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1 Introduction

Jets, energetic hadron bunches produced in high-energy collisions, are useful tool to study
the strong dynamics induced by Quantum Chromodynamics (QCD) and to probe new
physics beyond the Standard Model. Its application to future QCD machines that probe
internal structure of ions with electron beam is extensively investigated in Electron-Ion-
Collider in the US (EIC) [1, 2] and in Electron-ion-collider in China (EicC) [3]. The jets can
be defined and studied exclusively using jet finding algorithms [4–9], which conventionally
require parameters like a jet radius and jet veto. On the other hand, they can also be studied
inclusively with classic observables called event shapes [10], which are theoretically simpler
with a small number of parameters, hence easier to achieve higher accuracy compared to
exclusive jet study. An example of event shapes is a thrust which has been predicted up
to N3LL+O(α3

s) accuracy [11–16] in e+e− annihilation. From the event shape, the strong
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coupling constant was determined at 1% precision [15–17], which is one among the most
precise determinations listed in Particle Data Book [18].

The thrust as well as other event shapes in deep-inelastic scattering (DIS) was stud-
ied [10] and measured in HERA experiment [19–24]. Due to limited detector coverage they
were defined from particles in a current hemisphere, to which products of hard scattering
usually belong while initial-state radiations and beam remnants do not. On the other hand,
the definition in e+e− is done with both hemispheres. More recent developments including
improved accuracy and/or new event shape predictions [25–31] assume that future machines
can cover both regions. With the assumption, DIS thrust, which we call a 1-jettiness [25, 26]
can be defined as1

τ1 = 2
Q2

∑
i∈X

min{qB ·pi, qJ ·pi} , (1.1)

where pi is the momentum of particle i in the final state X and Q is a hard momentum
transferred by a virtual photon. qB and qJ are beam and jet axes, onto which momentum
pi is projected. The operator ‘min’ takes smaller one among two scalar products and this
makes particles grouped into one of two regions, beam or jet. The value of τ1 is small
when the final state X contains two collimated bunches along each of beam and jet axes.
Otherwise, for multi-jet final state the value is not small. In [25], a version called τ b1 was
defined by z axis in the Breit frame for qJ and known to be same as a version of DIS thrust
called τQ measured in HERA [33]. It was computed analytically at the first order in αs [34].

In this paper, we study another version called τa1 [25, 35] for which the jet axis qJ is
determined by axis finding algorithms, while qB defined next section is held fixed to the
beam axis. Its distribution was numerically computed in the Lab frame [26] by using the
axis obtained from anti-kT algorithms. In this paper we consider three different algorithms
in the Breit frame in section 2 and show analytic expressions of our fixed-order predictions
at the first order in αs and separately next-to-leading power (NLP) terms in small τ1 limit
in section 3 as well as numerical results in section 4. Finally, we summarize in section 5.

2 1-jettiness with three jet axes

In this section we define the jet axis qJ and write down the expression of 1-jettiness defined
with the axis for 2-body final state. We consider three different jet axes in the Breit frame.
The first axis is the axis that minimizes the value of 1-jettiness as in e+e− thrust and we
call it a 1-jettiness axis. Next two axes are obtained from jet momentum defined by anti-kT
algorithm [9] and by Centauro algorithm [36].

We first make a quick review of kinematics in the Breit frame. In the frame, the virtual
photon with momentum q and the proton with momentum P are aligned along the z axis.
One of advantages of this frame is that the initial state radiation moving along the proton
direction is well separated from the other particles produced by a hard scattering. We take
the proton to move against z direction

Pµ = Q

x

n̄µz
2 , (2.1)

1It is called 1-jettiness since it is N = 1 version of N-jettiness [32] that is generalized thrust for N-jet events.
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where the unit vectors nz = (1, 0, 0, 1) and n̄z = (1, 0, 0,−1), the hard scale Q is the photon
virtuality Q2 = −q2 and the Björken variable x = Q2/(2P ·q). The virtual photon q

is spacelike
qµ = Q

nµz − n̄µz
2 . (2.2)

A parton from the proton taking a fractional momentum p = ξP = Q/z n̄z2 , where
z = x/ξ and x < z < 1, scatters off the photon. At order O(αs), the final states contain
two particles with momenta p1 and p2. Using the momentum conservation p+ q = p1 + p2
and the onshell condition p2

1 = p2
2 = 0 we can express the final momenta in terms of z and

a dimensionless variable v = p−2 /Q as

pµ1 = Q(1− v)n
µ
z

2 +Q
1− z
z

v
n̄µz
2 −Q

√
1− z
z

(1− v)v nµ⊥, (2.3)

pµ2 = Qv
nµz
2 +Q

1− z
z

(1− v) n̄
µ
z

2 +Q

√
1− z
z

(1− v)v nµ⊥,

where 0 < v < 1 and n⊥ is an orthogonal unit vector to nz and n̄z, i.e., n⊥·nz = n⊥·n̄z = 0
and n⊥ · n⊥ = −1.

The beam axis qB is defined to be proportional to the proton momentum

qµB = xPµ = Q
n̄µz
2 . (2.4)

The scalar products of the beam axis qB and pi contributing to 1-jettiness can be expressed as

2qB ·p1 = (1− v)Q2 ,

2qB ·p2 = vQ2 ,

2qB ·(p1 + p2) = Q2 . (2.5)

2.1 1-jettiness axis τ jt

In the determination of 1-jettiness axis, we allow the direction of jet axis to be varied, while
the absolute magnitude of three-momentum part to be held fixed to Q/2. Then, the qJ can
be expressed as

qµJ = Q
nµJ
2 = Q

2 (1, n̂J)µ , (2.6)

where n̂J is a unit vector adjusted event by event in such a way that minimizes the value of
1-jettiness. Rewriting eq. (1.1) with p1 and p2 explicitly gives2

τ jt = 2
Q2 min

n̂J

{ 2∑
i=1

min{qB ·pi, qJ ·pi}
}

= min
{
qB ·(p1 + p2), min

n̂J
{qJ ·(p1 + p2)}, qB ·p1 + min

n̂J
{qJ ·p2}, min

n̂J
{qJ ·p1}+ qB ·p2

}
= min

{
1 , θ

(
−z + 1

2

)
+ 1− z

z
θ

(
z − 1

2

)
, 1− v , v

}
= (1− v) ΘI(v, z) + v ΘII(v, z) + 1− z

z
ΘIII(v, z) . (2.7)

2From now on we drop the subscript “1” in 1-jettiness τ1 for a conventional simplicity hence, τ jt implies
τ jt1 and same for τ b.
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Figure 1. Two-body phase space for 1-jettiness, τ jt,kt with jettiness/anti-kT axis (left) and τ ct with
Centauro axis (right). 1-jettiness takes the same expression in first three regions while the fourth
region is only for τ ct. The bound of fourth region for jet radius R = 1 and 2 is shown in red dashed
and red solid, respectively.

The outer ‘min’ operator with n̂J beneath it in the first line implies that it is adjusted
to minimize quantities in the braces. In the second line, we listed all four combinations
of scalar products between qB,J and p1,2 then, moved the outer ‘min’ inside so that the
axis n̂J is determined by minimizing each scalar product. For the first product there is no
product with qJ and n̂J is not determined. From the second to the last n̂J = ẑ, p̂2, and
p̂1, respectively. We used eq. (2.5) to express the scalar products in terms of v and z and
obtained the third line. Then, the outer ‘min’ selects the smallest among those four and it
leads to three regions denoted by Θi

ΘI = θ

(
v − 1

2

)
θ

(
v − 2z − 1

z

)
,

ΘII = θ

(
−v + 1

2

)
θ

(
−v + 1− z

z

)
,

ΘIII = θ

(
−v + 2z − 1

z

)
θ

(
v − 1− z

z

)
, (2.8)

where the step function θ(x) is 1 for x > 0 and 0 otherwise. The three regions are plotted
in the left panel of figure 1. From the expression we find the maximum value of τ jt

τ jtmax = 1
2θ
(
−x+ 2

3

)
+ 1− x

x
θ

(
x− 2

3

)
, (2.9)

which is a constant in v. We used the hadronic variable x in advance instead of the partonic
variable z, which is replaced by x at the end. The maximum occurs on the heavy lines in
figure 1.
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2.2 Anti-kT algorithm τkt

In the kT -type algorithms [9] designed to be invariant under longitudinal boosts, the
distance between particles is defined in term of transverse momentum pT and invariant
angular distances

dij = dji = min
{
p2p
T i ,p

2p
Tj

}∆R2
ij

R2 , diB = p2p
T i , (2.10)

∆R2
ij = (yi − yj)2 + (ϕi − ϕj)2 , (2.11)

where dij is the distance between outgoing particles i and j, and diB is the distance of a
particle i from the beam. pT i is the magnitude of the transverse momentum of particle i,
R is a jet radius parameter of O(1) and ∆Rij is an angular distance defined in terms of
distances in rapidity y and in azimuth ϕ. The power p on the momentum is a real valued
parameter. When p = 1, 0,−1, it is called kT , Cambridge/Aachen and anti-kT , respectively.
In this paper we take the anti-kT algorithm p = −1, which is a conventional choice by
many experiments.

With above distances, the jet algorithm finds minimum dmin among all the dij and diB .
If dmin is a dij , particle i and j are merged into a single particle and if dmin is a diB, the
particle is declared to be a final jet and removed from the list of final particles. We repeat
this with new list of particles until all the particles in the list are gone.

