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Abstract In the last dozens of years different data sets
revealed the accelerated expansion of the Universe which
is driven by the so called dark energy, that now dominates
the total amount of matter-energy in the Universe. In a recent
paper Glavan, Prokopec and Starobinsky propose an interest-
ing model of dark energy, which traces the Universe evolution
from the very early quantum era to the present time. Here we
perform a high-redshift analysis to check if this new model is
compatible with present day observational data and compare
predictions of this model with that of the standard ΛCDM
cosmological model. In our analysis we use only the most
reliable observational data, namely the distances to selected
SNIa, GRB Hubble diagram, and 28 direct measurements of
the Hubble constant. Moreover we consider also non geomet-
ric data related to the growth rate of density perturbations.
We explore the probability distributions of the cosmological
parameters for both models. To build up their own regions
of confidence, we maximize the appropriate likelihood func-
tions using the Markov chain Monte Carlo (MCMC) method.
Our statistical analysis indicates that these very different
models of dark energy are compatible with present day obser-
vational data and the GPS model seems slightly favored with
respect to the ΛCDM model. However to further restrict dif-
ferent models of dark energy it will be necessary to increase
the precision of the Hubble diagram at high redshifts and
to perform more detailed analysis of the influence of dark
energy on the process of formation of large scale structure.

1 Introduction

The discovery in late 1990s that expansion of the Universe is
accelerating [1,2] strengthened the conviction that the Uni-
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verse is spatially flat by making the total mass-energy density
parameter Ωtot = 1 and it prompted cosmologists and physi-
cists to ask questions about the nature of the medium that is
causing this acceleration. Now it is called dark energy and is
usually assumed to uniformly fill the Universe. One possible
candidate for dark energy is the cosmological constant intro-
duced by Einstein in 1917 when he proposed the first static
cosmological model based on general theory of relativity. In
1968 Zeldovich [3] noticed that properties of the quantum
vacuum energy density mimic properties of the cosmologi-
cal constant. But estimates of the quantum vacuum energy
density by many orders of magnitude exceed the observa-
tional limits on energy density of dark energy. It soon turned
out that accelerated expansion of the Universe can be driven
by potential energy of some evolving self interacting scalar
field. There are also other possibilities listed and discussed
in the recent review by Joyce, Lombriser and Schmidt [4]. In
hydrodynamical approximation dark energy is represented as
a medium characterized by energy density ρDE and pressure
pDE that are related by a simple equation of state

pDE = wρDE , (1)

where the proportionality coefficient w, in general, could
depend on time. To generate accelerated expansion w <

−1/3, w = −1 for the cosmological constant. How dark
energy is influencing the expansion rate of the Universe is
dictated by the mass-energy conservation laws of different
constituents and the Friedman equation. Let us assume that
the Universe is spatially flat and is described by the FLRW
metric

ds2 = dt2 − a2(t)
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
. (2)

The mass-energy conservation laws for the basic non inter-
acting constituents are

ρ̇r + 4Hρr = 0, (3)
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ρ̇m + 3Hρm = 0, (4)

ρ̇DE + 3HρDE (1 + w) = 0, (5)

and the Friedman equation is

H2(a) =
(
ȧ

a

)2

= 8πG

3
(ρr (a) + ρm(a) + ρDE (a)) , (6)

where ρr is the density of radiation (photons and other rel-
ativistic particles), ρm is the density of matter (baryons and
dark matter), ρDE is the density of dark energy and a is the
cosmological scale factor. Integrating the conservation laws
we get:

ρr (a) = ρr (0)
(a0

a

)4
, (7)

ρm(a) = ρm(0)
(a0

a

)3
, (8)

when w = −1 (cosmological constant) ρDE = const, when
w �= −1 but it is constant

ρDE (a) = ρDE (0)
(a0

a

)3(1+w)

, (9)

and when w is time dependent

ρDE (a) = ρDE (0)
(a0

a

)3
exp

(
−3

∫ a

a0

w(x)

x
dx

)
. (10)

The Friedman equation can be conveniently rewritten in the
form

H2(z) = H2(0)
(
Ωr (1+z)4+Ωm(1 + z)3 + ΩDE (1 + z)3

× exp

(
3
∫ z

0

w(x)

1 + x
dx

))
, (11)

where z is the redshift parameter normalized so that a =
1

1 + z
, H(0) is the present value of the Hubble constant and

Ωi = ρi

ρcri t
are the density parameters of different con-

stituents of the Universe and ρcri t = 3H2(0)

8πG
. Different

models of dark energy predict different dependence of w

on the redshift z.

