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Abstract The inspiral of compact stellar objects into mas-
sive black holes are one of the main astrophysical sources
for the Laser Interferometer Space Antenna (LISA) and
Taiji. These extreme-mass-ratio inspirals (EMRIs) have great
potential for cosmology and fundamental physics. A binary
extreme-mass-ratio inspiral (b-EMRI) describes the case
where binary black holes (BBHs) are captured by a super-
massive black hole. The b-EMRIs serve as multi-band gravi-
tational wave sources and provide insights into the dynamics
of nuclei and tests of general relativity. However, if the b-
EMRIs can be distinguished from the normal EMRIs or not
is still not clear. In this work, with a few of assumptions, and
using the Teukolsky equation, we calculate the approximate
gravitational waves of b-EMRIs and assess their detectabil-
ity by space-based detectors. We also decouple the secondary
object information from the Teukolsky equation, enabling us
to calculate the energy fluxes and generate the waveforms
more conveniently. Variations in the quadrupole of the binary
result in small but non-negligible changes in energy fluxes
and waveforms, making it possible to distinguish b-EMRI
signals with data analysis. This opens up the potential of
using b-EMRIs to test gravity theories and for further astro-
physical studies.

1 Introduction

The groundbreaking observation of the first gravitational
wave (GW) signal [1] marked a significant turning point in
astrophysics, providing unprecedented access to the study
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of extreme gravitational forces [2,3]. Ground-based detec-
tors have effectively recorded the merging of stellar-mass
black holes and neutron stars. But these detectors can only
detect GWs with frequencies approximately around 102 Hz.
By contrast, forthcoming space-based GW detectors like the
LISA and Taiji [4,5] will enable the detection of GWs in
the millihertz frequency range. The potential of these space-
based detectors extends to capturing GWs emanating from
a diverse array of astrophysical and cosmological sources
[6–8].

EMRIs represent highly compelling sources of GWs for
upcoming space-based GW detectors. In an EMRI, a super-
massive central object of mass M (henceforth a primary)
is orbited by a stellar-mass object of mass m (henceforth
a secondary) [7,9,10]. The system exhibits a mass ratio of
q = m/M ∼ (10−7 − 10−4), and the secondary object
completes approximately O(1/q) orbits around the primary
before its final plunge [11]. This affords an exceptional
opportunity to rigorously test general relativity [12–17], the
Kerr metric [18,19], and precisely measure the spins and
masses of massive black holes [20].

Previous studies have shown that EMRIs can acquire
BBHs system as a secondary object [21,22]. Such a system is
commonly referred to as a b-EMRI. The difference between
b-EMRIs and ordinary EMRIs is unambiguous. Instead of
having only one stellar-mass BH, now the system contains
two stellar-mass BHs, bound by their self-gravity. A triple
system of this nature may form through either the tidal cap-
ture of BBHs by a SMBH [22] or the formation and migra-
tion of BBHs within the accretion disk of an active galactic
nucleus (AGN) [23]. According to Ref. [22], the event rate of
such an exceptional case caused by tidal capture is equivalent
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to (10−5 − 10−4) Gpc−3year−1 in the pessimistic case and
0.1 Gpc−3year−1 in the most optimistic one. However, due
to the non-negligible lifetime of b-EMRIs, within a spherical
volume of 1 Gpc3 (corresponding to a radial distance of about
600 Mpc), there are, on average, about 0.02 − 20 b-EMRIs
expected during detector’s mission duration.

Despite its rarity, it can give rise to intriguing phenom-
ena. In the b-EMRI system, the motion of the binary around
the primary produces low-frequency waves (∼ 10−3 Hz),
whereas the merger of the two smaller black holes results
in high-frequency waves (∼ 102 Hz). As a result, it rep-
resents an ideal target for future multi-band GW astron-
omy [24,25]. The coordinated observation by space-based
and ground-based detectors would enable the identification
of these intriguing sources [8], thus providing precise con-
straints on several aspects of fundamental physics beyond
the current limit by more than an order of magnitude. These
include the loss of rest mass due to GW radiation, the recoil
velocity of the BBHs merger, and the dispersion of GWs
across various frequencies [26]. Due to the intense gravita-
tional field produced by supermassive black holes (SMBHs),
the high-frequency GWs might undergo redshift [23,27,28],
offering an excellent opportunity to investigate GW propaga-
tion within the realm of strong gravity and to test the validity
of general relativity in extraordinary physical circumstances.

There are various possible methods by which the detec-
tor can distinguish between b-EMRI and normal EMRI. If
the GW frequency produced by the binary corresponds to a
fundamental frequency of the SMBH, it could lead to a res-
onant excitation of the SMBH. The presence of an amplified
quasi-normal mode in the EMRI waveform is a clear indi-
cation of this effect [28]. Furthermore, the binary nature of
the smaller body introduces a phase shift in the EMRI wave-
form, which can also serve as an identification feature for
b-EMRIs [29]. However, there is no quantitative investiga-
tion of the distinguishability between b-EMRIs and EMRIs.
This paper aims to show the recognizability of the b-EMRIs
from normal EMRIs.

For this target, the BBHs are approximately taken as a
mass distribution with spin and mass quadrupole, then use
the Mathisson–Papapetrou–Dixon (MPD) equation [30–33]
to describe its orbit dynamic. By employing the Teukolsky
equation, we numerically calculate the waveforms. Com-
pared to Ref. [28], which focuses on the high frequency GW
and quasi-normal mode, they model the small binary as two
point particles and consider elliptic orbits around the cen-
ter of mass for the small binary inner motion. Although this
approach can model binary inner motion conveniently and
high-frequency GWs, but does not focus on the the orbital
motion of the whole binary around the SMBH and the inspi-
ral waveforms of the b-EMRIs. In contrast, we discuss the
overall motion of the binary around the SMBH and the wave-
forms during the inspiral. Therefore we employ the multipole

description in this paper. Of course, our calculation of wave-
forms may be not rigorous for parameter estimates but it can
catch the signals of varied quadrupole moments from the
BBHs. This should be enough to analyze the distinguishabil-
ity of b-EMRIs from EMRIs.

The paper is organized as follows. In Sect. 2, we utilize
a multi-polar approximation to calculate the waveform gen-
erated by b-EMRIs, which describes the inner structure and
orbit motion of the BBHs as a secondary object. The numer-
ical methods employed, including the Teukolsky equation
and the adiabatic evolution of the orbit, are discussed in
Sect. 3. The results are presented in Sect. 4. Our conclusions
and future work are discussed in Sect. 5.

Throughout this study, we adopt geometric units where
G = c = 1. We also adhere to the positive signature con-
vention (−,+,+,+). For symmetry and antisymmetry nota-
tion, round and square brackets are respectively used around
pairs of indices. For instance, T (μν) = (Tμν + T νμ)/2 and
T [μν] = (Tμν − T νμ)/2.

