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In this article, we study the impact of self-interaction and multiparticle states on sustaining negative
energies in relativistic quantum systems. For physically reasonable models, one usually requires bounds on
both magnitude and duration of the accumulation of negative energy, typically given in form of a quantum
energy inequality (QEI). Such bounds have applications in semiclassical gravity where they exclude exotic
spacetime geometries and imply the formation of singularities. The essence of this article is a novel
numerical method for determining optimal QEI bounds at the one- or two-particle level, extending previous
work focused on the one-particle case and overcoming a new type of technical challenge associated with
the two-particle scenario. Our method is tailored for integrable models in quantum field theory constructed
via the S-matrix boostrap. Applying the method to a representative model, the sinh-Gordon model, we
confirm self-interaction as the source of negative energy, with stronger interactions leading to more
pronounced negativities. Moreover, we establish the validity of QEIs and the averaged weak energy
condition (AWEC) at the one- and two-particle level. Lastly, we identify a constrained one-parameter class
of nonminimal stress tensor expressions satisfying QEIs at both levels, with more stringent constraints
emerging from the QEI bounds at the two-particle level.
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I. INTRODUCTION

In general relativity, Einstein’s equations couple the
geometry of spacetime to matter which is represented by
the so-called stress(-energy) tensor. To select physically
reasonable solutions one typically imposes energy con-
ditions. The classical energy conditions—such as the weak
energy condition (WEC) or the null energy condition
(NEC)—represent pointwise positivity of the energy den-
sity and pressure as measured by moving observers. On the
geometric side these conditions exclude exotic spacetime
configurations like wormholes or warp drives and imply the
formation of a singularity provided that the geometry has
contracted sufficiently to form a trapped surface [1].
Quantum matter, though, has challenged this perspective:

Negative energy densities appear abundantly in quantum
field theory [2] as for example in the well-tested phenome-
non known as Casimir effect. The energy density can even
scale to negative infinity at a point; see e.g. [[3], Sec. 2].
Thus all classical energy conditions of GR are violated by

quantum matter. Alleviating is that weaker alternatives have
been developed. On the one side there are the averaged
energy conditions (AWEC, ANEC, …) which require the
classical energy conditions to hold “globally on average”
meaning when integrated along full trajectories in space-
time. On the other side, there are the so-called quantum
energy inequalities (QEI) which retain the local character of
the classical energy conditions but allow for bounded
negative energies.
Consider the stress-energy Tðγ; g2Þ measured along an

inertial trajectory γ with velocity vector u and averaged
over a positive test function g2,

Tðγ; g2Þ ¼
Z

dτ uμ uνTμνðγðτÞÞg2ðτÞ; ð1Þ

where TμνðxÞ is the stress tensor at spacetime point x.
Focussing on timelike trajectories γ, a QEI may take the
following form:

Tðγ; g2Þ ≥ −cg1 ð2Þ

for a constant cg > 0 which depends only on g. If the
inequality holds in a suitably large set of states, we say that
a state-independent (worldline) QEI holds. However, it is
possible that one has to allow for a mild dependence of cg
on the states; in this case we call the QEI state-dependent.
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Note here that averaged energy conditions can in principle
be inferred by studying the limit g → 1. For instance, the
AWEC requires that

Tðγ; 1Þ ¼
Z

dτ uμ uνTμνðγðτÞÞ ≥ 0 ð3Þ

for all inextendible timelike geodesics γ and when the
integral is absolutely convergent. It is implied from (2)
provided that cg → 0 in the limit g → 1.
Both types of weakened energy conditions (QEIs and

averaged conditions) are still effectively imposing con-
straints on exotic spacetimes and allow to state conditions
for singularity formations similar as with classical energy
conditions; see [4] for a review.
QEIs have been proven for many kinds of free QFT

models on flat and curved spacetimes and also conformal
field theories in 1þ 1d [5–30]. Also averaged energy
conditions, here referring to its weakest variants ANEC
and achronal ANEC, are known to hold for scalar and vector
fields in free QFTs on Minkowski space [6,24,31–36] and,
restricting to 1þ 1d, even for general situations with
interaction and curvature [24,37,38].
For QEIs, though, their validity in the presence of self-

interaction is less clear. There exist general model-
independent inequalities which are however weaker than
the previously discussed ones [39,40] and it is unclear if
they are able to impose constraints on the geometric side.
More is known when specializing to the class of 1þ 1d
integrable models. AQEI in the presence of self-interaction
was first established in the Ising model by using an analogy
with the free fermionic field [41]. The only other full QEI in
this context pertains to a recent result for the sine-Gordon
model in the superrenormalizable regime with an adiabatic
cutoff [42]. QEIs at one-particle level, i.e., where (2) holds
when evaluated in one-particle states, have been obtained
for the class of integrable models with one scalar particle
type [43] and recently generalized to models with bound
states, arbitrary particle types, and inner degrees of
freedom [44,45].
In this article, we present a method to obtain numerical

estimates for sharp QEI bounds in one- and two-particle
states in the class of integrable models: We will analyse the
spectrum of a discretized version of the averaged stress
tensor in one- and two-particle states. The lower bound of
the spectrum will serve as an approximation for the optimal
choice of the constant cg appearing in (2). For the time
being, we will exclude states superposing different particle
numbers. Further, we limit ourselves to treat a simple
representative model, the sinh-Gordon model, which
describes a single scalar particle without bound states.
The method, however, is general and in principle applies to
any integrable model provided that the truncated momen-
tum space correlation functions—also known as form
factors—of the stress tensor are known to low order.