For a two-body final state, we need to compare d12, d1B and d2B to classify jets. Recall
that in the Breit frame the transverse momenta of two particles in eq. (2.3) are back-to-back
so that

d1B = d2B = |pT1|−2 . (2.12)

The distance in azimuthal angle between p1,2 is (ϕ1−ϕ2)2 = π2 and the distance in rapidity
is (y1 − y2)2 = ln2 1−v

v . Then, the distance dij is

d12 = |pT1|−2π
2 + ln2 1−v

v

R2 . (2.13)

Typical size of jet radius R is smaller than π and ln2 1−v
v > 0 hence, dij is always greater

than d1B. This means that there is no merging in the two-body final state. The anti-kT
algorithm gives two jets and each of them is p1 and p2 and the jet momentum of each jet is
pi. The jet axis qJ is defined from the jet momentum as

qktJ =
{
|p1|(1, p̂1), |p2|(1, p̂2)

}
=
{
p1, p2

}
, (2.14)

where in the second equality, we used the fact that pi is massless. In higher multiplicity, the
jet algorithm returns more jets. Among those jets, what we need is collinear jets with a large
momentum that are candidates for the jet axis qJ and by implementing a veto condition
we can reject unnecessary soft jets with a small momentum. Among the candidates, the
one that gives the smallest value of 1-jettiness will be selected. Then, 1-jettiness with the
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candidates p1 and p2 is given by

τkt = 2
Q2 min

qJ∈{p1,p2}

{ 2∑
i=1

min{qB ·pi , qJ ·pi}
}

(2.15)

= 2
Q2 min

{ 2∑
i=1

min{qB ·pi , q1 ·pi} ,
2∑
i=1

min{qB ·pi , q2 ·pi}
}

= 2
Q2min

{
min{qB ·(p1 + p2), p1 ·(p1 + p2), qB ·p1 + p1 ·p2 , qB ·p2 + p1 ·p1} ,

min{qB ·(p1 + p2), p2 ·(p1 + p2), qB ·p2 + p1 ·p2 , qB ·p1 + p2 ·p2}
}

= min
{1− z

z
, v, 1− v

}
= τ jt ,

where in the second line we set qJ = p1 and qJ = p2 after first and second summation
symbols, respectively. Then, as was done in eq. (2.7), all possible combinations are taken
into account in the third line. To get the fifth line, we used eq. (2.5) then, deleted trivial
terms that cannot be taken as a minimum. Interestingly, we come up with a fact that τkt is
equal to τ jt in the two-body case. This is because of simplification with a small number of
final particles. In general, the radius R dependence enters in the case of anti-kT algorithm
and we do not expect that τ jt and τkt are the same with higher multiplicity. We do not
consider higher multiplicity in this paper and from now on, we do not separately treat τkt

except for the case when we need to distinguish τkt from τ jt.

2.3 Centauro algorithm τ ct

For the third jet axis we would like to adopt the Centauro algorithm [36], which is more
recently introduced algorithm for DIS taking into account the target-current asymmetry
in the Breit frame. It is still longitudinal-boost invariant like the anti-kT algorithm but it
allows to capture jets close to beam axis while the anti-kT algorithm cannot form a jet in
the region since the rapidity distances between particles across the beam line become very
large (yi − yj)→ ±∞.

The Centauro algorithm defines the following distance measure

dij =
[
(∆fij)2 + 2fifj(1− cos ∆φij)

]
/R2, diB = 1 , (2.16)

where ∆fij and ∆φij are differences between fi and fj and φi and φj , respectively. The
function fi is a function of an angular variable η̄i of particle i

fi = f(η̄i) , η̄i = 2 |piT |
n̄z ·pi

, (2.17)

where η̄ diverges in forward region as n̄z ·pi → 0 and thus prevents jets from enclosing the
proton beam direction, while it decreases as particles become closer in backward region
n̄z ·pi � |piT |. For the function f , we take the simplest form in [36]

f(η̄) = η̄ . (2.18)
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Then, f1 and f2 and the distance d12 are given by

f1 = 2
√

1− z
z

√
v

1− v , f2 = 2
√

1− z
z

√
1− v
v

, (2.19)

d12 = (f1 + f2)2

R2 = 4
R2

1− z
z

1
v(1− v) , (2.20)

where R is a radius parameter of order O(1). If dmin is a diB, we have the same jet as the
anti-kT jet. If dmin is a d12, we have a jet with momentum p1 + p2, which is not allowed in
the anti-kT algorithm. The condition for two particles merging into a single jet is d12 < diB ,
which indicates the following region

ΘIV(z, v) = θ (z − zc(R)) θ (v − v−(z,R)) θ (−v + v+(z,R)) , (2.21)

where v± are upper and lower bounds of the variable v and v± = 1/2 at the value z = zc(R)

v±(z,R) = 1
2 ±

1
2

√
1− 1− z

z

16
R2 , zc(R) = 16

16 +R2 . (2.22)

In this region, the jet momentum is p1 + p2 and qJ is always in the opposite to the
proton direction

qctJ = |p1 + p2|(1, n̂12) = Q
2z − 1
z

nz
2 , (2.23)

where n̂12 = (p1 + p2)/|p1 + p2|. Otherwise qctJ = qktJ is one of p1 and p2 as in eq. (2.14).
The right panel in figure 1 indicates the phase space for 1-jettiness with the Centauro
algorithm. The bounds of region IV for R = 1, 2 are shown in the figure in red curves.
The region reduces to zero as R→ 0 and invades the regions I and II for R > 2. In many
experiments, R is taken to be less than or, equal to 2 and the phase space in this range is
also relatively simple. So, we constrain the region of our interest to be

R ≤ 2 . (2.24)

Then, in the region IV the value of τ ct can be computed with Centauro-jet axis in
eq. (2.23) and in the regions I, II, and III τ ct = τ jt. Now τ ct in any region can be expressed as

τ ct = ΘIV
(2z − 1)(1− z)

z2 + (1−ΘIV)τ jt . (2.25)

Note that τ ct is always positive in the region IV as well as the other regions because the
minimum value of z is zc(R) ≥ 4/5 in the range given by eq. (2.24).

3 Analytic cross section at order αs

In this section we summarize the analytic result for 1-jettiness cross section in DIS computed
at the first order in αs. Details of the calculations are given in appendix A. Here, our results
are given in the form of cumulative cross section obtained by integrating the differential
cross section

σc(τ, x,Q) =
∫ τ

0
dτ ′

dσ

dx dQ2 dτ ′
. (3.1)
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The DIS cross section is conventionally decomposed into the structure functions Fi

σc(τ, x,Q) = 4πα2

Q4

[
(1 + (1− y)2)F1 + 1− y

x
FL

]
. (3.2)

This can be expressed in terms of F1, F2 by using the relation between structure functions
F2 = FL + 2xF1. Note that the structure functions are the functions of τ as well as x
and Q. At the point τ = τmax, the cumulative functions σc and Fi reduce to the inclusive
cross section and inclusive structure functions, respectively. The Fi are coefficients of basis
tensors that decompose a current-current correlator called the hadronic tensor Wµν defined
in eq. (A.3) and one can read off the individual coefficients by projecting with orthogonal
tensors like PµPνWµν and gµνWµν as shown in eq. (A.6).

The structure functions are written in terms of these projected correlators

F1 =
∑

i=q,q̄,g
(Ai +Bi) , (3.3)

FL =
∑

i=q,q̄,g
4xAi ,

where Ai and Bi are respectively equivalent to PµPνWµν and gµνWµν up to multiplicative
factors that can be found in eqs. (A.54) and (A.57). They contain logarithmic terms
(singular) that were obtained by the factorization formula in [25, 35]. Non-logarithmic
terms (nonsingular) are obtained in this study by fixed-order QCD calculations. Each of
A,B can be written like A = Asing + Ans and B = Bsing + Bns. For the completeness we
copy and paste the singular parts

Asing
q = Asing

g = 0 ,

Bsing
q =

∑
f

Q2
f

{
fq(x)

[1
2 −

αsCF
4π

(9
2 + π2

3 + 3 ln τ + 2 ln2 τ

)]

+ αsCF
4π

∫ 1

x

dz

z
fq

(
x

z

)[
L1(1− z) (1 + z2) + 1− z + Pqq(z) ln Q

2τ

µ2z

]}
,

Bsing
g =

∑
f

Q2
f

αsTF
2π

∫ 1

x

dz

z
fg

(
x

z

)[
1− Pqg(z) + Pqg(z) ln

(
Q2τ

µ2
1− z
z

)]
, (3.4)

where Pqq(z) and Pqg(z) are the splitting functions and Ln(1− z) is a plus distribution

Pqq(z) =
[
θ(1− z)1 + z2

1− z

]
+
,

Pqg(z) = [(1− z)2 + z2] ,

Ln(1− z) =
[
θ(1− z) lnn(1− z)

1− z

]
+
. (3.5)

Note that the anti-quark contributions Aq̄ and Bq̄ are the same as Aq and Bq except for
the quark PDF replaced by the anti-quark PDF.
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The nonsingular parts are computed in appendix A. The final expressions are given by

Ans
q =

∑
f

Q2
f

αsCF
4π

{
(2τ − 1) Θ0

∫ 1
1+τ

x
dz fq

(
x

z

)
+
∫ 1

x
dz fq

(
x

z

)}
,

Ans
g =

∑
f

Q2
f

αsTF
π

{
(2τ − 1) Θ0

∫ 1
1+τ

x
dzfg

(
x

z

)
(1− z) +

∫ 1

x
dz fg

(
x

z

)
(1− z)

}
,

Bns
q =

∑
f

Q2
f

αsCF
4π

(
Θ0

{∫ 1
1+τ

x

dz

z
fq

(
x

z

)[1− 4z
1− z (τ − 1/2)− Pqq(z) ln 1− τ

τ

]}

+
∫ 1

x

dz

z
fq

(
x

z

)[
L0(1− z)1− 4z

2 − Pqq(z) ln τ
]

+ fq(x)
(
2 ln2 τ + 3 ln τ

))
,

Bns
g =

∑
f

Q2
f

αsTF
2π

{
Θ0

∫ 1
1+τ

x

dz

z
fg

(
x

z

)[
1− 2τ − Pqg(z) ln 1− τ

τ

]

−
∫ 1

x

dz

z
fg

(
x

z

) [
1 + Pqg(z) ln τ

]}
, (3.6)

where Θ0 represents physical region of τ for a given value of x

Θ0(τ, x) ≡ θ(τ) θ
(
− τ + 1

2

)
θ

(
− τ + 1− x

x

)
. (3.7)

In comparison to τ b, the singular and nonsingular parts of τ jt have many terms in common
with those of τ b in [34]. Their differences are summarized in appendix C.