2 Binary-EMRIs

The binary-EMRI, as a hierarchical three-body system,
exhibits various phenomena, particularly when stellar-mass
BBHs merge near an SMBH. It has been suggested that if
the BBH’s orbit around the SMBH has a period shorter than
the observation duration of the BBHs by a space-borne GW
observatory, there is a high likelihood of lensing the GW
emitted by the BBHs through the SMBH [34]. In this case,
the acceleration is induced by the orbital motion of the BBHs
around the third body. Moreover, if the BBHs are within the
LISA frequency range and its signal can be tracked with a
reasonable signal-to-noise ratio (SNR) for several months to
several years, the acceleration can also be detected [35,36].
The combination of these two effects can enhance the overall
parameter estimation.

There are two possible ways in which such an excellent
situation could occur. The first channel involves the tidal cap-
ture of BBHs by a SMBH. This occurs when the binary passes
close enough to the SMBH for tidal interactions to convert a
portion of the binary’s kinetic energy into internal potential
energy [22]. Another possible way is the formation of BBHs
in AGN accretion disc [23]. The event rate of BBHs mergers
in AGN accretion discs remains highly uncertain. The possi-
ble values for the event rate range from O(1) Gpc3year−1

[37,38] to as high as 104 Gpc3year−1 [39]. Although the
latter channel is generally considered more effective than
the former, both channels can potentially bring BH-BHs as
close as tens of gravitational radii to the central MBH. Fur-
thermore, due to the circularization induced by gas in AGN
accretion discs [40,41], the formation of a circular orbit may
be a significant scenario for b-EMRI.
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This section focuses on the analysis of the b-EMRI sys-
tem. The BBHs, in principle, is a system with mass distri-
bution, can be expressed as a series of multipole moment
expansion. Therefore, we can take the BBHs as a self-
gravitational system with multipole moments. The wave-
forms of an EMRI can be effectively studied using pertur-
bation theory, which models the small object as perturbing
the background metric of a larger BH. In the present work,
the perturber is not a single point but a mass distribution with
complicated multipole moments. However, it is too difficult
to include the multipole moments higher than the quadrupole
in the Teukolsky equation. So in this work, only terms up to
the quadrupole moment are considered. Under this approx-
imation, the energy-momentum tensor of the object can be
expressed as follows [42,43]

T αβ =
∫

dτ
δ4(x − z(τ ))√−g

(
p(αvβ) − 1

3
J γ δε(αRβ)

εγ δ

)

−
∫

dτ∇γ

(
Sγ (αvβ) δ

4(x − z(τ ))√−g

)

− 2

3

∫
dτ∇γ ∇δ

(
J δ(αβ)γ δ4(x − z(τ ))√−g

)
,

(1)

where vμ = dzμ/dτ is the tangent vector along the object’s
worldline, pμ is the momentum of the object, Sμν is spin
tensor, and Jαβγ δ is the quadrupole tensor. Sμν and Jαβγ δ

satisfy those symmetry conditions [43]

Sμν = S[μν], (2a)

Jαβγ δ = J [αβ][γ δ], (2b)

Jαβγ δ = J γ δαβ, (2c)

J [αβγ ]δ = 0. (2d)

Additionally, due to the significantly smaller size of the com-
pact binary compared to the curvature radius of the supermas-
sive black hole, a multipolar approximation can be employed
to describe its orbit dynamic [30–33]. Previous work has
pointed out that quadrupole moment is not going to cause sig-
nificant deviations in orbit dynamics [44]. Thus, we choose
to drop the quadrupole moment term on orbit dynamics. Con-
sequently, the MPD equation can be written as follows

pμ

dτ
= −1

2
Sρσ vνRμ

νρσ , (3a)

Sμν

dτ
= 2p[μvν]. (3b)

The equatorial circular motion of spinning secondary has
been detailly studied by Ref. [45]. We will use this result to
construct our waveforms.

Describing the BBHs only with mass, spin and quadr-
upole is an approximation, but can capture the main prop-
erty of binary, i.e., the varied quadrupole moment due to the
orbital motion and gravitational radiation. The quadrupole
tensor can be written as [43,46]

Jαβγ δ = − 3

m2 p
[αQβ][γ pδ], (4)

where Qμν is the mass quadrupole tensor, and m2 = pα pα .
Moreover, in the Newtonian limit and center of mass descrip-
tion [47], we have

pμ = mvμ, (5a)

Sμν = εμν
γ δS

δvγ , (5b)

Qi j = Mkl , (5c)

Qit = Qti = 0, (5d)

where εαβγ δ = √−gε̂αβγ δ is the Livi-Civita tensor with
the Livi-Civita symbol ε̂αβγ δ , m is the total mass of the
secondary, Sδ , Mi j are the angular momentum and mass
quadrupole moment of BBHs, respectively.

The orbital evolution of the binary-EMRI can be sepa-
rated into two parts: the inspiral of binary’s center of mass
into the SMBH, and the orbital evolution of the inner com-
pact binary itself. Both of them are considered in this work.
Now we firstly discuss the inner orbit’s evolution of the com-
pact binary. Two compact bodies approach each other due to
gravitational radiation. In the leading order post-Newtonian
approximation, we have

d(t) = d0

(
tcoal − t

tcoal − t0

)1/4

, (6)

where d(t) is the separation between the two bodies, d0 is
the value of d(t) at the initial time t0, tcoal is the time at
coalescence. tcoal and d0 satisfy the relationship

tcoal − t0 = 5

256

d4
0

m2μr
, (7)

where m = m1 + m2 is the total mass of those two bodies,
μr = m1m2/(m1 +m2) is the reduced mass. And the phase
of the binary φb(t) can be expressed as

φb(t) =
(
tcoal − t0

5mc

)5/8

−
(
tcoal − t

5mc

)5/8

, (8)

where mc = (m1m2)
3/5

(m1+m2)1/5 is the chirp mass, and the initial
phase φb(t0) = 0.

With the given evolution of the BBHs, we could discuss
about the explicit expressions of Eqs. (5a–5c). Consequently,
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if we choose Cartesian coordinates xi = {t, x, y, z}, and let
the orbit lies in the (x, y) plane, the angular momentum Si

is

Sz = μrωbd
2, (9)

in the center-of-mass frame while the other components van-
ish, where ωb = √

m/d3. The mass quadrupole momentum
Mi j is given by

Mxx = μr d
2 sin2(φb(t)), (10a)

Myy = μr d
2 cos2(φb(t)), (10b)

Mxy = Myx = −1

2
μr d

2 sin(2φb(t)), (10c)

while the other components are zero. Then we will do a base
change on Eqs. (9) and (10) to get the expressions in Boyer–
Lindquist coordinate (t, r, θ, φ). In the equatorial plane (θ =
π/2), the results read:

Sμ = (0, 0,−μrωbd
2, 0), (11a)

Mμν = μr d
2

⎛
⎜⎜⎝

0 0 0 0
0 sin2(φ − φb) 0 1

2 sin 2(φ − φb)

0 0 0 0
0 1

2 sin 2(φ − φb) 0 cos2(φ − φb)

⎞
⎟⎟⎠ .