While the general strategy is similar to a numerical
analysis for the one-particle case [46], the two-particle case
has two additional significant challenges. First, going from
one- to two-particle states, the numerical dimension of the
problem squares so that computations are much more
costly. Second, while the to-be-discretized kernel is ana-
lytic at the one-particle level, at the two-particle level it has
singularities. This needed extra attention and a careful
inclusion in the numerical approximation in order to
achieve numerical stability.
The numerical results for the sinh-Gordon model indi-

cate that QEIs at one- and two-particle level share many
qualitative features but accumulation of negative energies
can be significantly higher in magnitude and duration in
states with two particles. At the one-particle level, we find
agreement with the results obtained in [46]. The results at
two-particle level are new.
Concluding with the general introduction (Sec. I), we

will start with a brief but self-contained account on the
treatment of observables in integrable models (Sec. II). As
part of this section, we will specifically discuss the stress
tensor (Secs. II A and II C) and introduce the sinh-Gordon
model (Sec. II B). Next, we introduce the numerical setup.
This includes a brief account on the physical input data
(Sec. III A), a general description of the discretization
method (Sec. III B) as well as a detailed description of the
central methodological challenge, the treatment of singu-
larities (Secs. III C to III E). It also includes some further
methodological aspects (Secs. III F to III H). Finally, we
present our numerical results (Sec. IV) including plots of
lower bounds for the stress-tensor at one- and two-particle
level with varying model inputs. We conclude on these
results in Sec. V.

II. INTEGRABLE MODELS, OBSERVABLES
AND FORM FACTORS

In this section we will briefly review the setup of
integrable models via the inverse scattering approach—
also referred to as S-matrix bootstrap—and give the
description of observables in terms of their form factors.
The starting point of the construction consists of fixing the
particle content of the model and a scattering function
representing the two-to-two particle interactions. Assuming
integrability, this suffices to determine the full state space
and local field content of the model. While this applies to
general models with several particle types and inner
degrees of freedom [44,45,47,48], we will confine our-
selves to treat models with a single bosonic scalar degree of
freedom and in particular the sinh-Gordon model serving as
a representative example.
In our setup, the (two-to-two particle) scattering function

can be described by a single complex-valued function SðθÞ
conveniently parametrized by the rapidity difference θ of
the incoming (or outgoing) particles. Typical properties in
scattering theory like unitarity and crossing symmetry
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amount to S being analytic in the physical strip Rþ i½0; π�
and satisfying the relations

SðζÞ−1 ¼ Sð−ζÞ ¼ Sðζ þ iπÞ ¼ Sðζ̄Þ; ζ∈C: ð4Þ
The full state space for integrable models is then given

by an S-symmetrized version of second quantization [49]:
With one-particle space H1 ¼ L2ðRÞ the interacting
k-particle space is given by

Hk ¼ L2
SðRkÞ ¼ fψ ∈L2ðRkÞ; ψ S-symmetricg; ð5Þ

where ψ is referred to as S-symmetric iff for all θ∈Rk and
τ∈Symk,

ψðθÞ ¼ SτðθÞψðθτÞ ≔
Y
i<j

τðiÞ>τðjÞ

SðθτðiÞ − θτðjÞÞψðθÞ: ð6Þ

Here, θτ ¼ ðθτð1Þ;…; θτðkÞÞ and Symk denotes the symmet-
ric group with k elements. As further notation, we introduce

PðkÞ
S which projects from unsymmetrized Fock space onto

S-symmetric k-particle vectors,

PðkÞ
S ψðθÞ ¼

X
τ∈Symk

SτðθÞψðθτÞ; ð7Þ

Occasionally, we will use PðkÞ
S;θ to specify on which

variables PðkÞ
S acts.

To describe observables, it is customary to introduce
improper rapidity eigenstates jθi≡ jθ1;…; θki which are
fixed by orthonormality,

hθjηi ¼ PðkÞ
S;θδðθ − ηÞ; ð8Þ

and the eigenrelation,

Pμjθi ¼ pμðθÞjθi; pμðθÞ ≔
Xk
j¼1

pμðθjÞ: ð9Þ

Here Pμ, μ ¼ 0, 1, denotes the total energy momentum
operator and pðθÞ ¼ mðchθ; shθÞt a single on-shell
momentum parametrized by the particle’s mass m > 0
and rapidity θ.
The k-particle form factor of an observable A is then

given by

FkðθÞ ¼
ffiffiffiffi
k!

p
hθjAjΩi; ð10Þ

where jΩi is the vacuum vector. The expectation value of A
in a state ψ takes the form

hψ ; Aψi ¼
Z

dθdηψðθÞhθjAjηiψðηÞ: ð11Þ

Assuming that A is localized in a finite region, the Fk
allow for a meromorphic continuation and satisfy the so-
called form factor equations [45,46,50–52] [[45], Chap. 3].
Assuming for simplicity, that all odd form factors vanish,
i.e., F2kþ1 ¼ 0, the relation of (11) to the form factors is
then given by

Aðθ; ηÞ ≔ hθjAjηi ¼ PðkÞ
S;θP

ðkÞ
S−1;η

Xk
j¼1

k!
ðj!Þ2ðk − jÞ!F2jðθ1.:j þ i0; ηj::1 þ iπ − i0Þδðθjþ1 − ηjþ1Þ…δðθk − ηkÞ; ð12Þ

where θi::j ¼ ðθi;…; θjÞ.1 The 0 indicates the distributional
limit from above; which wewill keep implicit from now on.
For models without bound states the form factor equations
can be summarized as fF2kgk∈N0

being a family of
meromorphic functions which satisfy,

S-symmetry∶ F2kðζÞ¼ SτðζÞF2kðζτÞ; τ∈Sym2k; ð13Þ

S-periodicity∶ F2kðζ0; ζÞ ¼ F2kðζ; ζ0Þ; ð14Þ

for ζ ¼ ðζ0; ζÞ∈C2k with arbitrary ζ0 ∈C2k−1 and ζ∈C and
with the following singularity structure: The only poles of

all elements of fF2kg are first-order and fixed by

lim
ζ0→ζ

ðζ − ζ0ÞF2kþ2ðζ; ζ0 þ iπ; ζÞ

¼ 1

2πi

�
1 −

Yk
p¼1

Sðζ − ζpÞSðζpþk − ζÞ
�
F2kðζÞ ð15Þ

as well as consistency with S-symmetry and S-periodicity.
These poles are named kinematical singularities.
Solutions to these equations take the general form