As shown in eq. (2.25), τ ct is different from τ jt in the region IV. We take their differences
in the region and denote them by δAi and δBi. Then, the structure functions for τ ct are
obtained by replacing A by A+ δA and B by B + δB in eq. (3.3). Their final expressions
are given by

δAns
q = −

∑
f

Q2
f

αsCF
4π θct(τ)

∫ zjt

zct
dz fq

(
x

z

)
r(z,R) ,

δAns
g = −

∑
f

Q2
f

αsTF
π

θct(τ)
∫ zjt

zct
dz fg

(
x

z

)
(1− z)r(z,R) ,

δBns
q = −

∑
f

Q2
f

αsCF
4π θct(τ)

∫ zjt

zct

dz

z
fq

(
x

z

){ 1− 4z
2(1− z)r(z,R) + 1 + z2

1− z ln 1 + r(z,R)
1− r(z,R)

}
,

δBns
g = −

∑
f

Q2
f

αsTF
2π θct(τ)

∫ zjt

zct

dz

z
fg

(
x

z

){
−r(z,R) + Pqg(z) ln 1 + r(z,R)

1− r(z,R)

}
, (3.8)

where θct is upper limit of τ

θct(τ) = θ

(
−τ + R2

16

)
, (3.9)
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and the parameters zjt,ct and r(z,R) are given by

zjt = max
{
x,

1
1 + τ

}
, (3.10)

zct = max
{
x ,

16
16 +R2 ,

3 +
√

1− 4τ
2(2 + τ)

}
, (3.11)

r(z,R) = v+ − v− =
√

1− 1− z
z

16
R2 . (3.12)

The differential distributions can be obtained by differentiating eqs. (3.6) and (3.8). We also
give their explicit expressions for τ jt in eqs. (A.55) and (A.56) and eqs. (A.58) and (A.59)
and for τ ct in eq. (B.1).

In addition, by expanding Ans
q , Ans

g , Bns
g and Bns

q in the τ → 0 limit we can obtain the
NLP term which is the power correction to the singular terms in eq. (3.4). At the leading
power the corrections contain terms like τ and τ ln τ , which is suppressed by τ compared to
the singular terms. The NLP obtained from eq. (3.6) can be expressed as

Ans
q

∣∣
τ→0 =

∑
f

Q2
f

αsCF
4π τ

{
fq(x)+2

∫ 1

x
dz fq

(
x

z

)}
+O(τ2) ,

Ans
g

∣∣
τ→0 =

∑
f

Q2
f

αsTF
π

τ

{
2
∫ 1

x
dz fg

(
x

z

)
(1−z)

}
+O(τ2) ,

Bns
q

∣∣
τ→0 =

∑
f

Q2
f

αsCF
4π τ

{(1
2 +3 ln τ

)
fq(x)−

(3
2 +2 ln τ

)
xf
′
q(x)

+
∫ 1

x

dz

z
fq

(
x

z

)[
(1−4z)L0(1−z)+Pqq(z)

]}
+O(τ2) ,

Bns
g

∣∣
τ→0 =

∑
f

Q2
f

αsTF
2π τ

{
−fg (x)

(
1+ln τ

)
+
∫ 1

x

dz

z
fg

(
x

z

)[
Pqg(z)−2

]}
+O(τ2) , (3.13)

where f ′(x) = df(x)/dx.
In expansions of eq. (3.8), we assume that τ < R2/16 then, zct = 1− τ − τ3 +O(τ4).

Otherwise, eq. (3.8) vanishes. At O(τ) the power corrections are zero except for δBns
q . So,

expanding up to first nonzero correction we have

δAns
q

∣∣
τ→0 = −

∑
f

Q2
f

αsCF
4π τ2 fq(x) +O(τ3) ,

δAns
g

∣∣
τ→0 = −

∑
f

Q2
f

αsTF
π

τ3 fg(x) +O(τ4) ,

δBns
q

∣∣
τ→0 = −

∑
f

Q2
f

αsCF
4π τ

(
− 3

2 + 2 ln R
2

4τ

)
fq(x) +O(τ2) ,

δBns
g

∣∣
τ→0 = −

∑
f

Q2
f

αsTF
2π τ2

(
ln R

2

4τ − 1
)
fg(x) +O(τ3) . (3.14)

It is worth to note that PDFs derivatives appear in the NLP results which should be
identified in a factorization at the subleading power and O(√τ1) corrections are absent for
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Figure 2. Differential τ jt cross section at Q = 30GeV and x = 0.05 and 0.7. Singular (blue dashed),
nonsingular (green dotted), and their full (red solid) distributions.

any of the jet algorithms presented since power corrections of 1-jettiness scales like O(τn1 )
with integer n. Another feature to note is that the appearance of a jet radius dependence
in eq. (3.14) is expected from the effective theory analysis [37] that implies that power
corrections are sensitive to the jet algorithms and the logarithmic structure due to the
phase-space cutoff typically appear at the leading power in jet substructure observables [38]
and in transverse vetos [39].

In the context of high-order calculations in perturbative QCD, the observable N-jettiness
is used to control and to subtract the infrared singularities in numerical computation [40–
42], the results in eqs. (3.13) and (3.14) are essential ingredients required to improve the
subtraction accuracy to subleading order [43, 44], while the singular part in eq. (3.4) is for
subtraction at the leading order. The results also serve as an important crosscheck to be
reproduced by effective field theory approach using the factorization at subleading power
on the way to the higher-order in αs. It is worth to point out an interesting observation in
our results. The algorithms, 1-jettiness and anti-kt, are the same at the order αs hence,
their subtractions to arbitrary accuracy are identical at this order. On the hand, the jet
algorithms, anti-kt and Centauro, are different in the subtraction at the subleading power
because their difference in eq. (3.14) contains non-vanishing τ ln τ terms.

4 Numerical results

In this section, we show our numerical results obtained by using analytic 1-jettiness cross
sections at order αs in section 3. We compare singular and nonsingular parts at different
values of x and Q. Numerical difference between τ jt and τ ct are also presented for several
values of R. We also compare our result to τ b result given in [34]. The crossing point between
singular and nonsingular parts implies a boundary between fixed-order and resummation
regions and the point as a function of x at several values of Q is presented. In choosing the
values for the kinematic parameters x and Q in the section, we considered the region that
can be studied in future experiments such as EIC or EicC.

Main achievement of this paper is the analytic expressions of nonsingular part of τ jt

and τ ct. In figure 2 we show the differential τ jt cross sections where singular and nonsingular
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Figure 3. Relative difference between τ ct and τ jt distributions with three values of R = 1.0 , 1.4 , 1.8
at x = 0.01 and Q = 10GeV.

parts as well as full fixed-order results are presented at two values of x with a fixed value of
Q. The result at different values of Q shows the similar pattern. The cross section shown
in the plots is normalized as

dσ̂

dτ
= 1
σ0

dσ

dτ
, (4.1)

where σ0 = 2πα2 [1 + (1− y)2] /Q4. Note that τ jt for 2-body final state vanishes at τ = 1/2
when x < 2/3 and at τ = (1 − x)/x when x > 2/3. Beyond the point the singular and
nonsingular cancel in the sum and the full cross section is zero.

About the other variant τ ct, its singular part is the same as that of τ jt and the
nonsingular is similar to τ jt. Instead of showing the similar style of plots for τ ct, we compare
difference between τ jt and τ ct in figure 3 by using the expression in eq. (3.8). The size of
difference increases with R increasing and it becomes as large as 25% when R = 1.8. With
smaller values of R the difference quickly reduces to zero and this is consistent with the
R dependence of the region IV in figure 1 left panel, where the region shrinks to zero as
R→ 0. A feature of sharp turning upwards in the plot is associated with the contributions
from τ ct vanishing in τ ≥ (16− R2)R2/256. Then, when the other contribution from τ jt

vanishes in τ ≥ R2/16 the difference becomes zero as shown in the figure.
In figure 4 we compare our result to another version of 1-jettiness called τ b in [34].

Because of difference in factorized formula between them, their singular parts are differ-
ent [25]. However the difference in singular part is proportional to δ(τ) and is not visible
in a differential distribution like figure 4. Therefore, the difference from τ b shown in the
plot is from nonsingular parts and the size of difference is larger at lower value of Q. Note
that as shown in the plot τ b does not vanish beyond τ = 1/2 because the maximum of
τ b is 1, while it is 1/2 for τ jt and τ ct. For the uncertainty figure, the uncertainties are
obtained by varying the renormalization scale from µ = Q by a factor of two up and down
(dσ̂(Q) − dσ̂(2Q))/dσ̂(Q) and (dσ̂(Q) − dσ̂(Q/2))/dσ̂(Q) as upper and lower boundary,
respectively. We can find that τ jt and τ ct share almost same uncertainty. They only have
slightly difference with each other within τ = 1/2. This uncertainty increases with the
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Figure 4. Upper two figures are τ jt and τ ct distribution in comparison to τ b at Q = 30GeV (left) and
4GeV (right) with fixed values of x = 0.05 and R = 1 and lower ones are corresponding uncertainties.

decrease of the values of Q. We also compare uncertainties for τ ct with different R value
and find that the effect is around 0.01% changes.

The crossing point where singular and nonsingular parts meet each other can be
understood as a boundary between fixed-order and resummation regions. In the fixed-order
region, the singular part is smaller than the nonsingular part hence, an ordinary fixed-order
QCD result is valid, while in the resummation region, the singular part is larger than
nonsingular part due to increasing logarithms and resummation of those logarithms is
necessary. In figure 5 the crossing points in τ as a function of x are shown and the results
for τ jt (solid) and τ b (dashed) are similar as implied from figure 4.

The color density plot in figure 5 represents a relative size of the nonsingluar part to
the full differential cross section at Q = 15GeV for τ jt. An absolute values are taken for
simplicity. In the blue left and lower corner the nonsingular is small while the singular
dominates the cross section. In the light-colored region the singular and nonsingular are
comparable to each other. Finally, in deep-red right and upper corner unphysical singular
and nonsingular are largely cancelled to give the full cross section. In the region their
absolute magnitudes easily become greater than full cross section and the deep-red region
should be understood as 100% or, greater relative to the full cross section.

An important feature in the plot is that the resummation region increases with decreasing
value of x and the region gets close to the maximum of τ jt near x = 0.01 while it does near
x = 10−5 for τ b. These crossing points imply when the resummation should be turnoff in
τ spectrum and specifically in the scale profile function [25, 34] the points can be taken
to be the value of a parameter t2 which is the point where the resummation begins to be
turned off.
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Figure 5. Values of τ jt (solid lines) and τ b (dashed lines) when the singular and nonsingular parts
cross each other as a function of x at Q = 15GeV (black), 30GeV (orange), and 45GeV (green).
The color density plot represents the portion of the contributions from the nonsingular part to the
total differential cross section at Q = 15GeV for τ jt. An approximate crossing (dotted gray lines)
are obtained by making use of eq. (4.4) with the values of cns between 0 and −β(x).