(11b)

3 Numerical calculations

In this section, we briefly describe the numerical methods
used to calculate the waveform h(t).

Due to the extreme mass-ratio, we treat the compact
binary as a perturbation on the Kerr spacetime background.
This system gradually dissipates energy during its evolution,
resulting in shrinking of orbital radius. We employ the adi-
abatic approximation to model the orbit evolution, which is
expressed as:

dEorbit

dt
= −

〈
dEGW

dt

〉
, (12)

where 〈•〉 represents averaging over a time period larger than
the orbital time scale To ∼ M but shorter than the dissipative
time scale Td ∼ To/q [11,48]. Since the adiabatic approx-
imation breaks down at the innermost stable circular orbit
(ISCO) which radius denotes rISCO [11], our orbit evolution
ceases at rISCO. For all waveform calculations, we select the
initial point of the inspiral at rini = 10.

3.1 Teukolsky equation

In order to study the GW energy and waveform caused by
b-EMRIs, we adopt Teukolsky formalism [49]. This method
perturbates the weyl scalar

Ψ4 = −Cαβγ δn
αm̄βnγ m̄δ, (13)

where Cαβγ δ is Weyl tensor, nα and m̄β are part of the
orthonormal null tetrad, the expression of which is given in
Eq. (A.14). At infinity, the two GW polarizations are both
encoded in the Ψ4:

Ψ4(r → ∞) = 1

2

∂2

∂t2 (h+ − ih×) (14)

Teukolsky showed that Ψ4 could be decomposed as follows
in Boyer–Lindquist coordinates [49]

Ψ4 = ρ4
∞∑
l=2

l∑
m=−l

∫ ∞

−∞
dωRlmω(r̂)Sâω

lm (θ)ei(mφ−ωt̂), (15)

where ρ = 1/(r̂ − i â cos θ) and Sâω
lm (θ) is the spin-weighted

spheroidal harmonics with weight −2 which satisfies the
angular Teukolsky equation

[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
− â2ω2 sin2 θ −

(
m − 2 cos θ

sin θ

)2

+ 4ω cos θ − 2 + 2âmω + λlmω

]
−2S

âω
lm (θ) = 0,

(16)

where λlmω = Elmω−2maω+â2ω2−2. And the eigenvalues
and eigenfunctions of the angular Teukolsky equation satisfy
the relationships λlm−ω = λl−mω and

S−âω
l−m (θ) = (−1)l Sâω

lm (π − θ). (17)

The radial function Rlmω satisfies the following equation

Δ2 d

dr̂

(
1

Δ

dRlmω

dr̂

)
− V (r̂)Rlmω = Tlmω, (18)

where

V (r̂) = −K 2 + 4i(r̂ − 1)K

Δ
+ 8iωr̂ + λlmω, (19)

K = (r̂2 + â2)ω − âm (20)

and Tlmω is the source term which is given in Eq. (A.1).
The radial Teukolsky equation can be solved through the

Green function method [50,51]. We construct the Green func-
tion by the linearly independent solutions of homogeneous
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radial Teukolsky equation Rin
lmω and Rup

lmω, which satisfy
those bound conditions

Rin
lmω ∼

{
Bout
lmωr̂

3eiωr∗ + Bin
lmω

1
r̂ e

−iωr∗ , r̂ → ∞
Btran
lmωΔ2e−iκr∗ , r̂ → r+

(21a)

Rup
lmω ∼

{
Dtran
lmωr̂

3eiωr∗ , r̂ → ∞
Dout
lmωr̂

3eiκr∗ + Din
lmωΔ2e−iκr∗ , r̂ → r+

(21b)

where κ = ω − mâ/(2r+) and r∗ is the tortoise coordinate
of the Kerr metric

r∗ = r̂ + 2r+
r+ − r−

ln

(
r̂ − r+

2

)
− 2r−

r+ − r−
ln

(
r̂ − r−

2

)

(22)

with r± = 1 ±√
1 − â. The solution of the radial Teukolsky

equation with the correct asymptotics reads

Rlmω(r̂) = 1

W

(
Rup
lmω(r̂)

∫ r̂

r+
dr ′ Rin

lmω(r̂ ′)Tlmω(r̂ ′)
Δ2

+Rin
lmω(r̂)

∫ ∞

r̂
dr ′ R

up
lmω(r̂ ′)Tlmω(r̂ ′)

Δ2

)
(23)

with the constant Wronskian given by

W = Rin
lmω∂r R

up
lmω − Rup

lmω∂r Rin
lmω

Δ
= 2iωBin

lmωD
tran
lmω. (24)

The solution should satisfy the pure outgoing condition at
infinity and the pure ingoing condition at the horizon:

Rlmω ∼
{
ZH
lmωr̂

3eiωr∗ , r̂ → ∞
Z∞
lmωΔ2e−iκr∗ , r̂ → r+

(25)

with

ZH,∞
lmω = CH,∞

lmω

∫ ∞

r+

Rin,up
lmω (r̂ ′)
Δ2 Tlmω(r̂ ′)dr̂ ′, (26)

where

CH
lmω = 1

2iωBin
lmω

, C∞
lmω = Btran

lmω

2iωBin
lmωD

tran
lmω

. (27)

The amplitudes ZH,∞
lmω fully determine the asymptotic GW

fluxes at infinity and the horizon. With the energy-momentum
tensor presented in Eq. (1), ZH,∞

lmω will take the following form

ZH,∞
lmω = CH,∞

lmω

∫ ∞

−∞
dt̂ei(ωt̂−mφ(t̂)) IH,∞

lmω [r̂(t̂), θ(t̂)], (28)

where

IH,∞
lmω [r̂(t̂), θ(t̂)] =

(
dt̂

dλ

)−1 (
C0 + C1

d

dr̂
+ C2

d2

dr̂2

+C3
d3

dr̂3 + C4
d4

dr̂4

)
Rin,up
lmω (r̂)|r̂(t̂),θ(t̂).

(29)

Detailed expressions of {Ci }i∈{0,1,2,3,4} can be found in the
Appendix A. We care about the situation in which orbits are
equatorial and circular. In this case, the form of the source
term is greatly simplified, and since φ(t̂) = Ω̂ t̂ , φb(t̂) =
ω̂bt̂ , ZH,∞

lmω will have the following form by adopting the
Eq. (B.37):

ZH,∞
lmω = δ(ω − mΩ̂)AH,∞

lmω

+ δ(ω − mΩ̂ − 2(ω̂b − Ω̂))BH,∞
0lmω

+ δ(ω − mΩ̂ + 2(ω̂b − Ω̂))BH,∞
1lmω, (30)

with AH,∞
lmω = 2πCH,∞

lmω IH,∞
lmω [r̂0, π/2] at a specific orbital

radius r̂0. Then the waveform will become

h+ − ih× ∼
∑
lm

A∞
lmω

(mΩ̂)2
eimΩ̂(r∗−t̂)Sâω

lm (θ)eimφ. (31)

Here, we only retain the first term of Eq. (30). We dropped
the last two terms which correspond the high frequency GWs
of the small binary, because these GWs are out of the LISA
band.

