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We numerically study for the first time the nonlinear GLR-MQ evolution equations for nuclear parton
distribution function (nPDFs) to next-to-leading order accuracy and quantify the impact of gluon
recombination at small x. Using the nCTEQ15 nPDFs as input, we confirm the importance of the
nonlinear corrections for small x ≲ 10−3, whose magnitude increases with a decrease of x and an increase
of the atomic number A. We find that at x ¼ 10−5 and for heavy nuclei, after the upward evolution from
Q0 ¼ 2 GeV to Q ¼ 10 GeV, the quark singlet Ωðx;Q2Þ and the gluon Gðx;Q2Þ distributions become
reduced by 9%–15%, respectively. The relative effect is much stronger for the downward evolution from
Q0 ¼ 10 GeV to Q ¼ 2 GeV, where we find that Ωðx;Q2Þ is suppressed by 40%, while Gðx;Q2Þ is
enhanced by 140%. These trends propagate into the FA

2 ðx;Q2Þ nuclear structure function and the FA
Lðx;Q2Þ

longitudinal structure function, which after the downward evolution become reduced by 45% and enhanced
by 80%, respectively. Our analysis indicates that the nonlinear effects are most pronounced in FA

Lðx;Q2Þ
and are already quite sizable at x ∼ 10−3 for heavy nuclei. We have checked that our conclusions very
weakly depend on the choice of input nPDFs. In particular, using the EPPS21 nPDFs as input, we obtain
quantitatively similar results.

DOI: 10.1103/PhysRevD.107.054003

I. INTRODUCTION

In quantum chromodynamics (QCD), the microscopic
structure of hadrons (pions, protons, nuclei) is described in
terms of various quark and gluon (commonly called parton)
distribution functions (PDFs). As follows from the QCD
collinear factorization theorem [1], the PDFs fiðx;Q2Þ are
universal, process-independent distributions, which depend
on the parton flavor i, the parton light-cone momentum
fraction of the parent hadron x, and the resolution scale Q.
While the dependence on x cannot be calculated from first
principles, the Q2 dependence of fiðx;Q2Þ is given by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [2–5]. In QCD and in any other quantum
field theory with a dimensionless coupling constant, the Q2

dependence of PDFs originates from renormalization of
collinear divergences appearing in the ladder-type Feynman

graphs (in the physical axial gauge) describing the emission
of quarks and gluons with high transverse momenta (parton
splitting) [6]. The resulting renormalization group equations
are the DGLAP Q2 evolution equations, which resum the
leading αksαs lnQ2 contributions to these ladder graphs,
where k ¼ 0 (leading-order of perturbation theory), k ¼ 1

(next-to-leading order, NLO), etc., and αsðQ2Þ is the QCD
running coupling constant.
The standard DGLAP evolution equations have been

derived in the limit of large Q2 and x ∼ 1 and are linear in
the parton distributions. The parton splitting encoded in
these equations results in an increase of the quark and,
especially, the gluon distributions at small x, when one
increases the value of Q2. When the gluon density becomes
sufficiently large at small x, one needs to take into account
the effects of gluon recombination (gluon-gluon fusion)
leading to nonlinear corrections to the DGLAP evolution
equations [7–10]. In the Gribov-Levin-Ryskin-Mueller-Qiu
(GLR-MQ) approach [7,8,10], the gluon recombination is
addressed by analyzing so-called “fan” diagrams, where
two gluon ladders merge into a gluon or a quark-antiquark
pair. Adding these contributions to the DGLAP equations
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yields the nonlinear GLR-MQ evolution equations [8,11],
where the nonlinear term tames the growth of the PDFs at
small x and leads to their suppression. This can be viewed as
a precursor of the gluon saturation at small x [12].
Effects of small-x nonlinear corrections to the DGLAP

evolution equations due to gluon recombination have been
extensively studied in the literature [13–21]. It was found
that these corrections affect the gluon distribution in the
proton at small x, x≲ 10−3, and the interpretation and
description of the Hadron-Electron Ring Accelerator
(HERA) data on the total and diffractive electron-proton
(ep) deep-inelastic scattering (DIS) cross sections at very
small x ∼ 10−5. The effect of the nonlinear corrections is
expected to be larger in heavy nuclei and also in models
assuming the presence of gluonic “hot spots” in the
proton [22]. This and many other topics of small-x
QCD constitute an essential part of the physics programs
of future electron-ion colliders including the Electron-Ion
Collider (EIC) in the U.S. [23], the Large Hadron-Electron
Collider (LHeC) [24,25] and the Future Circular Collider
(FCC) [26] at CERN, which will allow one to access ep
DIS at as low as x ∼ 10−4 and x ∼ 10−6, respectively.
The aim of the present work is to study numerically for

