deviations from the lepton mixing matrix (UPMNS), which
could in principle explain the new precision measurement of
the W-boson mass recently reported by the CDF II collabo-
ration.

1 Introduction

String model building is significant for it turns the superstring
data to low energy predictions which can be tested experi-
mentally. Over the last few decades, many models have been
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engineered in the context of heterotic and type IIA string
theories, as well as IIB and its geometric analogue, the F-
theory. The case of F-theory [1] in particular, establishes a
robust framework for model building by providing the neces-
sary tools for a convenient implementation of the string rules
and principles in order to construct a viable effective field
theory model with predictive power. Since many decades,
it is widely accepted that the low energy (Standard Model)
matter content is embedded only in a few representations of
Grand Unified Theories (GUTs), such as SU (5), SO(10) and
the like. In F-theory such GUTs are considered in the con-
text of the exceptional gauge group E8 associated with the
highest geometric singularity of the internal (compactifica-
tion) manifold. As a consequence, in F-theory compactifica-
tions the geometrical properties of these singularities encode
all the information regarding the properties of the effective
theory. Thus, the observable gauge group is expected to be
a subgroup of E8, arising on the worldvolume of a seven-
brane wrapping a four-manifold ‘surface’ of the internal six-
dimensional space. The geometrical picture is complemented
by the presence of certain seven-brane configurations inter-
secting over the wrapped surface representing the specific
GUT. The gauge sector of the theory is localized on the
world volume of the GUT seven-brane whereas matter fields
reside on Riemann surfaces (called ‘matter curves’ hereafter)
formed in the intersections of other seven-branes with the
GUT ‘surface’.

A well known issue in string derived models, however, is
the mismatch between the string scale Mstring at which the
above picture is formulated, and the gauge coupling unifica-
tion scale MGUT which is found to be two orders of magni-
tude smaller than Mstring . Interestingly, in F-theory a decou-
pling of these two scales can be naturally achieved by requir-
ing the spacetime filling seven-brane to wrap a del Pezzo
surface. Therefore, in such a scenario gravity is decoupled at
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a scale higher than the GUT point where the three Standard
Model gauge couplings unify.

In many cases of string constructions (including the case of
compactifications on del Pezzo surfaces) the available rep-
resentations for the Higgs sector are restricted only to the
fundamental and the spinorial ones, whereas GUTs such as
the standard SU (5) and SO(10) require the adjoint or higher
ones to break the corresponding symmetry. Remarkably, in
F-theory, given a GUT with gauge group GS , the symmetry
breaking can occur by developing a flux along a U (1) fac-
tor inside GS . The symmetry breaking of GS = SU (5) for
example, is achieved by fluxes turned on along the hyper-
charge U (1)Y factor.1 Moreover, the restriction of fluxes
along the matter curves split the SU (5) representations and
determine the multiplicity of the matter content in terms
of a few integers associated with those fluxes. For higher
gauge groups, however, it is expected that fluxes must be
turned on along more than one U (1) factors to fully break
the GUT symmetry down to the Standard Model one. In
SO(10) ⊃ SU (5) ×U (1)χ for example, a flux can be turned
on along the U (1)χ factor breaking it the to SU (5) symme-
try which subsequently is reduced to the Standard Model
one in the way described above. However, because of pos-
sible restrictions on the integer parameters associated with
the fluxes, the combined effects of successive flux-induced
breaking mechanisms might lead to unsought particle con-
tent. Moreover, topological constraints may not support inte-
ger fluxes for successive flux symmetry breaking along mul-
tiple U (1) factors. In that respect, it would be desirable
to investigate whether the GUT groups beyond the mini-
mal SU (5) could be reduced to the standard model sym-
metry by combining both flux and Higgs symmetry breaking
mechanisms. In the present work, we follow this approach
in the case of SO(10) gauge group. The appealing fea-
tures of this model are well known. Among others, it is
the only GUT where all the matter fields (including the
right-handed neutrino) of each generation, are accommo-
dated in a single SO(10) representation, namely the spino-
rial 16. In the standard GUT approach, where all repre-
sentations are available, the most familiar Higgs symmetry
breaking patterns of SO(10) are through the intermediate
symmetries of SU (5) ×U (1)χ and the left-right symmetric
SU (4) × SU (2) × SU (2) Pati–Salam symmetry. Interest-
ingly, both of them do not require large Higgs representations
to break down to the standard model group. The first case, is
identified with the well known flipped SU (5)×U (1)χ model
which requires only the 10 + 10 Higgs fields for its break-

1 A natural question arises whether the corresponding gauge boson
remains massless. According to [2–5] a necessary and sufficient topo-
logical condition for the U (1)Y gauge boson to remain massless is a
non-trivial cohomology class of the flux on the seven-brane while it
represents a trivial class in the base of the F-theory compactification.

ing [6,7]. Also, the breaking of the Pati–Salam symmetry [8]
can be realized by the vector-like Higgs pair of fields which
transform as (4, 1, 2) + (4̄, 1, 2) [9].

In the present study, we will investigate the low energy
implications of the effective model derived under the first
symmetry breaking chain discussed above. Thus, we will
consider its embedding in the highest (E8) geometric singu-
larity, with an SO(10) divisor, so that

SO(10) ⊃ SU (5) ×U (1)χ ⊃ SU (3) × SU (2) ×U (1)Y .

(1)

According to the previous discussion, the first stage of
symmetry breaking will occur with the flux mechanism by
turning on fluxes along the U (1)χ . Provided that we define
the hypercharge generator as the appropriate linear combi-
nation of U (1)χ and the abelian factor inside SU (5), the
resulting theory is exactly the flipped SU (5) model. The
fermion particle content in particular is accommodated in
the 10 + 5̄ + 1 descending from the 16 of SO(10). Further,
there are Higgs fields in 10 + 10 of SU (5) descending from
the 16+16 and there are 5+5 coming from the 10 of SO(10).
Then, the standard model gauge symmetry is obtained when
vacuum expectation values (VEVs) are developed along the
pair 10 + 10 whilst 5 + 5 provide the Higgs doublets.

We note in passing that another important aspect of the
flipped model in F-theory, is that we could equivalently trace
its origin through the SU (5) symmetry and a Mordell–Weil
U (1) symmetry (for reviews see [10,11]). This would bring
additional discrete symmetries, some of them being of the
type Zm × Zn , which could be useful for yet unconstrained
Yukawa Lagrangian terms. We leave this investigation for
a future work and here we only focus on the derivation of
flipped through its embedding in E8 leading to the symmetry
breaking chain (1).

Once we have derived the final gauge symmetry by com-
bining flux and Higgs mechanisms, we focus on the zero-
mode spectrum of the model, the Yukawa potential and its
basic properties. Next we explore the implications in a wide
range of processes being of current interest. Thus, among oth-
ers, we analyze the predictions in neutrino physics, proton
decay, leptogenesis and double beta decay. We further discuss
a potential interpretation of the recently detected anomaly on
the W-boson mass as observed by the CDF experiment.

The layout of the paper is as follows. In order for this
work to be self-contained, in Sect. 2 we present a short intro-
duction on the field theory flipped SU (5). In Sect. 3 we
present a semi-local version of the model from F-theory. We
introduce a U (1) flux to break SO(10) down to the flipped
SU (5) × U (1) symmetry whilst, subsequently, we imple-
ment the Higgs mechanism to reduce the gauge symmetry
down to the Standard Model one. In Sect. 4 we present the
superpotential and its basic low energy properties. In Sect. 5
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we derive some bounds on the parameter space from non-
observation of proton decay. In Sect. 6 we investigate the
form of the neutrino mass matrix and show that it acquires a
type II form due to mixing of ordinary neutrinos with addi-
tional (inert) singlet fields. We discuss various limiting cases
and determine the conditions so that a few keV neutral state
appears to play the role of dark matter. Moreover, the implica-
tions on the leptogenesis scenario are investigated. Section 7
is devoted in a detailed consideration of double beta decay
within the flipped SU (5) context. In Sect. 8 we discuss the
gμ −2 anomaly and in Sect. 9 we present a possible interpre-
tation of the W-mass new measurement recently determined
by CDF collaboration. In Sect. 10, we discuss the renormal-
ization group evolution and we also address the effect of
the vector-like family in the Yukawa couplings. We present
our conclusions in Sect. 11 and include some computational
details in the Appendix.

2 SU(5) × U(1) basics

We would like to investigate the flipped SU (5)×U (1) model
in a generic F-theory framework. Within the proposed frame-
work we implement the spectral cover approach and turn
on fluxes along U (1)’s to determine the geometric proper-
ties of the matter curves and the massless spectrum residing
on them. At this stage we end up with the flipped SU (5)

which we envisage it contains the three generations of the
chiral matter fields, and the necessary Higgs representations
to break the symmetry.

Before we attempt to derive this model from F-theory,
we give a brief account of the field theory version. The chiral
matter fields of each family constitute a complete 16 spinorial
representation of SO(10) which admits the SU (5) ×U (1)χ
decomposition

16 = 10−1 + 5̄3 + 1−5. (2)

Denoting with x the ‘charge’ under U (1)χ and y under the
U (1) of the familiar Standard Model symmetry group, the
hypercharge definition for flipped SU (5) is Y = 1

5

(
x + 1

6 y
)
.

This implies the following embedding of the Standard Model
representations

10−1 ⇒ Fi = (Qi , d
c
i , ν

c
i ) (3)

5̄+3 ⇒ f̄i = (uci , �i ) (4)

1−5 ⇒ �ci = eci . (5)

As already pointed out, the spontaneous symmetry breaking
of the flipped SU (5) symmetry occurs with a pair of Higgs
fields accommodated in

H ≡ 10−1 = (QH , dcH , νcH ),

H̄ ≡ 10+1 = (Q̄H , d̄cH , ν̄cH ). (6)

The MSSM Higgs doublets are found in the fiveplets
descending from the 10 of SO(10)

h ≡ 5+2 = (Dh, hd), h̄ ≡ 5̄−2 = (D̄h, hu). (7)

A remarkable fact in the case of the flipped model is that the
U (1)χ charge assignment distinguishes the Higgs 5̄−2 fields
from matter anti-fiveplets 5̄3. In particular, the former contain
down-quark type triplets D̄h while the latter accommodate
the uc quarks.

The fermion masses arise from the following SU (5) ×
U (1)χ invariant couplings

W ⊃ λd 10−1 · 10−1 · 5h2 + λu 10−1 · 5̄3 · 5̄h̄−2

+λ� 1−5 · 5̄3 · 5h2 (8)

⊃ λd Q dc hd + λu (Q uc hu + �νc hu) + λ� e
c � hd .

(9)

It should be observed that the flipped model at the GUT scale
predicts that up-quark and neutrino Dirac mass matrices are
linked to each other and in particular, mt = mντ . However,
in stark contrast to the standard SU (5) model, down quarks
and lepton mass matrices are unrelated, since in the flipped
model they originate from different Yukawa couplings.