2 The Glavan, Prokopec, Starobinsky (GPS) model of
dark energy

In the recent paper “Stochastic dark energy from inflationary
quantum fluctuations” based on their earlier ideas and cal-
culations Glavan, Prokopec and Starobinsky [5] propose an
interesting model of dark energy that, in what follows, we will
call the GPS model. They consider a very light non minimally
coupled spectator scalar field and trace its evolution from
the very early quantum era to the present time. They con-
sider the spatially flat Friedman-Lemaitre-Robertson-Walker
background spacetime with the metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
,

where a(t) is the scale factor that satisfies the Friedman equa-
tions

H2(t) = ( ȧ
a

)2 = 1

3M2
Pl

ρc, (12)

Ḣ = − 1

2M2
Pl

(ρc + pc), (13)

where MPl = (8πG)−1/2 is the reduced Planck mass, G is
the Newton’s gravitational constant, and ρc and pc are the
energy density and pressure of the dominant cosmological
constituent treated as a classical fluid.

Evolution of the non minimally coupled scalar field is
determined by the action

S[Φ] =
∫

d4xLΦ

=
∫

d4x
√−g

(
−1

2
gμν∂μΦ∂νΦ − 1

2
m2Φ2 − 1

2
ξ RΦ2

)
,

(14)

where m is mass of the scalar field, R is the Ricci scalar and
ξ is the non minimal coupling constat parameter.

They quantize the scalar field using the standard proce-
dure of canonical formalism and they study evolution of this
quantum scalar field and its influence on the background
geometry. They show that the vacuum expectation values of
the energy-momentum tensor operator of the quantum scalar
field is diagonal and represents an ideal fluid with energy
density ρQ(t) and pressure pQ(t). To study the back reac-
tion of quantum vacuum fluctuations they decompose the
field operators into long and short wavelength modes and
concentrate on evolution of the long wavelength modes only.
It turns out that the evolution equations of the long wave-
length modes contain source terms that originated from the
coupling between the short and long wavelength modes. The
source terms can be considered as stochastic forces acting
on the long wavelength modes. Next they derive equations
of motion for appropriately normalized equal time two point
correlation functions Δφφ(t), Δφπ(t), and Δππ(t).

The expectation values of the energy density and pressure
can be expressed by the equal time correlation functions as

ρQ ≈ H2

2

(
Δππ + 6ξΔφπ +

[
6ξ +

(m

H

)2
]

Δφφ

)
, (15)

pQ ≈ H2

2

(
(1 − 4ξ)Δππ + 2ξΔφπ

+
[
−2ξ(3 − 2ε) + 24ξ2(2 − ε) −

(m

H

)2
(1 − 4ξ)

]
Δφφ

)
,

(16)

where ε = − Ḣ
H2 is a parameter that characterizes the equa-

tion of state of the medium that dominates the expansion rate
of the Universe, so ε ∼ 0 during the inflation epoch, ε = 2
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during radiation dominated epoch and ε = 3
2 during matter

dominated epoch.
Later they study the quantum induced corrections ρQ and

pQ at the early period of inflation, radiation dominated period
and matter dominated period. Finally they consider the late
stage of evolution of the Universe that begins at an arbitrar-
ily set initial moment zin = 10, at that moment t = t∗,
H(t∗) = H∗ >> HDE , where HDE is the value of the
Hubble expansion rate at the beginning of the epoch of dark
energy domination.