the first time the nonlinear corrections in the GLR-MQ
evolution equations for nuclear parton distribution functions
(nPDFs) to NLO accuracy. To this end, we extend the
numerical algorithm realized in the well-tested QCDNUM16

DGLAP evolution code [27] and write a stand-alone GLR-
MQ evolution program. As input, we use one of the state of
the art nPDFs, namely the nCTEQ15 nPDFs [28], which
have been obtained by performing a global QCD fit of the
data on lepton-nucleus DIS, Drell-Yan lepton pair produc-
tion in proton-nucleus scattering at Fermilab, and inclusive
pion production in deuteron-gold scattering at Relativistic
Heavy Ion Collider (RHIC). We then solve the GLR-MQ
equations numerically and quantify the effect of the non-
linear corrections in these equations on the evolved nPDFs
and the nuclear structure function FA

2 ðx;Q2Þ and the
longitudinal structure function FA

Lðx;Q2Þ. We find that,
as expected, the nonlinear corrections are important for

small x≲ 10−3 and their magnitude increases with a
decrease of x and with an increase of the atomic number
A. For the smallest studied value of x ¼ 10−5, after the
upward evolution from Q0 ¼ 2 GeV to Q ¼ 10 GeV, the
quark singletΩðx;Q2Þ and the gluon Gðx;Q2Þ distributions
in heavy nuclei are suppressed compared to their DGLAP-
evolved counterparts by 9%–15%, respectively. The relative
effect is much stronger for the downward evolution from
Q0 ¼ 10 GeV to Q ¼ 2 GeV, where we find that Ωðx;Q2Þ
is suppressed by 40% compared to the nCTEQ15 PDFs,
while Gðx;Q2Þ is enhanced by 140%. This trend can be
explained by the observation that the gluon-gluon recombi-
nation plays a much bigger role than the gluon-quark
splitting. The behavior of nPDFs translates into the corre-
sponding behavior of the FA

2 ðx;Q2Þ and FA
Lðx;Q2Þ nuclear

structure functions. In particular, after the downward
evolution from high to low Q and for heavy nuclei and
very small x, we observe that FA

2 ðx;Q2Þ dominated by
Ωðx;Q2Þ is reduced by 45%, while FA

Lðx;Q2Þ dominated by
Gðx;Q2Þ is enhanced by 80%. We have also checked that
these findings very weakly depend on the choice of input
nPDFs and obtained quantitatively similar results using the
EPPS21 nPDFs [29] as input.
The remainder of the paper is organized as follows. In

Sec. II, we present our algorithm for the numerical solution
of the DGLAP and GLR-MQ evolution equations. The
results of our numerical evaluation of the GLR-MQ
equations for nPDFs and predictions for the FA

2 ðx;Q2Þ
and FA

Lðx;Q2Þ nuclear structure functions are given in
Sec. III. Finally, we summarize our findings in Sec. IV.

II. NUMERICAL SOLUTION OF GLR-MQ
EVOLUTION EQUATIONS

The standard DGLAP evolution equations have
the following form for the singlet quark Ωðx;Q2Þ ¼
xΣðx;Q2Þ ¼ x

P
i¼u;d;s;c;…ðqiðx;Q2Þ þ q̄iðx;Q2ÞÞ and the

gluon Gðx;Q2Þ ¼ xgðx;Q2Þ momentum densities
(distributions),

∂Ωðx;Q2Þ
∂ lnQ2

¼ αsðQ2Þ
2π

Z
1

x

dz
z2

x

�
PFF

�
x
z

�
Ωðz;Q2Þ þ PFG

�
x
z

�
Gðz;Q2Þ

�
;

