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1 Introduction

Observations made in the neutrino oscillation experiments have confirmed that neutrinos

have mass, albeit tiny. The Standard Model (SM) of particle physics can not accommodate

the neutrino mass due to the absence of right-handed neutrinos, unlike the case for the

charged leptons and the quarks. The inclusion of additional right-handed neutrino fields

along with the seesaw mechanism [1–4] plays a vital role in modeling properties of massive

neutrinos. The well known PMNS matrix encodes the mixing between the neutrino flavour

eigenstates and their mass eigenstates. This matrix is parametrised in terms of three mixing

angles and three CP phases (in a three flavoured paradigm),

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . UMaj, (1.1)

where cij = cos θij , sij = sin θij . The diagonal matrix, UMaj = diag(1, eiα, ei(β+δ)), con-

tains the Majorana CP phases α, β which become observable if the neutrinos behave as

Majorana particles.

Although the last two decades of neutrino oscillation experiments made tremendous

progress in determining the three flavour mixing angles, efforts are underway to measure

these parameters more precisely. We do not yet know whether the atmospheric mixing

is maximal or not. If it is not, the octant of the atmospheric mixing angle, θ23, is to

be determined. Measurement of the Dirac CP phase, δ, will confirm CP violation in the

leptonic sector and may explain the observed baryon asymmetry via leptogenesis. The
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nature of the neutrinos, i.e. whether they are Dirac or Majorana, is still an open question

which can not be settled with the help of the oscillation experiments. On the other hand,

the observation of neutrino-less double-beta decays (0νββ) will establish the Majorana

nature. Such decays are yet to be observed. The oscillation experiments have determined

the mass-squared differences (solar: ∆m2
21 and atmospheric: ∆m2

31), but they are not

sensitive to the absolute neutrino mass scale. Data from the Planck satellite provides an

upper bound on the sum of neutrino masses,
∑

imi ≤ 0.16 eV [5]. Experimental searches

are also being made to directly measure the electron neutrino mass using the kinematics

of beta decays. Recently, the KATRIN collaboration has announced its first result on the

effective electron antineutrino mass using the tritium beta decay, 3H→ 3He + e−+ ν̄e, and

reported the upper bound for the effective antineutrino mass [6], mν̄e < 1.1 eV at the 90%

confidence level (CL).

Although the three flavour paradigm of neutrino oscillation is well established, there

are some experimental results that motivate us to go beyond this and postulate the exis-

tence of one or more sterile neutrinos. This possibility has gained considerable attention

in recent years. In principle, the presence of a fourth neutrino can impressively explain

several sets of experimental anomalies. The first indication came from the LSND experi-

ment which showed evidence of oscillation with mass scale ∼ eV2 [7, 8] in ν̄µ-ν̄e channel.

Later MiniBooNE experiment also confirmed it [9, 10]. The Reactor Anomaly involves a

deficit of reactor antineutrinos detected in short-baseline (¡500 m) experiments with recal-

culated neutrino fluxes [11–13]. The short-baseline neutrino oscillations can also explain

the so-called Gallium Anomaly observed during the calibrations runs of the radiochemical

experiments, GALLEX and SAGE. The ratio of the experimental flux to the theoretical

estimate was found to be 0.86± 0.05. The resolution of both the Reactor and the Gallium

anomalies with the help of the active-sterile oscillations point towards a common region of

the parameter space with the sterile neutrino having mass in the ∼ eV scale [14–17].

The proposed sterile neutrino is an SM singlet which does not participate in the weak

interactions, but they can mix with the active neutrinos enabling them to be probed in

the oscillation experiments. The addition of a single sterile neutrino field leads to an

oscillation parameter space consisting of a 4 × 4 unitary mixing matrix along with three

independent mass-squared-differences. Among them, the prefered scenario, often called the

3+1 scheme [18–21], has three active neutrinos and one sterile neutrino in the sub-eV and

eV scale respectively. The 2+2 scheme, in which two pairs of neutrino mass states differ

by O(eV), is not consistent with the solar and the atmospheric data [22]. The 1+3 scheme

in which the three active neutrinos are in eV scale and the sterile neutrino is lighter than

the active neutrinos is disfavored by cosmology. Therefore, in this paper, we assume the

3+1 scenario. The recently proposed Minimal Extended Seesaw (MES) [23, 24] has many

appealing features. The active-sterile mixing obtained in MES is suppressed by the ratio

of masses of the active and sterile sectors. With the active neutrino mass of the order of

∼ 0.01 eV and the sterile neutrino mass of the order of eV, this suppression is consistent

with the active-sterile mixing as observed in LSND and MiniBooNe.1

1The data from solar and atmospheric neutrino oscillations as well as oscillations observed in accelerator

experiments like T2K, MINOS, NOvA and reactor experiments KamLAND and Daya-Bay, RENO, Double-

Chooz etc. can be explained in terms of the three neutrino framework. Because dominant oscillations to
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A large number of neutrino mass models based on discrete flavour symmetry groups

have been proposed [25–28] in the last decade. These models generate various mixing

patterns such as the well known tribimaximal mixing (TBM) [29–35]. Since the non-zero

value of the reactor mixing angle [36–38] has ruled out TBM, one of the popular ways to

achieve realistic mixings is through either its modifications or extensions [39–45]. Unlike

the active-only mixing scenarios, realising the minimal extended type-I seesaw with the

help of discrete groups is somewhat recent and limited [46–49]. It is in this context that

we propose a model to implement the MES and obtain oscillation observables consistent

with the latest experiments. Our model produces an extension of the TBM called the

TM2 [50–58] in which the second column of the TBM is preserved. We use A4 ×C4 as the

flavour group for our model. We propose several scalar fields, often called the flavons, which

couple with the charged-lepton fields as well as the various neutrino fields. The inherent

properties of A4 and C4 as well as the residual symmetries of the vacuum alignments of

the flavons, determine the structure and the symmetries of the mass matrices.

The content of this paper is organised as follows. The features of the MES scheme

are outlined in section 2. In section 3, we briefly explain the representation theory of the

flavour group and move on to construct the Yukawa Lagrangian based on the proposed

flavon content of the model. We also assign Vacuum Expectation Values (VEVs) for these

flavons. We justify our assignments of VEVs with the help of symmetries in appendix A.

In section 4, the mass matrices are constructed in terms of the VEVs. We provide the

formulae for various experimental observables as functions of the model parameters. In

section 5, we compare these formulae with the experimental results and make predictions.

We provide a representative set of model parameters in appendix B and numerically extract

the values of the observables so as to verify the validity of the various approximations used

in the paper. Finally, we conclude in section 6.