To study evolution of different cosmological parameters
it is more convenient to use instead of time t or redshift
z the number of e-foldings N = ln( a0

a ). It turns out that
the quantum backreaction becomes essential when the model
parameters satisfy the following conditions:

(m

H

)2
<< 1, NI <

1

8|ξ |

[

4π

(
MPl

HI

)2
]

,

0 > ξ > −1

6

(
m

HDE

)2

,

where HI is Hubble’s parameter during the period of inflation

and NI = 1

8|ξ | ln
[
24π |ξ |(MPl

HI
)2(

HDE

m
)2].

Unfortunately the evolution equations at the late stage can
be solved only numerically. Numerical results suggest the fol-
lowing parametrization of the dark energy equation of state

pQ = wQ(N )ρQ, (17)

where

wQ(N ) = −ω0

2

[
1 + tanh

(
N − n0

δn

)]

= − ω0

1 + β(1 + z)α
, (18)

where ω0 ≤ 1, n0 = ln(β)

α
and δn = 2

α
.

3 Observational tests of the GPS dark energy

At the late stage of evolution, at z ≤ 10, the Universe is filled
in with dark matter, baryonic matter and dark energy. Dark
matter is usually assumed to be cold and collisionless so both
types of matter could be treated as pressureless dust with
mass-energy density ρm . Dark matter and baryonic mater
does not interact with dark energy, so both matter components
and dark energy could be treated as non interacting perfect
fluids. The continuity equation for matter in the FLRW model
has the simple form

ρ̇m + 3Hρm = 0, (19)

corresponding equation for the GPS dark energy is

ρ̇DE + 3H

(
1 − ω0aα

β + aα

)
ρDE = 0, (20)

where H = ȧ

a
and ω0, α, β are constants. Integrating both

equations and using the standard relation a(z) = 1

1 + z
, we

get

ρm(z) = ρM (0)(1 + z)3, (21)

ρDE = ρDE (0)(1 + z)3(1−ω0)

(
1 + β(1 + z)α

1 + β

)3 ω0
α

,

(22)

where ρm(0) is the present density of matter and ρDE (0) is
the present density of dark energy. The Hubble expansion
rate is

H2(z) = 8πG

3

(

ρm(0)(1 + z)3 + ρDE (0)(1 + z)3(1−ω0)

×
(

1 + β(1 + z)α

1 + β

)3 ω0
α

)

, (23)

or using the density parameters Ωm(0) and ΩDE (0), we get

H2(z) = H2(0)

(

Ωm(0)(1 + z)3 + ΩDE (0)(1 + z)3(1−ω0)

×
(

1 + β(1 + z)α

1 + β

)3 ω0
α

)

, (24)

We use the Hubble expansion rate to define the luminosity
distance dL , the angular diameter distance dA and the volume
distance dV as

dL (z, θ) = c

H0
(1 + z)

∫ z

0

1

H(ζ, θ)
dζ

= c

H0
(1 + z)

×
∫ z

0

dy
√

Ωm(y + 1)3 + ΩDE (1 + y)3(1−ω0)
( 1+β(1+y)α

1+β

)3 ω0
α

(25)

dA(z, θ) = c

H0

1

1 + z

×
∫ z

0

dy
√

Ωm(y + 1)3 + ΩDE (1 + y)3(1−ω0)
( 1+β(1+y)α

1+β

)3 ω0
α

(26)

dV (z, θ) =
[
(1 + z) dA(z, θ)2 cz

H(z, θ)

] 1
3

, (27)

where θ denote parameters of the GPS dark energy. Using the
luminosity distance, we can evaluate the distance modulus
from its standard definition

μ(z) = 25 + 5 log dL(z, θ). (28)
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4 Observational data

In our analysis we mainly use the same data sets that we used
in our previous cosmographic analysis [6]: measurements
of SNIa distances and GRB Hubble diagram, and 28 direct
measurements of H(z) compiled in [7]. However, in order to
address the problem of degeneracy in the dark energy sector,
that manifests in the fact that different models of dark energy
are compatible with geometric tests, that are sensitive only
to the background expansion of the universe, we consider
also additional observational data, which are non geometric.
Actually we use data related to the growth rate of matter
density perturbations.