∂Gðx;Q2Þ
∂ lnQ2

¼ αsðQ2Þ
2π

Z
1

x

dz
z2

x

�
PGF

�
x
z

�
Ωðz;Q2Þ þ PGG

�
x
z

�
Gðz;Q2Þ

�
; ð1Þ

where PFF, PFG, PGF, and PGG are the quark-quark, gluon-quark, quark-gluon, and gluon-gluon splitting functions
calculated to the desired order in αs [1,30]. Our numerical analysis in this paper is carried out to NLO accuracy.
As we discussed in the Introduction, the gluon recombination modifies the standard DGLAP equations and leads to the

following nonlinear GLR-MQ evolution equations [8,11]
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∂Ωðx;Q2Þ
∂ lnQ2

¼ ∂Ωðx;Q2Þ
∂ lnQ2

����
DGLAP

−
27

160

α2sðQ2Þ
R2Q2

ðGðx;Q2ÞÞ2;

∂Gðx;Q2Þ
∂ lnQ2

¼ ∂Gðx;Q2Þ
∂ lnQ2

����
DGLAP

−
81

16

α2sðQ2Þ
R2Q2

Z
1

x

dz
z
ðGðz;Q2ÞÞ2; ð2Þ

where ∂Ωðx;Q2Þ=∂ lnQ2jDGLAP and ∂Gðx;Q2Þ=∂ lnQ2

jDGLAP refer to the right-hand side of Eq. (1). R is
the characteristic radius of the gluon distribution in the
hadronic target, which determines the strength of the
nonlinear corrections. Note that an additional term con-
taining the higher-dimensional gluon distribution GHT,
which is suppressed by one power of ln 1=x and which
does not correspond to the gluon distribution, has been
neglected in Eq. (2). Since the nonsinglet combinations of
quark PDFs do not mix with the gluon distribution and,
hence, do not receive corrections due to gluon recombi-
nation, we do not consider them in our analysis.
We numerically solve the GLR-MQ evolution equations

using the “brute force” method in the momentum space.
To do it, we extend the numerical algorithm used in the
QCDNUM16 DGLAP evolution code [27] to take into
account the nonlinear corrections in Eq. (2) and implement
it in a stand-alone evolution code. QCDNUM16 is a fast QCD
evolution program, which numerically evolves PDFs using
the DGLAP evolution equations to LO and NLO accuracy
in the MS factorization scheme. The program can handle
flavor thresholds (light quark variable flavor number
scheme or heavy quark fixed flavor number scheme) and
allows one to independently vary the renormalization and
factorization scales. QCDNUM16 and its more recent variants
constitute an important part of the open-source xFitter

project [31,32] providing a framework for the determina-
tion of the PDFs using QCD fits to the available data with
lepton (HERA) and hadron (Tevatron, the Large Hadron
Collider) beams.
Below we outline our approach.
Equations (1) and (2) are evaluated numerically on an

x −Q2 grid. Given the parton distributions at a starting
value Q2

0, the distributions at other values of Q2 are
determined by solving a set of four equations at each grid
point, which are derived using spline interpolation between
grid points. The grid consists of nþ 1 values of x bounded
by x0 and 1, x0 < … < xn ¼ 1, and mþ 1 values of Q2,
which are all above or belowQ2

0. The values of x andQ
2 are

spaced logarithmically because the region of low x and Q2

is most relevant for our purpose. In the following,
Dðxc; Q2

rÞ ¼ Drc refers to Ωðx;Q2Þ or Gðx;Q2Þ evaluated
at the grid point ðxc; Q2

rÞ, and the corresponding logarithmic
derivative ∂D=∂ lnQ2 is written as D0. At x ¼ 1, Drn ¼ 0

for all r.

To compute the convolution integrals in Eqs. (1) and (2),
D is interpolated linearly between x-values,

Dxðx;Q2
rÞ ¼ ā1xþ ā0; for x ∈ ½xk; xkþ1�: ð3Þ

By imposing the continuity condition Dxðxi; Q2
rÞ ¼ Dri for

i ¼ k, kþ 1, one obtains

Dxðx;Q2
rÞ ¼ ð1 − tkÞDrk þ tkDrðkþ1Þ;

where tk ¼
x − xk

xkþ1 − xk
∈ ½0; 1�: ð4Þ

With this, the integrals can be written as weighted sums
overDrk, where k runs from c to n. AssumingDrk is known
for k > c (condition 1), the only unknowns in the DGLAP
equations are Ωrc, Ω0

rc, Grc, and G0
rc. Two more equations

relating these unknowns can be obtained by using a
quadratic interpolation between Q2-values,