Proceeding with the Higgs sector, as H, H̄ acquire large
VEVs of the order MGUT , they break SU (5)×U (1)χ down
to Standard Model gauge group and at the same time they
provide heavy masses to the color triplets. Indeed, the fol-
lowing mass terms are obtained

HHh + H̄ H̄ h̄ ⇒ 〈νcH 〉dcH D + 〈νcH 〉d̄cH D̄. (10)

Moreover, a higher order term providing right-handed
neutrinos with Majorana masses is of the form

Wνc = 1

MS
10H̄10H̄ 10−1 10−1

= 1

MS
HHFi Fj ⇒ 1

MS
〈νcH 〉2νci ν

c
j . (11)

It should be noted that possible couplings with additional
neutral singlets νs may extend the seesaw mechanism to type
II. As we will see, this is exactly the case of the F-theory
version.

3 Flipped from F theory

In the context of local F-theory constructions we may
assume an E8 point of enhancement where the flipped SU (5)

emerges through the following symmetry reduction

E8 ⊃ SO(10) × SU (4)⊥ ⊃ [SU (5) ×U (1)] × SU (4)⊥,

(12)

where SU (4)⊥ incorporates the symmetries of the spectral
cover. Matter fields are accommodated in irreducible rep-
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resentations emerging from the decomposition of the E8

adjoint under SO(10) × SU (4)

248 → (45, 1) + (1, 15) + (10, 6) + (16, 4) + (16, 4),

(13)

followed by the familiar reduction of SO(10) representa-
tions given in (2) and (7), according to the second stage of
breaking SO(10) → SU (5) × U (1) as shown in (12). The
following invariant trilinear couplings provide with masses
up and down quarks, charged leptons and neutrinos

Wdown ∈ (10, 4)−1 · (10, 4)−1 · (5, 6)2 (14)

Wup/ν ∈ (10, 4)−1 · (5̄, 4)3 · (5̄, 6̄)−2 (15)

W� ∈ (1, 4)−5 · (5̄, 4)3 · (5, 6)2. (16)

As opposed to the plain field theory model, the corresponding
trilinear couplings transform non-trivially under the spectral
cover SU (4)⊥ group. However, the matter fields reside on
7-branes whose positions are located at the singularities of
the fibration. In the geometric language of F-theory construc-
tions, the matter fields of the effective model are found on
the matter curves where the gauge SU (5) × U (1) symme-
try is appropriately enhanced. Moreover, their corresponding
trilinear Yukawa couplings are formed at the intersections of
three matter curves where the symmetry is further enhanced.
In the spectral cover picture the symmetry enhancement of
each representation can be described by the appropriate ele-
ment of the SU (4)⊥ Cartan subalgebra which is parametrized
by four weights ti satisfying

∑4
i=1 ti = 0. The latter are asso-

ciated with the roots of a fourth degree polynomial related
to the SU (4)⊥ spectral cover. The coefficients of this poly-
nomial equation convey information related to the geomet-
ric properties of the fibred manifold to the effective theory.
Usually, there are non-trivial monodromies [12] identifying
roots of the fourth degree polynomial equation associated
with SU (4)⊥. In the present case the identification of matter
curves occurs through a discrete group which is a subgroup
of the maximal discrete (Weyl) group S4 of SU (4)⊥.

To proceed, first we identify the weights of matter field
representations. At the SO(10) level, the 16 transforms in
4 ∈ SU (4)⊥ and 10 in 6 ∈ SU (4)⊥ so we make the following
identifications

(16, 4) → 16ti , i = 1, 2, 3, 4

(10, 6) → 10ti+t j i, j = 1, 2, 3, 4. (17)

In principle, there are four matter curves to accommodate
16 + 16 representations and six for the 10’s of SO(10).
We will focus on the phenomenologically viable case of
the minimal Z2 monodromy. This choice implies rank-one
mass matrices where only the third family of quarks are
present at tree-level ensuring a heavy top-quark mass in
accordance with the experiments. Thus, implementing the

Z2 monodromy by imposing the identification of the two
weights t1 ↔ t2, the matter curves of (17) reduce to

16ti → 16t1 , 16t3 , 16t4
10ti+t j → 102t1, 10t1+t3, 10t1+t4 10t3+t4 . (18)

3.1 Z2 monodromy

Information regarding the geometric properties of the matter
curves and the representations accommodated on them can
be extracted from the polynomial equation for the SU (4)

spectral cover. This equation is

4∑

k=0

bks
4−k = b0s

4 + b1s
3 + b2s

2 + b1s
3 + b4 = 0. (19)

The coefficients bk are sections of [bk] = η − kc1 while we
have defined η = 5c1 − t with c1 (−t) being the 1st Chern
class of the tangent (normal) bundle to the GUT ‘surface’.
Under the assumed Z2 monodromy the spectral cover equa-
tion is factorized as follows

C4 = (a1 + a2s + a3s
2)(a4 + a5s)(a6 + a7s)

= a1a4a6 + (a1a5a6 + a2a4a6 + a1a4a7)s

+(a1a5a7 + a2a5a6 + a3a4a6)s
2

+(a3a5a6 + a2a5a7)s
3 + a3a5a7s

4. (20)

Comparing this to (19) we extract equations of the form bk =
bk(ai )

b4 = a1a4a6

b3 = a1a5a6 + a2a4a6 + a1a4a7

b2 = a1a5a7 + a2a5a6 + a3a4a6

b1 = a3a5a6 + a3a4a7 + a2a5a7

b0 = a3a5a7, (21)

and use them to derive the relations for the homologies [ai ]
of the coefficients ai . There are five equations relating bk’s
with products of ai coefficients and all five of them can be
cast in the form

η − k c1 = [al ] + [am] + [an], where

k + l + m + n = 15, (22)

with k = 0, 1, 2, 3, 4 and l,m, n take the values 1, 2, . . . , 7.
For example, the term a3a4a6s2 in (20) gives [a3] + [a4] +
[a6] + 2[s] = (η − 2c1) − 2c1 = c1 − t and analogously
for the other terms. The system (22) consists of five linear
equations involving products of the coefficients ai with yet
unspecified homologies [ai ] which must be determined in
terms of the known [bk]. Since there are five linear equations
with seven unknowns we can express [ai ] in terms of two
arbitrary parameters defined as follows:

χ5 = [a5], χ7 = [a7], χ = χ5 + χ7.
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Table 1 Properties of SO(10) representations in the Z2 monodromy

Matter ti charges Section Homology U (1)χ

16 t1 a1 η − 2c1 − χ M − P

16 t3 a4 −c1 + χ5 P5

16 t4 a6 −c1 + χ7 P7

10 t1 + t3 a1 − κa4a6 η − 2c1 − χ M − P

10 t1 + t4 a1 − κa4a6 η − 2c1 − χ M − P

10 2t1 a5a6 + a4a7 −c1 + χ P

10 t3 + t4 a5a6 + a4a7 −c1 + χ P

Then, we find that

[αi ] = η − (3 − i)c1 − χ, i = 1, 2, 3;
[a5] = [a4] + c1 = χ − χ7; [a7] = [a6] + c1 = χ7.

Note that because of the vanishing of the coefficient b1 = 0,
we also need to solve the constraint b1(ai ) = 0. It can be
readily seen that a possible solution is achieved by defining
a new section k with [κ] = η − 2χ such that

a3 = κa5a7, a2 = −κ(a5a6 + a4a7). (23)

Using the above topological data we can now specify the flux
restrictions on the matter curves and determine the multiplic-
ities of the zero mode spectrum and other properties of the
effective field theory model.

From the first of equations (21), the condition b4 = 0
becomes a1a4a6 = 0, which defines three 16’s localized at

a1 = 0, a4 = 0, a6 = 0.

Similarly, the equation b2
3(ai ) = 0 determines the topo-

logical properties and the multiplicity of 10’s. Substitut-
ing (23) into b3, we obtain

(a5a6 + a4a7) (a1 − κa4a6) = 0.

Knowing the homologies of the individual ai ’s we can com-
pute those of the various matter curves. The results are shown
in the fifth column of Table 1 where for convenience homolo-
gies are parametrized with respect to the free parameters
χ5, χ7, χ = χ5 + χ7.

As already noted, the SO(10) → SU (5) ×U (1)χ break-
ing is achieved by turning on a U (1)χ flux. At the same time
this flux will have implications on the gauge couplings uni-
fication2 and the zero-mode multiplicities of the spectrum
on the various matter curves. To quantify these effects we
introduce the symbol F1 for the U (1)χ flux parameter and
consider the flux restrictions on the matter curves

P = F1 · (χ − c1); Pn = F1 · (χn − c1); n = 5, 7;
M = F1 · (η − 3c1); C = −F1 · c1. (24)

2 For such effects see for example [13–15].

Table 2 Model 1

M1 M3 M4 P P5 P7 M1
10 M2

10

3 1 −1 0 1 −1 1 0

In this way we obtain the results shown in the last column
of Table 1. We should mention that if we wish to protect the
U (1)χ boson from receiving a Green–Schwarz (GS) mass
we need to impose

F1 · η = 0 and F1 · c1 = 0,

which automatically imply M = C = 0. In this case, the
sum P = P5 + P7 stands for the total flux permeating mat-
ter curves while one can observe form Table 1 that the flux
vanishes independently on the 
16 and 
10 matter curves
(Table 2).

Assuming that Ma
10 is the number of 10t1+t3 ∈ SO(10),

after the SO(10) breaking we obtain the multiplicities for
flipped representations:

161 =

⎧
⎪⎨

⎪⎩

10t1 , M1

5̄t1 , M1 + P

1t1 , M1 − P

, 162 =

⎧
⎪⎨

⎪⎩

10t3 , M3

5̄t3 , M3 − P5

1t3 , M3 + P5

,

163 =

⎧
⎪⎨

⎪⎩

10t4 , M4

5̄t4 , M4 − P7

1t4 , M4 + P7

(25)

101 =
{

5(1)
−t2−t4 , M2

10

5̄(1)
t1+t3 , M1

10 + P
, 102 =

{
5(2)
−2t1

, M1
10

5̄(2)
t3+t4 , M1

10 − P

(26)

10t1 : 3 × (Qi , d
c
i , ν

c
i ), 10t3 : 1 × (H), 10t4 : −1 × (H̄)

5̄t1 : 3 × (uci , Li ), 1t3 : 2 × (Ec
i ), 1t4 : −2 × (Ēc

i ),

1t1 : 3 × eci
5̄t4+t3 : 1 × (h̄), 5−2t1 : 1 × (h), (27)

where M10i , M5 j stand for the numbers of 10 ∈ SU (5) and
5 ∈ SU (5) representations (a negative value corresponds to
the conjugate representation). MSi j denote the multiplicities
of the singlet fields. In fact, as for any other representation,
this means that

Mi j = #1ti−t j − #1t j−ti , (28)

thus, if Mi j > 0 then there is an excess of Mi j singlets
1ti−t j = θi j and vice versa.

4 The superpotential and low energy predictions

We will construct a model with all three families residing on
the same matter curve. Later on, we will explain how in this
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Table 3 The SU (5)×U (1)χ representations with their R-parity assign-
ment. Their multiplicities are counted by the integers M, P, P5,7 in the
last column

Matter Field Symbol Parity Matter Fields Parity

10−1 Fi − χ + M − P

5̄3 f̄i − χ̄ + P5

1−5 eci − ψ + P7

10 s − ψ̄ + M − P

15 Ēc
n − ζ + P

1−5 Ec
m − ζ̄ + P

52 h + H + P

5̄−2 h̄ + H + P

case the masses to lighter families can be generated by non-
commutative fluxes [16] or non perturbative effects [17,18].

