
 

TT̄=JT̄-deformed WZW models from Chern-Simons AdS3 gravity with
mixed boundary conditions

Miao He1,* and Yi-hong Gao 2,†

1School of Physical Sciences, University of Chinese Academy of Sciences,
No.19A Yuquan Road, Beijing 100049, China

2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences, Beijing 100190, China

(Received 22 December 2020; accepted 27 May 2021; published 17 June 2021)

In this work we consider AdS3 gravitational theory with certain mixed boundary conditions at infinity.
Using the Chern-Simons formalism of AdS3 gravity, we find that these mixed boundary conditions lead to
nontrivial boundary terms, which, in turn, produce exactly the spectrum of the TT̄=JT̄-deformed conformal
field theories (CFTs). We then follow the procedure for constructing asymptotic boundary dynamics of
AdS3 to derive the constrained TT̄-deformed Wess-Zumino-Witten (WZW) model from Chern-Simons
gravity. The resulting theory turns out to be the TT̄-deformed Alekseev-Shatashvili action after
disentangling the constraints. Furthermore, by adding a Uð1Þ gauge field associated to the current J,
we obtain one type of the JT̄-deformed WZWmodel, and show that its action can also be constructed from
the gravity side. These results provide a check on the correspondence between the TT̄=JT̄-deformed CFTs
and the deformations of boundary conditions of AdS3, the latter of which may be regarded as coordinate
transformations.
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I. INTRODUCTION

Over the past few years, we have seen a surge of interest
in deformed 2D conformal field theories (CFTs) [1–10].
Such theories are integrable, and in some cases allow a
holographic description of 3D gravity. So far two kinds of
deformations, namely the TT̄ deformation and the JT̄
deformation [2,11–13], have been worked out in detail.
It was proposed that the TT̄-deformed CFT corresponds to
cutoff 3D anti–de Sitter spacetime (AdS3) at a finite radius
with the Dirichlet boundary condition [3,14,15]. There are
some nontrivial checks on this proposal; the finite size
spectrum turns out to be the same as quasilocal energy of
the Bañados, Teitelboim, and Zanelli (BTZ) black hole at
finite radius [3], and the TT̄ flow equation coincides with
the Hamilton-Jacobi equation governing the radial evolu-
tion of the classical gravity action in AdS3 [16,17]. Based
on this proposal, more holographic aspects of the TT̄-
deformed CFT have been explored, such as entanglement
entropy [18–21] and complexity [22]. Similarly, the JT̄

deformation also have a holographic interpretation
[8,23,24]. In addition to the above, the torus partition
functions of the deformations were studied
[25–29]. More recently, the correlation functions of TT̄
and JT̄ deformations have been computed [30–35]. As
integrable quantum field theories, the deformed 2D CFTs
still have infinitely many symmetries. These symmetries
have also been studied from 3D gravity perception [36–38].
In the context of AdS3=CFT2, the boundary dynamics of

AdS3 gravity with the Brown-Henneaux boundary con-
dition turns out to be a SLð2;RÞ WZW model. This result
can be derived through the Chern-Simons form of AdS3
gravity. In fact, the AdS3 gravity can be reformulated as a
SLð2;RÞ × SLð2;RÞ Chern-Simons theory, and the
Brown-Henneaux boundary condition requires an extra
boundary term. The Chern-Simons action with such a
boundary term reduces to the sum of two chiral
SLð2;RÞ WZW models. Furthermore, this boundary con-
dition also gives certain constraints on the chiral WZW
models, which lead to the reduction of the WZW model to
the Liouville theory at the classical level [39] (for more
details see the recent review [40]). More recently, it has
been shown that the Chern-Simons AdS3 gravity at
quantum level is equivalent to the Alekseev-Shatashvili
quantization of coadjoint orbit DiffðS1Þ=PSLð2;RÞ of the
Virasoro group [41]. These considerations may be extended
to the case of TT̄ and JT̄ deformation. There already has
been some work on this topic, such as using Chern-Simons
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formalism [42,43] to study holographic aspects of TT̄=JT̄
deformation, as well as the TT̄-deformed Liouville
theory [44].
In this paper, we focus mainly on the boundary dynamics

of AdS3 associated with the TT̄=JT̄ deformations. From the
cutoff point of view, however, the boundary condition is
defined at finite radius, which has no asymptotic degree of
freedom. Nevertheless, it is shown that the Dirichlet
boundary conditions at finite radius correspond to the
mixed boundary conditions at infinity [45,46]. For the
TT̄=JT̄ deformation, these mixed boundary conditions
were obtained in [23,36] through the variational principle
approach. We shall take a close look at these boundary
conditions in the Chern-Simons formalism, and derive the
nontrivial boundary term. The energy of this system is
obtained from the boundary term. As we shall see, these
results agree precisely with the spectra of the TT̄=JT̄-
deformed CFTs. Moreover, for the TT̄ deformation, the
total action allows the reduction to the constrained TT̄-
deformedWZWmodel. After disentangling the constraints,
we show the boundary dynamics are exactly the TT̄-
deformed Alekseev-Shatashvili action. We will also derive
one type of the constrained JT̄-deformed WZW model
from the gravity side, in which the Uð1Þ current is
introduced by adding an extra Abelian gauge field to the
Chern-Simons system. The resulting theory is also the JT̄-
deformed conformal theory. We show that the asymptotic
dynamics of AdS3 gravity with the mixed boundary
conditions are actually described by the deformed con-
formal theories.
This paper is organized as follows: In Sec. II, we first

review the mixed boundary condition of AdS3 for the TT̄
deformation. After rewriting this boundary condition in the
Chern-Simons form, we obtain a nontrivial boundary term.
The energy of the whole system can be read off from this
boundary term, which matches the finite size spectrum of
the TT̄ deformation. In Sec III, the boundary dynamics of
AdS3 with mixed boundary conditions turns out to be the
constrained TT̄-deformed WZW. We also show the equiv-
alence between the sum of two opposite chiral WZW
models and the standard non-chiral WZW model under the
TT̄ deformation. JT̄ deformation is considered in Sec. IV.
Its spectrum is derived from Chern-Simons form by means
of the surface integral. The boundary dynamics also turned
out to be a JT̄-deformed conformal theory. Finally, Sec. V
contains some conclusions and discussions.

II. MIXED BOUNDARY CONDITION
FOR THE TT̄ DEFORMATION

In this section, we will study the mixed boundary
condition of Chern-Simons AdS3 gravity for the TT̄
deformation. We first give a brief review of the mixed
boundary condition. Then we put the mixed boundary
condition in the Chern-Simons form. The nontrivial

boundary term for mixed boundary condition is obtained.
We will also show this boundary term gives exactly the
energy of the system, which is in agreement with the
spectrum of TT̄-deformed CFT.

A. Review of the mixed boundary condition

We start from the definition of TT̄-deformed CFT, whose
action is given by the TT̄ flow

∂STT̄
∂μ ¼ 1

2

Z
d2x

ffiffiffi
γ

p
TT̄; TT̄ ¼ TijTij − T2; ð2:1Þ

where the metric γij and stress tensor Tij are defined in the
deformed theory. The deformed metric and stress tensor can
be expressed in terms of the original ones through the
variational principle approach. The basic procedure is to
write the variation of the deformed action in terms of the
deformed quantities. Then the TT̄ flow (2.1) implies the
flow equations

∂μγij ¼ 2T̂ij; ∂μT̂ij ¼ γklT̂ikT̂lj;

T̂ij ¼ Tij − γijTk
k: ð2:2Þ

Here we mainly draw attention to the flow equation of γij.
The solution of γij flow equation can be expressed as

γij ¼ γð0Þij þ 2μT̂ð0Þ
ij þ μ2T̂ð0Þ

ik T̂
ð0Þ
lj γ

ð0Þkl; ð2:3Þ

where the superscript (0) denotes the quantities of the
original theory. (2.3) indicates that the background metric
of the deformed theory is corrected by the stress tensor of
the original theory. If we consider a CFT in the flat
spacetime, the deformed theory may not be in the flat
spacetime because the background metric is also deformed.
This approach was originally developed by Guica and
Monten (see [23,36] for more details).
From the holographic point of view, γij is interpreted as

the boundary metric of AdS3. Therefore, the deformed
metric γij would imply the bulk boundary condition. In
general, the solution of 3D gravity can be written in
Fefferman-Graham gauge

ds2 ¼ 1

r2
dr2 þ r2

�
gð0Þij þ 1

r2
gð2Þij þ 1

r4
gð4Þij

�
dxidxj; ð2:4Þ

with the constraint

gð4Þij ¼ 1

4
gð2Þik g

ð0Þklgð2Þjl : ð2:5Þ

According to AdS3=CFT2 dictionary, g
ð2Þ
ij is proportional to

the expectation value of the stress tensor of the boundary
CFT [47]
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gð2Þij ¼ 8πGðTð0Þ
ij − gð0Þij Tð0Þk

k Þ≡ 8πGT̂ð0Þ
ij ; ð2:6Þ

where the cosmological constant is set to Λ¼−1=l2¼−1.
We will use gij to denote the leading order for the deformed
bulk solution. Now, combining (2.5), (2.6), and (2.3), we
arrive at the mixed boundary condition1

gij ¼ gð0Þij þ μgð2Þij þ μ2gð4Þij : ð2:7Þ

Namely, the boundary metric of AdS3 is given by (2.7) at
infinity. This metric coincides with the boundary metric
[expressed within the parentheses in (2.4)] at finite radius
r ¼ rc, provided the following relation [3] is invoked