2 Minimal extended seesaw

In the Standard Model, the left-handed charged-lepton fields, lL = (eL, µL, τL)T , and the

neutrino fields, νL = (νe, νµ, ντ )T , transform as the SU(2) doublet, L = (νL, lL)T . They

couple with the right-handed charged-lepton fields, lR = (eR, µR, τR)T , to form the charged-

lepton mass term,

L̄yllRH, (2.1)

where yl are the Yukawa couplings. In general, yl is a 3×3 complex matrix. The electroweak

symmetry is spontaneously broken when the Higgs acquires the VEV,

〈H〉 = (0, v)T . (2.2)

sterile neutrinos is disfavored as a solution to solar and atmospheric neutrino anomalies, the 2+2 picture is

disfavored. In the 3+1 picture, the oscillations to sterile neutrinos is a sub-leading effect to the dominant 3

flavour oscillations and the 3 generation global fit results are not altered. The short baseline eV 2 oscillations

can be explained using the One-mass-scale-Dominance approximation governed by ∆m2
41. However, there is

a tension between observance of non-oscillation in disappearance experiments and observation of oscillation

in LSND and MiniBOONE which makes the goodness of fit in the 3+1 picture worse.
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Subsequently, the mass term, eq. (2.1), becomes

l̄LMllR, (2.3)

where Ml = vyl is the charged-lepton mass matrix.

In the type-I seesaw framework, we add extra right-handed neutrino fields, νR, to the

SM. We may assume that three families of such fields exist, i.e. νR = (νR1, νR2, νR3)T .

They couple with the left-handed fields, L, forming the Dirac neutrino mass term,

L̄yννRH̃, (2.4)

where H̃ = iσ2H
∗. As a result of the Spontaneous Symmetry Breaking (SSB), this term

becomes

ν̄LMDνR, (2.5)

where MD = vyν is the Dirac neutrino mass matrix. The right-handed neutrino fields can

couple with themselves resulting in the Majorana mass term,

1

2
ν̄cRMRνR, (2.6)

where MR is the 3×3 Majorana neutrino mass matrix which is assumed to be at a very high

scale in order to cause the seesaw suppression of the light neutrino masses. The canonical

type-I seesaw can be extended to accommodate an eV-scale sterile neutrino at the cost of

no fine-tuning of the Yukawa coupling. To implement this MES scheme we need to include

an SM gauge singlet field, νs, which couples with the heavy neutrino fields, νR, leading to

ν̄csMsνR, (2.7)

where Ms is a 1×3 mass matrix. We assume that the coupling of the sterile field (νs) with

itself as well as with the left-handed fields (L) is forbidden.

Combining eqs. (2.5), (2.6), (2.7), we obtain the Lagrangian containing the neutrino

mass matrices relevant to the MES:

Lν = ν̄LMDνR + ν̄csMsνR +
1

2
ν̄cRMRνR + h.c. (2.8)

The Lagrangian, eq. (2.8), leads to the following 7 × 7 neutrino mass matrix in the

(νL, ν
c
s , ν

c
R) basis:

M7×7
ν =

 0 0 MD

0 0 Ms

MT
D MT

s MR

 . (2.9)

Being analogous to the canonical type I seesaw, the MES scheme allows us to have the

hierarchical mass spectrum assuming MR � Ms > MD. The right-handed neutrinos are

much heavier compared to the electroweak scale enabling them to be decoupled at the low

scale. As a result, eq. (2.9) can be block diagonalized to obtain the effective neutrino mass

matrix in the (νL, ν
c
s) basis,

M4×4
ν = −

(
MDM

−1
R MT

D MDM
−1
R MT

s

Ms(M
−1
R )TMT

D MsM
−1
R MT

s

)
. (2.10)
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This particular type of model is a minimal extension of the type I seesaw in the sense that

only an extra sterile field is added whose mass is also suppressed along with that of the

three active neutrinos. Since M7×7
ν has rank 6 and subsequently M4×4

ν has rank three, the

lightest neutrino state becomes massless.2

Assuming Ms > MD, we may apply a further seesaw approximation on eq. (2.10) to

get the active neutrino mass matrix,

M3×3
ν 'MDM

−1
R MT

s (MsM
−1
R MT

s )−1MsM
−1
R MT

D −MDM
−1
R MT

D. (2.11)

It is worth mentioning that the r.h.s. of eq. (2.11) remains non-vanishing since Ms is a row

vector 1× 3 rather than a square matrix. Under the approximation Ms > MD, we also

obtain the mass of the 4th mass eigenstate,3

m4 'MsM
−1
R MT

s . (2.12)

The charged-lepton mass matrix, Ml, eq. (2.3), is a 3 × 3 complex matrix in general.

Its diagonalisation leads to the charged-lepton masses,

ULMlU
†
R = diag(me,mµ,mτ ), (2.13)

where UL and UR are unitary matrices. The low energy effective 3 × 3 neutrino mass

matrix, M3×3
ν , eq. (2.11), is complex symmetric. Its diagonalisation is given by

U †νM
3×3
ν U∗ν = diag(m1,m2,m3), (2.14)

where Uν is a unitary matrix and m1, m2 and m3 are the light neutrino masses.4 Using

UL and Uν , we obtain the 4× 4 light neutrino mixing matrix,

U '

(
UL(1− 1

2RR
†)Uν ULR

−R†Uν 1− 1
2R
†R

)
, (2.15)

where the three-component column vector R is given by

R = MDM
−1
R MT

s (MsM
−1
R MT

s )−1. (2.16)

U , eq. (2.15), relates the neutrino mass eigenstates with the neutrino flavour eigenstates,

U(ν1, ν2, ν3, ν4)T = (νe, νµ, ντ , νs)
T , (2.17)

in the basis where the charged-lepton mass matrix is diagonal. From eq. (2.15), it is evident

that the strength of the active-sterile mixing is governed by

ULR = (Ue4, Uµ4, Uτ4)T . (2.18)

2If we want to accommodate more than one sterile neutrino at the eV scale, we need to increase the

number of heavy neutrinos as well. Otherwise, more than one active neutrino becomes massless which is

ruled out experimentally.
3Since the active-sterile mixing is small, the 4th mass eigenstate (ν4) more or less corresponds to the

sterile state (νs).
4In the MES framework, we have m1 = 0.
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(1) (12)(34) (123) (132)

1 1 1 1 1

ω 1 1 ω ω̄

ω̄ 1 1 ω̄ ω

3 3 −1 0 0

Table 1. The character table of the A4 group. A4 denotes the even permutations of four objects.

The conjugacy class (12)(34) represents two inversions carried out in two separate pairs of objects.

(123) and (132) represent two inversions carried out in a set of three objects in the forward sense and

the backward sense respectively. 1 is the trivial representation. ω and ω̄ are singlets transforming

as ω = ei
2π
3 and ω̄ = e−i

2π
3 under (123) and (132). 3 represents the three-dimensional rotational

symmetries of a regular tetrahedron.