Taking into account the transformation properties of the
various SU (5)×U (1)χ representations presented in the pre-
vious section, we can readily write down the superpoten-
tial of the model. Regarding the field content transforming
non-trivially under SU (5) ×U (1)χ , we make the following
identifications

10t1 → Fi , 5̄t1 → f̄i , 1t1 → ecj ,

1t3 → Ec
m, 1−t4 → Ēc

n, (29)

10t3 → H, 10−t4 → H , 5−2t1 → h, 5̄t3+t4 → h̄. (30)

Here the indices i, j run over the number of families, i.e.,
i, j = 1, 2, 3. All the representations emerging from the first
matter curve labeled with t1, share the same symbols as those
of the field theory version of flipped SU (5) of the previous
section. The two extra pairs with the quantum numbers of the
right-handed electron and its complex conjugate are denoted
with Ec, Ēc.

Regarding the singlets θpq , p, q = 1, 2, 3, 4, taking into
account the Z2 monodromy t1 ↔ t2 we introduce the fol-
lowing naming:

θ12 ≡ θ21 = s, θ13 = χ, θ31 = χ̄ , θ14 → ψ,

θ41 = ψ̄, θ34 → ζ, θ43 → ζ̄ . (31)

The new symbols assigned to the SU (5) massless spectrum
of the flipped model are collected in Table 3. A standard
matter parity has also been assumed for all fields.

Note that due to t1 ↔ t2 identification after the mon-
odromy action, both types of singlets, θ12 and θ21, are iden-
tified with the same one denoted with s j , with a multiplicity
j = 1, 2, . . . , ns determined by (28). For Mi j = 0 there is
an equal number of θ12 and θ21 fields and large mass terms
of the form Msi j si s j for all si are normally expected. How-
ever, for Mi j �= 0 some singlets are not expected to receive
tree-level masses. Such ‘sterile’ singlets s j , (denoted collec-

tively with s in the following) will play a significant role in
relation to neutrino sector. Clearly, in addition to this, several
other identifications will take place among the various flipped
representations and the Yukawa couplings. As an example,
implementing the Z2 monodromy and the above definitions,
the following gauge invariant terms are rewritten as

10t1 5̄t2 5̄t3+t4
Z2−→ 10t1 5̄t1 5̄t3+t4 → Fi f̄ j h̄ (32)

10−t4 10t1θ21θ42
Z2−→ 10−t4 10t1θ21θ41 → HFisψ̄. (33)

With this notation the superpotential terms are written in
the familiar field theory notation as follows:

W = λui j Fi f̄ j h̄ + λdi j Fi Fj h + λei j e
c
i f̄ j h + κi H Fi s ψ̄

+αmj Ē
c
me

c
j ψ̄ + βmn Ē

c
m E

c
n ζ̄ + γnj E

c
n f̄ j hχ. (34)

The first three terms provide Dirac masses to the charged
fermions and the neutrinos. It can be observed that the up-
quark Yukawa coupling (∝ F f̄ h̄) appears at tree-level, as
well as the bottom and charged lepton Yukawa couplings.
Because in this construction U (1)Y fluxes are not turned on,
there is no splitting of the SU (5) representations and thus,
their corresponding content of the three generations resides
on the same matter curve. Using the geometric structure of the
theory it is possible to generate the fermion mass hierarchies
and the Kobayashi–Maskawa mixing. Here we give a brief
account of the mechanism, while the details are described in
a considerable amount of work devoted to this issue [19–24].

We first recall that chiral matter fields reside on matter-
curves at the intersections of the GUT surface with other 7-
branes, while the corresponding wavefunctions, dubbed here
�i , can be determined by solving the appropriate equations
[19] where it is found that they have a gaussian profile along
the directions transverse to the matter-curve. The tree-level
superpotential terms of matter fields are formed at triple inter-
sections and each Yukawa coupling coefficient is determined
by integrating over the overlapping wavefunctions

λi j ∝
∫

M
�i� j�Hdz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2,

where �H is the wavefunction of the Higgs field. Detailed
computations of the Yukawa couplings with matter curves
supporting the three generations, have shown that hierarchi-
cal Yukawa matrices – reminiscent of the Froggatt–Nielsen
mechanism – are naturally obtained [20–24] with eigen-
masses and mixing in agreement with the experimental val-
ues.

Returning to the superpotential terms (34), when the Higgs
fields H̄ and the singlet ψ̄ acquire non-vanishing VEVs, the
last term of the first line in particular, generates a mass term
coupling the right-handed neutrino with the singlet field s3:

3 In order to simplify the notation, occasionally the powers of 1/Mn
str

(where Mstr is of the order of the string scale) in the non-renormalizable
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κi 〈H〉〈ψ̄〉Fi s = Mνci s
νcs,

where Mνci s
= κi 〈H〉〈ψ̄〉. Bearing in mind that the top

Yukawa coupling also implies a 3 × 3 Dirac mass for the
neutrino mνD = λui j 〈h̄〉, and taking into account a mass term
Msss allowed by the symmetries of the model, the following
neutrino mass matrix emerges

Mν =
⎛

⎝
0 mνD 0

mT
νD

0 MT
νcs

0 Mνcs Ms

⎞

⎠ , (35)

whereas additional non-renormalizable terms are also pos-
sible. The low energy implications on various lepton flavor
and lepton number violating processes will be analysed in
Sect. 6. Furthermore, the following terms are also consistent
with the symmetries of the model:

W ⊃ λμχ
(
ψ + HHχ

)
h̄ h

+λH̄ H Hh̄ζ̄ + λH HHh(χ2 + ζ̄ 2ψ2). (36)

When the various singlets acquire non-zero VEVs the fol-
lowing fields receive masses. The term proportional to λμ

contains a non-renormalizable term proportional to χψ and
a higher order one generated by the VEVs of Higges HH .
The terms proportional toλH̄ , λH must provide heavy masses
to the extra color triplet pairs

λH̄ 〈H〉 〈ζ̄ 〉
Mstr

D
c
H̄ Dh + λH 〈H〉

( 〈χ2〉
M2

str
+ 〈ζ̄ 2ψ2〉

M4
str

)
Dc

H̄
Dh .

Since the magnitude of 〈χ〉 is constrained from the size of
the μ term, large mass for the second triplet pair requires a
large VEV for 〈ψζ̄ 〉. The solution of the flatness conditions
in the appendix show that this is possible.4 According to
the solution for flatness conditions problem obtained in the
appendix, the useful singlets ζ̄ , ψ̄, χ acquire the desirable
VEVs shown at Table 4, generating this way an acceptable
μ-term for the Standard Model Higgs fields.

Continuing with the color triplet fields, we now collect all
mass terms derived from non-renormalizable contributions
to the superpotential. They generate a 2 × 2 mass matrix
which is shown in Table 5.

The Higgs color triplets mediate baryon decay processes
through dimension-four, and dimension-five operators, thus

Footnote 3 Continued
terms will be omitted. Hence we will write ψ̄ instead of ψ̄/Mstr and
so on.
4 One might think that it would be possible to eliminate the term χ h̄h
while keeping the H̄ H̄ h̄ and HHhζ̄ χ terms, by choosing appropriate
Z2 parity assignments for χ and the other fields. It can be easily shown,
however, that there is no such Z2 assignment and possibly generalized
ZN or more involved symmetries are required. Such discrete symmetries
are available either from the spectral cover [25], or from the torsion part
of the Mordell–Weil group.

Table 4 Masses in GeV scale. Mstr = MGUT = 1.4 × 1016 GeV

χ χ̄ ψ ψ̄ ζ ζ̄

5.6 × 1010 7.7 × 1015 2.2 × 107 89.3 × 103 7.8 × 1015 4.4 × 1015

Table 5 The mass matrix for the down-type colour triplets

M2
Dh

Dc
H Dc

H

Dh 〈H〉
(

χ2

M2
str

+ ψ2ζ̄ 2

M4
str

)
〈H H̄〉

(
χ2

M3
str

)

Dh 〈H H̄〉
(

χ2

M3
str

)
〈H〉 ζ

Mstr

their mass scale is of crucial importance. Their eigenmasses
are

mDc
H

= 〈H〉
(

χ2

M2
str

+ ψ2ζ̄ 2

M4
str

)
cos2(θ)

− 〈H H̄〉
(

χ2

M3
str

)
sin(2θ) + 〈H〉 ζ

Mstr
sin2(θ)

mDc
H

= 〈H〉 ζ

Mstr
cos2(θ) + 〈H H̄〉

(
χ2

M3
str

)
sin(2θ)

+ 〈H〉
(

χ2

M2
str

+ ψ2ζ̄ 2

M4
str

)
sin2(θ),

where the mixing angle θ is determined by

tan(2θ) = 2〈H̄〉〈χ2〉Mstr

〈χ2〉M2
str + 〈ψ2ζ̄ 2〉 . (37)

For singlets VEVs of the order 10−1MGUT , the triplets
acquire heavy masses in the range 1014–1015 GeV, (θ ∼ π

6 ),

protecting this way the proton from fast decays. For com-
pleteness, we summarize the possible proton decay processes
in the next section.

5 Proton stability

Having determined the masses of the color triplet fields
D, D̄, we are now able to examine possible bounds on
the parameter space from proton decay processes. After the
spontaneous breaking of the flipped SU (5) gauge group,
the resulting MSSM Yukawa Lagrangian contains B and
L violating operators giving rise to proton decay channels
[26] such as p → (π0, K 0)e+. Focusing our attention on
the dangerous dimension five operators, in particular, the
main contribution comes from the two relevant couplings
Fi Fj h, Fi f̄ j h̄ in the superpotential (34). Also, it is important
to mention that color triplets can contribute through chiral-
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ity flipping (LLLL and RRRR) operators and chirality non-
flipping (LLRR) ones. Following [27–29], these operators
could be expressed in the mass eigenstate basis:

10t1 : (Q, V Pdc,Uνcν
c), Q = (u, V Pd)

5̄t1 : (uc,ULL), L = (UPMNSν, e)

1t1 : (Uee
c). (38)

Therefore, the color triplets couplings to ordinary MSSM
matter fields are expressed as

λui j : Q(V ∗λ(dc)V †)QDc
H

λei j : uc(U †
Lλ(ec))ecDc

H

λui j : L(ULλ(Q,ν))QDc
H

λui j : uc(λ(Q,ν)V )dcDc
H , (39)

whereV is the Cabibbo–Kobayashi–Maskawa (CKM) matrix
with the corresponding phases and UL is the leptonic part of
the PMNS-matrix UPMNS = U∗

LU
†
ν , plus the CP-phases

P = diag(eiφi ). The dominant effects on proton decay orig-
inate from LLRR channels, where after integrating out the
Higgs triplets (recall that in this diagram chirality flipped
dressing with a higgsino is required), are discussed below.
These operators, also, should respect the SU (4)⊥ charge con-
servation, so for each operator the appropriate singlet fields
must be introduced. Since the masses of these singlets are
substantially lower that the string scale, further suppression
of the anticipated baryon violating operators is expected. The
relevant operators take the form

δ1
10t1 10t1 10t1 5̄t1

Mstr

(
θ31θ41

M2
str

+ θ2
31θ43

M3
str

)

→ δ1
〈χ̄2ζ̄ 〉 + 〈χ̄ ζ̄ 〉Mstr

M4
str

(Qi Q j Qk Lm)

δ2
10t15̄t1 5̄t1 1t1

Mstr

(
θ31θ41

M2
str

+ θ2
31θ43

M3
str

)

→ δ2
〈χ̄2ζ̄ 〉 + 〈χ̄ ζ̄ 〉Mstr

M4
str

(dci u
c
j u

c
ke

c
m), (40)

where δ1,2 are

δ1 ∼ 〈h〉
mDc

H
mDc

H

[
(V ∗λ(dc)V †)(λ(Q,ν)U∗

L)
]
,

δ2 ∼ 〈h〉
mDc

H
mDc

H

[
(U∗

Lλ(ec))(λ(Q,ν)V )
]
. (41)

Given the scale difference between the bidoublet 〈h〉 and the
triplet Mc

DH
, these operators are highly suppressed. The nov-

elty of F-theory model building constructions compared to
GUT-model building [28,29], is that the ti -charge conserva-
tion implies additional suppression. Regarding the chirality

flipping diagrams, as it is pointed out in [28], they are severely
constrained in the flipped SU (5) model, as opposed to their
behavior in the standard SU (5) [30].