DQðxc; Q2Þ ¼ ã2ðln Q2Þ2 þ ã1 ln Q2 þ ã0;

for Q2 ∈ ½Q2
r−1; Q

2
r �: ð5Þ

The requirements thatDQðxc; Q2
i Þ ¼ Dic andD0

Qðxc; Q2
i Þ ¼

D0
ic for i ¼ r − 1; r imply that

FIG. 1. The evolution path through a grid with n ¼ 5 and
m ¼ 3. Every row is evaluated from the right to the left, starting at
the bottom and going to the top. The orange dots indicate the
starting values of D.
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Drc ¼ Dðr−1Þc þ
Δr

2
ðD0

ðr−1Þc þD0
rcÞ; ð6Þ

where Δr ¼ lnQ2
r − lnQ2

r−1. If Dðr−1Þc and D0
ðr−1Þc

have been calculated during the previous evolution steps
(condition 2), Eq. (6) and the DGLAP equations can be
solved for the four unknowns.
The path through the grid must now be chosen such that

conditions 1 and 2 are satisfied for any grid point ðxc; Q2
rÞ,

where D is being evaluated. This is achieved by starting at
xn ¼ 1 for every value of Q2 and proceeding toward
smaller x, as illustrated in Fig. 1.
Using the linear interpolation of Eq. (4), the convolution

integrals in the DGLAP equations can be written as

Z
1

xc

dz
z2

xcPAB

�
xc
z

�
Dðz;Q2

rÞ ¼
Xn−1
k¼c

ωABðxk; xcÞDrk; ð7Þ

where

ωABðxk; xcÞ ¼
�
S1ðfcþ1; fcÞ if k¼ c

S1ðfkþ1; fkÞ− S2ðfk;fk−1Þ else
ð8Þ

with fk ¼ xc=xk and

Siðu; vÞ ¼
ai

v − u

Z
v

u

dz
z
ðz − biÞPABðzÞ; ð9Þ

where a1 ¼ b2 ¼ v and a2 ¼ b1 ¼ u. The weights
wABðxk; xcÞ are calculated numerically at program
initialization.
The discretized DGLAP equations can then be expressed

in the following form

Ω0
rc ¼ WFFΩrc þWFGGrc þMF;

G0
rc ¼ WGFΩrc þWGGGrc þMG; ð10Þ

whereWAB ¼ αs=ð2πÞwABðxc; xcÞ andMF andMG contain
the summands with k > c multiplied by αs=ð2πÞ. Together
with Eq. (6), they form a system of four linear equations
with four unknowns. This system is solved numerically at
every step in the evolution.
The nonlinear correction in the GLR-MQ evolution

equations involves the gluon distribution squared, see
Eq. (2). The difficulty presents only the second line in
Eq. (2), where the nonlinear term is expressed as an integral
of ðGðz;Q2ÞÞ2. To numerically implement it, one uses the
linear interpolation in z for Gðz;Q2Þ, see Eqs. (3) and (4),
substitutes it in Eq. (2), and obtains the following dis-
cretized expression for the nonlinear correction,

Z
1

xc

dz
z
G2ðz;Q2

rÞ ¼
Xn−1
k¼c

w1ðxkÞG2
rk

þ
Xn−2
k¼c

2w2ðxkÞGrðkþ1ÞGrk; ð11Þ

where

w1ðxkÞ ¼
�
T1ðxc; xcþ1Þ if k ¼ c

T1ðxk; xkþ1Þ þ T2ðxk1 ; xkÞ else

w2ðxkÞ ¼ −T3ðxk; xkþ1Þ ð12Þ

and

Tiðu; vÞ ¼
1

ðv − uÞ2
Z

v

u

dz
z
ðcidi − ðci þ diÞzþ z2Þ; ð13Þ

where c1 ¼ d1 ¼ d3 ¼ v and c2 ¼ d2 ¼ c3 ¼ u. Note that
since the nonlinear correction is expressed in terms of the
gluon distribution squared, Eq. (11) contains both the G2

rk
terms and the Grðkþ1ÞGrk cross terms [compare to Eq. (7)].
The computation of w1ðxkÞ and w2ðxkÞ can be done

much faster than that of the DGLAP weights wABðxk; xcÞ:
Only OðnÞ integrals must be calculated instead of Oðn2Þ,
and the integrand in Eq. (13) is much simpler than the
splitting functions in Eq. (7).
With this, the discretized form of the GLR-MQ evolution

equations read

Ω0
rc ¼ WFFΩrc − V1G2

rc þWFGGrc þMF;