In order to understand the behavior shown in figure 5, we take a following form

α(x) ln τ
τ

+ β(x) 1
τ

= cns , (4.2)

where the left side is from the singular part and the coefficients α(x) and β(x) are obtained
by differentiating eq. (3.4).

α(x) = −8CF
∑
f

Q2
ffq(x) ,

β(x) =
∑
f

Q2
f

[
−6CF fq(x) + 2CF

∫ 1

x

dz

z
Pqq(z)fq

(
x

z

)
+ 2TF

∫ 1

x

dz

z
Pqg(z)fg

(
x

z

)]
.

(4.3)

On the right-hand side of eq. (4.2), the parameter cns corresponds to the nonsingular part
in eq. (3.6) multiplied by a proper normalization factor. Instead of using the known result
we assume cns is a unknown constant of τ and would like to find an approximate solution
to eq. (4.2) by using an iterative approach. First, we set cns to zero, then find the solution
to eq. (4.2) is τ = exp[−β(x)/α(x)]. Second by introducing a small correction term δ(x) to
the solution for zero cns as in eq. (4.4), we solve eq. (4.2) for δ(x) with nonzero cns. The
approximate solution can be expressed as

τcross(x, cns) = e
− β(x)
α(x) +δ(x,cns)

, (4.4)

where δ(x) = (cns/α(x)) exp[−β(x)/α(x)]. We can find the values of cns that makes the
approximate solution fitted to the curves in figure 5 obtained using the known nonsingular
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part. We find that cns between 0 and −1 times β(x), represented by the grey dotted lines
in figure 5, shows a reasonable description to the curves. Therefore, the singular part is
mainly responsible to the behavior of crossing point as a function of x and in the absence
of nonsingular part, the approximation in eq. (4.4) can be used as a first time estimate for
the crossing points and to fix a corresponding parameter of scale profile function.

Our numerical results given in this section are purely perturbative results. Including
nonperturbative corrections and hadronization effects are important in precision predictions.
The hadronic effects are power suppressed by ΛQCD/(τQ) for τ � ΛQCD/Q in small τ
region and the correction at the leading power can be parameterized using a nonperturbative
parameter Ω1 [16, 45, 46]. The parameter is universal for any version of 1-jettiness and
the dependence on the jet algorithm would remain small in this region. One also can
take a shape function method that takes into account nonperturbative behavior as well as
hadronic power correction [25, 47]. However more recent studies imply that more careful
considerations are required in a scheme related to renormalon subtraction [48] and in
hadronization effect away from dijet region [49]. Furthermore, recent analysis using Monte
Carlo simulations implies its fine-tuning is required to explain HERA measurements [50].
Therefore, a quantitative analysis on these effect in 1-jettiness would be beyond the scope
of this work and could be done in future project.

5 Conclusions

In this paper we study the event shape 1-jettiness in DIS at the first order in αs that can
be measured in future experiments. We considered three different jet axes, onto which a
particle momentum is projected to compute the value of 1-jettiness. τ jt is a version with the
jettiness axis that is optimally adjusted to minimize the value of 1-jettiness. The other two
versions are τkt and τ ct that take their axes from exclusive jet algorithms such as anti-kT
and the Centauro algorithms in the Breit frame, respectively. We find that τ jt and τkt are
equivalent for the two-body final state, i.e., at the order αs.

Our main result is the predictions for τ jt and τ ct distributions at the first order in
αs analytically expressed in eqs. (3.6) and (3.8). They are expressed in the form of the
cumulative distribution and in the appendix the differential distribution is also given.
The results are expressed such that one can easily write the structure functions such as
F1(x,Q2, τ) and FL(x,Q2, τ) as well as the cross section. The results of τ ct share many
terms in common with those of τ jt and their difference depending on R is given so that τ ct

is obtained by adding the difference on the top of τ jt result. Comparison to the analytic
result for τ b using Breit frame axis are also given in appendix C.

Numerical results of our predictions are presented at different values of x and Q.
Singular and nonsingular parts are compared in τ jt distributions. For τ ct, we studied the
difference from τ jt and found that it is sensitive to the value of radius R and the magnitude
is in the range of 5 ∼ 25% of τ jt distribution when the value of R is from 1 to 1.8. We
also studied the singular-nonsingular crossing point τcross as a function of x and Q. The
crossing implies a boundary between resummation and fixed-order regions and the value
can be used as a reference point for turning off the resummation. The value of τcross hence,
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the resummation region increases with the decreasing value of x, and the region gets close
to τmax = 1/2 at x = 0.01, while the value is less sensitive to Q. We found that the x
dependence is well explained by the singular part and obtained an approximate expression
for τcross, which can be used in the absence of nonsingular part.

Our results provide an important piece of information toward precision predictions of
event shapes in DIS. Our prediction for nonsingular part combined with resummed singular
part can be measured in the future EIC and EicC and can be used to determine the strong
coupling constant and a universal hadronic nonpertubative parameter.
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A Details of calculations

In this section we calculate 1-jettiness QCD cross section. In derivations of the cross section,
we follow the steps done in [25]. The cross section is expressed in the product of lepton and
hadronic tensors.

dσ

dx dQ2 dτ
= LII

′
µν (x,Q2)W II′µν(x,Q2, τ) , (A.1)

where LII′µν is the lepton tensor given in [25] and the index I = V,A implies vector and
axial currents. Although, we consider II ′ = V V in this paper but we keep these index to
maintain generality for a moment. For vector currents, we have

LV Vµν (x,Q2) = − α2

2x2s2 g
T
µν , (A.2)

where −gTµν = −gµν + 2/Q2(kµk′ν + k′µkν), with kµ and k′µ being the momenta of incoming
and outgoing leptons and the photon momentum is given by qµ = kµ − k′µ. One can show
that the lepton tensor is transverse to virtual photon as implied by the Ward identity
qµLV Vµν ∝ qµgTµν = 0. The hadronic tensor Wµν that measures the 1-jettiness from final
hadronic state X can be expressed as

Wµν
II′(x,Q

2, τ) =
∑
X

〈P | Jµ†I (x) |X〉 〈X| JνI′(x) |P 〉 (2π)4δ4(P + q − pX)δ(τ − τ(X)) ,

=
∑
n=1

∫
dΦn

dτ
〈P | Jµ†I (x) |p1, · · · , pn〉 〈p1, · · · , pn| JνI′(0) |P 〉 , (A.3)
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where there is an average over incoming spins implicit. In the second line we specify the
number of final particles and the corresponding phase-space integral.

The hadronic tensor is decomposed into several tensors

Wµν
II′(x,Q

2, τ) = (4π)
[
Tµν1 F1(x,Q2, τ) + Tµν2

F2(x,Q2, τ)
P · q

+ Tµν3
F3(x,Q2, τ)

2P · q

]
, (A.4)

where Fi are called structure functions, which is differential in τ here and integrating Fi
over τ gives ordinary structure function. The tensor Tµνi are given by

T1µν = −gµν + qµqν
q2 ,

T2µν =
(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)
,

T3µν = −iεµναβqαP β . (A.5)

Multiplying gµν and PµPν by eq. (A.3), one obtains linear combinations of F1 and F2.
Solving for F1 and F2, they are expressed in terms of the hadronic tensor. Similarly, F3 can
be obtained by multiplying T3µν by eq. (A.3).

F1(x,Q2, τ) = 1
8π(1− ε)

(
− gµν + 4x2

Q2 PµPν

)
Wµν
II′ ,

F2(x,Q2, τ) = x

4π(1− ε)

(
− gµν + (3− 2ε)4x2

Q2 PµPν

)
Wµν
II′ ,

FL(x,Q2, τ) = 2x3

πQ2
−q2

(P · q)2PµPνW
µν
II′ = F2 − 2xF1 ,

F3(x,Q2, τ) = x

2π(1− ε)(1− 2ε)
qαP βεαβµν

Q2 Wµν
II′ . (A.6)

In this paper we consider II ′ = V V , there is no F3 contribution. From hereafter we drop the
index for the hadronic tensor Wµν = Wµν

V V and one needs to calculate gµνWµν , PµPνWµν .
The cross section in eq. (A.1) in terms of the structure functions Fi is given by eq. (3.2).

A.1 Phase space integral

The phase-space integral can be explicitly written as

∫
dΦn

dτ
= µ2ε(n−1)

∫ n∏
i=1

ddpi
(2π)d (2π)δ(p2

i ) (2π)dδd
(
P + q −

∑
i

pi

)
δ(τ − τ({pi})) , (A.7)

where d = 4− 2ε. For n = 1,

∫
dΦ1
dτ

= 2π
Q2 δ(1− z)δ(τ) . (A.8)
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For n = 2, ∫
dΦ2
dτ

= 1
8πQ

(4πµ2)ε

Γ(1− ε)

∫
dp−2

(p+
2 p
−
2 )ε

δ
(
τ − τ(p1, p2)

)
= M(ε)

∫
dv
θ(v) θ(1− v)
vε(1− v)ε δ

(
τ − τ(v, z)

)
, (A.9)

M(ε) = 1
8π

(4πµ2/Q2)ε

Γ(1− ε)

(
z

1− z

)ε
.

figure 1 shows three and four regions in v-z space divided for τ jt,kt and for τ ct, respectively.
Then the phase-space integral in eq. (A.9) splits into three pieces as∫

I

dΦ2
dτ jt

= M(ε) Θ0(τ, z) 1
(1− τ)ετ ε

∫
dv δ(v − 1 + τ) , (A.10a)∫

II

dΦ2
dτ jt

= M(ε) Θ0(τ, z) 1
(1− τ)ετ ε

∫
dv δ(v − τ) , (A.10b)∫

III

dΦ2
dτ jt

= M(ε)θ
(
z − 2

3

)
δ

(
τ − 1− z

z

)∫ 1−τ

τ

dv

vε(1− v)ε , (A.10c)∫
IV

(
dΦ2
dτ ct

− dΦ2
dτ jt

)
= M(0)

[
δ

(
τ − (2z − 1)(1− z)

z2

)
− δ

(
τ − 1− z

z

)] ∫ v+(z,R)

v−(z,R)
dv ,

(A.10d)

where Θ0 and v± are given in eqs. (3.7) and (2.22), respectively. Note that the region III in
eq. (A.10c) is that of τ jt shown in figure 1. In τ ct computation we use the same expression,
which incorrectly include the region IV then, in eq. (A.10d) the incorrect contribution from
τ jt is subtracted. It makes eq. (A.10d) finite so that we can set ε to zero and also makes
the expression of τ ct cross section simple with an additional term added to τ jt cross section.