μ ¼ 1

r2c
: ð2:8Þ

This asymptotic behavior allows us towrite the bulk solution

in the Fefferman-Graham gauge by replacing gð0Þij with gij.
Note that this mixed boundary condition differs in several
respects from the Brown-Henneaux boundary condition
[48]. Although this boundary condition is defined at infinity,
the leading order of the boundary metric gij is not a flat one.
It also breaks the chiral boundary condition in Chern-
Simons form. We therefore need a new boundary term to
remove inconsistency in the variational principle approach.
Besides, the leading order gij fluctuates, which would
inspire us to study the underlying asymptotic dynamics.
To keep our discussion explicit we consider the Bañados

geometry, which constitutes the most general bulk solution
of AdS3 with gð0Þij ¼ ηij. In holomorphic coordinates
ðz ¼ θ þ t; z̄ ¼ θ − tÞ, the Bañados metric can be put in
the form [49]

ds2 ¼ dr2

r2
þ r2dzdz̄þ LðzÞdz2 þ L̄ðz̄Þdz̄2

þ 1

r2
LðzÞL̄ðz̄Þdzdz̄; ð2:9Þ

where LðzÞ and L̄ðz̄Þ are arbitrary functions depend on z
and z̄, respectively. The mixed boundary condition would
fix the boundary metric as

gijdxidxj ¼ dzdz̄þ μðLðzÞdz2 þ L̄ðz̄Þdz̄2Þ
þ μ2LðzÞL̄ðz̄Þdzdz̄: ð2:10Þ

Now, introduce the following new coordinates x� such that
the leading order of the boundary metric takes the man-
ifestly flat form ds2c ¼ dxþdx−,

dxþ ¼ dzþ μL̄ðz̄Þdz̄; dx− ¼ dz̄þ μLðzÞdz: ð2:11Þ

The deformed bulk solution is obtainable from (2.9) by
performing the inverse of the coordinate transformation

dz ¼ dxþ − μL̄μdx−

1 − μ2LμL̄μ

; dz̄ ¼ dx− − μLμdxþ

1 − μ2LμL̄μ

; ð2:12Þ

where we used the notations Lμ ≡ Lðzðμ; xþ; x−ÞÞ and
L̄μ ≡ L̄ðz̄ðμ; xþ; x−ÞÞ. The concrete relation between
LðxþÞ and Lμðxþ; x−Þ may be found in several ways
[36]. One of which is that the coordinate transformation
(2.11) brings the deformed AdS3 solution to the Bañados
geometry. The horizon area or energy density should not
change under such a coordinate transformation. So com-
paring these two metrics yields

Lμð1 − μL̄μÞ2
ð1 − μ2LμL̄μÞ2

¼ LðxþÞ;

L̄μð1 − μLμÞ2
ð1 − μ2LμL̄μÞ2

¼ L̄ðx−Þ: ð2:13Þ

As a result, we can write the deformed AdS3 solution in
terms of parameters Lμ; L̄μ through the coordinate
transformation.
Moreover, it turns out that the TT̄-deformed theory can

be mapped into the original theory via a field dependent
coordinate transformation [50,51]. In terms of the differ-
ential form, the coordinate transformation reads

�
dz

dz̄

�
¼ 1

1−4μ2TðzÞT̄ðz̄Þ
�

1 −2μTðzÞ
−2μT̄ðz̄Þ 1

�T�dxþ
dx−

�
:

ð2:14Þ

According to the holographic dictionary, the parameters of
Bañados geometry correspond to the stress tensor of the
boundary Liouville theory through LðzÞ ¼ 2TðzÞ; L̄ðz̄Þ ¼
2T̄ðz̄Þ [40,49]. In this context, (2.12) is consistent with
(2.14). Therefore, we can use the same coordinate
transformation in the bulk to get the deformed AdS3
solution.

B. Chern-Simons formalism and the boundary term

It is well-known that three dimensional Einstein gravity
with a negative cosmological constant can be expressed as
SLð2;RÞ × SLð2;RÞ Chern-Simons gauge theory [52],
whose action is

SðA; ĀÞ ¼ IðAÞ − IðĀÞ; ð2:15Þ

where

1Here we have redefined the parameter μ ∼ μ=8πG so that the
relation μ ¼ 1=r2c holds; this amounts to the choice of units
8πG ¼ 1.
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IðAÞ¼ κ

4π

Z
M
Tr

�
A∧dAþ2

3
A∧A∧A

�
; κ¼ 1

4G
: ð2:16Þ

The gauge fields A; Ā valued in two independent copies of
SLð2;RÞ, which are defined as the combination of vielbein
and spin connection

Aa ¼ ωa þ ea; Āa ¼ ωa − ea: ð2:17Þ

The equations of motion are

dAþ A ∧ A ¼ 0; dĀþ Ā ∧ Ā ¼ 0: ð2:18Þ

It turns out that these equations are equivalent to first order
gravitational field equations.
Let us first take a look at the Bañados geometry (2.9) in

Chern-Simons form. The corresponding gauge fields can be
calculated

A ¼ 1

r
L0drþ

�
rL−1 þ

LðzÞ
r

L1

�
dz; ð2:19Þ

Ā ¼ −
1

r
L0drþ

�
L̄ðz̄Þ
r

L−1 þ rL1

�
dz̄: ð2:20Þ

where L0; L�1 are Lie-algebra generators of SLð2;RÞ (see
Appendix A for our convention). These gauge fields also
can be obtained by solving (2.18) with the chiral boundary
condition Az̄ ¼ 0; Āz ¼ 0 [49]. A useful trick to factor out
the boundary degree of freedom is performing the follow-
ing gauge transformation

A ¼ b−1ðdþ aÞb; Ā ¼ bðdþ āÞb−1;

b ¼ eL0 ln r ¼
� ffiffiffi

r
p

0

0 1ffiffi
r

p

�
: ð2:21Þ

In this case, the reduced connections have the explicit form

a ¼ ðL−1 þ LðzÞL1Þdz;
ā ¼ ðL̄ðz̄ÞL−1 þ L1Þdz̄; ð2:22Þ

which depend on the boundary coordinates ðz; z̄Þ only. For
later discussion, we would like to use the coordinates θ ¼
ðzþ z̄Þ=2; t ¼ ðz − z̄Þ=2 and impose the periodic condition
θ ∼ θ þ R. Then the chiral boundary condition becomes
At ¼ Aθ and Āt ¼ −Āθ. Now one can go through a
consistent variational principle approach by adding some
boundary terms to the action. The total action associated to
the chiral boundary condition was found in [39], which
takes the form

StotðA;ĀÞ¼ IðAÞ− IðĀÞ− κ

4π

Z
∂M

dtdθTrðA2
θþ Ā2

θÞ: ð2:23Þ

In the Hamiltonian formalism, the supplementary boundary
term plays the role of a surface integral, which implies the
total energy of this system [53]. Inserting (2.19) and (2.20)
into (2.23), the boundary term becomes

B0 ¼ −
κ

2π

Z
∂M

dtdθðLðzÞ þ L̄ðz̄ÞÞ: ð2:24Þ

For the BTZ black holes, LðzÞ ¼ L0; L̄ðz̄Þ ¼ L̄0, the
boundary term (2.24) gives exactly the energy (or mass)
of the black hole

E ¼ κR
2π

ðL0 þ L̄0Þ ¼ M: ð2:25Þ

We now turn to the investigation of the mixed boundary
condition for theTT̄ deformation.Aswe shall see, thismixed
boundary condition can be obtained from the Brown-
Henneaux boundary condition through a field dependent
coordinate transformation (2.12). Consequently, the gauge
fields corresponding to the mixed boundary condition are
given by

Ã ¼ 1

r
L0drþ

1

1 − μ2LμL̄μ

�
rL−1 þ

1

r
LμL1

�

× ðdxþ − μL̄μdx−Þ; ð2:26Þ

¯̃A ¼ −
1

r
L0drþ

1

1 − μ2LμL̄μ

�
1

r
L̄μL−1 þ rL1

�

× ðdx− − μLμdxþÞ: ð2:27Þ

Weuse tilde symbols to denote the quantities in the deformed
theory. One can clearly see that the deformed gauge fields
obey

μL̄μÃþ þ Ã− ¼ 0; ¯̃Aþ þ μLμ
¯̃A− ¼ 0; ð2:28Þ

instead of the chiral boundary condition. That is to say, the
mixed boundary condition breaks the chiral boundary con-
dition. However, the equation of motion still holds, because
the deformedbulk solution also satisfiesEinstein equation. In
the coordinates θ̃ ¼ ðxþ þ x−Þ=2; t̃ ¼ ðxþ − x−Þ=2, the

gauge fields Ã and ¯̃A have the following relations

Ãt̃ ¼
1þ μL̄μ

1 − μL̄μ

Ãθ̃;
¯̃At̃ ¼ −

1þ μLμ

1 − μLμ

¯̃Aθ̃: ð2:29Þ

The r dependence of the deformed gauge fields can also be
eliminated through the gauge transformation (2.21). Thus,
we get the reduced connections for deformed theory
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ãθ̃ ¼
1 − μL̄μ

1 − μ2LμL̄μ

ðL−1 þ LμL1Þ;

ãt̃ ¼
1þ μL̄μ

1 − μL̄μ

ãθ̃; ð2:30Þ

¯̃aθ̃ ¼
1 − μLμ

1 − μ2LμL̄μ

ðL̄μL−1 þ L1Þ;

¯̃at̃ ¼ −
1þ μLμ

1 − μLμ

¯̃aθ̃: ð2:31Þ

This is themixed boundary condition inChern-Simons form.
In order to have awell-defined variational principle, we have
to add a supplementary boundary term. It turns out that the
corrected boundary term is

B¼−
κ

4π

Z
∂M

dt̃dθ̃
�
1−μ2LμL̄μ

1−μL̄μ

Trðã2
θ̃
Þþ1−μ2LμL̄μ

1−μLμ
Trð ¯̃a2

θ̃
Þ
�

¼−
κ

2π

Z
∂M

dt̃dθ̃
LμþL̄μ−2μLμL̄μ

1−μ2LμL̄μ

; ð2:32Þ

wherewe have invoked (2.30) and (2.31) in the last step. The
detailed derivation of this nontrivial boundary term is given
in Appendix B.
Here we give some comments about this boundary term.