FA
2kðζÞ ¼ q2kðexp ζÞ

Y
1≤i<j≤2k

Fminðζj − ζiÞ
eζi þ eζj

; ð16Þ

where the q2k are symmetric Laurent polynomials depend-
ing on A, and Fmin is the so-called minimal solution of the
model which satisfies

1This expression compares with the inversion formula
derived in [[52], Prop. 3.5] using hθj ¼ ffiffiffiffiffiffi

m!
p hlðθÞj and

jθi ¼ ffiffiffiffiffiffi
m!

p jrð θ
⟵

Þi for θ∈Rm and θ
⟵

the same tuple with
reversed order.
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FminðζÞ ¼ SðζÞFminð−ζÞ; ð17Þ
Fminðζ þ iπÞ ¼ Fminð−ζ þ iπÞ: ð18Þ

For a conventional normalization, FminðiπÞ ¼ 1, the min-
imal solution has an integral representation as

FminðζÞ ¼ exp

�
2

Z
∞

0

fðtÞ sin2 ðiπ − ζÞt
2π

dt
tsht

�
; ð19Þ

where f is uniquely specified in terms of S:

fðtÞ ¼ iπ−1
Z

∞

0

�
d
dθ

log SðθÞ
�
cosðπ−1θtÞdθ; ð20Þ

see also [[44], Appendix A.3]. For later use we introduce
the constant

F∞
min ¼ lim

θ→∞
Fminðθ þ iπÞ ¼ exp

Z
∞

0

fðtÞ
tsht

dt: ð21Þ

The form factors of observables in integrable models
were subject to a plethora of studies and there exist explicit
expressions at low particle numbers in a number of
physically relevant models; see e.g. [53–56]. Our aim will
be to take these solutions and insert it into (12) to obtain an
expression for hθjAjηi suitable for numerical analysis.

A. Form factors of the stress tensor

Ultimately, we are interested to treat the smeared stress
tensor, i.e., choosing A ¼ Tðγ; g2Þ. The stress tensor is
mainly characterized as the conserved local hermitian current
generating the translations upon spacelike integration,

Pμ ¼
Z

Tμ0ð0; xÞdx; ∂
μTμν ¼ 0: ð22Þ

Poincaré covariance of the stress tensor and the second
identity in (22) imply that

FTðγ;g2Þ
2k ðθÞ ¼ uμuνtμν

�
pðθÞ�F2kðθÞeg2�uρpρðθÞ

�
; ð23Þ

where

eg2ðpÞ ¼ Z
dxg2ðxÞeipx; ð24Þ

tμνðpÞ ¼
ημνp2 − pμpν

p2
; ð25Þ

and fF2kg solves the form factor equations (13)–(15)
corresponding to the trace of the stress tensor,
A ¼ ημνTμνð0Þ.
The first identity in (22) implements a normalization on

F2 (see e.g. [[44], Theorem 3.2]),

F2ðθ; θ þ iπÞ ¼ m2

2π
; ð26Þ

fixing also the normalization of higher order F2k via the
residue relation (15).

B. Explicit solutions for the sinh-Gordon model

The sinh-Gordon model describes a bosonic scalar
massive degree of freedom which scatters according to

SðζÞ ¼ shζ − ia
shζ þ ia

; 0 < a < 1: ð27Þ

Here a ¼ 0 corresponds to the free model and a ¼ 1 to the
maximally interacting case. The scattering function S is
obtained in perturbation theory [57,58] from the
Lagrangian

L ¼ 1

2
∂μφ∂

μφ −
m2

g2
chgφ; ð28Þ

with a ¼ sin πB
2

and B ¼ 2g2

8πþg2. The minimal solution is

given by (19) with

fðtÞ ¼ 4sh
Bt
4
sh

ð2 − BÞt
4

sh
t
2
ðshtÞ−1 ð29Þ

and satisfies

FminðζÞFminðζ þ iπÞ ¼ shζ
shζ þ ia

ðF∞
minÞ2: ð30Þ

The constant F∞
min can be evaluated efficiently numeri-

cally and interpolates monotonically between 1 and
expð2Gπ − acoth3Þ ≈ 1.26687 for a ranging from 0 to 1.
Here G denotes Catalan’s constant.
Concerning the form factors of the stress tensor, we first

note that Tμν is an even observable with respect to the
inversion symmetry φ ↔ −φ of the sinh-Gordon model so
that odd form factors vanish and the preceding characteri-
zation of even form factors applies. Solutions to the form
factor equations for F2k—representing the trace of the
stress tensor—have been obtained before [54,59]. These
take the form (16) with q2k given by

q0 ¼ 0; ð31Þ

q2 ¼
m2

2π
σ1; ð32Þ

q4 ¼
m2

2π

4a
2π

ðF∞
minÞ−4σ1σ2σ3; ð33Þ

q6 ¼
m2

2π

�
4a
2π

�
2

ðF∞
minÞ−12σ1σ5 ð34Þ

ðσ2σ3σ4 þ c1ðσ4σ5 þ σ1σ2σ6Þ þ c2σ3σ6Þ: ð35Þ
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Here c1 ¼ 4ð1 − a2Þ, c2 ¼ 1 − c1, and σj denotes the jth
elementary symmetric polynomial, i.e.,

σjðx1;…; xkÞ ¼
X

1≤i1<…<ij≤k
xi1…xij :