4.1 Supernovae and GRB Hubble diagram

4.1.1 Supernovae Ia

Observations of SNIa gave the first strong indication that now
expansion of the Universe is accelerating. First results of the
SNIa teams were published by [1,2]. Here we consider the
recently updated Supernovae Cosmology Project Union 2.1
compilation [8], which is an extension of the original Union
compilation and contains 580 SNIa, spanning the redshift
range (0.015 ≤ z ≤ 1.4). We compare the theoretically
predicted distance modulus μ(z) with the observed one using
a Bayesian approach, based on the definition of the distance
modulus in different cosmological models:

μ(z j ) = 5 log10 dL(z j , θi )) + μ0, (29)

where μ0 encodes the Hubble constant and the absolute
magnitude M and θi are model parameters. Actually, it is
well known that using only SNIa, one cannot constrain H0,
without including measurements of the local value from the
SHOES project [9,10], since this is degenerate with M . How-
ever we can indirectly estimate the Hubble constant, joining
SNIa data with other probes. For this purpose in Sect. (5) we
introduce a gaussian prior for H0 using its value determined
by the SH0ES project. Given the heterogeneous origin of the
Union data set, we use an alternative version of the χ2 test

χ̃2
SN(θi ) = c1 − c2

2

c3
, (30)

where

c1 =
NSN Ia∑

j=1

(μ(z j ;μ0 = 0, θi ) − μobs(z j ))2

σ 2
μ, j

, (31)

c2 =
NSN Ia∑

j=1

(μ(z j ;μ0 = 0, θi ) − μobs(z j ))

σ 2
μ, j

, (32)

c3 =
NSN Ia∑

j=1

1

σ 2
μ, j

. (33)

It is worth noting that

χ2
SN(μ0, θi ) = c1 − 2c2μ0 + c3μ

2
0, (34)

which clearly becomes minimal for μ0 = c2/c3, so that
χ̃2

SN ≡ χ2
SN(μ0 = c2/c3, θi ).

4.1.2 Gamma-ray burst hubble diagram

Gamma-ray bursts are visible up to high redshifts thanks to
the enormous energy that they release, and thus are good
candidates for our high-redshift cosmological investigation.
However, GRBs may be everything but standard candles
since their peak luminosity spans a wide range, even if
there have been many efforts to make them distance indica-
tors using some empirical correlations of distance-dependent
quantities and rest-frame observables [11]. These empirical
relations allow us to deduce the GRB rest-frame luminos-
ity or energy from the observer-frame measured quantity, so
that the distance modulus can be obtained with an error that
depends essentially on the intrinsic scatter of the adopted cor-
relation. We performed our analysis using the GRB Hubble
diagram data set, built by calibrating the Ep,i–Eiso relation
on the Union SNIa sample [6,12]. In Table 1 we list some of
the observational data used in our analysis.1 After fitting the
correlation and estimating its parameters, we used it to con-
struct the GRB Hubble diagram up to z 	 8, which allows
us to explore a very important redshift range, to determine
the expansion history of the Universe and probe properties
of the dark energy. We recall that the luminosity distance of
a GRB with the redshift z is

dL(z) =
(
Eiso(1 + z)

4π Sbolo

)1/2

. (35)

The distance modulus μ(z) is easily obtained from the stan-
dard relation

μ(z) = 5 log10 dL(z, θi ) + μ0, (36)

where θi are model parameters and μ0 is a free parameter.
The uncertainty is estimated by error propagation. Actually,
since for GRBs the absolute calibration is not available, we
can fit the Hubble Diagram of GRBs together with that of
SNIa and use the overlapping redshift range to cross-calibrate
the GRBs diagram, what allows to determine μ0. When the
correlation is fitted and its parameters are estimated, it is pos-
sible to compute the luminosity distance of GRBs at known
redshift z and, therefore, estimate the distance modulus for
each i - th GRB in our sample at redshift zi , and to build the
Hubble diagram plotted in Fig. 1.