Note that R is suppressed by the ratio O(MD/Ms). The 3× 3 mixing matrix involving the

three active neutrinos, (νe, νµ, ντ ), and the three lightest mass eigenstates, (ν1, ν2, ν3), is

often called the PMNS mixing matrix, UPMNS. In MES models with active-sterile mixing,

UPMNS will not be unitary. It is given by the upper-left block of eq. (2.15),

UPMNS = ULUν −
1

2
ULRR

†Uν . (2.19)

The deviation of UPMNS from unitarity, i.e. −1
2ULRR

†Uν , is suppressed by O(M2
D/M

2
s ).

3 Flavour structure of the model

We construct the model in the framework of the discrete group A4 × C4. A4, which is the

smallest group with a triplet irreducible representation, has been studied extensively in the

literature [32, 59–65]. Here we briefly mention the essential features of this group in the

context of model building. A4 is the rotational symmetry group of the regular tetrahedron.

It has the group presentation,

〈S, T | S2 = T 3 = (ST )3 = I〉. (3.1)

A4 has 12 elements which fall under four conjugacy classes. Its conjugacy classes and

irreducible representations are listed in table 1.

For the triplet representation, 3, we choose the following basis,

S =

1 0 0

0 −1 0

0 0 −1

 , T =

0 1 0

0 0 1

1 0 0

 . (3.2)

The representations ω and ω̄ transform as ω and ω̄ respectively under the generator T

and trivially under the generator S. The tensor product of two triplets, (x1, x2, x3) and

(y1, y2, y3), leads to

1 ≡ x1y1 + x2y2 + x3y3 , (3.3)

ω ≡ x1y1 + ω̄x2y2 + ωx3y3 , (3.4)

ω̄ ≡ x1y1 + ωx2y2 + ω̄x3y3 , (3.5)

3s ≡ (x2y3 + x3y2, x3y1 + x1y3, x1y2 + x2y1)T , (3.6)

3a ≡ (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)T . (3.7)

– 6 –
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L eR µR τR νR νs φl η φ φs ην H Hs

A4 3 1 1 1 3 1 3 1 3 3 1 1 1

C4 1 1 1 1 −i i 1 i i 1 −1 1 1

C6 −ω −ω ω̄ 1 −ω −ω −ω 1 1 ω̄ ω 1 ω̄

C2 ×U(1)s 1 1 1 1 1 eiqθ 1 1 1 −1 1 1 −1× e−iqθ

Table 2. The particle content and their charges under the flavour group of the model.

The triplets 3s and 3a, both of which transforming as 3 under A4, are constructed as the

symmetric and the antisymmetric products respectively of x and y.

We extend the SM particle sector by the inclusion of three right-handed neutrinos,

νR = (νR1, νR2, νR3)T , a sterile neutrino (νs), several flavon multiplets, φl, η, φ, φs, ην and

a sterile sector Higgs, Hs. Along with the A4 group, the model includes several Abelian

discrete groups (C4, C6 and C2) acting variously on these fields. We also introduce a gauge

group, U(1)s, in the sterile sector. The field content of the model, along with the irreducible

representations they belong to, are given in table 2.

From these field assignments, we obtain the following Yukawa Lagrangian:

LY =Yτ L̄
φl
Λ
τRH + YµL̄

φ∗l
Λ
µRH + L̄

Q

Λ2
eRH

+ YηL̄νR
η

Λ
H̃ + Yφs

(
L̄νR

)T
3s

φ

Λ
H̃ + Yφa

(
L̄νR

)T
3a

φ

Λ
H̃

+ Ys
φTs
Λ
ν̄csνRHs + Yνην ν̄

c
RνR

(3.8)

where Yτ , Yµ, Yη, Yφs, Yφa, Ys, and Yν are the Yukawa-like dimensionless coupling con-

stants, Λ is the cut-off scale of the theory. ()3s and ()3a represent the symmetric and the

antisymmetric tensor products given in eq. (3.6) and eq. (3.7) respectively. Q represents

all the quadratic flavon terms forming a triplet under A4 and an invariant under the rest

of the flavour group. It consists of (φ∗l φl)3s, (φ∗l φl)3a, (φ∗sφs)3s, (φ∗sφs)3a, (φ∗φ)3s, (φ∗φ)3a,

η∗φ, ηφ∗ along with the corresponding Yukawa-like coupling constants. Besides the flavour

symmetries, we also impose the CP symmetry at high energy scales where the Higgses

and the flavons have not acquired their VEVs, i.e. all the Yukawa-like couplings in the

Lagrangian are real. We also assume that these couplings are of the order of one.

In the above Lagrangian, the first three terms are responsible for the charged-lepton

mass generation. Since φl, φ
∗
l and Q transform as −ω, −ω̄ and 1 under C6, they couple

with L̄τR, L̄µR and L̄eR (which transform as −ω̄, −ω and 1) respectively. The rest of

the terms involve the right-handed neutrino triplet νR and they contribute to the neutrino

mass generation. The terms in the second line of eq. (3.8) contain L̄νR which transforms

as −i under C4 and remains invariant C6. The flavons φ and η, which transform as i

under C4 and remain invariant C6, couple with L̄νR. These terms result in the Dirac mass

matrix for the neutrinos. Under A4 × C4 × C6 × C2 ×U(1)s, the term ν̄csνR transforms as

3×1× ω̄×1×eiqθ. This term couples with φs and Hs which transform as 3×1× ω̄×−1×1

and 1×1×ω̄×−1×e−iqθ respectively and forms the sterile mass term. Finally, we have the

– 7 –
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Majorana mass term consisting of ν̄cRνR coupled with the flavon ην . We may also construct

the neutrino mass terms (L̄H̃)(H̃TLc)Q1

Λ3 , L̄νs
Q2

Λ3 H̃Hs and ν̄csνs
Q3

Λ3H
2
s where Q1, Q2 and Q3

represent the quadratic flavon terms transforming as 1× ω̄×1, −i×ω×−1 and −1×1×1

respectively under C4 × C6 × C2. Since these mass terms are heavily suppressed, we have

not included them in the Lagrangian. In fact, a part of the reason for assigning the various

Abelian charges to the flavons, table 2, is to ensure that this suppression occurs so that

our model leads to the standard MES framework where these terms are assumed to vanish

(the block of zeros in eq. (2.9)).

Like the SM Higgs, the other scalar fields in the model also acquire VEVs through

SSB. We assign them the following values:

〈φl〉 = vl(1, ω̄, ω)T , (3.9)

〈η〉 = vη, (3.10)

〈φ〉 = vφ(0,−i, 0)T , (3.11)

〈φs〉 = vs(1, 0, 1)T , (3.12)

〈ην〉 = vν , (3.13)

〈Hs〉 = v′. (3.14)

The VEVs of the various flavons in the model break the discrete flavour group, A4 ×C4 ×
C6 ×C2 in specific ways. In appendix A, we study the residual symmetries of these VEVs

and describe how their alignments can be uniquely defined.