C. Nonminimal stress tensors

While the form factors given in the previous section
correspond to the canonical choice of the stress tensor,
other choices are possible. In this section we briefly
characterize these options in order to prepare a study of
the validity of QEIs for these nonminimal expressions. The
motivation here lies in the fact that in the inverse scattering
approach one has no direct access to usual prescriptions for
obtaining the stress tensor since a Lagrangian or action is
a priori not available. While this problem may be overcome
in specific models like the sinh-Gordon model, in general,
this is difficult and an intrinsic description of the stress
tensor in the inverse scattering setup is desirable. In this
regard, QEIs may qualify as an additional physical require-
ment selecting a physically reasonable stress tensor. This
has been explored in [44,46] at the one-particle level and
will be extended here to the two-particle level.
It is convenient to analyze the freedom of choice for the

stress tensor at the level of the form factor equations. Based
on the decomposition (23), it is sufficient to analyze
the freedom of choice of the trace of the stress tensor,
which is invariant under boosts. This implies that F2k is
invariant under uniform shifts, i.e., F2kðθþ ðλ;…; λÞÞ ¼
F2kðθÞ for all θ and λ, constraining q2k from (16) to be
homogeneous of degree kð2k − 1Þ. Restricting to polyno-
mial q2k and following the analysis in [59], a general
solution up to the two-particle level is of the form (16) with

q4¼
m2

2π

4a
2π

�ð1−λÞσ1σ2σ3þλðσ4σ21þσ23Þ
�
; λ∈R ð36Þ

and q2 as given in (32); higher q2k; k ≥ 3 do not contribute
at the two-particle level. As outlined in [[54], Sec. IV C] the
only choice which yields a singularity structure compatible
with the form factor equations for any component of the
stress tensor uμuνTμν corresponds to λ ¼ 0; the canonical
choice for the stress tensor as given in the preceding
section.
Other freedoms include to consider nonzero real con-

stants q0 or q1; the latter case has been analyzed in [60].
Both result in constant shifts of the spectrum of Tðγ; g2Þ
with a possible dependence on the type of states: For q0, we
simply have cg → cg þ q0

R
dτg2ðτÞ in (2). For states with

fixed particle number q1 does not contribute to cg. Thus
both alterations can be accommodated for in a simple
manner and we assume q0 ¼ q1 ¼ 0 in the following.
The only remaining freedom of choice is to “add

derivatives”: Given the canonical solution represented by

fq2kg, multiplication by an arbitrary power of σ2k−1σ1=σ2k
at each k∈N alters neither the form factor equations
nor (22) and has the same degree of homogeneity as
q2k. Thus, an arbitrary solution will be of the form
frðσ2k−1σ1=σ2kÞq2kg where r is an arbitrary polynomial
with real coefficients and rð0Þ ¼ 1. At the operator level,
this corresponds to modifying the canonical stress tensor
Tμν into rð−□=m2ÞTμν, where □ ¼ ∂μ∂

μ denotes the
d’Alembert operator. For the special case that the degree
of r is 1, we may parametrize our nonminimal stress tensor
to be of the form

Tμν
nonmin;ν ¼

�ð1 − νÞ − ν□
�
Tμν; ð37Þ

where Tμν denotes the canonical expression for the stress
tensor as before.

III. NUMERICAL SETUP

In this section wewill motivate and explain the numerical
setup. Our aim is to approximate an optimal bound cg as
appearing in (2). The first step is to discretize the hermitian

quadratic form Ak ¼ PðkÞ
S Tðγ; g2ÞPðkÞ

S acting on L2
SðRkÞ.

Next, we will perform a numerical spectral analysis of the
resulting matrix in order to find its lowest eigenvalue. If the
resolution of the discretized problem is sufficiently high, we
expect to obtain a good approximation for cg. Note that it is
sufficient to study Ak on L2

<ðRkÞ ≔ L2ðRk; dθθ1<…<θkÞ,
since L2

SðRkÞ ¼ PðkÞ
S L2

<ðRkÞ.

A. Physical parameters

There are four physically relevant inputs to the analysis:
The class of states, the interaction model, the observer’s
trajectory and the averaging profile. The class of states
consists of all (normalized) states with particle number k; in
this case being either one or two (excluding superpositions
with different particle numbers). The interaction model is
the sinh-Gordon model specified by its coupling parameter
B∈ ½0; 2� and its mass scale m > 0. For the mass, we
choose to measure energy in rescaled units so that effec-
tively m ¼ 1. Note here that the mass scale of the stress
tensor is fixed by (22) tom2 and that the form factors of the
(trace of the) stress tensor F2k are all proportional to m3

since we have factored out the Fourier transformed aver-

aging function eg2 which has mass scale m−1.
For inertial trajectories γ we may assume without loss of

generality, that γðτÞ ¼ ðτ; 0Þ: By covariance of the stress
tensor, expectation values transform as

hψ ; Tðγ; g2Þψi → hψ 0; Tðγ0; g2Þψ 0i; ð38Þ

where the primes indicate the transformed objects. For a
generic inertial trajectory γ there is a transformation
including a boost and a translation which brings it into
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the form γ0∶ τ ↦ ðτ; 0Þ. The boost results in a shift of ψ ;
the translation multiplies it with a phase factor. Since we
optimize over arbitrary states (aside from fixing the particle
number), we can ignore the change from ψ to ψ 0 without
loss of generality. The introduced cutoff for the numerical
analysis does not affect this argument since we choose it
sufficiently large for ignoring boundary effects.
Concerning the profile, we will study two one-parameter

classes of smooth test functionswhich satisfy
R
g2ðxÞdx¼ 1:

A Gaussian profile,

gGðxÞ¼ ð4πσ2Þ−1
4 exp

�
−

x2

8σ2

�
; g̃2GðpÞ¼ expð−σ2p2Þ;

and a Lorentzian one,

gLðxÞ¼ ð2σÞ12 exp
�
−
jxj
2σ

�
; g̃2LðpÞ¼

1

1þσ2p2
:

Both choices are parametrized by a single parameter, the
averaging scale σ which indicates the timescales over which
Ak is averaged.