G0
rc ¼ WGFΩrc − V2G2

rc þ ðWGG − V3ÞGrc þMG − NG;

ð14Þ

where V1 ¼ ð27=160ÞfðQ2
rÞ, V2 ¼ ð81=16ÞfðQ2

rÞw1ðxcÞ,
V3¼ð81=16ÞfðQ2

rÞ2w2ðxcÞGrðcþ1Þ, and fðQ2
rÞ ¼ α2sðQ2

rÞ=
ðR2Q2

rÞ. The NG term contains the remainder of the sums in
Eq. (11) multiplied by the factor of ð81=16ÞfðQ2

rÞ. Since
Eq. (6) still applies, there are again four equations relating
Drc and D0

rc, which can be solved at each grid point, when
using the evolution path shown in Fig. 1.
Using the numerical approach outlined above, we

solved the GLR-MQ evolution equations on a 50 × 40

grid (n ¼ 50, m ¼ 40) in the x-Q2 plane using the
nCTEQ15 [28] and EPPS21 [29] nPDFs for the initial
condition, which have been accessed via the LHAPDF6
framework [33]. This grid size is sufficient to provide a
better than 1.2% numerical accuracy for the interpolation in
x and Q2.
For the running strong coupling constant αsðQ2Þ, we used

the standard NLO expression [1] along with the require-
ments that αsðM2

ZÞ ¼ 0.118, where MZ ¼ 91.2 GeV is the
Z boson mass, and that αsðQ2Þ is continuous across the
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charm quark mass mc ¼ 1.3 GeV and the bottom quark
mass mb ¼ 4.5 GeV flavor thresholds.
For a nuclear target with the mass number A, we take

R ¼ 1.25 fm × A1=3. Note that since nuclear PDFs scale
approximately as A, the nonlinear term in Eq. (2) scales
as A4=3, which significantly enhances the importance of
the nonlinear corrections for heavy nuclei compared to the
proton case. However, in practice, the significant nuclear
shadowing of the gluon distribution at small x and the
rather dilute distribution of nucleons in nuclei reduce the
net effect [34].
To test the accuracy of our evolution code, as an

example, we used the nCTEQ15 nPDFs for Au-197 as
the initial conditions at Q0 ¼ 2 GeV, evolved them up to
Q ¼ 10 GeV neglecting the nonlinear GLR-MQ correc-
tion, and found that the resulting quark singlet and gluon
distributions in the 10−5 ≤ x ≤ 10−3 interval agree with
the nCTEQ15 parametrization with an accuracy of
around 1.2%.

III. RESULTS FOR NUCLEAR PDFs
AND STRUCTURE FUNCTIONS

In this section, we present results of our numerical
studies of the nonlinear GLR-MQ evolution equations for
the nCTEQ15 and EPPS21 nPDFs, quantify the effect of
the nonlinear corrections in these equations on the evolved
nPDFs and the nuclear structure function FA

2 ðx;Q2Þ and the
longitudinal structure function FA

Lðx;Q2Þ, and thus deter-
mine the kinematic regions in the x −Q2 plane, where the
nonlinear corrections are potentially important.
Figure 2 presents the results of GLR-MQ evolution for

the quark singlet (left panels) and the gluon (right panels)
nPDFs divided by A for the heavy nucleus of Au-197 as a
function of the momentum fraction x. In the two upper
panels, the dashed curves labeled “GLR-MQ” show the
results the upward evolution from Q0 ¼ 2 GeV to Q ¼
4 GeV and Q ¼ 10 GeV. They are compared to the
nCTEQ15 parametrization at the corresponding values of
Q given by the solid curves. As expected, the recombination