We investigate now the implications of the various
dimension-6 operators. In this case, baryon violating decays
are mediated by both SU (5) vector gauge fields and color
Higgs triplets. The corresponding diagrams differ from
dimension five operators, since chirality flipping is not
needed in this case, so the extra suppression factor 〈h〉

MD
is

absent. From the low energy superpotential (34), the rele-
vant to proton decay couplings are:

λui j Fi f̄ j h̄ + λdi j Fi Fj h ψ̄ + λei j e
c
i f̄ j h ψ̄, (42)

whereas, the effective operators corresponding to dimension-
6 operators are:

10 5̄ 10† 5̄†, 10 10 5̄† 1†.

The gauge interactions inducing the dimension six operators
can be summarized as:

L ∼ g5

(
εi j u

cXiU∗
L L

j + εabcQ
†a XbV P∗dc

+εαβν†c XαQβ + h.c.

)
, (43)

and

L(6) ∼ Ci jkm
(6)α

(
u†c
i d†c

j (ukem + dkνm)

)
+ Ci jkm

(6)β

×
(
ui (V P∗d j ) + (V ∗Pdi )u j

)
u†c
k e†c

m . (44)

The coefficients Ci jkm
(6)α,β are given by [28,29]

Ci jkm
(6)α =

(
(UL)kmV ∗

i j

M2
G

+ (V †λ(Q,ν))i j (ULλ
(Q,ν)
km )

m2
Dc
H

)

Ci jkm
(6)β =

(
(V ∗Pλ(dc)V )km(U †

Lλ(ec))i j

m2
Dc
H

)
, (45)

where MG is the mass of the gauge boson and the Yukawa
couplings λ are the diagonal matrices. It is important to
emphasize that the flipped SU (5) gauge bosons do not couple
to the right-handed leptons, in contrast to the standard SU (5).
The final state is different in these two cases and their exper-
imental implication makes the flipped version much more
phenomenologically attainable (see also [27]). As an illustra-
tive example, we present the charged lepton decay channels
p → (K 0, π0)l+(e,μ). First of all the mixing factors, for the
two Wilson coefficients stated above, are:

p → π0l+i : (UL)i1V
∗
ud(e

φu , eφd )

p → K 0l+i : (UL)i1V
∗
us(e

φu , eφs ), (46)
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where the index i denotes the generation of the lepton
involved in the proton decay. The decay rates can be com-
puted as:

�p→π0e+ = |(UL )11V
∗
ud (e

φu , eφd )|2K(mπ ,mp)M2

× (π0, e+)

⎡

⎢
⎣A2

α

⎛

⎝ 1

M2
G

+ f 2(u)

m2
Dc
H

⎞

⎠

2

+ A2
β

⎛

⎝ g2(d, e+)

m2
Dc
H

⎞

⎠

2
⎤

⎥
⎦ ,

�p→K 0e+ = |(UL )11V
∗
us(e

φu , eφs )|2K(mK 0 ,mp)M2

× (K 0, e+)

⎡

⎢
⎣A2

α

⎛

⎝ 1

M2
G

+ f 2(u)

m2
Dc
H

⎞

⎠

2

+ A2
β

⎛

⎝ g2(s, e+)

m2
Dc
H

⎞

⎠

2
⎤

⎥
⎦ ,

(47)

where Aα, Aβ are the renormalization factors obtained from
the RGE equations (in one-loop level) for the Wilson coeffi-
cients contributing to the proton decay processes [27–29].
Since there are some additional states in the low energy
spectrum (namely the vector-like singlets Ec), we do not
expect a significant deviation for the gauge coupling unifi-
cation regarding the supersymmetry (susy) breaking scale
around TeV, as obtained by similar analysis [31]. The rest
of the parameters used in the decay rates are summarized

below:

K(mπ ,mp) = mp

32π

(

1 − m2
π0

m2
p

)2

,

M(π0, (e+, μ+)) = 〈π0|(ud)RuL |p〉l+
= (−0.131,−0.118) GeV2,

K(mK 0 ,mp) = mp

32π

(

1 − m2
K 0

m2
p

)2

,

M(K 0, (e+, μ+)) = 〈π0|(us)RuL |p〉l+
= (0.103, 0.099) GeV2,

f 2(u) = m2
u

〈hu〉2 , g2(d, e+) = mume+

〈hd〉2 ,

g2(s, e+) = msme+

〈hd〉2 , tan(β) = 〈hu〉
〈hd〉 . (48)

In Fig. 1 we plot the proton lifetime of the above decay
channels, as a function of the triplet mass mDH for assuming
various values of tan β, where the horizontal lines represent
the current Super-K [32] and Hyper-K [33] bounds. Regard-
ing the formulas for the proton decay through the muon’s
channel, they can be easily derived if we trade the e+ → μ+.

Fig. 1 The lifetime of the proton along the two decay channels (p → π0(e+, μ+), p → K 0(e+μ+)) for different values of tan(β). It is deduced
that the triplets mass is bounded at mDc

H
= mDc

H
≥ 1011 GeV, MG = 1016 GeV. The asymptotic value of the lifetime is controlled by the masses

of the Higgs triplets
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6 The neutrino sector

In this section we are going to examine in some detail the
mass matrix (35) involving the neutrinos and the neutral sin-
glet fields s. Recall that the latter are identified with the sin-
glets θ12, θ21 and that their number is determined by global
dynamics of the model. In the present semi-local construc-
tion we will treat them as a free parameter. The following
Yukawa couplings

mνD = λui j 〈h̄〉, Mνci s
= κi 〈H〉〈ψ̄〉

Mstr
, (49)

define the Dirac neutrino mass submatrix and the mixing
between the right-handed neutrinos and the singlet fields.
Additional non-renormalizable terms may also generate
masses for the right-handed neutrinos νci due to a coupling
of the form :

W ∼ λi j

M3
str

H HFi Fj

(
〈ψ̄2〉 + 〈ζ̄ 〉2〈χ̄〉2

M2
str

)

⇒ Mνci
= λi j 〈ν̄cH 〉2

M3
str

(
〈ψ̄2〉 + 〈ζ̄ 〉2〈χ̄〉2

M2
str

)
. (50)

Hence, the final structure of the neutrino mass sector is

Mν =
⎛

⎝
0 mνD 0

mT
νD

Mνci
MT

νcs
0 Mνcs Ms

⎞

⎠ . (51)

This matrix involves vastly different scales. We assume
(also justified by the singlet VEVs) the hierarchy mνD �
Ms � Mνci s

, Mνci
and implement a double inverse see-

saw mechanism to determine the eigenvalues of the light
spectrum. Below we sketch the procedure for obtaining the
normal-order mass hierarchy in the light neutrinos sector. We
define:

MνD =
(
mνD

0

)
, MR′ =

(
Mνci

MT
νcs

Mνcs Ms

)
, (52)

and

Mν =
(

0 MT
D

MD MR′

)
. (53)

Then, implementing the double inverse seesaw formula (see
for example [34]) we obtain

mνi = −mνD (Mνci
− MνcsM

−1
s MT

νcs)
−1mT

νD

mνD � (Mνci
− MνcsM

−1
s MT

νcs). (54)

Depending on the scale of the neutral singlets s, there are two
basic limits of the previous equation, which yield different
parametric regions for the right-handed neutrinos and the sin-
glets. In the subsequent sections we would like to implement

a leptogenesis scenario, hence it is of crucial importance to
pursue an intermediate mass scale (∼ TeV) in the heavy neu-
trinos sector and to characterize the properties of the extra
singlets. Having this in mind, we proceed with the analysis
of the limiting cases.

(α) We assume the hierarchies Mνci
� Mνcs and Ms �

Mνcs .
In this case, the {22}-entry in the neutrino mass matrix is
less significant and the model reduces to the standard double
seesaw:

mνi = mνD (MT
νcs)

−1
MsM

−1
νcsm

T
νD

. (55)

This scenario accommodates effectively the light neutrino
masses, where for example requiring light neutrinos at sub-
eV scale mνi � 0.1 eV and sterile masses around Ms ∼
5 keV (mνD ∼ 100 GeV), the seesaw scale for the right-
handed neutrinos is set at Mνcs ∼ TeV. A much more inter-
esting and testable prediction from such a case would be the
calculation of unitarity violation η in the leptonic mixing
matrix [35]:

V = (1 + η)U0, (56)

where the V matrix diagonalizes the light neutrinos and U0

represents the unitary matrix (identified with UPMNS in the
lepton sector), while the η matrix can in principle be hermi-
tian. Deviations from the unitary form of the PMNS mixing
matrix are displayed into the rare leptonic decays (la → lbγ ).