1 For the full sample, please contact the authors.
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Table 1 Some data used in our analysis

Some GRBs observable parameters

Redshift Ep,i (keV) σEp,i Sbolo(10−6 erg cm−2) σSbolo Eiso(1052 erg) σEiso

0.03351 4.9 0.49 20.6219 2.06219 0.00535399 0.000535399

0.125 55 45 52.6588 21.0635 0.216774 0.0867097

0.1685 82 8.2 204.139 20.4139 1.61591 0.161591

0.25 3.37 1.79 0.127068 0.0317671 0.00244119 0.000610299

0.31 203 53 207.837 41.5672 6.55552 1.3111

0.3399 1250 150 2349.65 335.665 91.8909 13.1273

0.36 1060 275 178.062 48.9183 7.97042 2.18968

0.41 70 21 11.3826 2.88168 0.693324 0.175525

0.414 440 180 43.6518 8.44872 2.72107 0.526658

0.434 93 15 9.82091 1.88864 0.685192 0.131768

0.45 129 26 12.7073 1.27073 0.966894 0.0966894

0.4791 81.3505 8.13505 13.1412 1.31412 1.16253 0.116253

0.49 51 5.1 17.6258 1.8851 1.64622 0.176066

0.5295 61 15 1.56474 0.156474 0.176323 0.0176323

aIt is worth noting that Eiso is not directly observable, since it depends on the cosmological model through the luminosity distance

Fig. 1 Distance modulus μ(z) for the calibrated GRB Hubble diagram
obtained by fitting the Ep,i – Eiso relation

4.2 H(z) measurements

The measurement of the Hubble parameter is a comple-
mentary probe to constrain the cosmological parameters and
investigate the dark energy. The Hubble parameter can be
measured using the so-called cosmic chronometers. The most
reliable cosmic chronometers at present are old early-type
galaxies that evolve passively on a timescale much longer
than their age difference, which formed the vast majority of
their stars rapidly and early and have not experienced subse-
quent major episodes of star formation or merging. We used a
list of 28 H(z) measurements obtained in this way that were
compiled in [7].

4.3 Constraints from the growth rate data

It is known [13] that the growth factor of density perturbations
satisfies the following differential equation on subhorizon

scales (k2 
 a2H2), where primes denote differentiation
with respect to the scale factor a

δ′′(a) +
(

3

a
+ H ′(a)

H(a)

)
δ′(a) − 3

2

Ωm

a5H(a)2/H2
0

δ(a) = 0,

(37)

where δ(a) = δρm
ρm

denotes the cosmological matter overden-

sity.2 This differential equation has in general two solutions
that correspond to two modes, a growing and a decaying one,
that in a matter dominated universe scale as δ = a and as
δ = a−3/2 respectively. In order to numerically integrate the
Eq. (37), we set the usual initial conditions: δ(ain) 	 ain and

δ′(ain) 	 1. The growth rate is defined as f (a) = dδ(a)

d log a
.

Most of the growth rate data are provided by peculiar velocity
measurements in galaxy surveys and are obtained in terms
of galaxy density, which is related to the matter perturbation
by the relation δg = bδm , where b is the so called (unknown)
bias parameter. Therefore measurements of f depend on the
value of the bias parameter. A more reliable function is the
product f (z)σ8(z) = f σ8(z) where σ8(z) is the amplitude
of the power spectrum of density perturbations on the scale
8h−1Mpc, as it is independent on the bias and can be mea-
sured also from weak lensing surveys. Here we use the Gold-
2017 compilation of 18 f σ8(z) measurements, presented in
[15]. It is worth noting that to use the Gold-2017 growth data
we follow the same procedure as explained in [15] to correct
the data for the Alcock-Paczynski effect mentioned in that