This term reduces to the limiting case (2.24) when μ → 0.
Unlike the limiting case where the chiral boundary con-
dition holds, the boundary term (2.32) in general cannot be
separated into a chiral part depending only on ã and an
antichiral part depending only on ¯̃a. One may see this more
clearly by writing Lμ; L̄μ in terms of the reduced con-
nections. As a consequence, the chiral action IðAÞ and the
antichiral action IðĀÞ in Chern-Simons theory are coupled
to each other through the boundary interaction term (2.32),
as long as μ ≠ 0. This is the effect of TT̄ deformation in
Chern-Simons gravity.
The boundary term also gives rise to the total energy of

this system. Working in the Hamiltonian formalism, the
surface integral reads

E ¼ κ

2π

Z
∂M

dθ̃
Lμ þ L̄μ − 2μLμL̄μ

1 − μ2LμL̄μ

; ð2:33Þ

which is consistent with the result derived from the bulk
stress tensor [36]. For the BTZ black holes, we can work
out the total energy with the help of (2.13)

E ¼ R
μ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2μ

R
M þ μ2

R2
J2

r �
; ð2:34Þ

whereM ¼ RðL0 þ L̄0Þ; J ¼ RðL0 − L̄0Þ are the mass and
the angular momentum of the black hole, respectively.
The total energy of this system is in agreement with the

spectrum of the TT̄-deformed CFT. E precisely matches the
quasilocal energy of the BTZ black hole due to μ ¼ 1=r2c.
This result is consistent with the cutoff point of view [3].
However, the mixed boundary condition considered in this
paper is actually an asymptotic boundary condition, which
is defined at infinity rather than at the finite radius r ¼ rc.
The advantage of this mixed boundary condition is that we
can study the boundary dynamics directly in Chern-Simons
theory, as we shall discuss in the next section.

III. FROM CHERN-SIMONS THEORY TO
TT̄-DEFORMED WZW MODEL

In this section, we would like to study the boundary
dynamics of AdS3 with the certain mixed boundary
condition. We first take a short look at the chiral boundary
condition. It is shown that the Chern-Simons action can be
reduced to the WZW model [54]

IðAÞ ¼ κ

4π

Z
∂M

dtdθTrðaθatÞ þ Γ½G�;

Γ½G� ¼ κ

12π

Z
M
Tr½ðG−1dGÞ3�; ð3:1Þ

where a ¼ g−1dg, A ¼ G−1dG and Γ½G� is the Wess-
Zumino term. The gauge fields can be written in this form
because one can choose the pure gauge solution of the
equation of motion (2.18). After adding the boundary term
(2.24), the total action (2.23) could reduce to a sum of two
chiral WZW actions

Stot ¼
κ

4π

Z
∂M

Tr½aθðat − aθÞ� þ Γ½G�

−
κ

4π

Z
∂M

Tr½āθðāt þ āθÞ� − Γ½Ḡ�; ð3:2Þ

where g and G take values in SLð2;RÞ. It turns out that
(3.2) produces a non-chiral SLð2;RÞWZWmodel, and the
latter allows a further reduction to the Liouville theory
classically [55]. At the quantum level, the Chern-Simons
gravity is equivalent to the Alekseev-Shatashvili quantiza-
tion of Virasoro group [41]. In other words, the asymptotic
dynamics of AdS3 with the Brown-Henneaux boundary
condition can be described by the conformally invariant
theory.
The above consideration can be extended to the case

where the mixed boundary condition is imposed. As we
shall see, the corresponding boundary term (2.32) leads to a
coupling between two opposite chiral WZW models, and
the resulting theory is equivalent to the TT̄-deformed non-
chiral WZW model. Moreover, the mixed boundary con-
dition also gives constraints on the TT̄-deformed WZW
models, which would give a further reduction to the TT̄-
deformed Alekseev-Shatashvili action.
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A. Reduction to a sum of two coupled
chiral WZW actions

We are ready to reduce the Chern-Simons action
with boundary term to the TT̄-deformed WZW model.
The main difference with the CFT case is the boundary
term. Firstly, we would like to express the boundary
term in terms of the gauge fields. In the following we

find it is convenient to define

Xij ≡ TrðÃiÃjÞ ¼ TrðãiãjÞ;
X̄ij ≡ Trð ¯̃Ai

¯̃AjÞ ¼ Trð ¯̃ai ¯̃ajÞ: ð3:3Þ
According to (2.30) and (2.31), one can writeLμ in terms of
Xθ̃ θ̃ and X̄θ̃ θ̃

Lμ ¼
�½1þ μðXθ̃ θ̃ − X̄θ̃ θ̃Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μðXθ̃ θ̃ þ X̄θ̃ θ̃Þ þ μ2ðXθ̃ θ̃ − X̄θ̃ θ̃Þ2

p
2μ2Xθ̃ θ̃

þ 1 − 2μX̄θ̃ θ̃ þ μ2ðXθ̃ θ̃ − X̄θ̃ θ̃Þ2
2μ2Xθ̃ θ̃

; ð3:4Þ

as well as a similar expression for L̄μ. It is straightforward to derive the following identity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μðXθ̃ θ̃ þ X̄θ̃ θ̃Þ þ μ2ðXθ̃ θ̃ − X̄θ̃ θ̃Þ2

q
¼ 1 − μ

�
1 − μ2LμL̄μ

1 − μL̄μ

Xθ̃ θ̃ þ
1 − μ2LμL̄μ

1 − μLμ
X̄θ̃ θ̃

�
: ð3:5Þ

Comparing this with the first line of (2.32), the boundary term B can be expressed as

B ¼ κ

4π

Z
∂M

dt̃dθ̃
1

μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μðXθ̃ θ̃ þ X̄θ̃ θ̃Þ þ μ2ðXθ̃ θ̃ − X̄θ̃ θ̃Þ2

q
− 1
�
: ð3:6Þ

It follows that the total Chern-Simons action consistent with the mixed boundary condition may reduce to

Stotal ¼
κ

4π

Z
∂M

dt̃dθ̃ðXθ̃ t̃ − X̄θ̃ t̃Þ þ Γ½G� − Γ½Ḡ� þ κ

4π

Z
∂M

dt̃dθ̃
1

μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μðXθ̃ θ̃ þ X̄θ̃ θ̃Þ þ μ2ðXθ̃ θ̃ − X̄θ̃ θ̃Þ2

q
− 1
�
: ð3:7Þ

This is exactly the TT̄-deformed chiral WZW action,
which was derived from the TT̄ flow equations [43]. Here
we derive the TT̄-deformed WZW model based on the
Chern-Simons AdS3 gravity with the mixed boundary
condition.
In order to see the effect of TT̄ deformation, one may

expand (3.7) as a Taylor series with respect to μ. The first
few terms of this expansion read

Stotal ¼
κ

4π

Z
∂M

dt̃dθ̃½Xθ̃ t̃−Xθ̃ θ̃ − X̄θ̃ t̃− X̄θ̃ θ̃�þΓ½G�−Γ½Ḡ�

þ κμ

8π

Z
∂M

dt̃dθ̃½Xθ̃ θ̃ − X̄θ̃ θ̃ − ðXθ̃ θ̃þ X̄θ̃ θ̃Þ2�þOðμ2Þ:

ð3:8Þ

The leading order reproduces the sum of two decoupled
chiral WZWactions, as presented in (3.2). The deformation
contributes to higher order terms of μ. Clearly, such higher
order terms can no longer be written as the sum of a left-
moving part and a right-moving part. In other words, the
TT̄ deformation provides a coupling between two opposite
chiral degrees of freedom.