These decays put stringent bounds on the discrepancies in the
mixing matrix, whose origin can be traced back to the see-
saw mechanism. In order the explain how deviations can be
expressed, it is important to recall the GIM mechanism [36] .
Flavor changing neutral currents are induced at loop level in
the Standard Model, where their decay rate is parametrized
in terms of the mixing matrix in 1-loop as [37]:

�(la → lbγ )

�(la → νalbν̄b)
∼

|∑k VakV
†
kbF(

m2
ν

m2
W

)|2
(VV †)aa(VV †)bb

,

F(x) = 10 − 43x + 78x2 − 49x3 + 4x4 + 18x3 log(x)

3(x − 1)4 ,

(57)

where for unitary mixing matrix U the GIM mechanism
implies a vanishing contribution for a �= b [38]. In the case
of non-unitary mixing matrix, a typical process μ → eγ
results in the experimental bound (UeμU

†
μe) < 10−4,which

represents the typical condition needed to be met by seesaw
scenarios. Regarding the computation of the unitary violat-
ing effects η, they can be computed by the neutrino matrix
(53), using the matrix (56), as:

η ∼= −1

2
M†

D(M∗
R)−1(MR)−1MD. (58)
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Regarding the unitarity violation in the seesaw mechanism
analysed here, an estimate of the η can be computed after the
scales of the seesaw matrix are set. Nevertheless, in both of
the two limits of the seesaw mechanism analyzed here, the η

parameter is of order:

η ∼ O
(
m2

νD

M2
νcs

)

∼ 10−6, (59)

i.e., two orders below the present bound.
(β) Ms � Mνcs � Mνc . In this limit, the two heavy states

are

m̂s = Ms − MT
νcsM

−1
νc Mνcs,

m̂νc = Mνc . (60)

Regarding the light neutrino states, depending on the heavy
mass hierarchies, we distinguish two cases. For Mνc �
MνcsM−1

s MT
νcs ,

mν = mνD (MT
νcs)

−1
MsM

−1
νcsm

T
νD

, (61)

and for Mνc � MνcsM−1
s MT

νcs ,

mν = −mνD M
−1
νc m

T
νD

. (62)

In the first case, the paradigm (α) is reproduced and in
the second one the typical seesaw is obtained. Here, the new
intermediate scale m̃s could be useful for a dark matter parti-
cle, since the mixing angle between the active and the sterile
neutrino is highly suppressed. This angle could be obtained
after integrating out the heavy right-handed neutrino scale
Mνc , leading to:

tan(2θνs) ∼=2mνD

Mνcs
, (Mνci

, Ms � Mνcs) and

(Mνc � MνcsM
−1
s MT

νcs), (63)

tan(2θνs) ∼=mνD Mνcs

2MsMνc
, Mνc � MνcsM

−1
s MT

νcs . (64)

The mixing angle of the active-sterile neutrinos are of crucial
importance, since this angle characterizes the sterile neutri-
nos’ properties regarding its nature as a dark matter particle.
Astrophysical data have already opened two “windows” for
sterile dark matter particles, the first one at keV scale with
the mixing angle θνs ∼ (10−6, 10−4) and the second one at
MeV scale with θνs ∼ (10−9, 10−6).

Leptogenesis

Next we examine the leptogenesis scenario in the context of
the flipped SU (5) model presented in this work. Our analy-
sis shows that a possible implementation of the leptogenesis
scenario can be realized in the second case (i.e., case β). As

Fig. 2 Standard contributions to the generated lepton asymmetry

is well known, right-handed neutrinos can decay to a lepton
and a Higgs field, producing this way lepton asymmetry. The
relevant Yukawa couplings are

W = λui j Fi f̄ j h̄ + κ ′
i H Fi s ψ̄, κ ′

i = κi
〈ψ̄〉
Mstr

.

Figure 2 shows the relevant vertex of the right-handed neu-
trino and the standard one-loop graph contributing to the lep-
ton asymmetry. There are also two wavefunction self-energy
one-loop correction graphs depicted in Fig. 3 which also con-
tribute.

The decay rate is given by

�(νci ) = 1

4π

(
λν
i j (λ

ν
i j )

† + κ ′(κ ′)†
)

i i
Mνci

, (65)

where λ and κ ′ are the relevant Yukawa couplings in the
Eq. (34) for the neutrino sector. The lepton asymmetry factor
is summarized to the following contributions:

ε1 = −
∑

i

�1(ν
c
1 → l̄i h̄) − �2(ν

c
1 → li h)

�12(ν
c
1)

, (66)

where �12 = �1(ν
c
1 → l̄i h̄) + �2(ν

c
1 → li h) indicates the

overall decay rates. The lepton asymmetry in such a scenario
can be written as [39]:

ε1 = 1

8π

∑

j �=1

(
( f1(x j ) + f2(x j ))G j1 + f2(x j )G

′
j1

)
, (67)

f1(x j ) = √
x

(
1 − (1 + x) ln

(
1 + x

x

))
,

f2(x) =
√
x j

1 − x j
, x j =

M2
νcj

M2
νc1

, (68)

where the f -factors are the vertex contributions of the Feyn-
man diagrams. Now, the G-factors contain the Yukawa cou-
plings as:

G = Im
[
(λν

i j (λ
ν
i j )

†)2
]

(λν(λν)† + κ ′(κ ′)†)11
,
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Fig. 3 Loop diagrams
contributions to the generated
lepton asymmetry

G ′ = Im
[
(λν

i j (λ
ν
i j )

†)(κ ′(κ ′)†)
]

(λν(λν)† + κ ′(κ ′)†)11
. (69)

With regard to the impact of the loop corrections of the
second graph in Fig. 3, the lepton asymmetry factor can be
divided into two cases with respect to the right-handed neu-

trino mass hierarchy x j =
M2

νcj

M2
νc1

. For the case of large hier-

archy, x j � 1, the contribution from the loops is negligible
resulting in [40]:

ε1 ∼= − 3Mνc1

16π〈v〉2

Im
[
(λν

i j )
∗mν(λ

ν
i j )

†
]

(λν(λν)† + κ ′(κ ′)†)11

⇒ |ε1| �
3Mνc1

16π〈mνD 〉2 (mν3 − mν1). (70)

From the above, it is obvious that in order to obtain the
observed lepton asymmetry ε1 ∼ [10−6, 10−5], the scale
for the right-handed neutrinos should lay close to:

Mνc1
� 16ε1π〈mνD 〉2

3(mν3 − mν1)
� 109 GeV. (71)

The case x j ∼= 1 describes the enhancement due to the
loop diagrams (resonant procedure), where the asymmetry
factor is:

ε1 ∼= − 1

16π

{
Mνc2

〈mνD 〉2

Im[(λν
i j )

∗mν(λ
ν
i j )

†]
(λν(λν)† + κ ′(κ ′)†)11

+
∑

j �=1 Im[(λν
i j (λ

ν
i j )

†)(κ ′(κ ′)†)]
(λν(λν)† + κ ′(κ ′)†)11

}
Mνc2

Mνc2
− Mνc1

. (72)

It is worth emphasizing that if the first term dominates,
fine tuning is required due to the dependence of the mass
splitting in the right-handed neutrino sector. Despite the fact
that thermal low scale leptogenesis in most cases requires a
tiny mass gap in the heavy states, the second term (first dia-
gram in Fig. 3), could accommodate a less constrained mass
gap through the suppression due to the existence of Yukawa
couplings λ, κ ′ [41–43]. However, due to the heavy Higgs H̄
mass included in the loop, this contribution is expected to be
suppressed. Simplifying the contributions of the two terms
in the above equation, the results are summarized to:

(i) |ε1| ∼ Mνc2

16π〈mνD 〉2

√
�m2

ν31

Mνc2

Mνc2
− Mνc1

(73)

(ii) |ε1| ∼ Mνc2

16π〈mνD 〉2

√
�m2

ν31

Mνc2

Mνc2
− Mνc1

× |λν
i j |2|κ ′|2.

(74)

These couplings are referring not to the first generation, since
the lightest of the sterile neutrino’s coupling is bounded by
the thermodynamic condition �(νc1) < H(T = Mνc1

), where
H stands for the Hubble expansion. The novelty of the F-
theory implementation of the leptogenesis scenario is that
fine tuning is not a problem, since the singlets can acquire
appropriate VEVs regulating this way the scale of the pro-
duced asymmetry, without the requirement of �mνc21

→ 0.
The coupling κ ′ is suppressed by the string scale, an effect
which is absent in the standard field theory GUT framework.

7 Neutrinoless double beta decay

We have already observed in the analysis of the neutrino mass
matrix the involvement of new neutral states s which act as
sterile neutrinos. Furthermore, the Majorana nature of neu-
trino states implies violation of lepton number by two units
�L = 2. The presence of these ingredients could potentially
provide low energy signals which are worth investigating.
Amongst those implications, neutrinoless double beta decay
(for a review see [44]) seems a suitable experimental pro-
cess, where the presence of additional sterile neutrinos could
enhance the decay’s amplitude and shed some light on the
mixing between the active and sterile sectors. Clearly, within
the context of the inverse seesaw mechanism of the present
model, the described scenarios of leptogenesis, unitarity vio-
lation and double beta decay are entangled and the goal of
this section is to extract some bounds for the mass splitting
of the right-handed neutrinos and their Majorana phases.

As can be inferred even a simple extension of the SM
with a Majorana mass term could predict the occurrence of
the ββ-decay process through a Lagrangian term of the form

L ⊃
3∑

i=1

g2
FU

2
ei γμPR

/p + mi

p2 − m2
i

γν PL , (75)

where the mi represent the masses of the neutrinos and p
is the momentum of the virtual particle in the decaying pro-
cess.5

5 As a matter of fact, this propagator is related to the Nuclear Matrix
Element (NME), which is being used to capture the nucleus dynamics
– see for example eq. (3) in [45].
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The neutrinoless double beta decay, 0νββ, in the presence
of the light neutrinos is described by the effective mass:

mee =
∣
∣∣∣∣

3∑

i=1

U 2
eimi

∣
∣∣∣∣
. (76)

In this model, the summation in the above formula is modified
in order to accommodate the extended neutrino sector [46]:

mee =
3+n∑

i=1

U 2
e j p

2 mi

p2 − m2
i

, (77)

where U 2
e j stands for the mixing of the electron neutrino

with the other states and the decay width is proportional to
�0ν2β ∼ mee. Recent experimental constraints put a stringent
bound on the allowed region [45,47,48], which is:

|mee| ∈ [10−3, 10−1] eV. (78)

It is obvious that for high scale masses of the right-handed
neutrinos (mνc � TeV) and intermediate scale sterile sin-
glets (ms ∼ keV), sizable effects on the 0νββ decay could
be attributed to the mass of heavy neutrinos and the mixing
of the various sectors. From (77), there exist two important
limits concerning the mass of the extra neutrinos [46,49],
where the propagator is modified as:

(i) mi � p2 : 1

p2 − m2
i

= 1

p2 + m2
i

p4 + O
(
m4

i

p6

)

, (79)

mee =
3+n∑

i=1

U 2
ei mi , (80)

(ii) mi � p2 : 1

p2 − m2
i

= − 1

m2
i

+ O
(
m4

i

p6

)

, (81)

mee = −
3+n∑

i=1

U 2
ei mi

p2

m2
i

. (82)

We are going to analyze the neutrinoless double beta decay
in both of these limits. The case (ii), in particular, represents
the seesaw mechanism presented above, but the “light” neu-
trinos (case (i)) could also be interesting for experiments
searching low energy sterile neutrinos. In order to get an
insight for the neutrinos sector and reach some representative
conclusion, we adopt a tangible strategy and work in a simpli-
fied effective scenario. Thus, for the light neutrinos, it would
be reasonable to consider a single neutrino (e.g. the electron
neutrino), whilst for the heavier sector we will assume a case
of three neutrinos (two right-handed ones and one sterile).
Similar approach has been considered in previous literature
(for a few representative papers, see for example relatable
examples with 3 + 1 or 3 + 2 neutrinos in [46,50–53]). In
[53], a similar model was considered, however the present
analysis considers three different scales (eV–keV–TeV) and
as stated above it would be ideal to derive a bound for the

mass splitting of the heavy neutrinos, since this fraction is
used in leptogenesis. In addition, we are going to sketch the
production mechanism of the sterile neutrinos, if they were to
be identified as a dark matter particle, through their coupling
with the right-handed neutrinos. Consequently, the mixing
matrix would be 4 × 4, which can be parameterized as fol-
lows:

U (νe, ν
c
1, νc2, s) =

⎛

⎜
⎜
⎝

1 0 0 0
0 c12 s12 0
0 −s12 c12 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ce2 0 e−iδse2 0
0 1 0 0