The VEV of the sterile Higgs (Hs) breaks the U(1)s gauge group and leads to a

massive gauge boson. This particle can mediate the so-called secret interactions of the

sterile neutrinos proposed in the cosmological context [66–68]. The VEV of the sterile

Higgs is assumed to be an order of magnitude higher than the VEV of the SM Higgs,

i.e. v = 176 GeV, v′ ≈ 2000 GeV. We also assume that the flavon VEVs are at a very high

energy scale vx ≈ 1010 GeV where vx denotes vl, vη, vφ, vs and vν and that the cut-off

scale Λ ≈ 1013 GeV. Under these assumptions, we may calculate the scales of our mass

terms (after SSB); l̄LτR, l̄LµR : v vlΛ ≈ 10−1, l̄Le: v
O(v2x)

Λ2 ≈ 10−4, ν̄LνR: vO(vx)
Λ ≈ 10−1,

ν̄csνR: v′ vsΛ ≈ 1, ν̄cRνR: vν ≈ 1010, ν̄Lν
c
L: v2O(v2x)

Λ3 ≈ 10−15, ν̄Lνs: vv
′ O(v2x)

Λ3 ≈ 10−14 and

ν̄csνs: v
′2O(v2x)

Λ3 ≈ 10−13 where all the units are in GeV.

4 Mass matrices and observables

Substituting the Higgs VEV and the flavon VEVs in the Lagrangian for the charged-lepton

sector (first line of eq. (3.8)), we obtain the charged-lepton mass matrix, eq. (2.3),

Ml = v
O(v2

x)

Λ2

O(1) 0 0

O(1) 0 0

O(1) 0 0

+ v
vl
Λ

 0 Yµ Yτ
0 ωYµ ω̄Yτ
0 ω̄Yµ ωYτ

 . (4.1)

This mass matrix is diagonalised using the transformation,

ULMl U
†
R = diag(me,mµ,mτ ), (4.2)

– 8 –
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where

UL '
1√
3

 1 1 1

1 ω̄ ω

1 ω ω̄

 , (4.3)

UR is an unobservable unitary matrix and

me = v
O(v2

x)

Λ2
, mµ '

√
3Yµv

vl
Λ
, mτ '

√
3Yτv

vl
Λ

(4.4)

are the masses of the charged leptons. Here, the electron mass is suppressed by a factor

of vx
Λ ≈ 10−3 compared to the muon and the tau masses. This is similar to the Froggatt-

Nielsen mechanism which was proposed to explain the hierarchy of the fermion masses. It

can be shown that the error in the expression of UL given in eq. (4.3) is of the order of
v2x
Λ2 . The relative errors in the expressions of mµ and mτ given in eqs. (4.4) are also of the

same order. These errors are very small and hence can safely be ignored. For a numerical

verification, please refer to appendix B.

The terms in the second line of the Lagrangian, eq. (3.8), generate the Dirac mass

matrix for the neutrinos. Substituting Higgs VEV and the VEVs of the flavons η and φ,

eqs. (3.10), (3.11), in these terms, we obtain the Dirac neutrino mass matrix, eq. (2.5),

MD = v
1

Λ

 vηYη 0 −ivφ(Yφs − Yφa)
0 vηYη 0

−ivφ(Yφs + Yφa) 0 vηYη

 . (4.5)

Substituting the VEV of φs, eq. (3.12), in the mass term for the sterile neutrino,

Ysν̄
c
Rνs

φs
Λ Hs, we obtain the mass matrix representing the couplings between νs and νR,

eq. (2.7),

Ms = v′
vs
Λ
Ys(1, 0, 1). (4.6)

Finally, from the term Yνην ν̄
c
RνR, we obtain the mass matrix for the heavy right-handed

neutrinos, eq. (2.6),

MR = YνvνI, (4.7)

where I is the 3× 3 identity matrix.

We implement the MES scheme, eq. (2.10), using the neutrino mass matrices, MD,

Ms, MR, eqs. (4.5), (4.6), (4.7), and obtain the following effective neutrino mass matrix:

M4×4
ν =


m

 1− (κs − κa)2 0 −2iκs
0 1 0

−2iκs 0 1− (κs + κa)
2

 √
mms√

2

 1− i(κs − κa)
0

1− i(κs + κa)


√
mms√

2

(
1− i(κs − κa) 0 1− i(κs + κa)

)
ms

 , (4.8)

where

m =
v2v2

ηY
2
η

YνvνΛ2
, ms =

2v′2v2
sY

2
s

YνvνΛ2
, κs =

vφYφs
vηYη

, κa =
vφYφa
vηYη

. (4.9)
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Here, the mass m is suppressed by the very high value of vν (≈ 1010 GeV) and also by

the ratio Λ2

v2η
(≈ 106). Hence, we obtain m at around 0.01 eV. The ratio m

ms
relates the

scale of the active sector of the neutrinos to that of the sterile sector and it is given by
m
ms

=
v2v2ηY

2
η

2v′2v2sY
2
s

. Since v′ is assumed to be an order of magnitude higher than v, the ratio
m
ms

becomes small (≈ 0.01). As a result, we can use eq. 2.11 to obtain the effective 3 × 3

neutrino mass matrix,

M3×3
ν =

m

2

 (κs − κa − i)2 0 κ2
a − (κs − i)2

0 −2 0

κ2
a − (κs − i)2 0 (κs + κa − i)2

 . (4.10)

Using the unitary matrix,

Uν =
1√
2κ

 i+ κs + κa 0 −i+ κs − κa

0 i
√

2κ 0

i+ κs − κa 0 i− κs − κa

 with κ =
√

(1 + κ2
s + κ2

a), (4.11)

we diagonalise M3×3
ν , eq. (4.10),

U †νM
3×3
ν U∗ν = m diag

(
0, 1, 1 + κ2

s + κ2
a

)
, (4.12)

to obtain the light neutrino masses,

m1 = 0, m2 = m, m3 = m(1 + κ2
s + κ2

a). (4.13)

Using the expressions of UL and Uν , eqs. (4.3), (4.11), we obtain the PMNS mixing

matrix (UPMNS ' ULUν ,5 eq. (2.19)) in terms of the parameters κs and κa,

UPMNS '
1√
6κ


2(i+ κs) i

√
2κ −2κa

(i+ κs)(1 + ω) + κa(1− ω) i
√

2κω̄ (−i+ κs)(1− ω)− κa(1 + ω)

(i+ κs)(1 + ω̄) + κa(1− ω̄) i
√

2κω (−i+ κs)(1− ω̄)− κa(1 + ω̄)

 .