If we place Eq. (31) into (dE/d Adt)∞ ≡ 〈(ḣ+)2 +
(ḣ×)2〉/16π , and use the normalization condition of the spin-
weighted spheroidal harmonics, the GW flux at infinity will
be obtained by integrating the fluxes over the solid angle,
which yields

(
dE

dt

)∞

GW
=

∞∑
l=2

l∑
m=1

|AH
lmω|2

2π(mΩ̂)2
, (32)

where the sum over m goes for m = 1, . . . , l since ZH,∞
lmω =

(−1)l Z̄H,∞
lmω and the bar denotes complex conjugation. Sim-

ilarly, the GW flux at the horizon is [52,53]

(
dE

dt

)H

GW
=

∞∑
l=2

l∑
m=1

αlm |A∞
lmω|2

2π(mΩ̂)2
, (33)

where

αlm = 256(2r+)5κ(κ2 + 4σ 2)(κ2 + 16σ 2)(mΩ̂)3

|Clm |2 (34)
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with σ = √
1 − â2/(4r+), and

|Clm |2 = ((λlmΩ̂
+ 2)2 + 4mâ(mΩ̂) − 4â2(mΩ̂)2)(λ2

lmΩ̂

+ 36mâ(mΩ̂) − 36â2(mΩ̂)2)

+ (2λlmΩ̂
+ 3)(96â2(mΩ̂)2 − 48mâ(mΩ̂))

+ 144(mΩ̂)2(1 − â2). (35)

3.2 Orbital evolution and waveform

With the expressions of energy radiation at the horizon and
infinity in Eqs. (32) and (33), we can get the total GW energy
flux by the following equation.

F =
(
dE

dt

)
GW

=
(
dE

dt

)H

GW
+
(
dE

dt

)∞

GW

=
∞∑
l=2

l∑
m=1

(2π(mω)2)−1(|AH
lmω|2 + αlm |A∞

lmω|2). (36)

Now we can calculate the adiabatic evolution of the orbital
radius r(t̂) and phase φ(t̂) due to radiation losses as follows

dr̂

dt̂
= −qF̂

(
d Êorbit

dr̂

)−1

, (37a)

dφ

dt̂
= Ω̂(r̂(t̂)). (37b)

where F̂ is the normalized flux F/q2, q is the mass ratio.
Finally, we can get the waveform [53]

hlm = − 2

R

1

(mΩ̂)2
AH

lmΩ̂
SaΩ̂
lm (Θ)eim[Φ−φ(t̂)] (38)

at mode lm, where R is luminosity distance, Θ is the angle
between an observer’s line of sight and the primary’s spin
axis, and Φ is the azimuthal angle.

3.3 Decoupling the energy flux and waveform

In the normal EMRIs, usually taking the secondary object as
a point particle, the energy fluxes and waveforms can be com-
puted effectively by interpolation from a few of Teukolsky-
based numerical data for circular orbits [54], because the
inhomogeneous solutions of Teukolsky equation are fully
determined by the orbital frequency and perturbed black hole
itself. However, in the case of the secondary object with inter-
nal structure (extended body, or binary in this work), the solu-
tions depend not only on the black hole but also on the infor-
mation of the secondary object (spin, quadrupole, etc.). This

induces that one needs to numerically calculate the Teukol-
sky equation at every time step to evolve the orbit (Eq. (37))
and generate the waveforms (Eq. (38)). Such computation is
quite expensive.

To address this issue, we first find that the Teukolsky for-
malism enables the separation of information between the
secondary object and the perturbed field Ψ4 during the qua-
sicircular inspiral (A more general decoupling formalism will
be presented in the paper by some of us [55].). In other words,
we can express the GW energy flux and waveform as follows

F =
∑
i j

θiθ j fi j (r̂), (39)

hlm = 2

R

{∑
i

θiAilm[r̂(t)]
}
SaΩ̂
lm (Θ)eim[Φ−φ(t̂)], (40)

where θi = (m, Sμ, Mrr , Mrφ, Mφφ, . . .) are the intrinsic
parameters of the secondary object and the coefficients

fi j (r̂) =
∞∑
l=2

l∑
m=1

2π

(mΩ̂)2

×
{[

(CH
lmΩ̂

C in
ilmΩ̂

)  (CH
lmΩ̂

C in
jlmΩ̂

)
]

+αlm

[
(C∞

lmΩ̂
Cup

ilmΩ̂
)  (C∞

lmΩ̂
Cup

jlmΩ̂
)
]}

, (41)

Ailm(r̂(t̂)) = 2π

(mΩ̂)2
CH
lmΩ̂

C in
ilmΩ̂

[r̂(t̂)] (42)

are independent with θi . Detailed discussion on the sepa-
ration form and the analytical expression of Cup,in

ilmΩ̂
can be

found in Appendix B. Now, the above decomposition forms
fi j and Ailm are independent of the secondary object. There-
fore they can be interpolated from just a few numerical points.
The numerical solutions of Eqs. (37, 40) can be obtained with
the same speed as in the case of test particles.

Now we conclude how we perform our numerical calcu-
lations. The solutions Rin

lmω and Rup
lmω to the homogeneous

Teukolsky equation can be computed using two different
methods, MST method [56–58] and solving the SN equation
[59]. Since the MST method is typically faster and more accu-
rate than directly solving the SN equation, it will be employed
in our calculation. Following the Ref. [44], we truncate the
infinite sum in Eq. (41) at l = 20 to get the separation coef-
ficients fi j . Choose the parameters of BBHs, compute the
energy fluxes F , and solve Eq. (37) numerically. With r(t)
and φ(t) in our hand, we can get the waveform from Eq. (40).
Moreover, if the separation distance of BBHs is smaller than
its ISCO, we will consider the BBHs have merged and switch
to the calculation of normal EMRI waveforms.
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4 Waveforms and data analysis

In this section, we examine whether we can distinguish b-
EMRI signals from normal EMRI ones. Given two time series
h1(t) and h2(t), the maximized fitting factor (match) between
them is defined as follows [60,61]:

M(h1, h2) = max
ts ,φs

〈h1(t)|h2(t + ts)eiφs 〉√〈h1|h1〉〈h2|h2〉 , (43)

and the 〈h1|h2〉 is defined by:

〈h1|h2〉 =
∫ ∞

0

ĥ1( f )ĥ2( f )

Sn( f )
d f, (44)

where ĥ( f ) is the Fourier transform of h(t), and Sn( f ) is
the power spectrum density (PSD) of the detector. We use
PyCBC [62] to calculate the match Eq. (43) which quantifies
the differences between the b-EMRI signals and the normal
EMRI ones. Here for simplicity without loss of generality,
we only consider the dominant mode l = m = 2.

Additionally, in order to avoid the tidal disruption of the
inner binary by the SMBH, we require the initial separation
of the binary satisfies the following condition

2M(m1 + m2)d

r3

/
m1m2

d2 � 10−1, (45)

where d is the separation of two stellar mass black holes, and
r is the orbit radius of the outer orbit (the separation between
the inner binary to the SMBH).