B. Equivalence to TT̄-deformed
non-chiral WZW action

As is well known, the sum of left and right chiral WZW
actions is equivalent to the standard non-chiral WZW
action [39]. It is natural to expect that (3.7) is equivalent
to a TT̄-deformed version of the non-chiral WZW model.
By using the usual technique in [39,40], we will verify this
in this subsection. First, we combine the gauge fields g; ḡ

k≡ g−1ḡ; K ≡G−1Ḡ; ð3:9Þ

and introduce the new variables

Π ¼ −ḡ−1∂ θ̃gg
−1ḡ − ḡ−1∂ θ̃ḡ; ð3:10Þ

k−1∂ t̃k ¼ −ḡ−1∂ t̃gg−1ḡþ ḡ−1∂ t̃ḡ; ð3:11Þ

k−1∂ θ̃k ¼ −ḡ−1∂ θ̃gg
−1ḡþ ḡ−1∂ θ̃ḡ: ð3:12Þ

The sum of Wess-Zumino terms becomes

Γ½G� − Γ½Ḡ� ¼ −Γ½K� þ
Z
∂M

Trðdḡḡ−1dgg−1Þ: ð3:13Þ
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We then write the TT̄-deformed chiral WZW action (3.7) in terms of the new variables Π and k−1dk

S½Π; k� ¼ κ

4π

Z
∂M

�
TrðΠ_kÞ þ 1

μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μTrðk02 þ Π2Þ þ μ2Trðk0ΠÞTrðk0ΠÞ

q
− 1
��

− Γ½K�; ð3:14Þ

where we used the notation k0 ¼ k−1∂ θ̃k and _k ¼ k−1∂ t̃k.
The auxiliary variable Π can be eliminated by the equation of motion. Varying the action (3.14) with respect to Π, we

obtain the equation of motion

_k ¼ Π − μTrðk0ΠÞk0ffiffiffiffi
Ω

p ; Ω ¼ 1 − μ½Trðk02Þ þ TrðΠ2Þ� þ μ2½Trðk0ΠÞ�2; ð3:15Þ

where Ω is introduced for convenience. According to the above equation, we get the relations

Trð_kΠÞ ¼ TrðΠ2Þ − μ½Trðk0ΠÞ�2ffiffiffiffi
Ω

p ; ð3:16Þ

Trð_kk0Þ ¼ Trðk0ΠÞ½1 − μTrðk02Þ�ffiffiffiffi
Ω

p ; ð3:17Þ

Trð_k _kÞ ¼ TrðΠ2Þ − 2μ½Trðk0ΠÞ�2 þ μ2½Trðk0ΠÞ�2Trðk02Þ
Ω

: ð3:18Þ

One can express the Π-dependent quantities in terms of k-dependent quantities by solving these equations above. The
solutions show

Trð_kΠÞ ¼ Trð_k2Þ þ μ½ðTrð_kk0ÞÞ2 − Trð_k2ÞTrðk02Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ½Trð_k2Þ − Trðk02Þ� þ μ2½ðTrð_kk0ÞÞ2 − Trð_k2ÞTrðk02Þ�

q ; ð3:19Þ

Trðk0ΠÞ ¼ Trð_kk0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ½Trð_k2Þ − Trðk02Þ� þ μ2½ðTrð_kk0ÞÞ2 − Trð_k2ÞTrðk02Þ�

q ; ð3:20Þ

TrðΠ2Þ ¼ Trð_k2Þ þ Trðk02Þ þ μ½2ðTrð_kk0ÞÞ2 − Trð_k2ÞTrðk02Þ − ðTrðk02ÞÞ2�
1þ μ½Trð_k2Þ − Trðk02Þ� þ μ2½ðTrð_kk0ÞÞ2 − Trð_k2ÞTrðk02Þ� − Trðk02Þ: ð3:21Þ

Substituting these relations back into the action (3.14), we arrive at an action depending on k only

S½k� ¼ κ

4π

Z
∂M

1

μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ½Trð_k2Þ − Trðk02Þ� þ μ2½ðTrð_kk0ÞÞ2 − Trð_k2ÞTrðk02Þ�

q
− 1
�
− Γ½K�: ð3:22Þ

In the light cone coordinates, this action finally becomes

S½k� ¼ κ

4π

Z
∂M

1

μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μηijX ij þ 4μ2εijεklX ikX jl

q
− 1
�
− Γ½K� ð3:23Þ

where X ij is defined by

X ij ¼ Trðk−1∂ikk−1∂jkÞ; i; j ¼ ðþ;−Þ; εþ− ¼ −ε−þ ¼ 1: ð3:24Þ

This is exactly the action for the TT̄-deformed non-chiral WZW model, which is first derived from TT̄ flow equation in
[56]. Therefore, we have verified that the equivalence between the sum of two chiral WZW models and the standard non-
chiral WZW model still holds under the TT̄ deformation.
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C. Constraints on the TT̄-deformed WZW model

This mixed boundary condition also gives constraints on
the TT̄-deformed WZW model. In order to study the
constraints, we consider the Gauss decomposition of
SLð2;RÞ

G ¼
�
1 0

F 1

��
eϕ 0

0 e−ϕ

��
1 Ψ
0 1

�
; ð3:25Þ

Ḡ ¼
�
1 −F̄
0 1

��
e−ϕ̄ 0

0 eϕ̄

��
1 0

−Ψ̄ 1

�
: ð3:26Þ

Then the gauge fields Ã; ¯̃A can be expressed as

Ã¼G−1dG¼
�
Ã0 Ã−

Ãþ −Ã0

�

¼
�
−e2ϕΨdFþdϕ −e2ϕΨ2dFþ2ΨdϕþdΨ

e2ϕdF e2ϕΨdF−dϕ

�
; ð3:27Þ

¯̃A¼ Ḡ−1dḠ¼
� ¯̃A0 ¯̃A−

¯̃Aþ − ¯̃A0

�

¼
�

e2ϕ̄Ψ̄dF̄−dϕ̄ −e2ϕ̄dF̄

e2ϕ̄Ψ̄2dF̄−2Ψ̄dϕ̄−dΨ̄ −e2ϕ̄Ψ̄dF̄þdϕ̄

�
: ð3:28Þ

Comparing with (2.26) and (2.27), we see that the fields are
fixed at r → ∞ as follows:

e2ϕ∂ θ̃F ¼ ηr; ∂ θ̃ϕ ¼ e2ϕΨ∂ θ̃F; ð3:29Þ

e2ϕ̄∂ θ̃F̄ ¼ η̄r; ∂ θ̃ϕ̄ ¼ e2ϕ̄Ψ̄∂ θ̃F̄; ð3:30Þ

where the parameters η; η̄ take the form

η ¼ 1 − μL̄μ

1 − μ2LμL̄μ

¼ 1

2

h
1þ μðXθ̃ θ̃ − X̄θ̃ θ̃Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μðXθ̃ θ̃ þ X̄θ̃ θ̃Þ þ μ2ðXθ̃ θ̃ − X̄θ̃ θ̃Þ2

q i
; ð3:31Þ

η̄ ¼ 1 − μLμ

1 − μ2LμL̄μ

¼ 1

2

h
1 − μðXθ̃ θ̃ − X̄θ̃ θ̃Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μðXθ̃ θ̃ þ X̄θ̃ θ̃Þ þ μ2ðXθ̃ θ̃ − X̄θ̃ θ̃Þ2

q i
: ð3:32Þ

It is useful to write Xθ̃ θ̃; X̄θ̃ θ̃ in terms of the parameters

Xθ̃ θ̃ ¼
1

μ
ηð1 − η̄Þ; X̄θ̃ θ̃ ¼

1

μ
η̄ð1 − ηÞ: ð3:33Þ

According to the constraints (3.29) and (3.30), we express
ϕ0; _ϕ and Ψ0; _Ψ as

ϕ0 ¼ 1

2

�
η0

η
−
F00

F0

�
; _ϕ ¼ 1

2

�
_η

η
−
F̈
_F

�
; ð3:34Þ

Ψ0 ¼ 1

2r

�
η00

η2
−
2η02

η3
−
F000

ηF0 þ
η0F00

η2F0 þ
F002

ηF02

�
; ð3:35Þ

_Ψ ¼ 1

2r

�
_η0

η2
−
2η0 _η
η3

−
_F00

ηF0 þ
_ηF00

η2F0 þ
F00 _F0

ηF02

�
; ð3:36Þ

where the overdot and prime denote the derivative with

respect to t̃ and θ̃. Similar relations for the ϕ̄0; _̄ϕ and Ψ̄0; _̄Ψ
can also be obtained. For the Brown-Henneaux boundary
condition, the parameters η; η̄ are both equal to 1. Then, the
constraints can reduce the WZW model to Alekseev-
Shatashvili action. However, when the deformation is
turned on, the parameters η; η̄ appear in the constraints.
In order to make a further reduction, we have to find the
relations between η; η̄ and F; F̄.
In fact, one can rewrite Xθ̃ θ̃ and X̄θ̃ θ̃ in Gauss para-

metrization. As a consequence, (3.33) implies the differ-
ential equations for η and η̄

η00

η
−
3

2

�
η0

η

�
2

− fF; θ̃g ¼ 1

μ
ηð1 − η̄Þ; ð3:37Þ

η̄00

η̄
−
3

2

�
η̄0

η̄

�
2

− fF̄; θ̃g ¼ 1

μ
η̄ð1 − ηÞ; ð3:38Þ

where ff; θ̃g represents Schwarzian derivative defined by

ff; θ̃g ¼ f000

f0
−
3

2

�
f00

f0

�
2

: ð3:39Þ

Although it is difficult to get the exact solutions, we can
find the perturbation solutions in the first few orders of
small μ

η ¼ 1þ μfF̄; θ̃g þOðμ2Þ;
η̄ ¼ 1þ μfF; θ̃g þOðμ2Þ: ð3:40Þ

In the Gauss parametrization, we can reduce the
TT̄-deformed WZW model into
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Stotal¼
κ

4π

Z
∂M

dθ̃dt̃

�
_η0

η
−
3_ηη0

2η2
−
η0 _F0

2ηF0 þ
_ηF00

2ηF0−
_F00

F0 þ
3 _F0F00

2F02

�

−
κ

4π

Z
∂M

dθ̃dt̃

�
_̄η0

η̄
−
3_̄ηη̄0

2η̄2
−
η̄0 _̄F0

2η̄F̄0 þ
_̄ηF̄00

2η̄F̄0−
_̄F
00

F̄0 þ
3 _̄F

0
F̄00

2F̄02

�

þ κ

4πμ

Z
∂M

dθ̃dt̃ðηþ η̄−2Þ; ð3:41Þ

where η; η̄ are determined by the equations (3.37) and
(3.38). Moreover, it is useful to parametrize the boundary
value of F and F̄ as