FIG. 2. Results of the nonlinear GLR-MQ evolution equations for nPDFs of the nucleus of Au-197. The quark singlet Ωðx;Q2Þ and
the gluon Gðx;Q2Þ distributions per nucleon (dashed lines) are shown as a function of x after the upward evolution from Q0 ¼ 2 GeV
to Q ¼ 4 GeV and Q ¼ 10 GeV (two upper panels) and after the downward evolution from Q0 ¼ 10 GeV to Q ¼ 4 GeV and
Q ¼ 2 GeV (two lower panels) using the nCTEQ15 input. For comparison, the solid curves show the results of the nCTEQ
parametrization at the corresponding values of Q.
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of low-x gluons into high-x gluons slows down the growth
of both gluon and quark singlet distributions for x < 10−3.
Since the gluon-quark splitting function PFGðx=zÞ is
positive for x ≤ z ≤ 1, the lower gluon PDFs lead to a
smaller rate of change Ω0ðx;Q2Þ and, consequently, to the
observed decrease in Ωðx;Q2Þ. The absolute difference
between the GLR-MQ and DGLAP evolved PDFs is
generally smaller for the quark distribution. For instance,
the values of Ωðx;Q2Þ and Gðx;Q2Þ at Q ¼ 10 GeV and
x ¼ 10−5 are reduced by 10% and 14%, respectively,
compared to the corresponding nCTEQ15 PDFs.
The nonlinear terms in the GLR-MQ equations are

suppressed as 1=Q2 and, hence, evolving downwards from
a high value ofQ0 should in principle give a more accurate
picture of the importance of the gluon recombination
effect due to the evolution because the input is now
insignificantly affected by gluon recombination. This is
presented in the two lower panels of Fig. 2 showing by the
dashed curves the results of the downward evolution from
Q0 ¼ 10 GeV down to Q ¼ 4 GeV and Q ¼ 2 GeV. The
relative deviation from the nCTEQ15 parametrization
given by the solid curves is notably larger than for the
upward evolution because the quark and gluon

distributions are much smaller at low Q. For instance,
at Q ¼ 2 GeV and x ¼ 10−5, Ωðx;Q2Þ is decreased by
43% compared to the nCTEQ15 PDFs, while Gðx;Q2Þ is
increased by 133%. At the same time, the absolute
difference between the GLR-MQ and DGLAP evolved
PDFs is similar for both evolution directions.
The gluon distribution after the downward evolution can

be seen as a consequence of reversed gluon-gluon recom-
bination, i.e., the migration of high-x gluons towards low x
leading to the observed increase. As in the case of the
upward evolution, the change in Gðx;Q2Þ affects Ωðx;Q2Þ
mostly through the PFGðx=zÞ splitting function. The gluon-
quark splitting in the case of the downward evolution
corresponds to quark-antiquark pairs recombining into
gluons, which explains the decrease in Ωðx;Q2Þ observed
in the lower left panel of Fig. 2.
To better understand and isolate the role of the gluon

recombination effects in the evolution of quarks, we also
solved the GLR-MQ equations without parton mixing by
setting PFG ¼ PGF ¼ 0. We observed that this essentially
stops the Q2 evolution of the quark singlet distribution,
which indicates that the combined effect of the quark-quark
splitting and the gluon-quark recombination is very small

FIG. 3. The same as Fig. 2, but with the EPPS21 nPDFs.
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compared to that of the neglected gluon-quark splitting.
Consequently, the differences between the GLR-MQ and
the DGLAP evolved quark PDFs can mainly be attributed
to the g − g recombination. This is consistent with the
predictions made by Mueller and Qiu [8].
We also repeated our analysis using the EPPS21 nPDFs

as input; the corresponding results are presented in Fig. 3.
A comparison of these results to those in Fig. 2 shows that
they are quantitatively very similar. Therefore, our con-
clusions on the trends and magnitudes of the nonlinear
effects in the GLR-MQ equations very weakly depend on
the choice of input nPDFs.
Figure 4 quantifies the size of the nonlinear corrections

as a function of the mass number A. It presents the ratios of
the quark singlet and gluon distributions after the GLR-MQ
and DGLAP evolution denoted by Ωnlinðx;Q2Þ=Ωlinðx;Q2Þ
and Gnlinðx;Q2Þ=Glinðx;Q2Þ, respectively, as a function
of x for a wide range of nuclei including C-12, Ca-40,
Ag-108, Au-197, and the free proton. As input, we used the
nCTEQ15 nPDFs. The two upper panels correspond to