2 It is worth noting that this equation is not valid for a scalar tensor
theory, since in this theory the dark energy is partially gravitationally
clustered even at small scales. However, the correction is small in the
GPS model [14].
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Table 2 Constraints on the GPS parameters from different data: com-
bined SNIa and GRBs Hubble diagrams, f σ8(z) data sets and H(z)
data sets (Left Panel); and SNIa Hubble diagram, f σ8(z) data sets and

H(z) data sets (Right Panel). Columns report the mean 〈x〉 and median
x̃ values and the 68% and 95% confidence limits

GPS Dark energy

SNIa/GRBs/H(z)/ f σ8(z) SNIa/H(z)/ f σ8(z)

I d 〈x〉 x̃ 68% CL 95% CL 〈x〉 x̃ 68% CL 95% CL

Ωm 0.27 0.27 (0.25, 0.31) (0.22, 0.32) 0.295 0.3 (0.28, 0.32) (0.25, 0.34)

w0 −1.13 −1.14 (−1.3, −0.96) (−1.4, −0.78) −0.99 −0.98 (−1.12, −0.84) (−1.27, −0.73)

α 3.0 2.8 (2.1, 4.2) (2.05, 4.8) 2.9 2.8 (−2.17, 3.5) (2.01, 4.4)

β 0.07 0.08 (0.03, 0.11) (0.02, 0.16) 0.08 0.08 (0.05, 0.11) (0.02, 0.16)

h 0.70 0.7 (0.69, 0.71) (0.67, 0.72) 0.71 0.71 (0.69, 0.71) (0.68, 0.73)

Table 3 Constraints on the GPS parameters from SNIa and GRBs Hub-
ble diagrams, and f σ8(z) data sets. Columns report the mean 〈x〉 and
median x̃ values and the 68% and 95% confidence limits

GPS dark energy

SNIa/GRBs/ f σ8(z)

I d 〈x〉 x̃ 68% CL 95% CL

Ωm 0.20 0.21 (0.17, 0.23) (0.15, 0.31)

w0 −1.1 −1.14 (−1.2, −0.97) (−1.4, −0.88)

α 2.8 2.7 (2.1, 3.6) (2.02, 4.2)

β 0.04 0.03 (0.02, 0.06) (0.02, 0.1)

h 0.69 0.69 (0.69, 0.7) (0.68, 0.72)

paper. Actually the growth rate data depend on the fiducial
model used to convert redshifts to distances. Following [15]
we rescaled the measurements by the ratios of H(z)dA(z) of
our model to that of the fiducial one.

5 Statistical analysis

To constrain the parameters of the GPS dark energy model
we performed a preliminary and standard fitting procedure
to maximize the likelihood function L(p). This requires the
knowledge of the precision matrix, that is, the inverse of the
covariance matrix of the measurements,

L(p) ∝ exp (−χ2
SN Ia/GRB/2)

(2π)
NSN Ia/GRB

2 |CSN Ia/GRB |1/2

exp (−χ2
H/2)

(2π)NH /2|CH |1/2

× exp (−χ2
f σ8

/2)

(2π)
N f σ8

2 |C f σ8 |1/2
,

where

χ2(p) =
N∑

i, j=1

(
xd
i − xthi (p)

)
C−1
i j

(
xd
j − xthj (p)

)
. (38)

Here p is the set of parameters, N is the number of
data points, xd

i is the i − th measurement; xthi (p) indicates
the theoretical prediction for this measurement, it depends
on the parameters p;, Cij is the covariance matrix (specif-
ically, CSN Ia/GRB/H/ f σ8 indicates the SNIa/GRBs/H/ f σ8

covariance matrix). Moreover we use a gaussian prior term
1√

2πσ 2
exp

[
− 1

2

(
h−h peak

σ

)2
]

, where [9]

h peak = hshoes,

σ = 5σhshoes . (39)