For b-EMRIs, while the compact binary inspirals into
the SMBH, the orbital angular momentum and evolving
quadrupole produce different source term in the Teukolsky
equation compared to the case of normal EMRIs. Therefore,
the energy fluxes and waveforms from b-EMRIs could devi-
ate from the one of EMRIs.

The two BHs in the compact binary may merge during the
binary inspiraling into the SMBH. The mass of the remnant
will be smaller than the initial mass of the binary due to the
merger. The mass-loss ratio (R ≡ (1−mfinal/(m1 +m2))) is
about 5% in the BBH mergers [63–65]. This sudden change
of mass will induce a tiny “jump” in the GW signal and in
principle make the recognition of b-EMRI easier.

Figure 1 shows the 1-year waveform h+ of the b-EMRI,
where the BBHs merge at the 6th month, and a normal
EMRI with a secondary mass equal to that of the BBHs
in the b-EMRI. Once the BBHs have merged, the b-EMRI
becomes a normal EMRI but with a sudden change of the sec-
ondary mass. According to Eq. (37), for EMRIs we can find
the inspiral time scale tinspiral = q−1D(r̂), where D(r̂) =∫
F−1(d Êorbit/dr̂)dr̂ , then we can get tinspiral ∝ q−1. There-

fore, due to the mass loss, the waveform of b-EMRI dif-

fers obviously from the normal EMRI after the merger (see
Fig. 1). Furthermore, in Fig. 2, we show the case that the
compact binary does not merge during the 1-year inspiral.
Without the mass loss, the waveforms from b-EMRI and nor-
mal EMRI superpose together and can not be distinguished
visually (see the bottom panel of Fig. 2). However, if we
zoom in the waveforms, we still can see the obvious dephas-
ing between them with enough evolution time (see the top
panels of Fig. 2). The dephase can be larger than 1 radian,
which in principle can be recognized by matched filtering.

In Fig. 3, we show the matchs between the normal EMRIs
and b-EMRIs with different merger moment of the compact
binaries. As a result, we may state that b-EMRIs with com-
pact binary mergers can be recognized from normal EMRIs
easily. Fortunately, even for the b-EMRIs without the merger,
the match between two kinds of waveforms is small enough
to distinguish the b-EMRI signals. At the same time, the
merger of the compact object also radiates high frequency
GWs which can be observed by LIGO, Virgo and KAGRA,
or the third generation detectors like Einstein Telescope and
Cosmic Explorer. This makes the b-EMRIs become multi-
band GW sources, as stated in [22,26].

Though from Fig. 3, the matchs are small enough to dis-
tinguish two kinds of waveforms, the “confusion problem” is
one challenge we may encounter in recognizing the b-EMRIs
from normal EMRIs. This kind of confusion is intrinsic to the
model, namely, a b-EMRI waveform and an EMRI one with
different parameters can be almost identical. If the confusion
problem exists, even if the ground-based detectors observe
the GW signals from the merger of BBHs in b-EMRI, we
may still have a challenge to relate it with the b-EMRI event.
In addition, in a pessimistic scenario, the high-frequency sig-
nals may be missed by the ground-based detectors. Hence,
an important question arises, i.e., whether the space-borne
detectors can distinguish a b-EMRI from normal EMRIs.
With this question in mind, we performed a confusion test on
the b-EMRI waveforms in both cases (merger or non-merger)
to explore whether a b-EMRI waveform can be replaced
with an EMRI one. The results are demonstrated in Fig. 4.
Note that here for efficiency we omit the spin in the orbital
motion, because with or without spin only has a tiny change
on the match values, and no influence on the result. In the
left panel, the merger of the black holes in b-EMRI occurs
after 6 months, and the maximum match Mmax = 0.861. In
the right panel, the compact binary does not merge during
the one-year inspiral, then Mmax is 0.982. If the mismatch
1 − M > (N − 1)/(2ρ2), a certain signal in principle can
be distinguished [66], where N is the number of parameters
and ρ is the SNR. For typical EMRIs, usually N = 14, the
threshold of M = 0.984 for SNR reaches 20. Therefore,
LISA or Taiji in principle can recognize the b-EMRIs from
normal EMRIs with enough SNRs even for the non-merger
cases.
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Fig. 1 The l = 2, m = 2 waveform h+ of the b-EMRI with parameters m1 = m2, m1/M = 10−5, â = 0.3, R = 5%, alongside a normal EMRI
waveform with parameters m′ = m1 + m2, â = 0.3, l = 2, m = 2. The compact binary of the b-EMRI mergers in the sixth month, indicated by
the dashed line

Fig. 2 The l = 2, m = 2 waveform h+ of the b-EMRI with parameters m1 = m2, m1/M = 10−5, d0 = 0.029M , â = 0.3 and the waveform of
normal EMRI with the same parameters in Fig. 1. The compact binary in the b-EMRI does not merge during this 1-year inspiral

123



Eur. Phys. J. C           (2024) 84:478 Page 9 of 15   478 

Fig. 3 This figure shows the matchs between the waveforms of b-
EMRIs and normal EMRIs for different binary coalescence times. The
black line denotes no merger case with initial separation d0 = 0.28 M .
The parameter fixed at â = 0.3, m1 = m2, m1/M = 10−5 for b-
EMRIs, and m = m1 + m2 for normal EMRIs. We take time series of
different lengths from 1 month to 12 months to calculate matchs. In the
not merger case, M = 0.80 at 12 months

For further quantifying the recognition of b-EMRIs, we
calculate Bayesian factors of b-EMRI versus EMRI wave-
forms with a simple linearized analysis by following the
method of Moore et al. [67]. Bayes factor is used in Bayesian
hypothesis testing to quantify the evidence in favor of one
hypothesis compared to another. For the combined parame-
ter space λ = (α; θ), the observed signal, s, can be described
as the sum of the GW signal and the detector noise:

s = n + h(α; θ) = n + h(αTr; θTr) + Δh(θTr) , (46)

where, parameter α represents the derivation of the secondary
object from a single compact object, and in the case of normal
EMRI, α is equal to 0. θ denotes the normal EMRI parameters
including both intrinsic (masses, spins, etc.) and extrinsic

(distance, sky position, etc.) ones. Δh(θTr) represents the
modelling error.