the result of the upward evolution from Q0 ¼ 2 GeV to
Q ¼ 10 GeV; the two lower panels are the results of the
downward evolution from Q0 ¼ 10 GeV to Q ¼ 2 GeV.
One can see from the figure that the nonlinear effects
clearly become more important with increasing A. For
example, at x ¼ 10−5, the upward evolution result for the
proton gluon distribution is modified by about 4.5% and for
the Au-197 distribution by about 15%. The difference
between the GLR-MQ and DGLAP evolved PDFs grows
steadily with a decrease of x; it is largest at the smallest
values of x and disappears for x ≥ 0.1. This behavior
matches the approximate analytical solutions of the
GLR-QM equations obtained by other groups [19–21].
As in the case of Fig. 2, we find that the nonlinear terms

have a much bigger relative impact on the downward
evolution for all considered nuclei and the proton. As
explained previously, the nonlinear corrections suppress the
quark singlet distribution and increase the gluon one. For
very small x and heavy nuclei, the effect is Oð30–40%Þ for
the quarks and Oð100–140%Þ for the gluons.

FIG. 4. The ratios of the quark singlet Ωnlinðx;Q2Þ=Ωlinðx;Q2Þ and gluon Gnlinðx;Q2Þ=Glinðx;Q2Þ distributions after the GLR-MQ
and DGLAP evolution, respectively, as a function of x for a wide range of nuclei including C-12, Ca-40, Ag-108, Au-197, and the free
proton. The upper panels correspond to the upward evolution from Q0 ¼ 2 GeV to Q ¼ 10 GeV; the lower panels are the results of the
downward evolution from Q0 ¼ 10 GeV to Q ¼ 2 GeV. As input, the nCTEQ15 nPDFs have been used.
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Using the obtained nuclear PDFs, one can readily calculate the NLO nuclear structure function FA
2 ðx;Q2Þ,

FA
2 ðx;Q2Þ ¼ Nðx;Q2Þ þ αsðQ2Þ

2π

Z
1

x

dz
z2

xCð1Þ
2q

�
x
z

�
Nðz;Q2Þ þ he2iΩðx;Q2Þ þ he2i αsðQ

2Þ
2π

Z
1

x

dz
z2

xCð1Þ
2q

�
x
z

�
Ωðz;Q2Þ

þ he2i αsðQ
2Þ

2π

Z
1

x

dz
z2

xCð1Þ
2g

�
x
z

�
Gðz;Q2Þ; ð15Þ

and the longitudinal structure function FA
Lðx;Q2Þ,

FA
Lðx;Q2Þ ¼ αsðQ2Þ

2π

Z
1

x

dz
z2

xCð1Þ
Lq

�
x
z

�
Nðz;Q2Þ þ he2i αsðQ

2Þ
2π

Z
1

x

dz
z2

xCð1Þ
Lq

�
x
z

�
Ωðz;Q2Þ

þ he2i αsðQ
2Þ

2π

Z
1

x

dz
z2

xCð1Þ
Lg

�
x
z

�
Gðz;Q2Þ: ð16Þ

In Eqs. (15) and (16), Nðx;Q2Þ ¼ x
PNF

i¼1 e
2
i q

þ
i ðx;Q2Þ and

qþi ¼ qiðx;Q2Þ þ q̄iðx;Q2Þ − 1=NFΣðx;Q2Þ are nonsing-
let quark distributions with NF being the number of active

flavors; he2i ¼ ð1=NFÞ
PNF

i¼1 e
2
i ; C

ð1Þ
2q , C

ð1Þ
Lq , C

ð1Þ
2g , and Cð1Þ

Lg

are the standard quark and gluon coefficient functions,
respectively. The convolution integrals in Eqs. (15)
and (16) have exactly the same structure as those in the
DGLAP evolution equations and, hence, the numerical
method explained in Sec. II can be used to evaluate them.