F ¼ tan

�
ξ

2

�
; F̄ ¼ tan

�
ξ̄

2

�
; ð3:42Þ

such that ξ; ξ̄ are valued in DiffðS1Þ=PSLð2;RÞ [41]. Then
we find the relations

_F00

F0 −
3 _F0F00

2F02 ¼ d
dt̃

�
ξ00

ξ0

�
þ 1

2

�
ξ0 _ξ −

ξ00 _ξ0

ξ02

�
; ð3:43Þ

fF; θ̃g¼fξ; θ̃gþ1

2
ξ02¼ d

dθ̃

�
ξ00

ξ0

�
þ1

2

�
ξ02−

ξ002

ξ02

�
; ð3:44Þ

as well as the similar relations for the barred quantities. In
order to see whether the resulting theory is a TT̄-deformed
conformal theory, we can consider the perturbation form of
this action. Plugging (3.40) into the action (3.41) and
dropping some total derivative terms, we finally arrive at

Stotal

¼−
κ

8π

Z
∂M

dθ̃dt̃

��
ξ00∂−ξ

0

ξ02
−ξ0∂−ξ

�
−
�
ξ̄00∂þξ̄0

ξ̄02
− ξ̄0∂þξ̄

��

þ μκ

16π

Z
∂M

dθ̃dt̃

��
fξ; θ̃gþ1

2
ξ02
��

fξ̄; θ̃gþ1

2
ξ̄02
��

þOðμ2Þ: ð3:45Þ

The leading order is exactly the sum of left-moving and
right-moving Alekseev-Shatashvili quantization of coad-
joint orbit DiffðS1Þ=PSLð2;RÞ of the Virasoro group
[41,57,58]. The first order correction is nothing but
coupling these two copies through the TT̄ deformation,
since the stress tensors of chiral Alekseev-Shatashvili
actions are exactly given by

TL ¼ fξ; θ̃g þ 1

2
ξ02; T̄R ¼ fξ̄; θ̃g þ 1

2
ξ̄02: ð3:46Þ

Therefore, the boundary dynamics of AdS3 with mixed
boundary condition is described by the action (3.45), which
is a TT̄-deformed conformal theory in first order as
expected. In [43], very similar results were obtained from
a boundary WZW model through the TT̄ flow. These

results may give a precise check on the correspondence
between the TT̄-deformed CFT and AdS3 gravity with the
mixed boundary condition.

IV. JT̄ DEFORMATION

Another interesting integrable deformation is the JT̄
deformation [12]. In this section, we would like to study the
JT̄ deformation. We firstly give a brief review for the
boundary condition for JT̄-deformed CFT. In Chern-
Simons form, this boundary condition implies a certain
nontrivial boundary term. The spectrum of JT̄-deformed
CFT is obtained from this boundary term in the
Hamiltonian form. We will also show that the asymptotic
boundary dynamics is described by one type of the JT̄-
deformed chiral WZW model.

A. Review of the boundary condition
for the JT̄ deformation

By the definition of JT̄ deformation, its action could be
written as

∂
∂μ SJT̄ ¼

Z
d2x

ffiffiffi
γ

p
εijJiTjz̄ ¼

Z
d2xeεijJiTa

j eaz̄: ð4:1Þ

For convenience, we have written it in vielbein form. In this
model, we have to consider the CFT involving stress tensor
Ta
i and the conserved current Ji, which are canonically

conjugate to the boundary vielbein eia and the gauge field
Φi. Then the variation of the original CFT action would be

δSCFT ¼
Z

d2xeðTa
i δe

i
a þ JiδΦiÞ: ð4:2Þ

When the deformation is turned on, we may suppose the
variation takes the following form

δSJT̄ ¼
Z

d2xẽðT̃a
i δẽ

i
a þ J̃iδΦ̃iÞ: ð4:3Þ

The deformed quantities are marked with a tilde. In [23], by
using the JT̄ flow equation (4.1), the JT̄-deformed vari-
ables were constructed from the original theory

ẽia ¼ eia − μaJi; Φ̃i ¼ Φi − μaTa
i ; ð4:4Þ

T̃a
i ¼ Ta

i þ ðμbTb
j J

jÞðeai þ μiJaÞ; J̃i ¼ Ji: ð4:5Þ

We focus mainly on the deformed vielbein ẽia and the gauge
field Φ̃i, which could help us to fix the boundary condition
of AdS3.
On the gravity side, we have to introduce a Uð1Þ Chern-

Simons gauge field coupling with AdS3 gravity. Therefore,
the total action associated with the JT̄ deformation
should be
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Stotal ¼ Sgrav þ SUð1Þ

¼
Z
M
d3x

ffiffiffi
g

p �
1

16πG

�
Rþ 2

l2

�
þ κ0

4π
εμνρΦμ∂νΦρ

�
;

where k0 is the Uð1Þ Chern-Simons level. Generally, the
Uð1Þ charge is introduced by adding a Maxwell term, such
as the charged black hole. Since we are working in an odd-
dimensional spacetime, this gauge field have the Uð1Þ
Chern-Simons form. In order to ensure the variational
process, we add the Gibbons-Hawking boundary term for
the gravitational part. As for the gauge field part, the
boundary term turns out to be

SUð1Þ-bdy ¼
κ0

8π

Z
∂M

d2x
ffiffiffi
γ

p
γijΦiΦj; ð4:6Þ

where γij is the induced metric on the boundary ∂M. Then
the variation of total action in the bulk becomes

δStotal ¼ −
1

2

Z
∂M

d2x
ffiffiffi
γ

p ðTgrav
ij þ TUð1Þ

ij Þδγij

−
Z
∂M

d2x
ffiffiffi
γ

p
JiδΦi; ð4:7Þ

with

Tgrav
ij ¼ 1

8πG
ðKij − γijK þ γijÞ; ð4:8Þ

TUð1Þ
ij ¼ κ0

4π

�
ΦiΦj −

1

2
γijΦ2

�
; ð4:9Þ

Ji ¼ κ0

4π
ðγij − εijÞΦj: ð4:10Þ

where Tgrav
ij is the Brown-York stress tensor [59,60], TUð1Þ

ij

comes from the Uð1Þ Chern-Simons boundary term,
and Ji is the Uð1Þ conserved current. This is the basic
structure in AdS3=CFT2 correspondence with additional
Uð1Þ charge [61].
In Fefferman-Graham gauge, the deformed vielbein (4.4)

corresponds to fixing the gð0Þij as

gð0Þþþ ¼−μJðxþÞ; gð0Þ−þ ¼ gð0Þþ−¼
1

2
; gð0Þ−− ¼ 0; ð4:11Þ

which can be obtained from the Bañados geometry through
a coordinate transformation

dz ¼ dxþ; dz̄ ¼ dx− − μJðxþÞdxþ: ð4:12Þ

Therefore, the deformed solution is parametrized by
Lμ; L̄μ; J

Lμ ¼ LðxþÞ; L̄μ ¼ L
�
x− − μ

Z
JðxþÞdxþ

�
;

J ¼ JðxþÞ: ð4:13Þ

We use similar notations for the JT̄ deformation, these
notations should not be confused with the TT̄ deformation.
A very similar boundary condition for AdS3 has been
considered in [62], when they studied SLð2;RÞ ×Uð1Þ
symmetries in AdS3.
In addition, we also need to fix the gauge field Φ̃. From

(4.10), the gauge field Φ̃ can be written as

Φ̃− ¼ F ðx−; xþÞ; ð4:14Þ

Φ̃þ ¼ 2π

k
JðxþÞ − μJðxþÞF ðxþ; x−Þ: ð4:15Þ

Comparing the deformed gauge field Φ̃ with (4.4), we can
identify

F ¼ μT−−; −μJðxþÞF ¼ μT−þ; ð4:16Þ

where Tij is the total stress tensor of the system

Tij ¼ Tgrav
ij þ TCS

ij : ð4:17Þ

This means that the additional boundary term of the Uð1Þ
Chern-Simons action have a backreaction for the formalism
of deformed gauge field. Finally, one arrives at the equation
for F

F ¼ κμ

2π
L̄μ þ

μκ0

4π
F 2; ð4:18Þ

or F ¼ 2π

μκ0

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ2κκ0

2π2
L̄μ

s �
: ð4:19Þ

We summarize the mixed boundary conditions to com-
plete this subsection. The mixed boundary condition for JT̄
deformation includes fixing AdS3 metric as well as Uð1Þ
gauge field. The AdS3 metric is determined by a coordinate
transformation (4.12). The gauge field refers to the stress
tensor of the whole system through (4.14) and (4.18). As a
result, we can express the metric and gauge field in terms of
L, F , J. Moreover, this mixed boundary condition would
imply the asymptotic dynamics because it is defined at
infinity.