Assuming the instrumental noise is Gaussian, the likeli-
hood L(α; θ) ≡ P(s|α; θ) is given by

lnL(α; θ) = −1

2
|s − h(α; θ)|2 + c

= −1

2
|s − δh(α; θ) + Δh(θTr)|2 + c, (47)

where |•|2 ≡ 〈•|•〉, δh(α; θ) = h(α; θ) − h(αTr; θTr) and
c is an unimportant normalization constant. For simplicity,
we assume that the prior on λ is flat, so the posterior is pro-
portional to the likelihood. Through the first-order Taylor
expansion of δh, the log-likelihood expanded at the maxi-
mum likelihood (ML) parameters λML is given by

lnL(λ) = c′ − 1

2
Γμν(λ − λML)μ(λ − λML)ν (48)

where c′ is another constant, Γμν is the Fisher matrix. For
the binary-EMRI, the Bayesian evidence integral is

Zbinary =
∫

dλL(λ) = ec
′
√

(2π)k+1

det Γμν

, (49)

where k is the number of parameters θ . For the normal EMRI,
α = 0, we have

lnLnormal(θ) = c′ − 1

2
Γ00αML

− 1

2
Γi j (θ − θML)i (θ − θML) j (50)

Znormal =
∫

dθLnormal(θ) = ec
′−Γ00α2

ML/2

√
(2π)k

det Γμν

(51)

Fig. 4 Distribution of the match between a b-EMRI waveform and
normal EMRI waveforms with varied â and m′. Here, â represents the
primary’s dimensionless spin, m′ the mass of the secondary in normal
EMRIs, and mb the mass of the compact binary in the b-EMRI. In the
left panel, the compact binary in b-EMRI mergers at the sixth month

with m1 = m2, m1/M = 10−5 and â = 0.3. In the right panel, the
compact binary does not merge during this 1-year inspiral, the corre-
sponding initial separation is d0 = 0.036M . The maximum matchs
(represented by red points) are 0.861 and 0.982 for the left and right
panels respectively
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Table 1 The logarithm of the Bayes factors (ln B) between the waveforms from a b-EMRI and a normal EMRI. The signals continue for one year
and start at rstart = 10 M . “–” mean the BBHs do not merge during the one-year signal

â m1/M d0[M] tcoal[months] R[Gpc] SNR 1 − M ln B

1 0.8 2 × 10−5 3.6 × 10−2 4 4.0 17.6 9.3 × 10−1 286.1

2 0.8 9 × 10−6 3.0 × 10−2 – 0.6 26 9.1 × 10−2 69.0

3 0.95 1 × 10−5 2.8 × 10−2 – 0.5 34.1 3.6 × 10−2 39.6

4 0.9 7 × 10−6 2.0 × 10−2 9 1.0 10.5 3.1 × 10−1 33.3

5 0.8 1 × 10−5 2.4 × 10−2 6 2.5 7.0 6.5 × 10−1 32.1

6 0.95 5 × 10−6 1.5 × 10−2 7 0.8 8.5 4.5 × 10−1 31.3

7 0.95 1 × 10−5 3.6 × 10−2 – 2.0 8.6 3.8 × 10−1 26.9

8 0.95 2 × 10−6 8.1 × 10−3 10 0.2 12.6 1.4 × 10−1 20.6

9 0.9 1.1 × 10−5 3.0 × 10−2 11 2.0 10.2 1.7 × 10−1 16.3

10 0.9 4 × 10−6 1.4 × 10−2 – 0.3 18.2 2.6 × 10−4 − 1.9

11 0.8 6 × 10−6 2.0 × 10−2 – 0.5 18.8 2.6 × 10−5 − 2.0

12 0.9 3 × 10−6 1.6 × 10−2 – 0.2 20.0 2.4 × 10−5 − 2.1

where αML = z/ρ + √
2(1 − M) cos ι can be got by the

equation

∂ lnL
∂λ

∣∣∣∣
λ=λML

= 0, (52)

and Γ00 = 1/ρ2. Here, z ∼ N (0, 1) is the random num-
ber associated with the noise realization, and ι is the angle
between the signals Δh(θTr) and ∂h/∂α. The Bayes factor
in favor of the deviation from normal EMRI is

B = Π

A

Zbinary

Znormal
, (53)

where Π is the prior Bayes factor and A = αmax − αmin is
the prior range of α. Inserting the expressions in Eqs. (49)
and (51) into Eq. (53), the logarithm of the Bayes factor is
given by

lnB = ln

(
Π

A

√
2π

ρ

)
+ (z + ρ

√
2(1 − M) cos ι)2

2
. (54)

In this work, our results are scaled to Π = A = 1, z = 0,
cos ι → cos ιm = 1, and the threshold of the Bayes factor
Bthreshold = e10 [67]. The final expression of lnB reads

lnB = ln

(√
2π

ρ

)
+ ρ2(1 − M). (55)

In Table 1, we list the logarithm of the Bayes factor (lnB)
for twelve b-EMRI sources and sort them by lnB. Some of
the Bayes factor B are larger than the threshold Bthreshold,
which means these b-EMRIs can be recognized from the
normal EMRIs. Mass loss due to the merger of BBHs is a
distinctive feature of b-EMRIs that can distinguish them from
normal EMRIs. This feature makes it easier to recognize
b-EMRIs from normal EMRIs. If the BBHs do not merge

during the observation, we may also recognize them as b-
EMRIs if with appropriate binary mass m and separation d0.
Because the quadrupole moment of the compact binary is
the critical factor for identifying b-EMRIs. This quadrupole
moment is decided by the m and d0 in Eq. (11).

5 Conclusions

Binary-EMRIs can serve as multi-band GW sources for both
ground-based and space-borne detectors. In this study, we
find that b-EMRIs can be distinguished from normal EMRIs
in low frequency band. Due to the several approximations, the
accuracy of our b-EMRI waveform may not be sufficient for
parameter estimation, but it should be enough to demonstrate
its distinguishability for our work.

Though the change of the energy fluxes and waveforms
due to the binary is tiny compared with the case of the sec-
ondary body just a single black hole, we find that regardless
affect whether the BBHs merge or not during the inspiraling
around the SMBH. We show that the data analysis can in prin-
ciple distinguish b-EMRIs and normal EMRIs. Therefore,
the future LISA and Taiji detectors can recognize b-EMRIs
if this kind of sources exist and have enough SNR. Addition-
ally, we decompose the complicated source terms and can
calculate the b-EMRI waveform in just a few seconds with a
single CPU core. This method will facilitate the development
of the waveform template for parameter estimation.

There are still some difficult problems for future work.
Full consideration of dissipative effects in the case of BBHs
as secondary bodies would also require consideration of the
evolution of BBHs in Kerr spacetime. The elliptical orbit will
be caused by the tidal effect, and the energy flux of BBHs
will be influenced by Kerr spacetime, which are more dif-
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ficult problems to tackle, especially in the case of generic
orbits. Once the complete waveform caused by this hierar-
chical three-body system is known, the high-frequency GW
signal from the BBHs can be separated from the whole signal
by using high-pass filtering techniques.

Finally, a particularly intriguing venture involves multi-
band observation for parameter estimation. Space-born GW
detectors are capable of identifying b-EMRIs, but the mea-
surement of BBHs may not be very accurate. In the case
of identifying a b-EMRI, if ground-based GW detectors can
simultaneously find a BBHs merger event associated with this
b-EMRI, then we can accurately measure the information of
the binary. This makes b-EMRI a typical multi-band gravita-
tional wave source. By exploiting simultaneous observations
from space-based and ground-based detectors, the accuracy
of parameter estimation can be significantly improved, such
as the loss of rest mass result by merger and the detailed
information about BBHs. Therefore, the b-EMRI can be a
unique laboratory for testing general relativity.
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Appendix A: The Teukolsky source term

In this appendix, we will present the main conclusions about
source terms containing quadrupole moments. Different from

[44], we abandon projecting the energy-momentum tensor to
the orthonormal tetrad. This simplifies the expressions. It is
worth pointing out that there are some typos in Eqs. (B10,
B11) of [44].