FIG. 5. The ratios of the FA
2 ðx;Q2Þ (left panels) and FA

Lðx;Q2Þ (right panels) structure functions evaluated using the nuclear PDFs
evolved according to the GLR-MQ and DGLAP evolution equations, respectively, as a function of x. As in Fig. 4, the upper panels
correspond to the upward evolution from Q0 ¼ 2 GeV to Q ¼ 10 GeV, and the lower panels are for the downward evolution from
Q0 ¼ 10 GeV to Q ¼ 2 GeV. As input, the nCTEQ15 nPDFs have been used.
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Since the nonsinglet distribution Nðx;Q2Þ is independent
of Gðx;Q2Þ, we directly use the nCTEQ15 parametrization
for it.
Figure 5 shows the ratios of the FA

2 ðx;Q2Þ (left panels)
and FA

Lðx;Q2Þ (right panels) structure functions evaluated
using the nuclear PDFs, which were evolved according to
the GLR-MQ and DGLAP evolution equations, respec-
tively, employing the nCTEQ15 input. The ratios are
denoted by ðF2Þnlin=ðF2Þlin and ðFLÞnlin=ðFLÞlin and are
plotted as a function of x for C-12, Ca-40, Ag-108, Au-197,
and the free proton. The trends of the A and x dependence
mirror those of nPDFs shown in Fig. 4, where FA

2 ðx;Q2Þ is
dominated by Ωðx;Q2Þ and FA

Lðx;Q2Þ by Gðx;Q2Þ. The
nonlinear effects are again most important for heavy nuclei,
and their impact is larger for FA

Lðx;Q2Þ than for FA
2 ðx;Q2Þ.

Thus, it should be easier to observe them experimentally by
measuring FA

Lðx;Q2Þ. For instance, when evolving upward,
the structure function FLðx;Q2Þ for the proton is modified
by about 3.5% at x ¼ 10−5, see the upper right panel. A
similar-size effect can already be observed at x ¼ 4 × 10−3

for Au-197.
Note that the momentum sum rule for nPDFs is slightly

violated in the GLM-MQ approach since the gluon-gluon
recombination leads to a suppression of the singlet quark
and gluon nPDFs after the upward evolution and to a
suppression of the singlet quark and an enhancement of
the gluon nPDFs after the downward evolution. In
particular, we find in the case of Au-197 that the total
momentum sum rule is violated by approximately 5%
after the upward evolution and by less than 3% after the
downward evolution.
A generalization of this approach, which corrects this

shortcoming and is valid in the whole x region, was
suggested [9]. In our analysis, we focus only on the small
x region and, hence, do not address the issue of the
momentum sum rule, which affects the picture of nuclear
modifications of nPDFs, including the valence quarks, in a
broad range of x.

IV. CONCLUSIONS

In this paper, we numerically studied the GLR-MQ
evolution equations for nPDFs to NLO accuracy and
quantified the impact of gluon recombination at small x.
Using the nCTEQ15 and EPPS21 nPDFs as input, we
confirmed the importance of the nonlinear corrections for

small x≲ 10−3, whose magnitude increases with a
decrease of x and an increase of the atomic number A.
For instance, at x ¼ 10−5 and for heavy nuclei, after the
upward evolution from Q0 ¼ 2 GeV to Q ¼ 10 GeV, the
quark singlet Ωðx;Q2Þ and the gluon Gðx;Q2Þ distribu-
tions become reduced compared to the results of the
nCTEQ15 parametrization by 9–15%, respectively. The
relative effect is much stronger for the downward evolution
from Q0 ¼ 10 GeV to Q ¼ 2 GeV, where we find that
Ωðx;Q2Þ is suppressed by 40%, while Gðx;Q2Þ is
enhanced by 140%. This is a consequence of the fact that
the gluon-gluon recombination plays a much bigger role
than the gluon-quark splitting.
The observed trend of the behavior of nPDFs affects the

FA
2 ðx;Q2Þ and FA

Lðx;Q2Þ nuclear structure functions. In
particular, we find that after the downward evolution from
high to low Q and for heavy nuclei and very small x, the
FA
2 ðx;Q2Þ structure function, which is dominated by

Ωðx;Q2Þ, is reduced by 45%, while the FA
Lðx;Q2Þ longi-

tudinal structure function, which is predominantly sensitive
to Gðx;Q2Þ, is enhanced by 80%. Our analysis indicates
that the nonlinear effects are most pronounced in FA

Lðx;Q2Þ
and are already quite sizable at x ∼ 10−3 for heavy nuclei.
Since the results employing the EPPS21 nPDFs are
quantitatively similar, our predictions very weakly depend
on the choice of input nPDFs.
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