B. Chern-Simons formalism and the boundary term

Now we put the mixed boundary condition in the Chern-
Simons formalism to find out the associated boundary term.
As mentioned above, the total action in the bulk consists of
the gravitational part and the Uð1Þ Chern-Simons gauge
field part. For the gravitational part, the action can be
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formulated in SLð2;RÞ × SLð2;RÞ Chern-Simons theory.
Therefore, the total action would be

SðÃ; ¯̃A; Φ̃Þ ¼ IðÃÞ − Ið ¯̃AÞ þ κ0

4π

Z
M
Φ̃ ∧ dΦ̃: ð4:20Þ

By using the coordinate transformation (4.12), we obtain
the SLð2;RÞ gauge fields

Ã ¼ 1

r
L0drþ

�
rL−1 þ

1

r
LL1

�
dxþ; ð4:21Þ

¯̃A ¼ −
1

r
L0drþ

�
1

r
L̄μL−1 þ rL1

�
× ðdx− − μJðxþÞdxþÞ; ð4:22Þ

which still satisfy the equations of motion. After eliminat-
ing the radial coordinates, we write down the induced
connections

ã ¼ ðL−1 þ LðxþÞL1Þdxþ; ð4:23Þ

¯̃a ¼ðL̄μL−1 þ L1Þðdx− − μJðxþÞdxþÞ: ð4:24Þ

Clearly, the left chiral boundary condition is maintained,
but the right chiral boundary condition is broken. Besides,
the Uð1Þ gauge field Φ̃ is fixed in (4.14) and (4.15). In the
coordinates θ̃ ¼ ðxþ þ x−Þ=2; t̃ ¼ ðxþ − x−Þ=2, the mixed
boundary condition becomes

ãθ̃ ¼ L−1 þ LðxþÞL1; ãt̃ ¼ ãθ̃; ð4:25Þ

¯̃aθ̃ ¼ðL̄μL−1þL1Þð1−μJÞ; ¯̃at̃ ¼−
1þμJ
1−μJ

¯̃aθ̃; ð4:26Þ

Φ̃θ̃ ¼
2π

κ0
Jþ ð1− μJÞF ; Φ̃t̃ ¼

4π

κ0
J

1− μJ
−
1þ μJ
1− μJ

Φ̃θ̃:

ð4:27Þ

This boundary condition requires a boundary term be added
to the action (4.20), which turns out to be

B ¼ −
κ

4π

Z
∂M

dt̃dθ̃

�
L −

2π2

κκ0
J2 þ 2π

μκ
ð1 − μJÞF

�
: ð4:28Þ

The detailed derivation of this boundary term is given in
Appendix C. This boundary term also reduces to the CFT
case when μ → 0. In addition, it provides a coupling
between the right chiral Chern-Simons theory and a
Uð1Þ gauge field, but keeps the left chiral Chern-Simons
action unchanged.
In the Hamiltonian form, this boundary term gives the

surface integral

E ¼ κ

4π

Z
dθ̃

"
L −

2π2

κκ0
J2

þ 4π2

μ2κκ0
ð1 − μJÞ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ2κκ0

2π2
L̄μ

s !#
: ð4:29Þ

We consider the BTZ black holes, in which L and L̄ are
constants. After rescaling the coordinates [23], we can
identify

L ¼ 16π2GðΔ − c=24Þ
R2

¼ 4π2ðΔ − c=24Þ
κR2

;

J ¼ Q0

R
; ð4:30Þ

L̄μ ¼
L̄

ð1 − μJÞ2 ¼
16π2GðΔ̄ − c=24Þ
R2ð1 − μQ0=RÞ2

¼ 4π2ðΔ̄ − c=24Þ
κR2ð1 − μQ0=RÞ2

: ð4:31Þ

Up to a coefficient, the surface integral ends up with

E¼2πðΔ−c=24Þ
R

−
2π

κ0
Q2

0

R

þ 4π

μ2κ0
ðR−μQ0Þ

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2μ2κ0ðΔ̄−c=24Þ
ðR−μQ0Þ2

s !
: ð4:32Þ

which is the spectrum of the JT̄ deformed CFT in [8,23], as
expected. Here we reproduce the spectrum from gravity
side using the surface integral method. Just as in the case of
TT̄ deformation, the boundary term is defined at infinity.
From the holographic point of view, the JT̄ deformation
corresponds actually to a deformation of the boundary
condition of AdS3, which can be treated as a coordinate
transformation. This asymptotic boundary condition may
imply the boundary dynamics, and we would like to discuss
this in later subsections.

C. From Chern-Simons theory
to JT̄-deformed WZW model

We then follow the method used in TT̄ deformation to
study the asymptotic dynamics for this mixed boundary
condition. By using (4.25), (4.26) and (4.27), one gets

J ¼ 1

μ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

μκ0

2π
Φ̃θ̃

�
2

þ μ2κκ0

4π2
X̄θ̃ θ̃

s !
; ð4:33Þ

F ¼ Φ̃θ̃ − 2πJ=κ0

1 − μJ
: ð4:34Þ

Plugging into (4.28), the boundary term becomes
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B ¼ −
Z

dt̃dθ̃

�
κ

4π
Xθ̃ θ̃ þ

κ0

4π
Φ̃2

θ̃
þ κ

4π
X̄θ̃ θ̃

�

þ
Z

dt̃dθ̃
2π

μ2κ0

×

 
1 −

μκ0

2π
Φ̃θ̃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

μκ0

2π
Φ̃θ̃

�
2

þ μ2κκ0

4π2
X̄θ̃ θ̃

s !
:

ð4:35Þ

Finally, the total Chern-Simons action with this certain
boundary term can be reduced to

Stotal ¼
κ

4π

Z
dt̃dθ̃ðXθ̃ t̃ − Xθ̃ θ̃ − X̄θ̃ t̃ − X̄θ̃ θ̃Þ þ Γ½g� − Γ½ḡ�

þ κ0

4π

Z
dt̃dθ̃ðΦ̃θ̃Φ̃t̃ − Φ̃2

θ̃
Þ

þ 2π

μ2κ0

Z
dt̃dθ̃

×

�
1 −

μκ0

2π
Φ̃θ̃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

μκ0

2π
Φ̃θ̃

�
2

þ μ2κκ0

4π2
X̄θ̃ θ̃

s �
:

ð4:36Þ

This is actually one type of the JT̄ -deformed WZWaction,
which can also be got from JT̄ flow equation by adding an
extra Uð1Þ gauge field, see Appendix D for details. The
effect of JT̄ deformation is coupling the right-moving
SLð2;RÞ WZW model with left-moving Uð1Þ gauge field.
From the perspective of holography, the boundary dynam-
ics of AdS3 with the mixed boundary condition can be
described by (4.36); namely a JT̄-deformed conformal
theory.
We give some comments about the JT̄-deformed WZW

model. The difference between the JT̄-deformed scalar
field and the JT̄-deformed WZW model is the definition of
Uð1Þ current J. In the latter one, the current J is introduced
through adding an extra Uð1Þ gauge field. Of course, one
can do the deformation by using one component of
SLð2;RÞ current Ja, such as J0. However, there will be
another boundary condition for AdS3 instead of the mixed
one. We will not discuss this case in this paper.

D. Constraints on the JT̄-deformed WZW model

We now consider constraints on the JT̄-deformed WZW
model. We will use the same notation as in the TT̄
deformation. By using the Gauss decomposition (3.27)
and (3.28), the boundary condition (4.21) and (4.22) imply
the constraints

e2ϕ∂ θ̃F ¼ r; ∂ θ̃ϕ ¼ e2ϕΨ∂ θ̃F; ð4:37Þ

e2ϕ̄∂ θ̃F̄ ¼ ζ̄r; ∂ θ̃ϕ̄ ¼ e2ϕ̄Ψ̄∂ θ̃F̄; ð4:38Þ

where

ζ̄ ¼ ð1 − μJÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

μκ0

2π
Φ̃θ̃

�
2

þ μ2κκ0

4π2
X̄θ̃ θ̃

s
;

or X̄θ̃ θ̃ ¼
4π2

μ2κκ0

�
ζ̄2 −

�
1 −

μκ0

2π
Φ̃θ̃

�
2
�
: ð4:39Þ

The left-moving part remains unchanged, but the right-
moving part is deformed because of ζ̄ ≠ 1. From these
constraints, one can express ϕ0; _ϕ and Ψ0; _Ψ in terms of F

ϕ0 ¼ −
F00

2F0 ; _ϕ ¼ −
_F0

2F0 ; ð4:40Þ

Ψ0 ¼ 1

2r

�
−
F000

F0 þ
F002

F02

�
;

_Ψ ¼ 1

2r

�
−

_F00

F0 þ
F00 _F0

F02

�
: ð4:41Þ

Similarly we have

ϕ̄0 ¼ 1

2

�
ζ̄0

ζ̄
−
F̄00

F̄0

�
; _̄ϕ ¼ 1

2

� _̄ζ
ζ̄
−

_̄F
0

F̄0

�
; ð4:42Þ

Ψ̄0 ¼ 1

2r

�
ζ̄00

ζ̄2
−
2ζ̄02

ζ̄3
−
F̄000

ζ̄F̄0 þ
ζ̄0F̄00

ζ̄2F̄0 þ
F̄002

ζ̄F̄02

�
; ð4:43Þ

_̄Ψ ¼ 1

2r

� _̄ζ
0

ζ̄2
−
2ζ̄0 _̄ζ
ζ̄3

−
_̄F
00

ζ̄F̄0 þ
_̄ζF̄00

ζ̄2F̄0 þ
F̄00 _̄F0

ζ̄F̄02

�
: ð4:44Þ

According to these relations, we get the differential
equation for ζ̄

ζ̄00

ζ̄
−
3

2

�
ζ̄0

ζ̄

�
2

− fF̄; θ̃g ¼ 4π2

μ2κκ0

�
ζ̄2 −

�
1 −

μκ0

2π
Φ̃θ̃

�
2
�
:

ð4:45Þ

The solutions of this equation allow us to express the
parameter ζ̄ in terms of F̄ and Φ̃. The perturbation solution
in the first few orders of small μ is

ζ̄ ¼ 1 −
μκ0

2π
Φ̃θ̃ þ

μ2κκ0

8π2
fF̄; θ̃g þOðμ3Þ; ð4:46Þ

which can be used to give a further reduction of the
deformed WZW action.
Finally, the total action (4.36) can be expressed in Gauss

parametrization
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Stotal¼
κ

4π

Z
dt̃dθ̃

�
fF; θ̃gþ3F00 _F0

2F02 −
_F00

F0

�

þ κ0

4π

Z
dt̃dθ̃ðΦ̃θ̃Φ̃t̃−Φ̃2

θ̃
Þ

−
κ

4π

Z
dt̃dθ̃

� _̄ζ0
ζ̄
−
3_̄ζζ̄0

2ζ̄2
−
ζ̄0 _̄F0

2ζ̄F̄0 þ
_̄ζF̄00

2ζ̄F̄0−
_̄F
00

F̄0 þ
3 _̄F

0
F̄00

2F̄02

�

−
κ

4π

Z
dt̃dθ̃

�
ζ̄00

ζ̄
−
3ζ̄02

2ζ̄2
−fF̄; θ̃g

�

þ 2π

μ2κ0

Z
dt̃dθ̃

�
1−

μκ0

2π
Φ̃θ̃− ζ̄

�
: ð4:47Þ

Again, one can parametrize the F and F̄ to the angular
variables ξ and ξ̄. Substituting the perturbation solution
(4.46) into the action, we arrive at

Stotal

¼−
κ

8π

Z
∂M

dθ̃dt̃

��
ξ00∂−ξ

0

ξ02
−ξ0∂−ξ

�
−
�
ξ̄00∂þξ̄0

ξ̄02
− ξ̄0∂þξ̄

��

þ κ0

4π

Z
dt̃dθ̃ðΦ̃θ̃Φ̃t̃−Φ̃2

θ̃
Þ

þμκκ0

8π2

Z
∂M

dθ̃dt̃Φ̃θ

�
fξ̄; θ̃gþ1

2
ξ̄02
�
þOðμ2Þ: ð4:48Þ

The leading order of this action is the sum of two opposite
chiral Alekseev-Shatashvili actions with an additionalUð1Þ
gauge field. The first order correction is just the coupling
of the right-moving Alekseev-Shatashvili action and the
left-moving Uð1Þ gauge field through the JT̄ operator.
Consequently, the asymptotic boundary dynamics of
AdS3 with this mixed boundary condition is described
by one type of JT̄-deformed Alekseev-Shatashvili action.
However, since our construction depends on introduction of
a gauge fields Φ̃, the resultant theory should differ from the
standard JT̄ deformation. The latter is the coupling of two
opposite chiral Alekseev-Shatashvili actions without addi-
tional gauge fields.

V. CONCLUSION AND DISCUSSION

In this paper, we study the holographic aspects of
TT̄=JT̄-deformed CFTs in Chern-Simons formalism. It
is shown that the deformed CFTs correspond to AdS3 with
mixed boundary conditions. Based on the mixed boundary
condition, the certain boundary terms are obtained. We also
show that the boundary dynamics of Chern-Simons AdS3
gravity turns out to be the TT̄=JT̄-deformed WZW model.
Unlike the cutoff point of view, the mixed boundary

condition for the TT̄ deformation is defined at infinity. We
find that this boundary condition implies a nontrivial
boundary term in Chern-Simons formalism. The boundary

term gives rise to total energy of this system, which
matches with the spectrum of TT̄-deformed CFT. This
spectrum is exactly the quasilocal energy of BTZ black
hole, if we identify μ ¼ 1=r2c. After writing the boundary
term in terms of gauge fields, the total action can reduce to
TT̄-deformed two chiral WZW models. The effect of TT̄
deformation is coupling the two chiral WZW models.
Moreover, the mixed boundary condition also gives the
constraints on TT̄-deformed WZW model. By disentan-
gling the constraints, the boundary theory turns out to be
the TT̄-deformed Alekseev-Shatashvili quantization of
coadjoint orbit of the Virasoro group. Finally, we show
that the TT̄-deformed standard non-chiral WZW model is
equivalent to the TT̄-deformed two chiral WZW models.
As for the JT̄ deformation, the holographic interpretation

is also AdS3 gravity but with an extra Uð1Þ Chern-Simons
gauge field coupling to the gravity. After rewriting the
gravitational action in Chern-Simons formalism, we also
obtain the associated boundary term. As expected, this
boundary term precisely gives the spectrum of JT̄-
deformed CFT. In addition, based on this nontrivial
boundary term, the boundary dynamics is also studied. It
turns out that the boundary dynamics of AdS3 can be
described by one type of constrained JT̄-deformed WZW
model. This type of JT̄-deformed WZW model can also be
obtained from the JT̄ flow equation through adding a
supplementary Uð1Þ gauge field. However, this type of JT̄-
deformed WZW model turns out to be a coupling of the
right-moving Alekseev-Shatashvili action to a Uð1Þ gauge
field. The standard JT̄-deformation should be the coupling
of two opposite chiral Alekseev-Shatashvili actions via the
JT̄ operator. Regarding this, it would be interesting to find
another boundary condition in the bulk and perform a
holographic check.
Furthermore, we show that the effect of TT̄ deformation

is the coupling of two opposite chiral SLð2;RÞ WZW
models, and the effect of JT̄ deformation is coupling a
right-moving SLð2;RÞ WZW model with a Uð1Þ WZW
model. It would be interesting to consider SLðN;RÞWZW
models and couple two WZW models through higher spin
currents deformation, since SLðN;RÞ WZW models cor-
respond to higher spin gravity [63–65]. This will be helpful
to understand the holographic aspects of higher spin gravity
under the integrable deformation.
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APPENDIX A: CONVENTIONS

In this paper, we use the generators of SLð2;RÞ

L−1¼
�
0 0

1 0

�
; L0¼

1

2

�
1 0

0 −1

�
; L1¼

�
0 1

0 0

�
: ðA1Þ

The commutation relations are

½L−1;L0�¼L−1; ½L−1;L1�¼−2L0; ½L0;L1�¼L1: ðA2Þ

Its Cartan-Killing metric is

TrðLiLjÞ ¼

0
B@

0 0 1

0 1
2

0

1 0 0

1
CA: ðA3Þ

APPENDIX B: BOUNDARY TERM
FOR TT̄ DEFORMATION

In this appendix, we will derive the boundary term (2.32)
for TT̄ deformation. Firstly, we expect the variation of the
total action behaves like the form

δStotal ¼
k
4π

Z
∂M

dt̃dθ̃Tr

��
ãt̃ −

1þ μL̄μ

1 − μL̄μ

ãθ̃

�
δãθ̃

−
�
¯̃at̃ þ

1þ μLμ

1 − μLμ

¯̃aθ̃

�
δ ¯̃aθ̃

�
; ðB1Þ

which vanishes due to the mixed boundary condition.
Therefore, the variation of boundary term can be identi-
fied as

δB ¼ −
k
4π

Z
∂M

dt̃dθ̃

�
1þ μL̄μ

1 − μL̄μ

Trðaθ̃δaθ̃Þ

þ 1þ μLμ

1 − μLμ
Trðāθ̃δāθ̃Þ

�
: ðB2Þ

According to (2.30) and (2.31), we can get the variation of
ã; ˜̄a with respect to Lμ; L̄μ

δãθ̃ ¼
1 − μL̄μ

ð1 − μ2LμL̄μÞ2
ðμ2L̄μL−1 þ L1ÞδLμ

−
μð1 − μLμÞ

ð1 − μ2LμL̄μÞ2
ðL−1 þ LμL1ÞδL̄μ; ðB3Þ

δ ˜̄aθ̃ ¼ −
μð1 − μL̄μÞ

ð1 − μ2LμL̄μÞ2
ðL̄μL−1 þ L1ÞδLμ

þ 1 − μLμ

ð1 − μ2LμL̄μÞ2
ðL−1 þ μ2LμL1ÞδL̄μ: ðB4Þ

Besides, it is straightforward to obtain

Trðaθ̃δaθ̃Þ ¼
ð1 − μL̄μÞ2ð1þ μ2LμL̄μÞ

ð1 − μ2LμL̄μÞ3
δLμ

−
2μLμð1 − μLμÞð1 − μL̄μÞ

ð1 − μ2LμL̄μÞ2
δL̄μ; ðB5Þ

Trðāθ̃δāθ̃Þ ¼ −
2μL̄μð1 − μLμÞð1 − μL̄μÞ

ð1 − μ2LμL̄μÞ3
δLμ

þ ð1 − μLμÞ2ð1þ μ2LμL̄μÞ
ð1 − μ2LμL̄μÞ3

δL̄μ: ðB6Þ

Substituting these relations into (B2), it yields

δB ¼ −
κ

2π

Z
∂M

dt̃dθ̃

� ð1 − μL̄μÞ2
ð1 − μ2LμL̄μÞ2

δLμ

þ ð1 − μLμÞ2
ð1 − μ2LμL̄μÞ2

δL̄μ

�
: ðB7Þ

The right hand side of this equation is a total derivative. The
expected primitive function of this boundary term variation
could be

B ¼ −
κ

2π

Z
∂M

dt̃dθ̃
Lμ þ L̄μ − 2μLμL̄μ

1 − μ2LμL̄μ

: ðB8Þ

In addition, the boundary term could be written into another
form

B ¼ −
κ

4π

Z
∂M

dt̃dθ̃

�
1 − μ2LμL̄μ

1 − μL̄μ

Trðã2
θ̃
Þ

þ 1 − μ2LμL̄μ

1 − μLμ
Trð ¯̃a2

θ̃
Þ
�
: ðB9Þ

As a consequence, the boundary term for TT̄ deformation is
just (2.32).