It is worth to stress that in Tables 3 and 5 the inferred value
of h is strongly influenced by this prior, because neither
SNIa, nor GRB, nor f σ8(z) data sets by itself do not allow
us to determine h. To sample the N dimensional space of
parameters, we use the MCMC method and ran three par-
allel chains and use the Gelman–Rubin diagnostic approach
to test the convergence. As a test probe, it uses the reduc-
tion factor R, which is the square root of the ratio of the
variance between-chains and the variance within-chains. A
large R indicates that the variance between-chains is sub-
stantially greater than the variance within-chain, so that a
longer simulation is needed. We require that R converges to
1 for each parameter. We set R − 1 to be of order 0.1. We
discarded the first 30% of the point iterations at the begin-
ning of any MCMC run, and thinned the chains that were
run many times. We finally extracted the constrains on the
parameters by coadding the thinned chains. The histograms
of the parameters from the merged chains were then used
to infer median values and confidence ranges: the 15.87th
and 84.13th quantiles define the 68% confidence interval;
the 2.28th and 97.72th quantiles define the 95% confidence
interval; and the 0.13th and 99.87th quantiles define the 99%
confidence interval. In Tables 2, 3 we present results of our
analysis. In Figs. 3 and 2 we plot respectively the behaviour
of the GPS equation of state and the Ωs parameters corre-
sponding to the best fit values of the parameters.
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Fig. 2 Redshift evolution of the Ωs parameters for the GPS model,
corresponding to the best fit values of model parameters. The blue line
represents Ωm(z), and the red line ΩGPS(z)

Fig. 3 Redshift evolution of the equation of state for the GPS model,
corresponding to the best fit values of model parameters, when the full
dataset is used

6 Confrontation of the GPS model with the
cosmological constant model of dark energy

It is interesting to compare predictions of the GPS model of
dark energy with predictions of the Standard ΛCDM model
that relates the observed accelerated expansion of the Uni-
verse to the non-zero value of the cosmological constant.

When the accelerated expansion of the Universe is due to
the cosmological constant the dark energy equation of state
is pDE = −ρDE , so w = −1. From the continuity Eq.
(4) it follows that ρDE = const. In this case at the post-
recombination epoch assuming spatially flat ΛCDM model
we have

H2(z) = H2
0

(
Ωm(1 + z)3 + 1 − Ωm

)
. (40)

Using this Hubble expansion rate the luminosity distance dL
and the angular diameter distance dA(z) are defined as

dL(z) = c

H0
(1 + z)

∫ z

0

dy
√

1 − Ωm + Ωm(y + 1)3
, (41)

dA(z) = c

H0

1

1 + z

∫ z

0

dy
√

1 − Ωm + Ωm(y + 1)3
, (42)

Using this luminosity distance, we can evaluate the distance
modulus from its standard definition

μ(z) = 25 + 5 log dL(z). (43)

In Tables 4 and 5 we present results of the same statistical
analysis as performed for the GPS model for the ΛCDM
model, using the same data sets. It turns out that μGPS

0 	
0.68, and μΛCDM

0 	 0.7.

7 Discussion of our calibration procedure of the Ep,i –
Eiso relation

In this section we discuss the reliability, for cosmological
applications, of our calibration technique of the Ep,i – Eiso

relation, based on Type Ia supernovae Hubble diagram. We
are specially interested in understanding how much this cali-
bration procedure affects the independence of the (SNIa and
GRBs) datasets. We already discussed this topic in some pre-
vious papers (see [12] and references therein). However, in
order to further investigate this question we performed an
independent calibration, based on an approximate formula
for the luminosity distance which holds in any cosmological
model, and not on a power series expansion in the redshift
parameter z, as in the cosmographic approach. Our starting
point is the well known relation between the angular diameter
distance dA and the luminosity distance dL

dL = (1 + z)2 dA, (44)

where the angular diameter distance dA is a solution of the
equation
(
dz

dv

)2 d2dA
dz2 +

(
d2z

dv2

)
ddA
dz

+ 4πG

c4 Tαβk
αkβdA = 0.