−eiδse2 0 ce2 0
0 0 0 1

⎞

⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

ce1 se1 0 0
−se1 ce1 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ces 0 0 ses

0 1 0 0
0 0 1 0

−ses 0 0 ces

⎞

⎟
⎟
⎠

×

⎛

⎜⎜
⎝

1 0 0 0
0 cs1 0 ss1

0 0 1 0
0 −ss1 0 cs1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 cs2 ss2

0 0 −ss2 cs2

⎞

⎟⎟
⎠ · Φ,

(83)

where the last matrix represents the Majorana phases Φ =
diag(1, eiϕ1 , eiϕ2 , eiϕs ), where φ ∈ (0, π) and δ is the Dirac
phase (this will not play a crucial role, since we treat light neu-
trinos as a single state) and si j , ci j , (i, j = e, 1, 2, s), θ ∈
(0, π

2 ) are the mixing angles between the neutrinos. Now,

denoting with M̂(m̂ν, m̂νci
, m̂s) the diagonalized neutrino

mass matrix the following equation holds:

U M̂(m̂ν, m̂νci
, m̂s)U

T = Mν . (84)

where,

Mν =

⎛

⎜
⎜
⎝

0 mνD 0 0
mνD M11 M12 M1s

0 M21 M22 M2s

0 M1s M2s Ms

⎞

⎟
⎟
⎠ , (85)

where Mi j denote the elements of the 2 × 2 right-handed
neutrino matrix Mνci

in this example.
Comparing particular elements of the mass matrix Mν

with the mass eigenbasis matrix M̂(m̂ν, m̂νci
, m̂s) we can

extract some useful bounds. First of all, a few assumptions
need to be taken into account in order to simplify the calcula-
tions. Hence, we will assume that the mixing angles between
the active neutrinos νe and the sterile ones νc1,2, νs are small,
plus that the masses of the heavy states are much heavier
compared to the light and the sterile states:

θe1, θe2, θes � 1 ⇒ cos(θ) ∼= 1, sin(θ) ∼= θ,

m̂ν

m̂1,2
,
m̂s

m̂1,2
� 1. (86)

Under these assumptions, the sines (se1, se2, ses) represent
small angles, but we are not going to change their symbols
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in the calculations below. Observing the structure of the neu-
trino mass matrix Mν given in (85), we compare the two
zero entries {11},{13} and the {33} element Ms → μ with
the corresponding ones of M̂(m̂ν, m̂νci

, m̂s). These yield the
following equations

M11
ν = (U M̂(m̂ν, m̂νci

, m̂s)U
T )11 = 0, (87)

M13
ν = (U M̂(m̂ν, m̂νci

, m̂s)U
T )13 = 0, (88)

M33
ν = (U M̂(m̂ν, m̂νci

, m̂s)U
T )33 = μ. (89)

For (87) we obtain:

M11
ν = m̂ν

m̂1
e−i(δ+2φ2) − 2e−iδcs1ses

×
[(

ei2�φ21 + c2
s2z − m̂2

m̂1

)
se1ss1

+ e−iδzcs2se2ss2

]
= 0, (90)

where we have introduced the definitions

z = m̂2

m̂1
− m̂s

m̂1
ei2�φ21 ∼= m̂2

m̂1
; and �φ21 = φ2 − φ1.

Then,

se1

se2
= −e−iδ m̂2cs2ss2

ss1(m̂1ei2�φ21 − m̂2s2
s2)

. (91)

Since we have assumed only a single light neutrino, the Dirac
phase from this point on is taken δ = 0. In this limit, for small
active-sterile angles, we expect the fraction between them to
be positive, which can be translated using the denominator
of (91) to:

s2
s2 >

m̂1

m̂2
cos(2�φ21). (92)

It is readily seen, that, the mixing between the left and right-
handed neutrinos are fully determined by the “dark” sector
i.e. the right-handed neutrinos and the sterile singlet. Pro-
ceeding to the {33} element, a similar analysis leads to the
following bounds:

M33
ν = ei2φ1m̂1s

2
s1 + c2

s1

[
ei2�φs1c2

s2ms + ei2φ2m̂2s
2
s2

] = μ,

μ

m̂1
e−i2φ1 = s2

s1 + c2
s1

[
ei2�φs1c2

s2
m̂s

m̂1
+ ei2φ2

m̂2

m̂1
s2
s2

]
.

(93)

Now, implementing the Cauchy–Schwarz theorem for the
{33} element we obtain:

μ

m̂1
≤ s2

s1 + c2
s1

(
m̂m̂2

s

m̂2
1

c4
s2 + m̂2

2

m̂2
1

s4
s2 + m̂sm̂2

m̂2
1

× sin(2θs2) cos(2�φs2)

)1/2

⇒ c2
s1 ≤ m̂1 − μ

m̂1 − m̂2s2
s2

, s2
s2 <

m̂1

m̂2
, (94)

where the last inequality has been derived under the assump-
tions that m̂1 > μ and c2

s1 > 0. Remarkably, using (92), a
very narrow bound can be derived:

m̂1

m̂2
cos(2�φ21) < s2

s2 <
m̂1

m̂2
. (95)

The inequality (94) which describes the mixing of the sterile
sector, can be written equivalently as:

c2
s1 ≤

m̂1
m̂2

− μ

m̂2

m̂1
m̂2

− s2
s2

. (96)

Proceeding as previously the equality (91) yields:

m̂1

m̂2
≥ ss2

(
1 − se2cs2

ss1se1

)
. (97)

Regarding the Majorana phases from the (93), the imaginary
part of the equation implies:

sin(2φ1)

sin(2�φ21)
= − m̂2

μ
c2
s1s

2
s2, (98)

where this equation is valid only for specific regions for φ ∈
(0, π).

In Fig. 4, we plot the left hand side of Eq. (98). In the lower
right square the two heavy neutrinos have the same (negative)
CP charge and represent Majorana fermions. In the upper
left square, the heave neutrinos have opposite CP charge and
they can form a pseudo-Dirac pair. Considering the case,
where the mass scale μ → 0, we expect that lepton number
violation is absent and �L = 2 processes are suppressed.

The third and last constraint to be imposed is associated
with the {13} element. This can be used to constrain the mix-
ing ses between the active neutrino and the singlet s. Thus,
M13

ν = 0 yields

ses
se2

= se1

se2
ss1cs1

−�m̂21 + m̂1ei4�φ21 − m̂2ei2�φ21

m̂1 − c2
s1(m̂1 − m̂2s2

s2e
i2�φ21)

+ O
(
m̂ν,s

m̂1,2

)
, (99)

where �m̂21 = m̂2 −m̂1, while for a controllable calculation
we have neglected terms suppressed by the heavy neutrinos.
After the parametrization of the different mixing angles and
the phases, we are in a position to estimate their impact on
the neutrinoless double beta decay. Following the discussion
around Eqs. (79,81), two distinct regimes can be defined:

(i) mee = m̂νL +U 2
e1m̂1 +U 2

e2m̂2 +U 2
esm̂s, m̂i � p2
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Fig. 4 The left hand side of the Eq. (98) where we see that the right-
handed neutrinos can have opposite CP charge (upper left square) or the
same (lower right square), which would yield interesting phenomeno-
logical implications. See main text

mee = U 2
e2

(
m̂νL

U 2
e2

+ U 2
e1

U 2
e2

m̂1 + m̂2 + U 2
se

U 2
e2

m̂s

)

,

(ii) mee = m̂νL −U 2
e1

p2

m̂1
−U 2

e2
p2

m̂2
+U 2

sem̂s, m̂i � p2

mee = U 2
e2

(
m̂νL

U 2
e2

− U 2
e1

U 2
e2

p2

m̂1
− p2

m̂2
+ U 2

es

U 2
e2

m̂s

)

, (100)

where in both regimes the amplitude is defined up to an
overall factor, but the terms in the parentheses are in prin-
ciple responsible for the process. The mixing matrices U 2

ei
for small angles can be represented by the sines (U 2

ei → sei )
computed before, so from the previous analysis we know
every fraction (see Eqs. (91, 99) appearing in the formulas).
We have neglected the mixing of the left handed neutrinos,
since we have used only the electron neutrino. Consequently,
the whole process is parametrized up to an overall factorU 2

e2.

It is worth noticing that U2
es

U2
e2

= γ
U2
e1

U2
e2

,

γ = ss1cs1
−�m̂21 + m̂1ei4�φ21 − m̂2ei2�φ21

m̂1 − c2
s1(m̂1 − m̂2s2

s2e
i2�φ21)

, (101)

simplifying both of the parentheses in Eq. (100) as:

(i) mee = U 2
e2

(
m̂νL

U 2
e2

+ m̂2 + U 2
e1

U 2
e2

(m̂1 + γ m̂s)

)

> 0

(ii) mee = U 2
e2

(
m̂νL

U 2
e2

− p2

m̂2
+ U 2

e1

U 2
e2

(
− p2

m̂1
+ γ m̂s

))

> 0.

(102)

The requirement of having positive mass for the mee leads
the quantities in the parentheses to be bounded as:

(i)
m̂νL

U 2
e2

+ m̂2 > −U 2
e1

U 2
e2

(m̂1 + γ m̂s) ⇒ γ < − m̂1

m̂s

(ii)
m̂νL

U 2
e2

− p2

m̂2
>

U 2
e1

U 2
e2

(
p2

m̂1
− γ m̂s

)
⇒ γ >

p2

m̂1m̂s
.

(103)

Since we expect a positive fraction (99) for the mixing
angles, we must also have γ > 0. Hence the first case above
is incompatible, since the assumptions stated in (86) imply
γ < 0. In the second case a bound for the γ variable is
extracted, which is going to be used to define the allowed
parametric region for the neutrinoless double beta decay. In
order to get an insight for the leptogenesis scenario regarding
the nature of right-handed neutrinos participating in it, we
need to check the asymptotic region of the fraction m̂1

m̂2
→

(0, 1). In the vanishing mass limit, the se1
se2

γ variable reduces
to:

se1

se2
γ = −2

cos2 (�φ21)

cos(2�φ21)

cs2

cs1s3
s2

⇒ �φ21 ∈
(π

4
,
π

2

)
∪
(

π

2
,

3π

4

)
. (104)

In this limit, neutrinoless double beta decay scans the
Majorana nature of the right-handed neutrinos and if baryon
asymmetry is explained through leptogenesis, it is expected
to happen due to the lightest heavy neutrino as in Eq. (71).
Inversely stated, if two sterile neutrinos are observed, the
mass fraction and their relative CP-charge difference can be
used in order to extract the scale of neutrinoless double beta
decay and the scale of possible sterile singlet through the
analysis above.

In the degenerate mass limit m̂1
m̂2

→ 1, some useful con-
clusions can be extracted with respect to the mixing of the
sterile neutrinos with the two heavy states. In this case the
se1
se2

γ variable is written as

se1

se2
γ = cs1cs2 (cos (2�φ21) − cos (4�φ21)) ss2(

cos (2�φ21) − s2
s2

) (
c2

s1

(
cos (2�φ21) s2

s2 − 1
)+ 1

) .