APPENDIX C: BOUNDARY TERM
FOR JT̄ DEFORMATION

In this appendix, we will derive the boundary term for JT̄
deformation. According to the boundary condition (4.25),
(4.26) and (4.27), we can write down the expected variation
of total action. We would like to consider the gravitational
part and Uð1Þ gauge field part separately. For the gravi-
tational action, its variation should take the following

δSgrav ¼
κ

4π

Z
∂M

dt̃dθ̃Tr

�
ðãt̃ − ãθ̃Þδãθ̃

−
�
¯̃at̃ þ

1þ μJ
1 − μJ

¯̃aθ̃

�
δ ¯̃aθ̃

�
: ðC1Þ

The variation of Uð1Þ gauge field action should be

MIAO HE and YI-HONG GAO PHYS. REV. D 103, 126019 (2021)

126019-14



δSUð1Þ ¼
κ0

4π

Z
∂M

dt̃dθ̃

�
Φ̃t̃ −

4π

κ0
J

1 − μJ
þ 1þ μJ

1 − μJ
Φ̃θ̃

�
δΦ̃θ̃:

ðC2Þ

Both of them vanish because of the boundary condition.
Then, we can read off the variation of the boundary terms

δBgrav ¼ −
κ

4π

Z
∂M

dt̃dθ̃

�
Trðãθ̃δãθ̃Þ þ

1þ μJ
1 − μJ

Trð ¯̃aθ̃δ ¯̃aθ̃Þ
�
;

ðC3Þ

δBUð1Þ ¼ −
κ0

4π

Z
∂M

dt̃dθ̃

�
4π

κ0
J

1 − μJ
−
1þ μJ
1 − μJ

Φ̃θ̃

�
δΦ̃θ̃:

ðC4Þ

By using (4.25), (4.26) and (4.27), one can calculate

Trðãθ̃δãθ̃Þ ¼ δL; ðC5Þ

Trðãθ̃δãθ̃Þ ¼ ð1 − μJÞ2δL̄μ − 2μð1 − μJÞL̄μδJ; ðC6Þ

δΦ̃θ̃ ¼
�
2π

κ0
− μF

�
δJ þ ð1 − μJÞδF : ðC7Þ

Plugging these relations into the boundary term and noting
(4.18), we can write these boundary terms in terms of L, J
and F

δBgrav ¼ −
Z
∂M

dt̃dθ̃
κ

4π
δL

−
Z
∂M

dt̃dθ̃ð1 − μ2J2Þ
�
1

2μ
−

κ0

4π
F
�
δF

þ
Z
∂M

dt̃dθ̃ð1þ μJÞ
�
F −

μκ0

4π
F 2

�
δJ; ðC8Þ

δBUð1Þ ¼
Z
∂M

dt̃dθ̃

��
2π

κ0
−μF

�
2 κ0

4π
J−
�
1

2
−
κ0μ
4π

F
�
F
�
δJ

−
Z
∂M

dt̃dθ̃

�
−
1

2
Jð1−μJÞþ ð1−μ2J2Þ κ

0

4π
F
�
δF :

ðC9Þ

One can verify the variation of each boundary term is not a
total derivative. However, combining the gravitational part
and Uð1Þ gauge field part, we can get a total derivative.
This might imply the boundary term coupling the gravity
with Uð1Þ gauge field. The variation of total boundary
term is

δB ¼ δBgrav þ δBUð1Þ

¼ −
κ

4π

Z
∂M

dt̃dθ̃

�
δL −

�
4π2

κκ0
J þ 2π

κ
F
�
δJ

þ 2π

μκ
ð1 − μJÞδF

�
: ðC10Þ

Integrate the above formula, we arrive at the expected
boundary term

B ¼ −
κ

4π

Z
∂M

dt̃dθ̃

�
L −

2π2

κκ0
J2 þ 2π

μκ
ð1 − μJÞF

�
: ðC11Þ

APPENDIX D: JT̄ DEFORMED WZW MODEL

In this appendix, we will derive one type of JT̄ deformed
chiral SLð2;RÞWZWmodel from the JT̄ flow equation, in
which the Uð1Þ current is introduced by adding a left-
moving chiral Uð1Þ WZW model action. We consider the
action

Stotal ¼ SSLð2;RÞLWZW − SSLð2;RÞRWZW þ SUð1Þ
LWZW

¼
Z

d2xL SLð2;RÞ
LWZW þ Γ½g� −

Z
d2xL SLð2;RÞ

RWZW − Γ½ḡ�

þ
Z

d2xL Uð1Þ
LWZW: ðD1Þ

Here the Lagrangian for left-moving SLð2;RÞ WZW
model is

L
SLð2;RÞ
LWZW ¼ κ

4π
TrðAθAt −AθAθÞ: ðD2Þ

In order to define the stress tensor, we put the right-moving
SLð2;RÞ WZW model in a curved background whose
metric is

gtt ¼ 0; gtθ ¼ gθt ¼ 1

2
; gθθ ¼ h: ðD3Þ

Then the Lagrangian for right-moving SLð2;RÞ WZW
model takes the form

L
SLð2;RÞ
RWZW ¼ κ

4π
TrðĀθĀt þ hĀθĀθÞ: ðD4Þ

In terms of the zweibeins, we can express h as

h ¼ e−t
e−θ

: ðD5Þ

Therefore, the Lagrangian for left-moving SLð2;RÞ WZW
model can be written as
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L
SLð2;RÞ
RWZW ¼ κ

4π
Tr

�
ĀθĀt þ

e−t
e−θ

ĀθĀθ

�
: ðD6Þ

This Lagrangian becomes chiral WZW action of left-
moving copy if setting h ¼ −1, and h ¼ 1 for the right-
moving copy. We then couple Uð1Þ WZW model with
gauge field B, such that the Lagrangian becomes

L
Uð1Þ
LWZW ¼ κ0

4π
½ð∂θU∂θU − ∂θU∂tUÞ

þ ðBθ − BtÞð2∂θU þ BθÞ�: ðD7Þ

Following the technique used for chiral Bosons [43,66,67],
we finally obtain the improved action

Simp ¼
κ

4π

Z
d2xTrðAθAt −AθAθÞ þ Γ½g�

−
κ

4π

Z
d2xTr

�
ĀθĀt þ

e−t
e−θ

ĀθĀθ

�
− Γ½ḡ�

þ κ0

4π

Z
d2x½ð∂θU∂tU − ∂θU∂θUÞ

− ðBθ − BtÞð2∂θU þ BθÞ�: ðD8Þ

Then the conserved stress tensor T̄i
a and conserved current

Ji can be defined by

T̄tþ ¼ ∂L
∂eþt ; T̄θþ ¼ ∂L

∂eþθ ðD9Þ

Jt ¼ ∂L
∂Bt

; Jθ ¼ ∂L
∂Bθ

ðD10Þ

We identity this action as the original theory.
Therefore, the JT̄-deformed Lagrangian L μ satisfy the

flow equation

∂L μ

∂μ ¼ JtT̄θþ − JθT̄tþ ¼ ∂L μ

∂Bt

∂L μ

∂eþθ −
∂L μ

∂Bθ

∂L μ

∂eþt ; ðD11Þ

with the initial condition

L 0 ¼
κ

4π
TrðAθAt−AθAθÞ−

κ

4π
Tr

�
ĀθĀtþ

e−t
e−θ

ĀθĀθ

�

þ κ0

4π
½ð∂θU∂θU−∂θU∂tUÞþðBθ−BtÞð2∂θUþBθÞ�:

ðD12Þ

Solving the JT̄ flow equation (D11), and setting
e−t ¼ e−θ ¼ 1; Bt ¼ Bθ ¼ 0, one can get the deformed
Lagrangian

L μ ¼
κ

4π
TrðAθAt −AθAθÞ −

κ

4π
TrðĀθĀt þ ĀθĀθÞ

þ κ0

4π
ð∂θU∂θU − ∂θU∂tUÞ þ 2π

μ2κ

 
1 −

μκ0

2π
∂θU −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

μκ0

2π
∂θU

�
2

þ μ2κκ0

4π2
TrðĀθĀθÞ

s !
: ðD13Þ

Finally, the total action for JT̄-deformed WZW model is

SJT̄ ¼ κ

4π

Z
d2xTrðAθAt −AθAθÞ þ Γ½g� − κ

4π

Z
d2xTrðĀθĀt þ ĀθĀθÞ − Γ½ḡ� þ κ0

4π

Z
d2xð∂θU∂tU − ∂θU∂θUÞ

þ 2π

μ2κ

Z
d2x

 
1 −

μκ0

2π
∂θU −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

μκ0

2π
∂θU

�
2

þ μ2κκ0

4π2
TrðĀθĀθÞ

s !
: ðD14Þ
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