A.2 Hadronic tensor for incoming quark

The hadronic tensor defined in eq. (A.3), the matrix element with incoming proton can be
factorized into convolutions of proton PDF and Wilson coefficients. The Wilson coefficients
can be determined by matching the factorization formula with incoming parton to the
hadronic tensor for the parton state. The hadronic tensors W q

µν and W g
µν for initial quark

and gluon, respectively should be calculated. To O(αs) W q
µν involves one-loop calculation

and W g
µν is simply tree level calculation. In this section, we calculate W q

µν . W q
µν receives

contributions from tree, virtual, and real diagrams so can be written as

W q
µν = W (0)

µν +W vir
µν +W real

µν . (A.11)

Here, we suppressed the superscript q on right side and we will suppress it in the middle
of calculations.

A.2.1 Tree-level and virtual contributions

The tree-level amplitude is M(0)
µ = Qf ū(p1)γµu(P ). The tree-level hadronic tensor is

given by

W (0)
µν = 1

2
∑
σ

∫
dΦ1
dτ
M(0)

µ M(0) ∗
ν = −2πQ2

fg
T
µνδ(1− x)δ(τ) ,
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where we performed the spin average explicitly over quark spins σ then used the 1-body
phase space in eq. (A.8). The transverse metric is gTµν = gµν − (nzµn̄zν + nzν n̄zµ)/2. This
gives the projected hadronic tensors

−gµνW (0)
µν = 4πQ2

fδ(1− z)δ(τ) , (A.12)

PµP νW (0)
µν = 0 , (A.13)

where the second line vanishes by the Dirac equation of massless particle P/u(P ) = 0.
The virtual contribution can be found from many literature for instance (14.19) [51]

and the contribution is the same as that of τ b in [34]

−gµνW vir
µν = −4αsQ2

fCF (1− ε)
(4πµ2

Q2

)εΓ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

( 1
ε2

+ 3
2ε + 4

)
δ(1− z)δ(τ)

= 2αsQ2
fCF (1− ε)

[
− 2
ε2
− 1
ε

(
2L+ 3

)
− L2 − 3L+ π2

6 − 8
]
δ(1− z)δ(τ) ,

PµP νW vir
µν = 0 , (A.14)

where L = ln µ2

Q2 . The factor (1 − ε) is not expanded because it is to cancel 1/(1 − ε) in
eq. (A.6). In the second line of eq. (A.14) we have used the MS scheme by re-scaling the
scale µ2 by eγE/(4π) such that we use following replacement

(4πµ2)ε

Γ(1− ε) →
(µ2eγE )ε

Γ(1− ε) = µ2ε
(

1− ε2π
2

12 +O(ε3)
)
. (A.15)

Note that the finite part in eq. (A.14) is the αs term in the hard function in [25], derived in
SCET in [52, 53]. The PµP νW vir

µν is zero because P/u(P ) = 0.

A.2.2 Real contribution

The definition of τ in eqs. (2.7) and (2.25) divide the phase space into three or four regions
as shown in figure 1 hence the 2-body phase-space is accordingly divided as follows

W real
µν =

IV∑
i=I

W (i)
µν , (A.16)

W (i)
µν = 1

2
∑
σ

∫
(i)

dΦ2
dτ
Mreal

µ Mreal ∗
ν i ∈ {I, II, III, IV} , (A.17)

where in the last line the factor 1/2 takes account the average over quark spins σ. In this
subsection, we discuss the results of regions I,II, and III, which is relevant to τ jt and for
the region IV, which is IR finite and simpler, we just give the final result in appendix B.

The real emission contribution to the two projections of the color-averaged squared
amplitudes that we need are given by

−gµνMreal
µ Mreal∗

ν = 32παsCFQ2
f (1−ε)

[
(1−ε)

(1−z
v

+ v

1−z

)
+2 z

1−z
1−v
v

+2ε
]
, (A.18)

PµP νMreal
µ Mreal∗

ν = 16παsCFQ2
fQ

2(1−ε)1−v
z

, (A.19)

where the first line can be found from (14.21) in [51].
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For PµP νW (i)
µν , there is no singular term and we can safely set ε = 0. Including the

spin average, we obtain

PµP νW I
µν = αsCFQ

2
fQ

2 τ

z
Θ0(τ, z) , (A.20a)

PµP νW II
µν = αsCFQ

2
fQ

2 1− τ
z

Θ0(τ, z) , (A.20b)

PµP νW III
µν = αsCFQ

2
fQ

2 θ(z − 2/3)δ
(
τ − 1− z

z

) (1− 2τ)(1 + τ)
2 , (A.20c)

where the Θ0(τ, z) is given in eq. (3.7). The sum of eq. (A.20) is given by

PµP νW q
µν = αsCFQ

2
fQ

2 Θ0(τ, z)
[1
z

+θ

(
z− 2

3

)
δ

(
τ− 1−z

z

) (1−2τ) (1+τ)
2

]
, (A.21)

where the superscript q representing the incoming quark is made explicit, again. Note that
the tree-level and virtual contributions are zero and the real contribution is the total.

−gµνW (I)
µν = 16παsCFQ2

fM(ε)Θ0(τ, z)(1− τ)−ετ−ε(1− ε)

×
[
(1− ε)

(1− z
1− τ + 1− τ

1− z

)
+ 2 z

1− z
τ

1− τ + 2ε
]
, (A.22a)

−gµνW (II) = 16παsCFQ2
fM(ε)Θ0(τ, z)(1− τ)−ετ−ε(1− ε)

×
[
(1− ε)

(1− z
τ

+ τ

1− z

)
+ 2 z

1− z
1− τ
τ

+ 2ε
]
, (A.22b)

−gµνW (III) = 16παsCFQ2
fM(ε)θ

(
z − 2

3

)
δ

(
τ − 1− z

z

)
(1− ε)

×
∫ 1−τ

τ

dv

vε(1− v)ε
[
(1− ε)

(1− z
v

+ v

1− z

)
+ 2 z

1− z
1− v
v

+ 2ε
]
. (A.22c)

The regions I and II share the same Θ0(τ, z), so we combine them and expand in ε

−gµνW (I)+(II)
µν = 2αsCFQ2

f

(
µ2

Q2

)ε
eεγE

Γ(1− ε)z
ε(1− ε)

×
[
θ

(
−τ + 1− z

z

)
θ

(
z − 2

3

)
+ θ

(
−τ + 1

2

)
θ

(
−z + 2

3

)]
×
{

(1− ε)
(

(1− z)1−ε 1
τ1+ε

1
(1− τ)1+ε + (1− τ)−ε τ−ε 1

(1− z)1+ε

)
+ 2zτ1−ε 1

(1− z)1+ε
1

(1− τ)1+ε

+2z(1− τ)1−ε 1
(1− z)1+ε

1
τ1+ε + 4ε(1− τ)−ετ−ε 1

(1− z)ε
}
, (A.23)

where Θ0(τ, z) was divided into two parts, and the first part multiplied by terms 1/τ1+ε and
1/(1−z)1+ε gives 1/ε pole, while with the other part the only term like 1/τ1+ε gives the pole.
We now expand above equation in powers of ε. For the term like θ(−τ+ z

1−z )/τ1+ε/(1−z)1+ε

we use a plus distribution identity in appendix A of [34].

−gµνW (I+II)
µν = 2αsCFQ2

f

(
µ2

Q2

)ε
(1− ε)Θ0(τ, z)

×
[( 1
ε2

+ 3
2ε

)
δ(τ)δ(1− z)− Pqq(z)

ε
δ(τ) + Isfin + Insfin

]
, (A.24)
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where Pqq is the splitting function in eq. (3.5). The functions Isfin and Insfin contribute to
singular and nonsingular parts, respectively.

Isfin = δ(τ)
[
(1 + z2)L1(1− z)− π2

12δ(1− z) + 1− z − (1 + z2) ln z L0(1− z)
]

+ L0(τ)
[
Pqq(z)− 3

2δ(1− z)
]
− 2L1(τ)δ(1− z),

Insfin = (3τ − 1)L0(1− z)− 4τ − z + 3
1− τ + 2z Ins(τ, 1− z) , (A.25)

where Ins is identical to corresponding part in τ b and is given in eq. (A.8) of [34]. We use
following relations to compress eq. (A.24)

Pqq(z) =
[1 + z2

1− z

]
+

= 2L0(1− z) + 3
2δ(1− z)− (1 + z) = (1 + z2)L0(1− z) + 3

2δ(1− z) ,

(1 + z2)L0(1− z) = 2L0(1− z)− (1 + z) ,
(1 + z2)L1(1− z) = 2L1(1− z)− (1 + z) ln(1− z) , (A.26)

where standard plus distributions Ln(z) are defined by [34]

Ln(z) ≡ lim
ε→0

d

dz

[
θ(z − ε) lnn+1 z

n+ 1

]
=
[
θ(z) lnn(z)

z

]
+
. (A.27)

With a test function g(z) well behaving near z = 0, the integration against the function
gives ∫ z

0
dz
′Ln(z′)g(z′) =

∫ z

0
dz
′ lnn z′

z′
[g(z′)− g(0)] + g(0) lnn+1 z

n+ 1 . (A.28)

A variation of Ln with a variable lower bound z0 and its integral is given by

Ln(z, z0) = lim
ε→0

d

dz

[
θ(z − z0 − ε) lnn+1 z

n+ 1

]
,∫ z

0
dz
′Ln(z′ , z0)g(z′) =

∫ z

z0
dz
′ lnn z′

z′
[g(z′)− g(z0)] + g(z0) lnn+1 z

n+ 1 . (A.29)