(4.14)

The absolute values of the elements of the middle column of this mixing matrix are equal

to 1√
3
, i.e. the mixing has the TM2 form. Note that the eigenvalue m should correspond

to the second neutrino eigenstate because this eigenstate should remain unmixed with the

others in order to obtain the TM2 mixing, eq. (4.14). Therefore, the mass ordering should

be either (0,m,m(1 + κ2
s + κ2

a)) or (m(1 + κ2
s + κ2

a),m, 0). The second case is inconsistent

with the experimental observation of m1 < m2 given that κs and κa are real parameters.

Hence, the model predicts the normal ordering (the first case) of the light neutrino masses.

5UPMNS obtained in this approximation is unitary. For a numerical analysis without this approximation

which leads to non-unitarity, please refer to appendix B.
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From eq. (4.14), we extract the three mixing angles in the active sector,

sin2 θ13 =
2κ2

a

3(1 + κ2
s + κ2

a)
, (4.15)

sin2 θ12 =
1 + κ2

s + κ2
a

3 + 3κ2
s + κ2

a

, (4.16)

sin2 θ23 =
3 + 3κ2

s + 2
√

3κa + κ2
a

2(3 + 3κ2
s + κ2

a)
. (4.17)

Eq. (4.15) and eq. (4.16) are consistent with the TM2 constraint, sin2 θ12 cos2 θ13 = 1
3 .

Using eqs. (4.13), (4.15)–(4.17), we obtain another constraint among the observables,

sin2 θ23 =
1

2
+

3√
2

sin θ13 sin2 θ12

(
∆m2

21

∆m2
31

) 1
4

, (4.18)

which shows the deviation from the maximal atmospheric mixing, i.e. sin2 θ23 = 1
2 . We also

calculate the Jalskog’s CP-violation parameter [69] in the active sector,

J = Im(Ue2Uµ3U
∗
e3U

∗
µ2) = − κsκa

3
√

3(1 + κ2
s + κ2

a)
. (4.19)

Eliminating κs and κa from eq. (4.19) using eqs. (4.13), (4.15), we can express J in terms

of the reactor angle and the light neutrino masses,

J = − 1

3
√

2
sin θ13

√
1− 3

2
sin2 θ13 −

√
∆m2

21√
∆m2

31

. (4.20)

Given the three mixing angles and J in terms of the model parameters, we can obtain sin δ

using the following expression:

sin δ = J/(sin θ13 sin θ12 sin θ23 cos2 θ13 cos θ12 cos θ23). (4.21)

Note that the 4 × 4 mixing matrix is parametrised using six mixing angles (θ13, θ12, θ23,

θ14, θ24, θ34) and three Dirac CP phases (δ13, δ14, δ24) with the help of the parametrization

mentioned in ref. [23]. However, we used the parametrisation for the 3× 3 mixing matrix,

eq. (1.1), to extract the mixing angles (θ13, θ12, θ23) and the CP phase (δ = δ13) given

in eqs. (4.15), (4.16), (4.17), (4.21). This approximation is valid since the active-sterile

mixing is quite small.

Comparing eqs. (2.10), (2.12) with eq. (4.8), it is clear that the model parameter ms

corresponds to the mass of the 4th mass eigenstate,

m4 = ms. (4.22)

Using eq. (2.16), we obtain the three-component column vector R,

R =

√
m

2ms

 1− i(κs − κa)
0

1− i(κs + κa)

 . (4.23)
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Substituting eqs. (4.3), (4.23) in eq. (2.18) we obtain

Ue4 =

√
2m√
3ms

(1− iκs), (4.24)

Uµ4 = − ω̄
√
m√

6ms
(1− iκs +

√
3κa), (4.25)

Uτ4 = − ω
√
m√

6ms
(1− iκs −

√
3κa). (4.26)

Using eqs. (4.24), (4.25), (4.26), we can write the three active-sterile mixing angles in terms

of the model parameters,

sin2θ14 =
2

3

m

ms
(1 + κ2

s), (4.27)

sin2θ24 =
1

6

m

ms

(1 + κ2
s + 2

√
3κa + 3κ2

a)

1− 2
3
m
ms

(1 + κ2
s)

, (4.28)

sin2θ34 =
1

6

m

ms

(1 + κ2
s − 2

√
3κa + 3κ2

a)

1− 2
3
m
ms

(1 + κ2
s)− 1

6
m
ms

(1 + κ2
s + 2

√
3κa + 3κ2

a)
. (4.29)

For the extraction of δ14 and δ24, we need to calculate the Jarlskog-like rephasing

invariants from the active-sterile sector. In this context, we refer the readers to a recent

work [70], in which nine independent rephasing invariants in terms of the six mixing angles

and the three Dirac phases have been evaluated in the context of the 4× 4 mixing matrix.

With the help of these invariants, we may extract δ14 and δ24.

The effective neutrino mass applicable to the neutrinoless double-beta decay [71, 72]

is given by

mββ =
∣∣m1U

2
e1 +m2U

2
e2 +m3U

2
e3 +msU

2
e4

∣∣ . (4.30)

Substituting the values of the neutrinos masses, eq. (4.13), the elements of the first row of

the mixing matrix, eq. (4.14), and the expression for Ue4, eq. (4.24), in the above equation,

we obtain

mββ =
∣∣∣m

3
(1− 2κ2

s + 2κ2
a − 4iκs)

∣∣∣ =
m

3

√
(1− 2κ2

s + 2κ2
a)

2 + 16κ2
s. (4.31)

5 Phenomenology and predictions

Our model allows only four degrees of freedom in the neutrino Yukawa sector, denoted by

the free parameters κs, κa, m, ms. There are eleven independent experimentally measured

quantities, sin2 θ12, sin2 θ23, sin2 θ13, sin δ, ∆m2
21, ∆m2

31, mββ , ∆m2
41, |Ue4|2, |Uµ4|2, |Uτ4|2

all of which can be expressed in terms of the above mentioned four model parameters.

So, it is clear that the model is extremely constrained. In this section, we calculate the

model parameters using the experimental data and also make predictions. To calculate

the allowed ranges of the model parameters, κs, κa, m and ms, we utilize the observables

sin2 θ13, ∆m2
21, ∆m2

31 and ∆m2
41 whose experimental values are given in table 3. These

values are obtained from the global fit data published by the nufit group [73] and the

active-sterile mixing data from ref. [74].
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3σ range

sin2 θ13 0.02044→ 0.02437

∆m2
21 6.79× 10−5 eV2 → 8.01× 10−5 eV2

∆m2
31 2.431× 10−3 eV2 → 2.622× 10−3 eV2

∆m2
41 0.87 eV2 → 2.04 eV2

Table 3. The mixing observables which are used to evaluate the model parameters κs, κa, m and

ms. The 3σ ranges of sin2 θ13, ∆m2
21 and ∆m2

31 are taken from ref. [73] and that of ∆m2
41 is taken

from ref. [74].