B. Discretization method

For resolution n∈N and rapidity cutoff R > 0, we define
a lattice spacing h ≔ 2R

n , lattice points λj ≔ −Rþ h ·
ðj − 1

2
Þ, and an ordered index set

Ikn;< ≔ fj∈ f1;…; ngk∶ j1 < … < jkg;

enumerating a hyper triangular lattice

Λk
n;R;< ¼ fλj ≔ ðλj1 ;…; λjkÞgj∈ Ikn;<

:

Then, toward large n and R, the orthonormal system

En;R ¼fen;Rj gj∈Ikn;<
; en;Rj ðθÞ≔ χj1ðθ1Þ…χjkðθkÞ;

given in terms of normalized characteristic functions

χjðθÞ ¼ h−
1
2

�
1; θ∈ λj þ ½−h=2; h=2�;
0; otherwise

decently approximates L2
<ðRkÞ and thus L2

SðRkÞ. In par-
ticular, for ψ ∈L2

SðRkÞ we have

hψ ; Aψi ¼ ðk!Þ2
X

i;j∈ Ikn;<

β�iM
A
i;jβj; ð39Þ

where

βj ¼ hej;ψi and MA
i;j ¼ hei; Aeji: ð40Þ

The matrix elements evaluate to

MA
i;j ¼ hk

Z
½−1

2
;1
2
�2k
dθdηAðλi þ hθ; λj þ hηÞ: ð41Þ

Here, Hermiticity of A, thus of MA, corresponds to

Aðθ; ηÞ ¼ Aðη; θÞ ↔ MA
i;j ¼ ðMA

j;iÞ�: ð42Þ

In order to efficiently compute the components of MA,
we will approximate it for small h by its expansion up to
OðhkÞ, resp., by expanding the integrand Aðλi þ hθ; λj þ
hηÞ up to Oðh0Þ. If ir ≠ js for all r; s∈ f1;…; kg, then
Aðλi; λjÞ is regular and we may simply use a leading order
approximation for small h,

�
Aðλi þ hθ; λj þ hηÞ�l:o: ¼ Aðλi; λjÞ;

where the subscript “l.o.” indicates “leading order.” The
expression is independent from θ and η so that

ðMA
i;jÞl:o:¼ h2Aðλi;λjÞ; ir ≠ js;r;s∈f1;…;kg : ð43Þ

However, if ir ¼ js for one or more combinations of
ðr; sÞ, we have to deal with delta-distributions and kin-
ematical singularities; cf. (12) and (15). This results
in a directional dependence, i.e., a dependence on θ, η,
which has to be integrated over according to (41) and the
necessity to compute next-to-leading order contributions in
some cases.

C. Computation of leading order contributions
to the discretized kernels

To illustrate the computation of the leading-order con-
tribution to MA for the singular case, we treat here two
exemplaric cases in detail. Results for the other cases are
given in the next two sections. Since in the one-particle case
Aðλi; λjÞ is regular (even for coinciding arguments λi ¼ λj),
we focus on the two-particle case, i.e., k ¼ 2. The subscript
“l.o.” indicates again the leading-order contribution for
small h.
Let us introduce the short hand notation Sij ≔ Sðλi − λjÞ

and Fk;ij ≔ Fkðλi; λj þ iπÞ. Let us also adopt the conven-
tion that chi ¼ chλi, chij ¼ chðλi − λjÞ and similarly for shi
and shij.
Suppose that i1 ≠ j1 and i2 ¼ j2, then either by direct

computation from the expression for F4 (Sec. II B) or
according to (15), we obtain that

�
F4ðλi þ hθ; λ

j
⟵ þ h η

⟵þiπÞ�l:o:
¼ h−1

ð1 − Si2i1Sj1j2ÞF2;i1j1

2πiðθ2 − η2 þ i0Þ ; ð44Þ
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where the arrow on top of j and η indicates a reversion of
order. Since

Z
½−1

2
;1
2
�4

dθdη
2πiðθ2 − η2 þ i0Þ ¼ −

1

2
; ð45Þ

we arrive at

ðMF4

i;j Þl:o:¼
h
2
ðSi2i1Sj1j2 −1ÞF2;i1j1 ;

i1 ≠ j1
i2¼ j2

: ð46Þ

Suppose instead that i ¼ j, then

�
F4ðλi þ hθ; λ

j
⟵ þ h η

⟵þiπÞ�l:o:
¼ 2achi1i2

a2 þ sh2i1i2

ððθ1 − η1Þchi1 þ ðθ2 − η2Þchi2Þ2
4π2ðθ1 − η1 þ i0Þðθ2 − η2 þ i0Þ ; ð47Þ

again by direct computation. The terms of the form
ðθ1 − η1Þðθ2 − η2 þ i0Þ−1 vanish upon integration, so
that only the term which does not depend on θ and η
survives:

ðMF4

i;j Þl:o: ¼ h2
a
π2

chi1chi2chi1i2
a2 þ sh2i1i2

; i ¼ j: ð48Þ

Expressions for F2ðλi1 þ hθ1; λj1 þ hη1 þ iπÞδðλi2 −
λj2 þ hðθ2 − η2ÞÞ and permuted variants can be computed
in analogous fashion. Here one uses that δðλþ hθÞ ¼
h−1δðθÞ if λ ¼ 0 and δðλþ hθÞ ¼ 0 in case that λ ≠ 0
for sufficiently small h.

D. Explicit discretized kernels
up to leading order

In this section, we will list the discretized expressions
obtained by the method described in the preceding section
focussing on the leading order terms. From (12) we obtain
schematically that

A1 ¼ F2; ð49Þ

A2 ¼
1

2
ðF4 þ 4F2δ2Þ; ð50Þ

where the projectors PðkÞ
S;θ and PðkÞ

S−1;η
are included in the

definition of the summands. We will list the matrix
elements obtained for the individual summands up to
leading order in h:

ðMF2

i;jÞl:o: ¼ hF2;ij; ð51Þ

ðMF4

i;j Þl:o: ¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

h2 a
π2

chi1 chi2 chi1i2
a2þsh2i1i2

i ¼ j

h2 a
π2
Si2i1

chi1 chi2 chi1i2
a2þsh2i1i2

i ¼ j
⟵

h 1
2
ð1 − Si2i1Sj1j2ÞF2;i2j2 i1 ¼ j1

h 1
2
ðSj1j2 − Si2i1ÞF2;i2j1 i1 ¼ j2

h 1
2
ðSi2i1 − Sj1j2ÞF2;i1j2 i2 ¼ j1

h 1
2
ðSi2i1Sj1j2 − 1ÞF2;i1j1 i2 ¼ j2

h2F
4;i j

⟵ otherwise

; ð52Þ

ðM4F2δ2
i;j Þl:o: ¼

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

h 1
2π ðch2i1 þ ch2i2Þ i ¼ j

h 1
2π Si2i1ðch2i1 þ ch2i2Þ i ¼ j

⟵

hSi2i1Sj1j2F2;i2j2 i1 ¼ j1
hSi2i1F2;i2j1 i1 ¼ j2
hSj1j2F2;i1j2 i2 ¼ j1
hF2;i1j1 i2 ¼ j2
0 otherwise