For the contribution from the region III, it contains singular terms when τ or, 1 −
z approaches zero. We isolate the singular part carefully by subtracting and adding
singular terms

−gµνW (III)
µν = 2αsCFQ2

f

(
µ2

Q2

)ε
eεγE

Γ(1−ε)θ
(
z− 2

3

)
δ

(
τ− 1−z

z

)
(1−ε)

×[(1−ε)(I1+I2)+2I3] , (A.30a)

I1 = τ1−ε

1+τ

∫ 1−τ

τ
dv

1
v1+ε(1−v)ε = τ

1+τ ln
(1−τ

τ

)
, (A.30b)

I2 = 1+τ
τ1+ε

∫ 1−τ

τ
dv

v1−ε

(1−v)ε

= 1+τ
τ1+ε

[1
2−τ+ε

(
1−2τ)+ε(τ−1) ln(1−τ)+ετ lnτ

)]
, (A.30c)
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I3 = 1
τ1+ε

∫ 1−τ

τ
dv

(1−v)1−ε

v1+ε

= 1
τ1+ε

∫ 1−τ

τ
dv

(1−v)1−ε−(1−τ)1−ε

v1+ε + 1
ε

[
(1−τ)1−ε

τ1+2ε − (1−τ)1−2ε

τ1+ε

]
, (A.30d)

where we used the delta function in the first line and replace z by τ . Finally we expand
eq. (A.30a) in ε

−gµνW (III)
µν = 2αsCFQf

(
µ2

Q2

)ε
(1− ε) θ

(
z − 3

2

)
δ

(
τ − 1− z

z

)

×
[
δ(τ)

(
1
ε2

+ 3
2ε + 7

2 −
5π2

12

)
− 3

2L0(τ)− 2L1(τ) + 7
2

+τ2 + 2τ + 2
τ(1 + τ) ln(1− τ)− τ

1 + τ
ln τ − τ

]
. (A.31)

It is a non-trivial cross check to show that sum of −gµνW (i)
µν (τ) and PµP νW (i)

µν (τ) over i
and its integration over τ are equivalent to the inclusive results that simply obtained by
integrating the phase space measures in eqs. (A.10a), (A.10b), and (A.10c) over τ then by
carrying out integral against amplitudes eqs. (A.18) and (A.19) over v.

Now we collect all the pieces and put them together. All IR divergences with 1/ε2

and 1/ε are cancelled when virtual part in eq. (A.14) and real parts in eqs. (A.12), (A.24),
and (A.31) are combined except for the IR divergence associated with 1-loop quark PDF.
Let us first highlight a few terms

−gµνWµν ∝
[
δ(1− z)

(
L2 + 3L

)
− Pqq(z)

ε
− Pqq(z)L

]
+ terms from finite part , (A.32)

where L = ln µ2

Q2 . First, the two logarithmic terms above are cancelled by the same terms
in virtual part eq. (A.14). The 1/ε term above will be replaced by 1-loop correction of the
proton PDF during matching procedure. The logarithmic scale dependence proportional
to Pqq in the last term should cancel the same scale dependence from RG evolution of the
proton PDF. Therefore, all µ dependence at O(αs) are cancelled.

Finally we have

−gµνW q
µν(z, τ,Q2) = 4πQ2

fδ(1−z)δ(τ)

+2αsQ2
fCF (1−ε)Θ0(τ, z)

{
δ(τ)

[
−Pqq(z)

ε
+Sq−1(z)

]
+L0(τ)Sq0(τ, z)

+L1(τ)Sq1(τ, z)+Rq(τ, z)+δ

(
τ− 1−z

z

)
∆q(τ)

}
, (A.33)

where the superscript q denotes the contribution from the incoming quark. The functions
S, R, ∆ are given by

Sq−1(z) = −Pqq(z) ln µ2

Q2 + (1 + z2)L1(1− z)−
(9

2 + π2

3

)
δ(1− z) + 1− z − 1 + z2

1− z ln z ,

Sq0(τ, z) = 2z L0

(
1− z, τ

1 + τ

)
− 3

2δ
(
τ − 1− z

z

)
+ (1− z) ,
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Sq1(τ, z) = −2(2 + τ) δ
(
τ − 1− z

z

)
,

Rq(τ, z) = 1− 4z
1− z + 1 + z2

1− z
1

1− τ ,

∆q(τ) = τ2 + 2τ + 2
τ(1 + τ) ln(1− τ)− τ

1 + τ
ln τ + 2(1 + τ)

τ
ln(1 + τ)− τ + 7

2 . (A.34)

The functions Sqn are similar to those in τ b. Sq−1 is the same except for the last ln z term
and in Sq0,1 the delta function terms contains additional factors 1 + τ associated with change
of variable in the delta function δ(τ − 1−z

z ) = (1 + τ)−2δ( 1
1+τ − z).

A.3 Hadronic tensor for incoming gluon

A process with the initial gluon g + γ∗ → qq̄ starts at O(αs) and this process is the tree
level. The tree level amplitude averaged over incoming colors is given by

−gµνMg
µMg ∗

ν = 32παsTF
∑
f

Q2
f (1−ε)

[
(1−ε)

(1−v
v

+ v

1−v

)
−2z(1−z)

v(1−v)−2ε
]
, (A.35)

PµP νMg
µMg ∗

ν = 32παsTF
∑
f

Q2
f Q

2(1−ε)1−z
z

, (A.36)

where the sums go over the all flavors f ∈ {u, d, s, c, b} allowed by the energy. Note the
(1 − ε) factors in eqs. (A.35) and (A.36) are going to be canceled by the same factor in
the structure functions eq. (A.6). Integrating eq. (A.36) over the two-body final-state
phase space,

W g
µν = 1

2− 2ε
∑
λ

∫
dΦ2
dτ
Mg

µMg∗
ν , (A.37)

where the superscript g representing the incoming gluon and the prefactor (2− 2ε) accounts
for the average over incoming gluon polarization λ in D = 4−2ε dimensions. Then, we have

PµP νW g
µν = 4αsTFQ2

fQ
2Θ0 (1−z)

[1
z

+θ

(
z− 2

3

)
δ

(
τ− 1−z

z

) (1−2τ)(1+τ)
2

]
. (A.38)

The contributions −gµνW (i)
µν for i = I and for II are identical and involve singular terms

−gµνW (I)
µν = −gµνW (II)

µν

= 2αsTF
∑
f

Q2
f

(µ2eγE/Q2)ε

Γ(1− ε)

(
z

1− z

)ε
(1− ε)Θ0(τ, z)

×
[(

τ1−ε

(1− τ)1+ε + (1− τ)1−ε

τ1+ε

)
− 2

1− ε
z(1− z)

τ1+ε(1− τ)1+ε

]

= 2αsTF
∑
f

Q2
f

(
µ2

Q2

)ε
(1− ε) Θ0(τ, z)

[
− Pqg(z)

ε
δ(τ)

+
(

1− Pqg(z) + Pqg(z) ln 1− z
z

)
δ(τ) + Pqg(z)L0(τ) + Pqg(z)

1− τ − 2
]
, (A.39)

where the splitting function Pqg(z) is given in eq. (3.5).
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The contraction −gµνW (III)
µν also involves singular terms when τ → 0 and τ → 1, so

doing similar expansions as in eq. (A.30d), we get

−gµνW (III)
µν = 2αsTF

∑
f

Q2
f

(µ2eγE/Q2)ε

Γ(1−ε)

(
z

1−z

)ε
θ

(
z− 2

3

)
δ

(
τ− 1−z

z

)

×
∫ 1−τ

τ
dv

[
(1−ε)

((1−v)1−ε

v1+ε + v1−ε

(1−v)1+ε

)
−2 z(1−z)

v1+ε(1−v)1+ε −
2ε

vε(1−v)ε

]
= 2αsTF

∑
f

Q2
f

(
µ2

Q2

)ε
(1−ε)θ

(
z− 2

3

)
δ

(
τ− 1−z

z

) [
4τ−2+2Pqg(z) ln 1−τ

τ

]
.

(A.40)

By putting all the −gµνW (i)
µν in eqs. (A.39) and (A.40) together we have

−gµνW g
µν = 4αsTF

∑
f

Q2
f (1− ε)Θ0(τ, z)

[
− Pqg(z)

ε
δ(τ)

+ Sg−1δ(τ) + Sg0L0(τ) +Rg(τ, z) + δ

(
τ − 1− z

z

)
∆g(τ, z)

]
, (A.41)

Sg−1(z) = −Pqg(z) + 1 + Pqg(z)
(

ln 1− z
z
− ln µ2

Q2

)
,

Sg0(τ, z) = Pqg(z) ,

Rg(τ, z) = Pqg(z)
1− τ − 2 ,

∆g(τ, z) = 2τ − 1 + Pqg(z) ln 1− τ
τ

. (A.42)

A.4 Nonsingular part and cumulative results

In this subsection, we give the expressions for the nonsingular terms of the hadronic tensors
obtained in previous sections. The tensors reduce to singular terms having δ(τ), or Ln(τ)
as τ → 0. In the contributions PµPνWµν in eqs. (A.21) and (A.38) there is no such terms
and they are purely nonsingular.

In the gluon process −gµνW g
µν in eq. (A.41) contains terms with δ(τ) and L0(τ).

Subtracting those terms from eq. (A.41), nonsingular part of the gluon tensor is given by

−gµνW g,ns
µν = 4αsTFQ2

f (1− ε)
{

Θ0(τ, z)
[
Rg(τ, z) + δ

(
τ − 1− z

z

)
∆g(z)

]
+ (Θ0(τ, z)− θ(τ))Pqg(z) 1

τ

}
. (A.43)

Note that the last term in eq. (A.43) gives 1/τ term in unphysical region where Θ0 is zero
and this term cancel against the same term in singular part in the region.