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

κs

κ
a

Figure 1. The parameters κs and κa constrained using the reactor mixing angle and the ratio of

the mass-squared differences of the active neutrinos.

Using the expression of the reactor mixing angle given in eq. (4.15) and its range given

in table 3, we obtain

0.02044 ≤ 2κ2
a

3(1 + κ2
s + κ2

a)
≤ 0.02437. (5.1)

Using eq. (4.13), we calculate the ratio of the mass-squared differences of the active

neutrinos,
∆m2

31

∆m2
21

= (1 + κ2
s + κ2

a)
2. (5.2)

Given the ranges of ∆m2
21 and ∆m2

31 (table 3), eq. (5.2) leads to

30.3 ≤ (1 + κ2
s + κ2

a)
2 ≤ 38.6. (5.3)

We use eqs. (5.1), (5.3) to constrain the parameters κs and κa. In this analysis, we

chose sin2 θ13 and
∆m2

31

∆m2
21

because these are the most precisely measured observables that can
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Figure 2. Correlations among the mixing angles found using equations (4.15)), (4.16 and 4.17.

For an explanation please see the text. In the left panel, the predicted ranges of the observables

are plotted against their entire 3σ ranges. The right panel shows the correlations among the angles

which is not clearly visible in the left panel.

be used for constraining κs and κa. The results are shown in figure 1 where the blue and

the red regions represent the constraints eq. (5.1) and eq. (5.3) respectively. The allowed

range of κs and κa is given by the intersection of the red and the blue regions. Note that

these parameters can be directly expressed in terms of the observables:

κ2
s =

(
1− 3

2
sin2 θ13

) √
∆m2

31√
∆m2

21

− 1, κ2
a =

3

2
sin2 θ13

√
∆m2

31√
∆m2

21

. (5.4)

The best fit values, i.e. sin2 θ13 = 0.02237, ∆m2
21 = 7.39× 10−5 eV2 and ∆m2

31 = 2.528×
10−3 eV2, leads to κs = 2.16 and κa = 0.44 consistent with figure 1.

Substituting this range of values in the expression of the solar mixing angle, eq. (4.16),

we predict

0.340 ≤ sin2 θ12 ≤ 0.342. (5.5)

TM2 mixing fixes |Ue2|2 to be 1
3 . We also have |Ue2|2 = sin2 θ12 cos2 θ13. Therefore,

TM2 scheme strongly constrains θ12 given the precise experimental determination of θ13.
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Prediction Experimental range

sin2 θ12 0.340→ 0.342 0.275→ 0.350

sin2 θ23 0.541→ 0.548 0.428→ 0.624

sin δ −0.916→ −0.905 −1→ 0.707

|Ue4|2 0.021→ 0.038 0.012→ 0.047

|Uµ4|2 0.007→ 0.013 0.005→ 0.03

|Uτ4|2 0.004→ 0.008 < 0.16

mββ 0.0302 eV→ 0.0371 eV < 0.05 eV

Table 4. The values of the observables predicted by the model in comparison to their experi-

mental ranges [73, 74, 77]. mββ < 0.05 eV is the most stringent bound from the KamLAND-Zen

experiment [77].

The resulting prediction, eq. (5.5), is consistent with the 3σ experimental range 0.275 ≤
sin2 θ12 ≤ 0.350, table 4. However, a more precise determination of the solar mixing angle,

for instance from reactor experiments [75, 76] can test this prediction.

Substituting the allowed range of κs and κa in the expressions of the atmospheric

mixing angle, the Jarlskog invariant and the Dirac CP phase, eqs. (4.17)–(4.21), we predict

0.541 ≤ sin2 θ23 ≤ 0.548, (5.6)

−0.916 ≤ sin δ ≤ −0.905 with − 0.0329 ≤ J ≤ −0.0299. (5.7)

These predictions are also consistent with the experimental ranges, table 4. Note that

the determination of the octant of θ23 is still an open problem experimentally. If the µ-τ

reflection symmetry [78–83] is broken, we have θ23 either in the first or the second octant.

The model predicts it to be in the second octant.

In figure 2, we show the correlations among the mixing angles resulting from the

model. The top panel of the figure shows the TM2 constraint between the solar and

reactor mixing angles, sin2 θ12 cos2 θ13 = 1
3 . For small θ13, we obtain a linear relationship,

sin2 θ12 ' 1
3(1 + sin2 θ13). The mild positive correlations of the atmospheric angle with

the solar and the reactor angles shown in the middle and the bottom panels respectively

are nothing but the result of the constraint among these quantities given in eq. (4.18).

We also note that the deviation from maximal atmospheric mixing shown in these plots

(0.041-0.048) is consistent with the deviation obtained in eq. (4.18).

The global fit [73] of oscillation data gives hints for CP violation. Even though the

measurement is not precise, 135◦ ≤ δ ≤ 366◦, it favours a relatively large negative value

for sin δ. Our prediction, eq. (5.7), supports this scenario. In figure 3, we have shown the

predictions for sin2 θ23 and sin δ.

Under the MES scheme, the mass of the lightest neutrino, m1, vanishes.6 Therefore,

the experimental ranges of ∆m2
21 and ∆m2

31, table 3, leads to the prediction,

8.24× 10−3 eV ≤ m2 ≤ 8.95× 10−3 eV, 4.93× 10−2 eV ≤ m3 ≤ 5.12× 10−2 eV. (5.8)

6The higher-order corrections in the MES framework will generate non-zero mass for m1, albeit tiny.

Here we ignore this mass. In appendix B, we estimate it to be of the order of 10−5 eV.
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Figure 3. The predicted ranges of sin2 θ23 and sin δ as constrained by the parameters κs and κa.
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(a) |Ue4|2 vs ms (b) |Uµ4|2 vs ms (c) |Uτ4|2 vs ms

Figure 4. The active-sterile mixing observables predicted by the model plotted against ms. These

curves show the inverse relationship between the moduli-squared values of the active-sterile mixing

elements and the sterile neutrino mass as can be inferred from eqs. (4.24)–(4.26).

The model parameter m corresponds to the neutrino mass m2, so its allowed range is the

same as that of m2 given above. Using the range of ∆m2
41 from table 3, we obtain,

0.93 eV ≤ m4 ≤ 1.42 eV, (5.9)

which also corresponds to the range of the model parameter, ms, eq. (4.22).