(105)

As it can be observed in the numerator above, there is a
sign flip in the region of �φ21 ∈ (π

3 , 2π
3 ), where in this region

the sterile singlet couples stronger with the second sterile
neutrino θs1 > θs2. Hence, in this limit if the two sterile
neutrinos are observed with �φ21 ∈ (0, π

2 ), the neutrinoless
double beta decay is expected to be suppressed due to the
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Table 6 Masses computed for the following scales: mνD = 174 GeV,
Mνc = 4.3 × 1014 GeV, Ms = 19.1 keV, Mνcs = 89.3 × 103 GeV,
�m2

31 = 2.2 × 10−3 eV2, and the first and second generation of heavy
neutrinos at

(
1.8 × 1010, 3 × 1010

)
GeV. Regarding the neutrinoless

double beta decay, the model probes the blue region of m̂1
m̂2

→ 0.6

m̂νi (eV) m̂νc (GeV) m̂s (keV) ε1 η θνs

0.1 4.3 × 1014 0.55 2.3 × 10−6 2.1 × 10−3 4.7 × 10−4

Pseudo-Dirac pair, while in the�φ21 ∈ (π
2 , π) they represent

two Majorana fermions with degenerate mass.
We are going to present the masses of the neutrinos for

the singlet VEVs, whose values are shown in Table 4. For
these particular VEVs, the neutrinos are computed through
the case β) (62) of Sect. 6, the leptogenesis through the case
(ii) (74) and the neutrinoless double beta decay is expected
at the degenerate mass limit (Table 6).

Also, in the two plots of Fig. 5 a couple of solutions of
the Eq. (100) are depicted for various values of U 2

e2 and the
effective electron neutrino mass mee.

8 On the muon magnetic moment gμ − 2

The extra vector-like states appearing in the zero-mode spec-
trum of the F-theory flipped SU (5) are a possible source of

Fig. 6 Feynman diagram for the contribution of the vector-like pair in
the gμ − 2 process

the gμ − 2 enhancement [54,55]. The relevant couplings are

W = λ′h̄h 〈χψ2〉
M3

S

ψ̄ + λei j e
c
i f̄ j h + αmj Ē

c
me

c
j ψ̄

+βmn Ē
c
m E

c
n ζ̄ + γnj E

c
n f̄ j hχ. (106)

which give rise to the one-loop graph shown in Fig. 6.
Its contribution to gμ − 2 is highly dependent on the

mass of the additional vector-like lepton-type charged sin-
glets Ec, Ēc, since the latter participate in the loop. In the
model under consideration their mass is given in terms of the
VEV of the singlet ζ̄ , i.e., MĒcE = 〈ζ̄ 2〉. It is also worth
mentioning that, the very same VEV appears in the proton
decay process, where the masses of the Higgs triplets are
assigned a high scale mass due to this singlet. Consequently,
low scale supersymmetry could not be a viable choice, in

Fig. 5 The shaded region depicts the allowed parameter space defined by the inequalities (95), (96), (103) and the curves represent the solutions
for the neutrinoless double beta decay from the Eq. (100)
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Table 7 Mixing between the
vector like leptons and the
electrons

M2
Ee Ec ecj

Li
〈h〉χ
Mstr

〈h〉
E
c

ζ̄ ψ̄

the case we would like to have a substantial contribution
to �αμ ∼ mμ〈h〉

〈ζ̄ 2〉 . Split susy fits better in such a scenario,
where the mass of vector-like singlets can be lowered down
to TeV scale and sufficiently explain the gμ − 2 discrepancy.
Although, due to the mixing of the vector like leptons with
the leptonic sector of the model, a mass matrix is constructed
as it is shown in Table 7.

In this case, the resulting mass of the states, which con-
tribute in the above process could in principle be around TeV
scale.

m1 = 〈h〉χ
Mstr

cos2(θ) − 〈h〉 + ζ̄

2
sin(2θ) + ψ̄ sin2(θ)

m2 = ψ̄ cos2(θ) + 〈h〉 + ζ̄

2
sin(2θ) + 〈h〉χ

Mstr
sin2(θ). (107)

For the singlet VEVs mentioned at the previous sections,
there are in principle light states after the mixing between
the electrons and the vector-like singlets. Consequently, the
heaviest of these singlets will lay at TeV scale, contributing
to the gμ−2 sufficiently to explain the discrepancy. Using the
vevs of the model described before, the contribution to the
g−2 anomaly can be summarized to the following calculation
as:

�αμ ∼ mμ〈h〉
m2

2

∼ 105 × 10−3 174 GeV2

(89.3 × 103)2GeV2 ∼ 23 × 10−10.

(108)

9 A possible interpretation of the CDF measurement of
the W-mass

Recently, the CDF II collaboration [56] using data col-
lected in proton-antiproton collisions at the Fermilab Teva-
tron collider, has measured the W-boson mass to be mW =
80, 433.5±9.4 MeV/c2. This value is in glaring discrepancy
with the SM prediction, and the LEP-Tevatron combination
which is MW = 80, 385 ± 15 MeV/c2. Since then several
SM and MSSM extensions with the inclusion of new particles
have been proposed to explain theoretically the experimen-
tal prediction of the W-mass. Taking the CDF result at face
value, in the following we will show how the new ingredi-
ents in the present flipped SU (5) construction may predict
this W-mass enhancement. We first recall that the neutrino
mass matrix formed by the three left- and right-handed neu-

trinos, as well as the sterile ones, is diagonalized by a unitary
transformation. However, the mixing matrix diagonalizing
the effective 3 × 3 light neutrino mass matrix obtained after
the implementation of the inverse seesaw mechanism, need
not be unitary. Consequently, this can in principle lead to a
non-unitary leptonic mixing matrix which in Sect. 6 has been
parametrized as V� = (1 + η)UPMNS . We will see that such
effects can in principle modify the mass of the W-boson.

In the context of the Standard Model, the mass of the
W-boson can be inferred by comparing the muon decay pre-
diction with the Fermi model [57]

M2
W

(

1 − M2
W

M2
Z

)

= παem√
2GF

(1 + �r), (109)

where αem and GF are the fine structure and Fermi con-
stants respectively, and �r stands for all possible radiative
corrections [58,59]. Once �r is known, the SM prediction of
the W-boson mass is obtained by solving the formula (109).
However, in the present case the non-unitarity in the PMNS
matrix affects drastically the muon decays and consequently
the measurement of the muon lifetime. The precise knowl-
edge of these effects are essential since they determine the
Fermi constant GF which is involved in the determination
of the W and Z boson masses. Thus, one might expect pos-
sible deviations from the GF value when measured (Gμ)
in muon decay. The non-unitary corrections are connecting
them according to [60,61]:

GF = Gμ(1 + ηee + ημμ), (110)

where ηee, ημμ are the {11}, {22} elements of the unitarity
violation matrix η. Implementing the above formula for the
Fermi constant, and solving (109), the mass of the W-boson
is given by

M2
W = 1

2

(

M2
Z +

√

1 − 4παem(1 − ημμ − ηee)√
2GμM2

Z

(1 + �r)

)

.

(111)

Clearly, a possible increment of the W-mass may arise either
due to non-unitarity inducing positive ηee,μμ contributions,
or from possible suppression of the radiative corrections �r .

Notice that �r can also receive additional corrections due
to the pair Ec + Ēc appearing in the flipped SU (5) spec-
trum. Their couplings in the superpotential induce a Wilson
coefficient (Ch�)i j = −λiλ

∗
j/(4m

2
E ) which gives a sufficient

contribution to the W -mass for ME ∼ 5 GeV [62,63]
Using the bounds for the mixing angles and the ηαβ ele-

ments from Table IV of [61], we can plot the mass of the W-
boson in terms of the non-unitary effects, where it is clearly
seen that for small deviations from the unitary form of the
leptonic mixing matrix can explain the experimental result.
From the diagonalization of the neutrino matrix (51), we
expect two forms for the unitarity violation, corresponding
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Fig. 7 Plot of case (β) η (112) (black dots under the assumption ηee ∼
ημμ), usingmνD = 174 GeV, Mνc = 4.3×1014 GeV, Ms = 19.1 keV,
Mνcs = 89.3 × 103 GeV. Blue shaded region is the previous W-boson
mass and green is the current measurement

to the two cases mentioned there. These two cases are

(α) η ∼= O
(

1

2

m2
νD

M2
νcs

)

,

(β) η ∼= O
(

1

2

m2
νD

(M2
νcs + M2

s )

(M2
νcs − Mνc Ms)2

)

. (112)

Since we are interested in the second case, it is obvious
that the scale Ms , which is responsible for the lepton number
violation will play a crucial role. The specific form (texture)
of the fermion mass matrices, of course, can in principle pro-
duce different – model dependent – scenarios of the unitarity
violation. Despite this, we can derive the scale of the η matrix
and extract some preliminary insights for the experimental
signal. In Fig. 7, we plot the mass of the W-boson for differ-
ent values of the lepton number violating scale Ms . As it is
pointed out in [60], the insertion of right-handed neutrinos
in the model produces a positive definite η matrix which is
a necessary condition to explain the CDF-measurement of
the W-boson mass. In fact a small lepton number violation
can accommodate the W-mass discrepancy. Notably, at the
same time, the sterile states can explain the Cabibbo angle
anomaly [64] through the mixing term κi H Fi s ψ̄ , although,
the Cabibbo angle anomaly is not completely related to neu-
trinos, but to the inert singlet states involved in the seesaw
mechanism.

It is readily seen from the above that unitarity violation
plays a crucial role in the mass of the W-boson. The main
characteristic of the inverse seesaw mechanism6 is the small
violation in the lepton number by the scale Ms . Large devia-
tions from the PMNS-matrix can occur in the case where the
sterile neutrinos lay at an intermediate scale (keV−MeV),

6 We note that another solution with Type III seesaw with the presence
of an SU (2) Higgs triplet has been also suggested [65].

since there is significant mixing between those states with
the active neutrinos. In conclusion, one could conjecture that
the neutrino masses, or more specifically the violation in the
lepton number, play a significant role in the LFV physics,
where sterile states allow this type of processes to evade
the GIM suppression of SM. In conclusion, under the above
mentioned circumstances, the rich structure of the F-theory
flipped SU (5) may suggest a viable interpretation of the W-
mass increment.7

As for the oblique parameters, which parameterize the
effects of new physics in the electroweak observables, they
have a direct implication on the recently observed mass shift
of the W boson. Following the work of [67] with respect to
the mass of W boson and [68] for the recently obtained fit
on the oblique parameters, we could test our model and the
unitary violation as a proposed solution.

Mnew
W

MW
= −

a

(
−U

(
c2
W−s2

W

)

2s2
W

− 2c2
WT + S

)

4
(
c2
W − s2

W

)

− �Gs2
W

2
(
c2
W − s2

W

) + 1, (113)

where s2
W = 1 − M2

W
M2

Z
and the �G is the modification of

the Fermi constant GF = Gμ(1 + �G). So, in our scenario,
�G can be identified with the unitarity violation terms �G =
ηee + ημμ. In the two figures below, we plot Eq. (113) for
various values of the S, T parameters with a fixed U . So,
after inserting �G = 2 × 2.1 × 10−3 and the masses of the
W, Z bosons, the solutions are depicted below (Fig. 8).