Similarly, in the quark process −gµνW q
µν in eq. (A.41) contains terms with δ(τ), L0(τ),

and L1(τ) as τ → 0. Subtracting those terms from eq. (A.33), the nonsingular part is
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given by

−gµνW q,ns
µν = 2αsQ2

fCF (1− ε)
{1
τ
N0(τ, z) + ln τ

τ
N1(τ, z)

+ Θ0(τ, z)
[
Rq(τ, z) + δ

(
τ − 1− z

z

)
∆q(τ)

]}
, (A.44)

where the plus distribution Ln is replaced by lnn τ/τ and the function N0,1(τ, z) is defined
from differences as

N0(τ, z) = Θ0(τ, z)Sq0(τ, z)− θ(τ)Sq0(0, z)

= 2z
[
Θ0 L0

(
1− z, τ

1 + τ

)
− θ(τ)L0(1− z)

]
− 3

2

[
Θ0 δ

(
τ − 1− z

z

)
− θ(τ)δ(1− z)

]
+ (1− z)[Θ0(τ, z)− θ(τ)] ,

N1(τ, z) = Θ0(τ, z)Sq1(τ, z)− θ(τ)Sq1(0, z)

= −4
[
Θ0

(
1 + τ

2

)
δ

(
τ − 1− z

z

)
− θ(τ)δ(1− z)

]
. (A.45)

Now we calculate the cumulative of the nonsingular parts by using following integral

W̃µν(z, τ,Q2) =
∫ τ

0
dτ ′Wµν(z, τ ′, Q2) . (A.46)

Integration of eqs. (A.21) and (A.38) is given by

PµP ν W̃ q,ns
µν = αsCFQ

2
fQ

2
[1
z

min
[
τ,

1
2 ,

1− z
z

]
+ Θ2

3z − 2
2z2

]
= αsCFQ

2
fQ

2
[
τ

z
Θ0 + 1

2z (Θ1 + Θ2)
]
,

PµP ν W̃ g,ns
µν = 4αsTFQ2

fQ
2(1− z)

[
τ

z
Θ0 + 1

2z (Θ1 + Θ2)
]
, (A.47)

where Θ0 is defined in eq. (3.7) and

Θ1 = θ(−z + 2/3) θ(τ − 1/2) , Θ2 = θ(z − 2/3) θ
(
τ − 1− z

z

)
. (A.48)

They cover all regions in τ and z space Θ0 + Θ1 + Θ2 = 1. One finds that eq. (A.47)
are discontinuous at τ = (1 − z)/z when z > 2/3 because δ(τ − (1− z)/z) in eqs. (A.21)
and (A.38) are turned on at the value and the discontinuity implies the end of physical region.

The cumulant of eq. (A.43) is given by

−gµν W̃ g,ns
µν = 4αsTFQ2

f (1− ε)
{

Θ0

[
1− 2τ − Pqg(z) ln 1− τ

τ

]
−
[
1 + Pqg(z) ln τ

]}
.

(A.49)

The cumulant of eq. (A.44) is given by

−gµν W̃ q,ns
µν = 2αsQ2

fCF (1−ε)
{
Ñ0(τ, z)+Ñ1(τ, z)+R̃q(τm, z)+Θ2∆q

(1− z
z

)}
, (A.50)
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where τm is the cumulative integral over Θ0

τm ≡
∫
dτ ′Θ0(τ ′, z) = min

{
τ,

1
2 ,

1− z
z

}
= Θ0 τ + Θ1

1
2 + Θ2

1− z
z

. (A.51)

The functions Ñ0,1, R̃ are defined as

Ñn(τ, z) =
∫ τ

0
dτ ′

lnn τ ′

τ ′
Nn(τ ′, z)

= θ(τ)
∫ τm

0

dτ ′

τ ′
lnn τ ′[Sqn(τ ′, z)− Sqn(0, z)] + Sqn(0, z)

[
lnn+1 τ − lnn+1 τm

n+ 1

]
,

(A.52a)

R̃q(τm, z) =
∫ τ

0
dτ ′Θ0(τ ′, z)Rq(τ ′, z) = 1− 4z

1− z τm −
1 + z2

1− z ln(1− τm) . (A.52b)

A.5 Convolution with PDF

The hadronic tensor with a hadron state h is expressed in the factorized form as

W h
µν(x, τ,Q2) =

∑
i∈{q,q̄,g}

∫ 1

x

dξ

ξ
fi/h(ξ, µ)wiµν(x/ξ, τ,Q2, µ) , (A.53)

where fi/h is the PDF for the initial hadron h into a parton i and the superscript i on the
coefficient wi represents the contribution from the parton i. Note that we obtained the
tensors W q,g

µν for incoming quark and gluon and by the perturbative matching performed
in [34] one can translate them into the coefficients wi. We do not describe the matching
procedure, and the expressions for wi are essentially the same as W q,g

µν . Instead of writing
wi, we give expressions for the hadronic tensor eq. (A.53) convolved with the PDF. The
nonsingular part of the hadronic tensor is given by

PµP νW h,ns
µν = 2πQ2

x2 (Ans
q +Ans

q̄ +Ans
g ) , (A.54)

Ans
q =

∑
f

Q2
f

αsCF
4π

∫ 1

x

dz

z
fq

(
x

z

)[
Θ0(τ, z)2z+δ

(
τ− 1−z

z

)
θ(z−2/3) (1−2τ)(1+τ)z2)

]

=
∑
f

Q2
f

αsCF
4π Θ0(τ,x)

{∫ 1
1+τ

x
dz 2fq

(
x

z

)
+ 1−2τ

(1+τ)2 fq
(
x(1+τ)

)}
, (A.55)

Ans
g =

∑
f

Q2
f

αsTF
π

∫ 1

x

dz

z
fg

(
x

z

)
Θ0(τ, z)(1−z)

[
2z+δ

(
τ− 1−z

z

)
(1−2τ)(1+τ)z2

]

=
∑
f

Q2
f

αsTF
π

Θ0(τ,x)
{∫ 1

1+τ

x
dz 2(1−z)fg

(
x

z

)
+ τ(1−2τ)

(1+τ)3 fg
(
x(1+τ)

)}
. (A.56)

The sums goes over the flavors f ∈ {u, d, s, c, b}. Ans
q̄ is obtained by replacing quark

PDF by anti-quark PDF in Ans
q and this is true for Bnsq and their cumulative. The other

tensor projection is expressed as

− gµνW h,ns
µν = 8π(1− ε)(Bnsq + Bnsq̄ + Bnsg ) , (A.57)
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where Bnsq and Bnsg are

Bnsq =
∑
f

Q2
f

αsCF
4π

{∫ 1

x

dz

z
fq,q̄

(
x

z

)[1
τ
N0(τ, z) + ln τ

τ
N1(τ, z)

]

+ Θ0(τ, x)
∫ 1

1+τ

x

dz

z
fq,q̄

(
x

z

)
Rq(τ, z) + Θ0(τ, x) fq,q̄(x(1 + τ))∆q(τ)

1 + τ

}
, (A.58)

Bnsg =
∑
f

Q2
f

αsTF
2π

{
Θ0

∫ 1
1+τ

x

dz

z
fg
(
x/z

)(Pqg(z)
1− τ − 2

)

+ Θ0fg(x(1 + τ))
(2τ − 1

1 + τ
+ 1 + τ2

(1 + τ)3 ln 1− τ
τ

)
+ 1
τ

Θ0

∫ 1
1+τ

x

dz

z
fg

(
x

z

)
Pqg(z)− 1

τ

∫ 1

x

dz

z
fg

(
x

z

)
Pqg(z)

}
, (A.59)

where the integrals involving N0,1 are given by∫ 1

x

dz

z
fq

(
x

z

) ln τ
τ

N1(τ, z) = −4ln τ
τ

[
Θ0

2 + τ

2(1 + τ)fq
(
x(1 + τ)

)
− fq(x)

]
, (A.60)∫ 1

x

dz

z
fq

(
x

z

) 1
τ
N0(τ, z) = − 3

2τ

[
Θ0

fq
(
x(1 + τ)

)
1 + τ

− fq(x)
]

+ 2
τ

{
Θ0

[ ∫ 1
1+τ

x
dz
fq
(
x/z

)
− fq

(
x(1 + τ)

)
1− z + fq

(
x(1 + τ)

)
ln(1− x)

]
−
∫ 1

x
dz
fq
(
x/z

)
− fq(x)

1− z − fq(x) ln(1− x)
}

+ 1
τ

{
Θ0

∫ 1
1+τ

x
dz fq

(
x

z

) 1− z
z
−
∫ 1

x
dz fq

(
x

z

) 1− z
z

}
. (A.61)

Note that terms with 1−Θ0 = Θ1 + Θ2 are contributions from unphysical regions and they
cancel the contributions from singular parts in the same region.

Next let us calculate the convolution with cumulants of eq. (A.47)

PµP νW̃ h,ns
µν = 2πQ2

x2 (Ans
q +Ans

q̄ +Ans
g ) , (A.62)

Ans
q =

∑
f

Q2
f

αsCF
4π

∫ 1

x

dz

z
fq,q̄

(
x

z

) [
2zτm + Θ2 (3z − 2)

]

=
∑
f

Q2
f

αsCF
4π

{
2τΘ0

∫ 1
1+τ

x
dz fq

(
x

z

)
+ Θ1

∫ 2
3

x
dz fq

(
x

z

)

+
∫ 1

max[ 1
1+τ ,

2
3 ,x]

dz fq

(
x

z

)}

=
∑
f

Q2
f

αsCF
4π

{
(2τ − 1) Θ0

∫ 1
1+τ

x
dz fq

(
x

z

)
+
∫ 1

x
dz fq

(
x

z

)}
, (A.63)

Ans
g =

∑
f

Q2
f

αsTF
π

{
(2τ − 1) Θ0

∫ 1
1+τ

x
dzfg

(
x

z

)
(1− z) +

∫ 1

x
dz fg

(
x

z

)
(1− z)

}
.

(A.64)
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Here the extra factor (1−z) in the gluon integral compared with the quark part corresponds
to the extra factor (1− z) in eq. (A.47).