The active-sterile mixing observables, eqs. (4.24)–(4.26), depend on all the four model

parameters, κs, κa, m, and ms. By varying these parameters within their respective ranges

we predict the values of these observables, i.e. |Ue4|2, |Uµ4|2 and |Uτ4|2, table 4. These

predictions are well within their corresponding experimental ranges. In figure 4, we have

plotted them against the parameter, ms.

Substituting the allowed ranges of κs, κa, m, and ms in eq. (4.31), we predict the

value of the neutrinoless double-beta decay mass, table 4, which is also shown in figure 5.

This range is quite narrow because the model strongly constrains the first row of the

mixing matrix through the parameters κs and κa, which effectively constrains the Majorana

phases as well.

Cosmological observations set upper bounds to the sum of the neutrino masses for

three generations of neutrinos, Σmi = m1 + m2 + m3. However, in the presence of the
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Figure 5. The prediction of the effective neutrino mass, mββ , in relation to the active-sterile

mixing strength.

sterile neutrino, the bound gets affected. At the same time, some recent cosmological

models offer an explanation in favour of the existence of the sterile neutrino via the so-

called secret interactions. The broken U(1)s gauge symmetry in our model will lead to

a massive gauge boson which can mediate such an interaction. For a detailed discussion

about the cosmological implications of sterile neutrinos having secret interactions, please

see the references [66–68].

6 Discussion and conclusion

In this paper, we construct the leptonic mass matrices in terms of the VEVs of a set of

flavon fields transforming under the discrete symmetry group A4 × C4 × C6 × C2 and the

VEVs of the SM Higgs and a sterile sector Higgs. In the charged-lepton sector, we obtain

a non-diagonal mass matrix. In the neutrino sector, we use the MES formula, eq. (2.11),

to construct the effective 3 × 3 seesaw mass matrix. The unitary matrices UL and Uν
diagonalise the charged-lepton and the neutrino mass matrices respectively. Their product

determines the mixing in the active sector, i.e. UPMNS ' ULUν , eq. (2.19). In our model,

the unitary contribution from the charged-lepton sector (UL) has a 3× 3 trimaximal form,

eq. (4.3). On the other hand, the contribution from the active neutrino sector (Uν) has the

form which corresponds to the second flavour eigenstate being equal to the second mass

eigenstate as evident from the off-diagonal zeros in Uν , eq. (4.11). Consequently, the second

column of UL is preserved in the product ULUν and as a result, we obtain the TM2 mixing.

Uν obtained in the model contains two parameters κs and κa. These parameters

correspond to the symmetric and the antisymmetric parts of the neutrino mass matrix,

MD, which in turn originate from the symmetric and the antisymmetric parts of the tensor

product of triplets of A4. If κa vanishes, Uν becomes bimaximal, i.e.

κa → 0 =⇒ Uν →


1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2

 , (6.1)
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which will lead to tribimaximal (TBM) mixing. The observation of non-zero reactor angle

has ruled out TBM. Hence, the parameter κa plays the vital role of generating the non-zero

reactor angle in the model. This role has been emphasized in ref. [84].

We obtain CP violation even though all the free parameters in the model are real. The

charged-lepton mass matrix, Ml, eq. (4.1), and the neutrino mass matrix, MD, eq. (4.5),

turn out to be complex on account of the complex VEVs 〈φl〉 and 〈φ〉 respectively. Hence

CP is broken spontaneously in the model. Since Ml and MD are complex, the corresponding

diagonalising matrices UL and Uν also become complex and they generate the complex

mixing matrix, UPMNS ' ULUν . It can be shown that if Uν were real, the resulting mixing

matrix ULUν would be symmetric under µ-τ reflection implying θ23 = π
4 . In such a scenario,

despite Uν being real, CP would be maximally broken (δ = ±π
2 ) because of the complex

contribution from the charged-lepton sector (UL) alone. Our model, with Uν also being

complex, breaks µ-τ reflection symmetry and we obtain θ23 6= π
4 . The complex Uν also

shifts δ away from its maximal value, i.e. δ 6= ±π
2 . Therefore, the origin of the non-maximal

values of the atmospheric mixing as well as the CP phase is the complex VEV, 〈φ〉.
LSND and MiniBooNE observations suggest the existence of sterile neutrinos. The

observed active-sterile mixing (|Ue4|2, |Uµ4|2) is found to be of the order of

√
∆m2

21√
∆m2

41

. The

Minimal Extended Seesaw provides a natural framework to achieve this relationship. It is

in this context that we built the model to explain both the active and the sterile mixing

observables. In the model, these observables are given in terms of four parameters, κs, κa,

m and ms. We use the experimental ranges of the reactor mixing angle, sin2 θ13, and the

mass-squared differences, ∆m2
21 and ∆m2

31, to extract the allowed values of κs, κa and m,

as we obtain m2 < m3 corresponding to normal hierarchy. The extracted values of κs and

κa are used to predict θ23 and δ. These predictions can be tested when these observables

are measured more precisely in future oscillation experiments. The model parameter, ms,

corresponds to the sterile neutrino mass and is determined by the active-sterile mass-

squared difference, ∆m2
41. The three model parameters, κs, κa and m (constrained using

sin2 θ13, ∆m2
21 and ∆m2

31), as well as the fourth parameter, ms (constrained using ∆m2
41),

are used to evaluate the active-sterile mixing. We find that these values are consistent with

the experimental results. We also obtain strong constraints on the range of the effective

mass governing the neutrinoless double-beta decay.

A Uniquely defining the flavon VEVs

The model contains the flavon multiplets, φl, η, φ, φs and ην . The alignments of their

VEVs in the flavour space play a crucial role in determining the model’s phenomenology.

In this appendix, we provide justifications for these alignments by uniquely defining them

using symmetries.

The flavon φl couples in the charged-lepton sector. Consider the alignment 〈φl〉 ∝
(1, ω̄, ω)T , eq. (3.9). This VEV is invariant under the following group action:

ωT 〈φl〉 = 〈φl〉, (A.1)
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where ω and T are elements of C3 and A4 respectively under which φl transforms. In other

words, ωT generates the residual symmetry of 〈φl〉 and this symmetry uniquely defines

〈φl〉 (up to multiplication with a constant7). A triplet flavon whose VEV is defined by the

residual symmetry, eq. (A.1), was recently utilised in the construction of the charged-lepton

mass matrix in ref. [85].

The singlet η and the triplet φ couple in the neutrino Dirac sector. The VEV of the

singlet, eq. (3.10), is assumed to be real. This can be ensured by assuming the residual

symmetry under conjugation,

〈η〉∗ = 〈η〉. (A.2)

The VEV 〈φ〉 ∝ (0,−i, 0)T , eq. (3.11), is uniquely defined using the residual symmetries,

T 2ST 〈φ〉 = 〈φ〉, −1〈φ〉∗ = 〈φ〉. (A.3)

These symmetries ensure that the first and the third components of 〈φ〉 vanish and the

phase of the second component is −i. Note that the constant of proportionality in the

VEV, i.e. vφ in eq. (3.11), is real.