Following the Ref. [45], the source term is given by the
following relation

Tlmω =
∫

dtdθdφΔ2 (TNN + TM̄N + TM̄ M̄

)
(A.1)

where,

TNN = f 0
nnnμnνT

μν, (A.2)

TM̄N = f 0
nm̄n(μm̄ν)T

μν + ∂r ( f
1
nm̄n(μm̄ν)T

μν), (A.3)

TM̄ M̄ = f 0
m̄m̄m̄μm̄νT

μν + ∂r ( f
1
m̄m̄ m̄μm̄νT

μν)

+ ∂2
r ( f 2

m̄m̄m̄μm̄νT
μν) (A.4)

with

f 0
nn = − 2 sin θ

Δ2ρ3ρ̄
(L†

1 − 2ia sin θ)L†
2S

aω
lm , (A.5)

f 0
nm̄ = 4 sin θ√

2ρ3Δ

[(
i K

Δ
+ ρ + ρ̄

)
L†

2

−a sin θ
K

Δ
(ρ̄ − ρ)

]
Saω
lm , (A.6)

f 1
nm̄ = 4 sin θ√

2ρ3Δ
[L†

2 + ia sin θ(ρ̄ − ρ)]Saω
lm , (A.7)

f 0
m̄m̄ = ρ̄

ρ3

[
d

dr

(
i K

Δ

)
− 2ρ

i K

Δ
+ K 2

Δ2

]
Saω
lm , (A.8)

f 1
m̄m̄ = − 2

(
ρ̄

ρ2 + i ρ̄K

ρ3Δ

)
Saω
lm , (A.9)

f 2
m̄m̄ = − ρ̄

ρ3 S
aω
lm , (A.10)

where

K = ((r2 + a2)ω − am), (A.11)

ρ = (r − ia sin θ)−1, (A.12)

L†
s = ∂

∂θ
− m

sin θ
+ aω sin θ + s cot θ (A.13)

and the null tetrad is defined as

lμ =
(
r2 + a2

Δ
, 1, 0,

a

Δ

)
,

nμ =
(
r2 + a2

2Σ
,− Δ

2Σ
, 0,

a

2Σ

)
,

mμ =
(
ia sin θ√

2
, 0,

1√
2
,

i√
2 sin θ

)/
(r + ia cos θ).

(A.14)
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Now, we get the new form of energy-momentum tensor as
defined in Eq. 1

Tμν =
∫

dτ

[
1√−g

P(μν)δ4 + 1√−g
∂δ

(
Qδ(μν)δ4

)

+ 1√−g
∂δ∂ρ

(
Iδ(μν)ρδ4

)]
,

(A.15)

where

Pμν =Pμvν + Γ μ
δρS

νρvδ

+ 1

3
Jμδργ Rν

δργ − 2

3
Γ μ

δρΓ ν
γσ J

δγρσ

− 2

3
(2Γ μδ

ρΓγ δσ J
ν(ργ )σ + Jμ

δργ ∂γ Γ νδρ),

(A.16)

Qδμν = − Sδμvν − 2

3
(Jρμνγ Γ δ

ργ + 2JρδγμΓ ν
γρ),

(A.17)

J δμνρ = − 2

3
J δμνρ. (A.18)

To remove Dirac delta functions from ZH,∞
lmω , we used the

well-known property

∫
g(x)

dn[ f (x)δ(x − x0)]
dxn

dx = f (x)
dn[g(x)]
dxn

|x=x0 .

(A.19)

By switching the order of integration, we can obtain the gen-
eral expression

Z∞,H
lmω = C∞,H

lmω

∫
dt

(
dt

dλ

)−1

ei(ωt−mφ)

×
(
C0 + C1

d

dr
+ C2

d2

dr2 + C3
d3

dr3

+C4
d4

dr4

)
Rup,in
lmω (A.20)

where

C0 = Oμν
[
f 0
μν

]
, (A.21)

C1 = −Oμν
[
f 1
μν

]
+ Hμν

[
f 0
μν

]
, (A.22)

C2 = Oμν
[
f 2
μν

]
− Hμν

[
f 1
μν

]
+ Kμν

[
f 0
μν

]
, (A.23)

C3 = Hμν
[
f 2
μν

]
− Kμν

[
f 1
μν

]
, (A.24)

C4 = Kμν
[
f 2
μν

]
(A.25)

with

f 0
μν = ( f 0

nnnμnν + f 0
nm̄n(μm̄ν) + f 0

m̄m̄ m̄μm̄ν)/
√−g,

(A.26)

f 1
μν = ( f 1

nm̄n(μm̄ν) + f 1
m̄m̄ m̄μm̄ν)/

√−g, (A.27)

f 2
μν = ( f 2

m̄m̄m̄μm̄ν)/
√−g (A.28)

and operators Oμν,Hμν,Kμν being defined as

Oμν = (−ω2J tμνt + 2mωJ tμνφ − m2J φμνφ

− iωQtμν + imQφμν + Pμν)

+ (2iωJ tμνr − 2imJ rμνφ − Qrμν)∂r

+ (2iωJ tμνθ − 2imJ φμνθ − Qθμν)∂θ

+ 2J rμνθ ∂r∂θ + J rμνr∂2
r + J θμνθ ∂2

θ , (A.29)

Hμν = i(2ωJ tμνr − 2mJ rμνφ + iQrμν)

+2(J rμνr∂r + J rμνθ∂θ ), (A.30)

Kμν = J rμνr . (A.31)

It is convenient to check the correctness of operators Oμν ,
the form of the terms is related to the direction of the compo-
nents of the multipole tensor. The direction (t, r, θ, φ) rep-
resents (−iω,−∂r ,−∂θ , im), respectively. For example, the
coefficient of J φ(μν)θ should be 2(−∂θ )(im). And operators
Oμν,Hμν,Kμν satisfy

Oμν[ f (r)g(r, θ)] = Oμν[g(r, θ)] f (r)
+ Hμν[g(r, θ)]d f (r)

dr

+ Kμν[g(r, θ)]d
2 f (r)

dr2 (A.32)

where g(r, θ) and f (r) are arbitrary smooth functions.

Appendix B: Parameter separation

In this appendix, We will give an explicit form of fi j (a, r)
in Eq. (39). In the circular and equatorial orbit, we have

vr = 0, (B.33a)

vθ = 0. (B.33b)

Furthermore, if pμ, Sμν and Jαβγ δ take the form described
in Sec. 2, we have

Qθμν = 0, (B.34a)

J αμνθ = 0. (B.34b)

Hence, operators Oμν and Hμν become

123
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Oμν = (−ω2J tμνt + 2mωJ tμνφ − m2J φμνφ

− iωQtμν + imQφμν + Pμν)

+ (2iωJ tμνr − 2imJ rμνφ − Qrμν)∂r

+ J rμνr∂2
r , (B.35)

Hμν = i(2ωJ tμνr − 2mJ rμνφ + iQrμν) + 2J rμνr∂r .