: ð53Þ

Here, F2;ij ¼ 1þchðλiþλjÞ
4π Fminðλi − λj þ iπÞ. The case dis-

tinctions are concatenated by “else if”, so that reading from
top to bottom the first affirmative condition is accepted. For
instance, the third case in MF4

i;j corresponds to i1 ¼ j1 ∧
i2 ≠ j2 since if i2 ¼ j2 the first condition would have
already been true. Note that, when a single pair of argu-
ments is equal, the contributions from F4 and F2δ2 are
of a similar form, so that they add up nicely. Note further
that (51)–(53) are also valid for nonminimal stress tensors
as given in (37) when appropriate factors are added to F2;ij

and F
4;i j

⟵.

E. Next-to-leading order contributions

In the numerical analysis, we aimed to include all terms
up to order Oðh2Þ. Since in the singular cases the leading-
order contribution of MA is OðhÞ this implies that MA

receives next-to-leading order corrections in the cases
i1 ¼ j1, i1 ¼ j2, i2 ¼ j1, and i2 ¼ j2, for both A ¼ F2δ2

and A ¼ F4. In the special cases i ¼ j and i ¼ j
⟵

only A ¼
F2δ2 receives next-to-leading order contributions. At least
some of these terms are significant: Without inclusion,
previous tests showed a bad numerical convergence in
small h (i.e. with increasing n) which was drastically
improved when including the terms mentioned above.
The discretized kernels including next-to-leading order
contributions are too long to be displayed here but arise
from tedious but straightforward expansion of previously
given expressions in higher orders of h. For faster
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computations we neglect terms which depend on deriva-
tives in Fmin. Their contribution has been checked to be
small for a large range of parameters as is also indicated by
the smallness of jF0

min=Fminj.

F. Numerical representation
of the minimal solution

It is desirable to have a fast numerical representation of
the minimal solution Fmin which appears frequently in the
expressions computed above. The minimal solution is
defined via an integral transform according to (19). We
implemented this integral transform numerically and used
the methods suggested in [[54], Eq. (4.18), N ¼ 1] to
improve the convergence rate. The relation (30) is satisfied
with a precision of 10−6. We stored the numerical approxi-
mation in a lookup table for fast evaluation.

G. Spectral analysis

The eventual task is to find the lowest eigenvalue of the
dense Hermitian matrix MA. The corresponding vector
space dimension is given by the number of lattice points
and for large n amounts to

d ¼ jIkn;<j ¼
�
n

k

�
≈
nk

k!
:

We use Lanczos’, resp., Arnoldi’s method as imple-
mented in Mathematica (Version 13.2) in the func-
tion Eigensystem½−M;s;Method → f‘Arnoldi’;
‘Criteria’ → ‘RealPart’g� The outcome of this
analysis will of course depend not only on the physical
parameters (Sec. III A) but also on n and R. Thus the result
is only accepted as an approximate optimal bound cg
whenever it stabilizes for sufficiently large n and R upon
further variation of n and R within a satisfactory preci-
sion goal.

H. Plausibility checks and error bounds

There are a number of plausibility checks available. We
have checked that the resulting matrices are hermitian (they
have real eigenvalues) and that the discretization and
spectral analysis method reproduces the spectrum of known
singular integral operators like the Hilbert transform. We
have also checked that for the free scalar model (i.e., a ¼ 0
in the sinh-Gordon model) we obtain positivity in one- and
two-particle states (k ¼ 1, 2). Moreover, the one-particle
results (i.e., looking at A1) agree with those obtained
in [46]. Importantly for two-particle results, the numerical
factor in front of F4 is fixed by the residue relation (15) and
can be confirmed by direct computation.
An indication for the size of numerical errors (disregard-

ing systematical ones) arises from the precision goal
mentioned in Sec. III G: All finite spectral bounds have
been checked to stabilize with respect to n and R (where R

is chosen close to the support of the lowest eigenvector).
Upon variation of R within 10% margins, the spectral
bounds varied within two relative digits around n ¼ 50 and
within five relative digits around n ¼ 100; as is also
indicated by the fast decay of the eigenstates toward the
boundary (Sec. IVA). For variation of n within a 10%
margin we obtain the same precision at the one-particle
level. For the two-particle case we indicate convergence in
n explicitly in the following plots.

IV. NUMERICAL RESULTS
ON NEGATIVE ENERGIES

In this section we summarize our numerical results,
presenting approximately optimal lower bounds on the
spectrum of the smeared stress tensor Tðγ; g2Þ within the
class of one- and two-particle states for the sinh-Gordon
model. The results at the one-particle level are in precise
agreement with a previous analysis in [46]. The results for
the two-particle level are new.
Throughout this section, we will specify the inputs of the

numerical analysis. This includes physical parameters
(Sec. III A): the coupling constant B∈ ½0; 2� fixing the
interaction and the averaging function (default: Gaussian,
alternative: Lorentzian) with averaging scale σ within
10−3 m−1…1.0 m−1. It further includes numerical param-
eters (Sec. III B): The number of lattice points per side n
and the rapidity cutoff R. We restrict our discussion to
inertial trajectories which without loss of generality may be
considered to take the form γðτÞ ¼ ðτ; 0Þ (Sec. III A). In
this case, we write

T00ðg2Þ≡
Z

dτ T00ðτ; 0Þg2ðτÞ ¼ Tðγ; g2Þ:

Since we restrict our spectral analysis to the class of one-
and two-particle states, we effectively minimize T00

k ðg2Þ≡
PðkÞT00ðg2ÞPðkÞ with k ¼ 1, 2.
As outcomes of our numerical evaluation, we find

eigenstates minimizing energy expectation values
(Sec. IVA) and corresponding estimates for an optimal
lower bound cg of QEI form (2); including its dependence
on interaction strength (Sec. IV B) and on the averaging
scale (Sec. IV C). We also analyze constraints on non-
minimal expressions for the stress tensor imposed by the
validity of QEIs (Sec. IV D).