The triplet φs couples in the sterile sector. Its VEV, 〈φs〉 ∝ (1, 0, 1)T , eq. (3.12), has

the following residual symmetries:

− 1 T 2ST 〈φs〉 = 〈φs〉, 〈φs〉∗ = 〈φs〉. (A.4)

The VEV of the A4 triplet in the form ∝ (1, 0, 1)T has been widely used in the literature [86–

88]. This alignment can be uniquely obtained from the symmetric tensor product involving

the alignments (0, 1, 0)T and (1, 1, 1)T ,8(
(0, 1, 0)T , (1, 1, 1)T

)
3s
∝ (1, 0, 1)T . (A.5)

The VEV of the singlet ην can be trivially assigned any complex constant since its

phase has no effect on the model’s phenomenology.

Here we have assumed that various flavon VEVs have distinct residual symmetries. It

is interesting to note that if all the VEVs are taken together, none of these symmetries

survive. A comprehensive study of the origin of the VEVs requires the construction of the

flavon potential. If different irreducible multiplets are decoupled in the potential, then it can

lead to the corresponding VEVs having separate residual symmetries. The construction of

a potential with an inbuilt mechanism to ensure the decoupling of the irreducible multiplets

is beyond the scope of this work. However, we assume that our VEVs are generated from

such a potential.

B Numerical verification of approximations

In this appendix, we construct the charged-lepton and the neutrino mass matrices using a

representative set of model parameters and numerically extract the masses and the mixing

7This constant, i.e. vl in eq. (3.9), can be complex in general. Note that vl being complex does not alter

the phenomenology of the charged-lepton sector.
8The alignment (1, 1, 1)T can be uniquely defined by the residual symmetry, T (1, 1, 1)T = (1, 1, 1)T .
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observables without employing approximations. Thus we verify the correctness of the

various results obtained in the main body of the paper. In our calculations, we use

Λ = 1013, vx = 1010, (B.1)

where vx represents vl, vη, vφ, vs and vν . All mass units are given in GeV, unless otherwise

specified. The SM Higgs and the sterile Higgs are given the following VEVs,

v = 176, (B.2)

v′ = 2000. (B.3)

Substituting eqs. (B.1), (B.2) in eq. (4.1), we obtain the charged-lepton mass matrix in

the form,

Ml = 176× 10−6

 (1.7− i0.9)Ye 0 0

(0.8− i1.5)Ye 0 0

(1.7− i0.9)Ye 0 0

+ 176× 10−3

 0 Yµ Yτ
0 ωYµ ω̄Yτ
0 ω̄Yµ ωYτ

 . (B.4)

Since several higher-order flavon triplets contribute in the construction of the electron mass

term, there will be a corresponding set of Yukawa-like free parameters. We assign random

real numbers to these parameters resulting in the first column of Ml, eq. (B.4).9 For

convenience, we have introduced a parameter Ye in this column. Diagonalising Ml using

the unitary matrices UL and UR, eq. (4.2), produces the charged-lepton masses. Their

experimental values (mτ = 1777 MeV, mµ = 106 MeV and me = 0.511 MeV) are obtained

with the substitution,

Yτ =
1√
3

1

176
1777 = 5.83, Yµ =

1√
3

1

176
106 = 0.348, Ye = 0.942. (B.5)

These coupling constants are of the order of one as we expect. The corresponding diago-

nalising matrices are

UL =

 0.577 0.577 0.577

0.577 −0.289− i0.500 −0.289 + i0.500

0.577 −0.289 + i0.500 −0.289− i0.500

 , (B.6)

UR =

 0.786− i0.618 0.001 + i0.001 0.000

i0.001 1.000 0.000

0.000 0.000 1.000

 . (B.7)

We find that the above calculation of UL is consistent with the expression given in eq. (4.3)

within a deviation of the order of v2x
Λ2 .

To construct the neutrino mass matrices, we make the following assignments:

Yη = 1.67, Yφs = 3.59, Yφa = 0.80, Ys = 1.23, Yν = 1.00. (B.8)

9The exact values of these numbers are irrelevant in an order-of-magnitude calculation.
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Substituting eqs. (B.1)–(B.3), (B.8) in eqs. (4.5)–(4.7), we obtain

MD =

 0.294 0 −i0.491

0 0.294 0

−i0.773 0 0.294

 , Ms = (2.46, 0, 2.46), MR = diag(1, 1, 1)1010.

(B.9)

We also introduce mass matrices involving ν̄Lν
c
L, ν̄Lνs and ν̄csνs, which are highly suppressed

as described at the end of section 3,

ν̄Lν
c
L: M1 =

 1.24 −2.32− i4.02 −1.39 + i4.02

−2.32− i4.02 1.24 4.65

−1.39 + i4.02 4.65 1.24

 10−15, (B.10)

ν̄Lνs: M2 =

 2.11− i1.41

0

2.11 + i2.82

 10−14, ν̄csνs: M3 =
(

2.80
)

10−13. (B.11)

Here also, the matrices have been populated with a random choice of Yukawa-like couplings

corresponding to the higher-order terms. In terms of eqs. (B.9)–(B.11), we construct the

neutrino mass matrix in the ‘ν = (νL, ν
c
s , ν

c
R)’-basis:

ν̄νc: M7×7
ν =

 M1 M2 MD

MT
2 M3 Ms

MT
D MT

s MR

 . (B.12)

This matrix is diagonalised to obtain the neutrino masses,

U7×7†
ν M7×7

ν U7×7∗
ν =

diag
(
1.4× 10-14, 8.6× 10-12, 5.0× 10-11, 1.3× 10-9, 1.0× 1010, 1.0× 1010, 1.0× 1010

)
,

(B.13)

where

U7×7
ν =

(
U4×4
ν O(10−10)

O(10−10) Uheavy
ν

)
. (B.14)

The structure of Uheavy
ν depends on the higher-order corrections to MR which break the

degeneracy of the heavy neutrino masses. These corrections are of no significance to the

present work. We note that the mass acquired by the lightest neutrino is of the order of

M2 = O(10−14).

The 4× 4 light-neutrino mixing matrix is obtained as

U =

(
UL 0

0 1

)
U4×4
ν =


−0.332 + i0.713 0.571 + i0.086 −0.059 + i0.137 0.067− i0.146

−0.323 + i0.154 −0.212− i0.537 −0.438− i0.581 0.096 + i0.017

0.157 + i0.441 −0.359 + i0.452 0.373− i0.551 −0.060− i0.039

0.185 0.000 0.079 0.980

,
(B.15)

This matrix is consistent with the results we obtained using the seesaw approximations.
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