Now we calculate convolution with cumulants in eqs. (A.49) and (A.50):

− gµνW̃ h,ns
µν = 8π(1− ε)(Bns

q +Bns
q̄ +Bns

g ) , (A.65)

where

Bns
g =

∑
f

Q2
f

αsTF
2π

{
Θ0

∫ 1
1+τ

x

dz

z
fg

(
x

z

)[
1− 2τ − Pqg(z) ln 1− τ

τ

]

−
∫ 1

x

dz

z
fg

(
x

z

) [
1 + Pqg(z) ln τ

]}
, (A.66)

Bns
q =

∑
f

Q2
f

αsCF
4π

{∫ τ

0
dτ ′

∫ 1

x

dz

z
fq

(
x

z

) [1
τ
N0(τ ′, z) + ln τ ′

τ ′
N1(τ ′, z)

]

+
∫ 1

x

dz

z
fq

(
x

z

)
R̃q(τ ′, z) +

∫ 1

x

dz

z
fq

(
x

z

)
∆̃q(τ, z)

}
, (A.67)

where R̃q is cumulant of Rq and is defined in eq. (A.52b) and ∆̃q is cumulant of δq term,
that is

∆̃q(τ, z) = Θ2(τ, z)∆q((1− z)/z
)
. (A.68)

Plugging eqs. (A.52b) and (A.68) into last two integrals in eq. (A.67), we obtain

∫ 1

x

dz

z
fq

(
x

z

) (
R̃q(τ, z) + ∆̃q(τ, z)

)
= Θ0

∫ 1
1+τ

x

dz

z
fq

(
x

z

)[1− 4z
1− z τ − Pqq(z) ln(1− τ)

]
+ Θ1

∫ 2
3

x

dz

z
fq

(
x

z

)[ 1− 4z
2(1− z) + Pqq(z) ln 2

]
+
∫ 1

max[ 1
1+τ ,

2
3 ,x]

dz

z
fq

(
x

z

)[1
2 + 2 ln z

z − 1 + (z − 1) ln 1− z
z

]
. (A.69)

The terms Ni are given in eq. (A.45). Integral of each term is given by

∫ 1

0
dτ ′

∫ 1

x

dz

z
fq

(
x

z

) ln τ ′

τ ′
N1(τ ′, z)

=−4
[∫ τm

0
dτ ′

ln τ ′

τ ′

( 2+τ ′

2(1+τ ′)fq(x(1+τ ′))−fq(x)
)
− fq(x)

2
(
ln2 τ− ln2 τm]

)]
=−2

∫ 1

max[ 1
1+τ ,

2
3 ,x]

dz

z

ln 1−z
z

1−z

[
(1+z)fq

(
x

z

)
−2fq(x)

]
+2fq(x)

[
ln2 τ− ln2 τm

]
, (A.70)
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∫ τ

0
dτ ′

∫ 1

x

dz

z
fq

(
x

z

) 1
τ ′
N0(τ ′, z)

= 2
∫ τm

0
dτ ′

[ ln τ ′

1+τ ′

τ ′
[
fq(x(1+τ ′))−fq(x)

]
− 1
τ ′

∫ 1

1
1+τ ′

dz
fq
(
x
z

)
−fq(x)

1−z

]

−2 ln
(
τ

τm

)(∫ 1

x
dz
fq
(
x
z

)
−fq(x)

1−z +fq(x) ln(1−x)
)

− 3
2

[∫ τm

0
dτ ′

1
τ ′

[ 1
(1+τ ′)fq(x(1+τ ′))−fq(x)

]
−fq(x) (ln τ− ln τm)

]
+
∫ 1

x
dz

(1−z)fq
(
x
z

)
z

ln τm
τ
. (A.71)

The double integrals over τ ′ and z that still exist in eq. (A.71) can be simplified by switching
the order of integration. Doing so, and also changing variables in the remaining integrals
over τ ′ using z = 1/(1 + τ ′) so that all integrals are over z, we obtain simpler expression∫ τ

0
dτ ′

∫ 1

x

dz

z
fq

(
x

z

) 1
τ ′
N0(τ ′, z)

= 2
∫ 1

max
[

1
1+τ ,

2
3 ,x
] dz
z

[
ln(1− z) + z ln 1− z

zτ

]
fq
(
x
z

)
− fq(x)

1− z (A.72)

− 2Θ1 ln(2τ)
∫ 2

3

x
dz
fq
(
x
z

)
− fq(x)

1− z − 2
[
Θ1 ln(2τ) + Θ2 ln xτ

1− x

]
fq(x) ln(1− x)

− 3
2

∫ 1

max
[

1
1+τ ,

2
3 ,x
] dz
z

zfq
(
x
z

)
− fq(x)

1− z + 3
2fq(x)

[
Θ1 ln(2τ) + Θ2 ln τx

1− x

]

+
∫ 1

max
[

1
1+τ ,

2
3 ,x
] dz fq (x

z

) 1− z
z

ln 1− z
zτ
−Θ1 ln(2τ)

∫ 2/3

x
dz fq

(
x

z

) 1− z
z

. (A.73)

Finally, we combine all terms contributing to Bns
q in eq. (A.67). Some further simplifications

occur upon summing eqs. (A.69), (A.70), and (A.72). Doing so, we obtain the final result
for Bns

q , which can be written as in eq. (3.6).

B Additional contribution for τ ct

Here, we summarize the results of additional contributions for τ ct which is to be added
onto τ jt results.

Since we take the difference between two 1-jettiness, all divergences are cancelled.
Hence, the necessary v integrals are finite and all ε can be dropped as done in eq. (A.10d)
and in the quark amplitudes eqs. (A.18) and (A.19) and in the gluon amplitudes eqs. (A.35)
and (A.36). Integrating over v in these amplitudes and performing the matching, we
obtain the final results. To avoid duplication we omit showing intermediate steps and
actually the intermediate expressions are similar to final results because there are not
much simplifications.

The final expressions of differential version of δA and δB are given by

δAns
q =

∑
f

Q2
f

αsCF
4π

{
2z4

0
3z0 − 2 δÂq(R, z0)− 2z3

1 δÂq(R, z1)
}
,
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δAns
g =

∑
f

Q2
f

αsTF
π

{
z4

0
3z0 − 2 δÂg(R, z0)− z3

1 δÂg(R, z1)
}
,

δBnsq =
∑
f

Q2
f

αsCF
4π

{
z2

0
3z0 − 2 δB̂q(R, z0)− z1 δB̂q(R, z1)

}
,

δBnsg =
∑
f

Q2
f

αsTF
2π

{
z2

0
2(3z0 − 2) δB̂g(R, z0)− z1

2 δB̂g(R, z1)
}
. (B.1)

The parameters z0,1 are the relations between z and τ in region IV

z0 = 3 +
√

1− 4τ
2(2 + τ) , z1 = 1

1 + τ
. (B.2)

The functions δÂ, δB̂ are

δÂq(R,z) = θ(z−x)θ(z−zc)θ(−z+1)r(z,R)
2z fq

(
x

z

)
,

δÂg(R,z) = θ(z−x)θ(z−zc)θ(−z+1)1−z
z

r(z,R)fg
(
x

z

)
,

δB̂q(R,z) = θ(z−x)θ(z−zc)θ(−z+1)
[

1−4z
2(1−z)r(z,R)+ 1+z2

1−z ln 1+r(z,R)
1−r(z,R)

]
fq

(
x

z

)
,

δB̂g(R,z) = θ(z−x)θ(z−zc)θ(−z+1)
[
2Pqg(z) ln 1+r(z,R)

1−r(z,R)−2r(z,R)
]
fg

(
x

z

)
, (B.3)

where zc(R) is given in eq. (2.22) and r(z,R) is in eq. (3.12). If we insert z0 and z1 into the
constraint θ(z − zc), we obtain two upper limits of τ (16−R2)R2/256 and R2/16, beyond
which each of two contributions in eq. (B.1) becomes zero.

C Difference between τ b and τ jt

Here we give the difference between τ b and τ jt results. The cumulative results for τ jt are
given in eqs. (3.4) and (3.6) and results for τ b in [34]. Their differences in singular and
nonsingular parts are given by

Bsing
q (τ b)−Bsing

q (τ jt) =
∑
f

Q2
f

αsCF
4π

∫ 1

x

dz

z
fq
(x
z

)
Pqq(z) lnz ,

Bsing
g (τ b)−Bsing

g (τ jt) =
∑
f

Q2
f

αsTF
2π

∫ 1

x

dz

z
fg
(x
z

)
Pqg(z) lnz ,

Ans
q (τ b)−Ans

q (τ jt) =
∑
f

Q2
f

αsCF
4π Θ0

∫ 1
1+τ

x
dz fq

(x
z

)
2τ(z−1) ,

Ans
g (τ b)−Ans

g (τ jt) =
∑
f

Q2
f

αsTF
π

Θ0

∫ 1
1+τ

x
dzfg

(x
z

)
2τ [−(1−z)2] ,

Bns
q (τ b)−Bns

q (τ jt) =
∑
f

Q2
f

αsCF
4π

(
Θ0

{∫ 1
1+τ

x

dz

z
fq
(x
z

)[
−τ(1−4z)+Pqq(z) ln z(1−τ)

1−zτ

]}

+
∫ 1

x

dz

z
fq
(x
z

)[
−Pqq(z) lnz

])
,
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Bns
g (τ b)−Bns

g (τ jt) =
∑
f

Q2
f

αsTF
2π

{
Θ0

∫ 1
1+τ

x

dz

z
fg
(x
z

)[
2τ(1−z)+Pqg(z) ln z(1−τ)

1−zτ

]

−
∫ 1

x

dz

z
fg
(x
z

)
Pqg(z) lnz

}
, (C.1)

where those not listed above are zero.
The NLP obtained from eq. (C.1) can be expressed as

Ans
q (τ b)−Ans

q (τ jt)
∣∣
τ→0 =

∑
f

Q2
f

αsCF
4π τ

∫ 1

x
dz fq

(
x

z

)
2(z − 1) +O(τ2) ,

Ans
g (τ b)−Ans

g (τ jt)
∣∣
τ→0 =

∑
f

Q2
f

αsTF
π

τ

∫ 1

x
dzfg

(
x

z

)
[−2(1− z)2] +O(τ2) ,

Bns
q (τ b)−Bns

q (τ jt)
∣∣
τ→0 =

∑
f

Q2
f

αsCF
4π τ

{∫ 1

x

dz

z
fq

(
x

z

)[
− 1 + 4z + Pqq(z)(z − 1)

]

+ 2fq (x)
}

+O(τ2) ,

Bns
g (τ b)−Bns

g (τ jt)
∣∣
τ→0 =

∑
f

Q2
f

αsTF
2π τ

{∫ 1

x

dz

z
fg

(
x

z

)
(1− z)

[
2− Pqg(z)

]}
+O(τ2) .

(C.2)
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