A. Lowest eigenstates

In this section we plot the most negative eigenstate φ of
T00
2 ðg2Þ for the maximally interacting sinh-Gordon model

and varying averaging scale (Fig. 1). In rapidity space, we
plot ðθ1; θ2Þ ↦ jφðθ1; θ2Þj restricted to the region θ1 ≥ θ2.
This captures the essential features of φ as jφj is symmetric,
i.e., jφðθ1; θ2Þj ¼ jφðθ2; θ1Þj due to S-symmetry and uni-
tarity of S.
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To begin with, we observe that all eigenstates in Fig. 1
are narrowly localized showing fast decay toward the
boundary indicating convergence of the numerical analysis.
In contrast, for unbounded/nonconvergent cases computed
eigenstates have been found to be localized predominantly
at the boundary indicating divergence with increasing R. In
comparison to the lowest one-particle eigenstates φ1 [46],
we find that the values of φ are bigger in magnitude leading
to more negative bounds (Sec. IV B).
Restricting to large averaging scales or regions with

sufficiently far separation between θ1 and θ2 (front quarter),
profiles at constant θ1 (or θ2) share some similarities with
the one-particle profiles jφ1j. This goes in line with the
expectation that in these cases states should behave like a
tensor-product of two one-particle states—as in the free
theory—since SðθÞ → 1 for θ → 0, resp., θ → ∞.

B. Dependence on the interaction strength

In this section we analyze the dependence of the lowest
eigenvalue of T00ðg2Þ on the interaction strength as
represented by the coupling constant B ranging from 0
(noninteracting) via 1 (maximally interacting) through to 2
(noninteracting) and taking into account the symmetry of
the model, B ↔ 2 − B. In Fig. 2 you find the plot for the
one- and two-particle case.
Despite the larger numerical uncertainties in the boun-

dary of the graph 0.0 < B < 0.3 (1.7 < B < 2.0), we see
that for the free limit B → 0 (B → 2) all curves tend toward
zero. This is the expected non-negativity of the energy
density in the massive free scalar model for states with
fixed particle number. Further, in the region 0.3 < B < 1.7
we find a qualitatively similar behavior of the curves in
the one- and two-particle case; the eigenvalues decrease

monotonously, reaching a local minimum at the maximally
interacting case B ¼ 1. This aligns well with the general
expectation that self-interaction is causing the presence of
negative energies and that strong self-interaction allows for
a stronger accumulation of negative energy. Notable is that
the minimum for the two-particle case is more than twice as
negative as the one-particle minimum with minima evalu-
ating to cg ≈ 12 × 10−3 m2, resp., cg ≈ 5 × 10−3 m2; indi-
cating that increasing the particle number allows for a
stronger accumulation of negative energy.
Surprisingly, at the two-particle level in the region 0 <

B < 0.3 (1.7 < B < 2.0) we find a feature which was not at
all visible in the one-particle case. Here the energy density
can becomemuchmore negative than in the one-particle case
and also compared with the stronger interaction regime
0.3 < B < 1.7; aminimum for the energydensity is obtained
at about B ≈ 0.07 with cg ≈ 2.7 × 10−2 m2. This finding is
very surprising since on general grounds a strong interaction
should allow for a more negative energy density and the
author is not aware of any discontinuity in the coupling
constant for the sinh-Gordon model (within the mentioned
regime). While we emphasize that we have run a number of
plausibility checks as illustrated in Sec. III H, at present we
cannot exclude this feature to be an artifact of the numerics as
is also indicated by the huge variance with respect to n. A
further increase of n or an expansion of the discretized stress
tensor in higher orders of h is desirable and expected to lead
to higher precision but is severely limited due to a rapid
increase in memory and runtime complexity (Sec. III G).

C. Dependence on the averaging scale

In this section we plot the dependence of the lowest
eigenvalue of T00ðg2Þ on the averaging profile and scale

FIG. 2. Lowest eigenvalue of T00
k ðg2Þ for varying coupling

constant B in the sinh-Gordon model. We compare the lowest
eigenvalues in one- and two-particle states and indicate its
variance for increasing n for the latter. Parameters: R ¼ 4.5 or
5.0, σ ¼ 0.1 m−1.

FIG. 1. Absolute value of lowest eigenvector jφðθ1; θ2Þj
of T00

2 ðg2Þ for the maximally interacting sinh-Gordon model
(B ¼ 1). Parameters: n ¼ 80 and, from upper left to lower right,
ðR; σÞ ¼ ð8.0; 0.008 m−1Þ, ð7.0; 0.021 m−1Þ, ð5.0; 0.086 m−1Þ,
ð4.0; 0.220 m−1Þ.
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(Fig. 3). For the averaging profile we consider a Gaussian
and a Lorentzian smearing function both parameterized by
an averaging scale parameter σ (Sec. III A), indicating the
timescales over which the energy density is averaged.
We find that, the choice of averaging profile basically

yields a horizontal shift of the plot linked to the slower
decay properties of the Lorentzian profile and that there is a
strong dependence on the averaging scale showing some
universal features:
Overall, we see that in the two-particle case and for

Gaussian profile it requires larger averaging scales to
approach non-negativity than in the one-particle case and
for Lorentzian profile.
For small σ, i.e., for narrow time spans, we confirm an

asymptotic scaling like σ−2 (dotted lines). This is expected
since T00ðg2Þ has scaling dimension 2 and was also
confirmed for one-particle states in [46].
For large σ, i.e., for long averaging times, the eigenval-

ues tend to zero rapidly. Note here that the numerics
becomes unstable for eigenvalues with absolute values
below ≈10−7 m−1 or for σ being larger than ≈0.5 m−1.
Despite this, we see clear evidence that, within our

numerical precision, the (timelike) averaged energy density
becomes non-negative in the long-time limit g → 1; imply-
ing the validity of the averaged weak energy condition
(AWEC) (3) in one- and two-particle states.
At the one-particle level this is straightforward to derive

analytically: Setting g ¼ 1, we have

eg2�p0ðθÞ − p0ðηÞ
� ¼ 2πjp1ðθÞj−1ðδðθ − ηÞ þ δ

�
θ þ ηÞ�:

Thus, using (12), (23) and (26), we obtain

hθjT00ð1Þjηi ¼ mjshθj−1�ch2θδðθ − ηÞ þ δðθ þ ηÞ�;
implying, after some moments of thought, T00

k¼1ð1Þ ≥ 0 due
to ch2θ ≥ 1 for all θ∈R. Note that this argument does not
use any specific properties of the sinh-Gordon model, but
holds for generic massive integrable models.
An analytical result at the two- or higher particle level is

absent, though. In this case, the form factors have a more
complicated structure and δðp0ðθÞ − p0ðηÞÞ does not
decompose as in the one-particle case.

D. Nonminimal stress tensors

In this section we analyze the validity of QEIs for
nonminimal expressions of the stress tensor. These arise
when adding terms of the form c□nTμν to Tμν for some
c∈R and n∈N.
When n > 1, we have checked this to lead to divergent

bounds for arbitrarily small coefficients. This is in agree-
ment with the results at one-particle level obtained in [46].
For n ¼ 1, we parametrize our family of nonminimal
expressions for the stress tensor as in (37); denoted by
Tμν
nonmin;ν with parameter ν. A plot of the lowest eigenvalues

of T00
k;nonmin;νðg2Þ is given in Fig. 4.

For both, one- and two-particle states, we find a ν-band
around the canonical choice ν ¼ 0 with finite eigenvalues
which are relatively constant with respect to ν. It is notable
that the eigenvalues are not symmetric around ν ¼ 0. At the
boundary of the bands, the eigenvalues start to decrease
rapidly and the eigenstates change appearance. In contrast
to the full plot, the position of these thresholds is symmetric

FIG. 3. Lowest eigenvalue of T00
k ðg2Þ for varying averaging

scale σ in the maximally interacting sinh-Gordon model (B ¼ 1)
at the one- and two-particle level for Gaussian and Lorentzian
averaging. Parameters: n ¼ 60, and adaptively chosen R. Dotted
lines indicate the asymptotic scaling (∝ σ−2).

FIG. 4. Lowest eigenvalue of T00
k;nonmin;νðg2Þ for nonminimal

choice of the stress tensor as in (37) in the maximally interacting
sinh-Gordon model (B ¼ 1). We compare the lowest eigenvalues
in one- and two-particle states for varying ν and indicate
convergence with increasing n for the latter. The asymptotes
of the curves are indicated by dotted lines. Parameters: R ¼ 4.5 or
5.0, σ ¼ 0.1 m−1.
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around ν ¼ 0 and given as dotted vertical lines in the plot.
For the one-particle case the threshold lies at jνj ≈ 0.395 ≈
1

2F∞
min

in agreement with [46] (the rhs corresponds to the

analytic result given in the reference). For the two-particle
case the threshold for jνj is between 0.10 and 0.11 (in this
case no analytic result is known).
To sum it up, we find that at higher particle numbers the

validity of a QEI becomes more restrictive. Speculating on
this observation and taking into account the significantly
lower bounds in the two-particle case, this indicates that the
threshold decreases even more at higher particle numbers;
possibly selecting the canonical stress tensor uniquely in
states of arbitrary particle number.

V. CONCLUSION

In summary, this article introduces a novel numerical
method for determiningoptimalQEI bounds in one- and two-
particle states, extending previous work focused on the one-
particle case. This extension encountered two formidable
challenges: a substantial increase in complexity, affecting
runtime, memory, and analytical considerations, and the
necessity for numerical treatment of kinematical singularities
not encountered in the one-particle domain. The proposed
method is inherently applicable to all integrable models
constructed via the inverse scattering approach, provided that
solutions to the form factor equations are well understood.
We applied our method to a representative example, the

sinh-Gordonmodel, gaining explicit insights into its optimal
QEI bounds. A key revelation is the preservation of QEIs at
the two-particle level, accompanied by a notable increase in
the negativity of energy density compared to the one-particle
case. Additionally, our findings substantiate that self-
interaction acts as the source of negative energy, with
stronger interactions yielding more pronounced negativities.
Despite this, we found strong evidence that negative energies
cannot be sustained for arbitrarily long times which implies
the validity of the averaged weak energy condition (AWEC)
at both one- and two-particle levels. Last but not least, we
established the existence of a one-parameter class of non-
minimal stress tensors satisfying QEIs at both levels, with
more stringent constraints arising from two-particle QEIs.

The transition from the one-particle to the two-particle
level was marked by significant advancements. States
featuring a single particle may overlook certain aspects
of self-interaction, and the inclusion of two-particle states
introduces entirely new technical challenges related to the
kinematical singularities. While complexity escalates when
considering particle numbers higher than two, no funda-
mentally new aspects emerge, suggesting a possible con-
tinuity in qualitative features. From that perspective our
observations stemming from one- and two-particle analyses
suggest that QEIs and the AWEC may extend to arbitrary
finite particle numbers. Furthermore, we expect that con-
straints on nonminimal expressions for the stress tensor
imposed by the validity of a QEI become more restrictive
with increasing particle numbers promising to establish
QEIs as a robust selection principle for physically reason-
able stress tensors. To confirm these speculations, it is
desirable addressing states with higher particle numbers,
albeit necessitating novel numerical approximations or
additional analytic insights, given the escalating complex-
ity for particle numbers beyond two.
Another important aspect yet to be explored is the

treatment of QEIs in states superposing different particle
numbers. After all, it is well known that—even in non-
interacting models—negative energies arise when super-
posing states with different particle numbers. Thus, treating
negative energy states, exemplified by superpositions of
vacuum, one- and two-particle states, in a setup with self-
interaction presents an intriguing challenge which is within
the scope of the current method. We anticipate returning to
this issue in future investigations.
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