(B.36)

We will prove that Eq. (A.20) can be rewritten as following
form

Z∞,H
lmω = C∞,H

lmω

∫
dtei(ωt−mφ)(

∑
i

θiC
up,in
ilmω(a, r)) (B.37)

as the first step, where θi = (mb, Sθ , Mrr , Mrφ, Mφφ). Note
that

Sμ = Sθ δ
μ
θ , (B.38)

Mμν = Mrrδμ
r δν

r + Mrφ(δμ
r δν

φ + δ
μ
φ δν

r )

+ Mφφδ
μ
φ δν

φ (B.39)

indicate Sμν = Sz Ŝμν and

Jαβγ δ = Mrr Ĵαβγ δ
3 + Mrφ Ĵαβγ δ

4 + Mφφ Ĵαβγ δ

5 , (B.40)

where

Ŝμν = εμν
γ rv

γ ,

Ĵαβγ δ
3 = − 3

m2 p
[αδβ]

r δ
[γ
r pδ],

Ĵαβγ δ
4 = − 3

m2 (p[αδβ]
r δ

[γ
φ pδ] + p[αδ

β]
φ δ

[γ
r pδ]),

Ĵαβγ δ

5 = − 3

m2 p
[αδ

β]
φ δ

[γ
φ pδ]. (B.41)

Similarly, we can get

Pμν = mbPμν
1 + SzPμν

2 + MrrPμν
3

+ MrφPμν
4 + MφφPμν

5 , (B.42)

Qδμν = SzQδμν
2 + MrrQδμν

3 + MrφQδμν
4

+ MφφQδμν
5 , (B.43)

J δμνρ = MrrJ δμνρ
3 + MrφJ δμνρ

4 + MφφJ δμνρ
5 (B.44)

where

Pμν
1 = vμvν, (B.45)

Pμν
2 = Γ μ

δρ Ŝ
νρvδ, (B.46)

Pμν
i = 1

3
Jμδργ

i Rν
δργ − 2

3
Γ μ

δρΓ ν
γσ J

δγρσ

i

− 2

3
(2Γ μδ

ρΓγ δσ J
ν(ργ )σ

i + Jμ
i δργ

∂γ Γ νδρ),

i = 3, 4, 5, (B.47)

Qδμν
1 = −Ŝδμvν, (B.48)

Qδμν
2 = −2

3
(Jρμνγ

i Γ δ
ργ + 2Jρδγμ

i Γ ν
γρ), (B.49)

i = 3, 4, 5, (B.50)

J δμνρ = −2

3
J δμνρ
i , i = 3, 4, 5. (B.51)

From Eq. (B.35), Eq. (B.36) and Eq. (A.30), operators Oμν ,
Hμν and K also have the separation form

Oμν = mbOμν
1 + SzOμν

2 + MrrOμν
3

+ MrφOμν
4 + MφφOμν

5 , (B.52)

Hμν = SzHμν
2 + MrrHμν

3 + MrφHμν
4

+ MφφHμν
5 , (B.53)

Kμν = MrrKμν
3 + MrφKμν

4 + MφφKμν
5 (B.54)

with

Oμν
1 = Pμν

1 , (B.55)

Oμν
2 = −iωQtμν

2 + imQφμν
2 + Pμν

2 − Qrμν
2 ∂r , (B.56)

Oμν
i = (−ω2J tμνt

k + 2mωJ tμνφ
k − m2J φμνφ

k

− iωQtμν
k + imQφμν

k + Pμν
k )

+ (2iωJ tμνr
k − 2imJ rμνφ

k − Qrμν
k )∂r

+ J rμνr
k ∂2

r , k = 3, 4, 5, (B.57)

Hμν
2 = −Qrμν

2 , (B.58)

Hμν
k = i(2ωJ tμνr

k − 2mJ rμνφ
k + iQrμν

K )

+ 2J rμνr
k ∂r , k = 3, 4, 5, (B.59)

Kμν
k = J rμνr

k , k = 3, 4, 5. (B.60)

Then we can prove Eq. (B.37), and coefficients Cup,in
ilmω read

Cup,in
1lmω =

(
dt

dλ

)−1 (
Oμν

1 [ f 0
μν] − Oμν

1 [ f 1
μν]

d

dr

+Oμν
1 [ f 2

μν]
d

dr

)
Rup,in
lmω , (B.61)

Cup,in
2lmω =

(
dt

dλ

)−1 (
Oμν

2 [ f 0
μν] +

(
− Oμν

2 [ f 1
μν]

+Hμν
2 [ f 0

μν]
) d

dr
+
(
Oμν

2 [ f 2
μν] − Hμν

2

) d

dr

+Hμν
2 [ f 2

μν]
d

dr

)
Rup,in
lmω , (B.62)
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Cup,in
klmω =

(
dt

dλ

)−1 (
Oμν

k

[
f 0
μν

]

+
(
Oμν

k

[
f 1
μν

]
+ Hμν

k

[
f 0
μν

] ) d

dr

+
(
Oμν

k

[
f 2
μν

]
− Hμν

k

[
f 1
μν

]
+ Kμν

k

[
f 0
μν

] ) d2

dr2

+
(
Hμν

k

[
f 2
μν

]
− Kμν

k

[
f 1
μν

] ) d3

dr3

+
(
Kμν

k

[
f 2
μν

] ) d4

dr4

)
Rup,in
lmω , k = 3, 4, 5. (B.63)

Then, following the Eqs. (30)–(36), the total GW energy flux
reads

F =
∞∑
l=2

l∑
m=1

(2π/(mΩ̂)2)

5∑
i=1

(|θiCH
lmΩ̂

C in
ilmΩ̂

|2 + αlm |θiC∞
lmΩ̂

Cup

ilmΩ̂
|2)

=
5∑

i=1

5∑
j=1

θiθ j

( ∞∑
l=2

l∑
m=1

2π

(mΩ̂)2

{[
(CH

lmΩ̂
C in
ilmΩ̂

)  (CH
lmΩ̂

C in
jlmΩ̂

)
]

+αlm

[
(C∞

lmΩ̂
Cup

ilmΩ̂
)  (C∞

lmΩ̂
Cup

jlmΩ̂
)
]})

(B.64)

where the operator  is defined by

a  b = Re(a)Re(b) + Im(a)Im(b) (B.65)

with Re and Im denote the real and imaginary part of a com-
plex value, respectively. Note that use Eq.(B.37) we can also
obtain a separation form for the b-EMRI waveform

hlm = − 2

R

∑
i

θi

{
2π

(mΩ̂)2
CH
lmΩ̂

C in
ilmΩ̂

[a, r(t)]
}

SaΩ̂
lm (Θ)eim[Φ−φ(t̂)]. (B.66)
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