S ∈ (−0.04, 0.16), T ∈ (−0.01, 0.23), U ∈ (0.04, 0.22)

S ∈ (0.06, 0.22), T ∈ (0.2, 0.32),U = 0. (114)

10 Gauge coupling unification and Yukawa couplings

For the RGE’s analysis of our model, we consider a low
energy spectrum of the MSSM model accompanied by the
presence of the vector-like singlets Ec. Starting with the beta
function concerning the MSSM and the flipped SU (5) par-
ticle content (for beta functions of flipped see for example
[69,70]), we summarize the formulas below:

b1 = 3

5

(
3n

10
+ 1

2
nH

)
+ nv

b2 = −6 + 2n + 1

2
nH + nv

7 In the context of F-theory, a different explanation with D3 branes has
been suggested in [66].
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Fig. 8 Left: Solution for S, T parameters with fixed parameter U, where the blue shaded region covers the bounds, as obtained by fit taking into
account the new mass of W boson. Right: No solutions found when U is vanishing

b3 = −9 + 2n + nv,

b5 = 3n10

2
+ n5

2
+ 2n − 15

b1χ = n10

4
+ n5

2
+ 2n (115)

where n is the number of generations and nv is the number
of vector-like families. We can easily deduce that for n =
3, nv = 0 we get the usual beta functions of the MSSM:

{b1, b2, b3} =
{

33

5
, 1,−3

}
. (116)

After inserting a vector-like pair in the low energy spec-
trum, we can plot the running of the coupling constants at 1-
loop level and we can, eventually, spot the unification point.

After the insertion of the parameter a = g2

4π
, we get

a−1
i (Q) = a−1

i (Q0) − bi
2π

log

(
Q

Q0

)
, (117)

where the effect of a vector-like singlet family in the model
in the beta functions is �bMSSM

i = {1, 1, 1}. There are two
energy regions: from 0 < μ < MZ , we run the beta functions
of the SM, from MZ < μ < MEc we run the MSSM plus
the vector like particles and finally we run the flipped SU (5)

till a unification point. Plotting the running parameters of the
model, we can see in the following plot that the unification
scale is about MGUT ∼ 1017 GeV.

The unification scale is at MU ∼= 1017 GeV, where the
couplings constants are

α−1
1 (MZ ) = 59.38, α−1

2 (MZ ) = 29.74,

α−1
3 (MZ ) = 8.44, α−1

U = 22.5. (118)

As for the Yukawa couplings, we only consider the third
generation (where the for the top, bottom quarks and the τ

lepton are denoted as ht , hb, hτ respectively) and the mixing
effects of the abelian U (1) symmetries ,during the evolution
down to the low energy values, are being neglected. For the
computation, the Mathematica code SARAH-4.15.0 [71] was
used and the following plot depicts with thick lines the run-
ning of the spectrum with the vector-like family, where the
dashed line contains the same information without the addi-
tional particles. During the computation, we have taken into
account that the largest correction due to loops of sparticles
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Fig. 9 Yukawa evolution for
the following parameters SUSY
parameters mg = 2 TeV, μ =
0.5 TeV, tan β = 58,mt =
3 TeV, ht (0) = 0.94, hb(0) =
0.8, hτ (0) = 0.48. The dashed
lines are the Yukawa without the
vector like families where they
deviate for tan β > 50 as
expected. The thick lines present
the Yukawa couplings evolution
with the insertion of a vector
like family

is affecting the bottom Yukawa coupling as:

δhb ∼= g2
3

12π2

μmg tan β

m2
b

+ h2
t

32π2

μAt tan β

m2
t

, (119)

wheremb = mb1+mb2
2 , mt = mt1+mt2

2 are the average masses
of the top and bottom squark. Consequently, we could safely
extract the conclusion that even at high energies, Yukawa
couplings stay under control at a perturbative regime (Fig. 9).

11 Conclusions

There is accumulating evidence that the Standard Model
spectrum and its minimal supersymmetric extensions require
a substantial and radical overhaul to account for New Physics
phenomena predicted in major experimental facilities around
the globe. Grand Unified Theories emerging from String
Theory suggest a robust framework where such issues can
be addressed by virtue of new ingredients appearing at the
effective theory level in a well-defined and consistent way. In
this work we have constructed an effective low energy model
with SU (3) × SU (2) ×U (1) gauge symmetry derived from
an SO(10) geometric singularity of an elliptically fibred CY
fourfold over a threefold base.

The first stage of symmetry breaking of the corresponding
SO(10) gauge group is realized with an abelian flux along
the U (1)χ factor inside SO(10), giving rise to the flipped
SU (5) × U (1)χ model. At the second stage, this symme-
try breaks down to the SM gauge group when a 10−2 + 102

pair of SU (5) × U (1) Higgs multiplets develop VEVs. As
in the standard field theory flipped model [7], the down
type colour triplets of these Higgs representations pair up
with the triplets in 5 + 5̄ Higgs multiplets, and receive large
masses so that dimension-five baryon violating operators are
adequately suppressed. Furthermore, there are several phe-
nomenological predictions associated with extra matter fields
which are present in the effective model. Thus, in addition to
the MSSM fields, the low energy spectrum contains an extra

pair of right-handed singlets with electric charges ±1 which
contribute to gμ − 2. Moreover, extra neutral singlet fields
acquire Yukawa couplings with the right-handed neutrinos
realizing an inverse seesaw mechanism. Taking advantage of
the parameter space, left unconstrained by flatness conditions
and other stringy restrictions, we assume various limiting
cases and single out those ones supporting a viable leptogen-
esis scenario. We further discuss the double beta decay pro-
cess and pay particular attention to contributions stemming
from the mixing effects of the active neutrinos with the inert
singlet fields. We illustrate the main points by performing
a detailed analysis in a scenario with three active neutrinos
(νe, νc1, ν

c
2) and one sterile neutral singlet field, and derive

constraints on the mixing effects among them. We find para-
metric regions with substantial contributions to Oνββ decay
rate which could be observed in future experiments. Finally
we discuss deviations from unitarity of the effective 3 × 3
lepton mixing matrixUPMSN and their possible implications
on the recently observed deviation of the W-boson mass by
CDF II collaboration.
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12 Appendix

Consistency with supersymmetry and anomaly cancellation
requires that the singlet VEVs are subject to F- and D-flatness
conditions. The following hierarchy of scales is assumed
〈H〉 ∼ 〈H〉 ∼ MGUT ∼= Mstr . The singlet VEVs are also
assumed to be smaller than the string scale Mstr .

Using the identification (31) and Z2 monodromy, the
Yukawa lagrangian for the singlet fields is

WS = λ1χ̄ ζ̄ψ + λ2ψ̄ζχ + Mss
2 + Mχ χ̄χ

+Mψψ̄ψ + Mζ ζ̄ ζ. (120)

The mass scales Mζ , Mχ etc are assumed to be arbitrary and
will be fixed through the flatness conditions. The F-flatness
equations are

∂WS
∂χ

= 0 ⇒ λ2ψ̄ζ + Mχ χ̄ = 0

∂WS
∂ψ

= 0 ⇒ λ1χ̄ ζ̄ + Mψψ̄ = 0

∂WS
∂ζ

= 0 ⇒ λ2ψ̄χ + Mζ ζ̄ = 0

∂WS
∂χ̄

= 0 ⇒ λ1ζ̄ψ + Mχχ = 0

∂WS
∂ψ̄

= 0 ⇒ λ2χζ + Mψψ = 0

∂WS
∂ζ̄

= 0 ⇒ λ1χ̄ψ + Mζ ζ = 0. (121)

The D-term flatness constraint needs, also, to be imposed
which has the following form:

∑

i �= j

qi (θ
2
i j − θ2

j i ) = −cM2
str ⇒ qχ (χ2 − χ̄2)

+ qψ(ψ2 − ψ̄2) + qζ (ζ
2 − ζ̄ 2)

= −cM2
str . (122)

In order to derive a solution to the flatness condition, we
need to impose the following conditions

Mχ = −λ1Mψ, qi = 1. (123)

Then, we obtain

χ = Mζ ρ

λ1λ2σ
, χ̄ = Mψσ

ρ

ψ = −Mζ

λ1
, ψ̄ = Mψλ1

λ2

ζ = Mψσ

ρ
, ζ̄ = −Mψρ

σ

ρ = ((M2
ζ + cM2

strλ
2
1)λ

2
2 − λ4

1M
2
ψ

)1/2
,

σ = (λ2
1M

2
ψ − M2

ζ

)1/2
. (124)

Demanding the μ-term (χ singlet) and ψ̄ to lay at the TeV
scale, we are going to derive some bounds on the parameters
above.

χ̄

ζ
= 1,

χ

ψζ̄
= 1

Mψ

, ψ̄ = Mψλ1

λ2
, Mψ � 1. (125)

So, the corresponding bounds for the parameters are:

λ2

λ1
� Mψ

ψ̄ ∼ T eV
, M2

ζ < M2
ψλ2

1, c >
M2

ψλ4
1 − M2

ζ λ2
2

λ2
1M

2
str

.

(126)

13 Additional models

In this paper we have explored a flipped SU (5) model based
on a specific choice of fluxes and choosing a particular matter
curve to accommodate the Higgs fields. However, there are
other choices which may lead to somewhat modified phe-
nomenological implications. Here we present two possible
modifications.

We may change the Higgs doublets of the model, discussed
in the main text by choosing the fluxes M1

10 → M2
10 = 1, so

the new Higgs fields are

h−t1−t4 , h̄t1+t3 , (127)

Wmatter = λui j Fi f̄ j h̄ψ̄ + λdi j Fi Fj hψ̄ + λei j e
c
i f̄ j hψ̄

+ ki H̄ Fi sψ̄

+ amj Ē
c
me

c
j ψ̄ + βmn Ē

c
m E

c
n ζ̄ + γnj E

c
n f̄ j hζ̄ , (128)

Whiggs = λμζ̄ (1 + λ′
μ H̄ H ζ̄ )h̄h

+ λH̄ H̄ H̄ h̄ψ̄ ζ̄ + λH HHh(χζ̄ + ζ̄ 2ψ). (129)

An alternative model with non-zero flux P is the follow-
ing:

M1 M3 M4 P P5 P7 M1
10 M2

10

3 −1 1 −1 −2 1 1 −1

This leads to the matter field assignment:

10t1(Fi ) : 3 × (Q, dci , ν
c
i ), 5̄t1( f̄ ) : 2 × (uci , Li ),

5̄t3( f̄ ′) : 1 × (uc3, L3)

1t1 : 4 × (eci ), 1t4 : 2 × (Ec), 1−t3 : −3 × (Ēc),

5−2t1 : 1 × h, 5̄t1+t4 : 1 × h̄. (130)

The superpotential for the matter fields is

Wmatter =λui j Fi f̄ j h̄χ + λ
′u
i j Fi f̄

′
j h̄
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+ λdi j Fi Fj h + λei j e
c
i f̄ j h + λ

′e
i j e

c
i f̄

′
j hχ

+ ki H̄ Fi sχ̄ + amj Ē
c
me

c
j χ̄ + βmn Ē

c
m E

c
nζ

+ γnj E
c
n f̄ j hψ + γ ′

nj E
c
n f̄

′
j hχψ, (131)

and for the Higgs

Whiggs = λμψ(1 + λ′
μ H̄ Hζ )h̄h + λH HHh(ψ2 + χ2ζ 2)

+ λH̄ H̄ H̄ h̄χ̄ζ. (132)
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