(45)

with the following initial conditions:

dA(z)|z=0 = 0,
ddA(z)

dz
|z=0 = c

H0
. (46)

In Eq. (45) v is the affine parameter, Tαβ is the matter density

tensor, kα = dxα

dv
= −gαβΣ,β is the vector field tangent

to the congruence of light rays, and Σ is the null surface
along which the light rays propagate from the source. In the
general form this equation is very complicated [16–19], and
in most cases it does not admit analytical solution. From the
mathematical point of view it turns out that it is of Fuchsian
type with several regular singular points and a regular singu-
lar point at infinity. When we introduced the dimensionless
angular diameter distance r = dAH0/c we discovered [19]
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Table 4 Constraints on the ΛCDM parameters from different data:
combined SNIa and GRBs Hubble diagrams, f σ8(z) data sets and H(z)
data sets (Left Panel); and SNIa Hubble diagram, f σ8(z) data sets and

H(z) data sets (Right Panel). Columns report the mean 〈x〉 and median
x̃ values and the 68% and 95% confidence limits

ΛCDM

SNIa/GRBs/H(z)/ f σ8(z) SNIa/H(z)/ f σ8(z)

I d 〈x〉 x̃ 68% CL 95% CL 〈x〉 x̃ 68% CL 95% CL

Ωm 0.26 0.26 (0.24, 0.28) (0.22, 0.3) 0.25 0.25 (0.25, 0.27) (0.23, 0.32)

h 0.70 0.70 (0.69, 0.71) (0.68, 0.72) 0.72 0.72 (0.69, 0.73) (0.68, 0.74)

Table 5 Constraints on the ΛCDM parameters from SNIa and GRBs
Hubble diagrams, and f σ8(z) data sets. Columns report the mean 〈x〉
and median x̃ values and the 68% and 95% confidence limits

ΛCDM
SNIa/GRBs/ f σ8(z)

I d 〈x〉 x̃ 68% CL 95% CL

Ωm 0.23 0.23 (0.19, 0.26) (0.17, 0.29)

h 0.69 0.7 (0.69, 0.7) (0.67, 0.73)

that there is a simple function, which quite accurately repro-
duces the exact numerical solutions of the Eq. (45) for z up to
high values. Here we generalize this function, to extend the
accuracy of this approximation up to z 	 10. This function
r(z) has the form

r(z) = z(z + 1)2
√
d3z3 + (

d2z2 + d1z + 1
)

2
, (47)

where d1, d2 and d3 are constants that depend on param-
eters of the considered cosmological model. Moreover the
function (47) automatically satisfies the imposed initial con-

ditions, so r(0) = 0 and
dr

dz
(0) = 1.

This approximate expression immediately provides an
empirical formula for the approximate luminosity distance.
The GRBs and the SNIa samples have been fitted simultane-
ously with this approximated luminosity function. For what
it concerns the GRBs sample, our task is to determine the
parameters {a, b, d1, d2, d3}. Actually the Ep,i – Eiso rela-
tion can be written in the form

log10 Sbol = a + b log10 Ep,i

− log10[4πd2
L approxi (z, d1, d2, d3)]. (48)

To efficiently sample the 5-dimensional parameter space, we
used the MCMC method and ran three parallel chains and
used the Gelman–Rubin convergence test, as described in
the previous section. It turns out that the calibration parame-
ters a, b, and σ are fully consistent with the results obtained
from the SNIa sample based calibration (see [12]), confirm-
ing the reliability of our calibration technique: we actually

find that3 a = 1.87 ± 0.09 σint = 0.36+0.03
−0.02 b = 52.5+0.13

−0.1 ,

d1 = 1.17+0.11
0.1 , d2 = 0.33+0.04

−0.05 and d3 = 0.2+0.2
−0.1. It is

worth noticing that the Eq. (48) can be used also in a full
Bayesian procedure to estimate the cosmological parameters
and the additional parameters of the Ep,i – Eiso correlation
[12,20]. However it is clear that in this case the values of
the correlation parameters, which are important for cosmo-
logical applications, unfortunately depend on the assumed
background cosmological model, so they do not provide an
independent calibration.

8 Comparison of the GPS model with the ΛCDMmodel

To compare the different models presented in the previous
sections with the data and to check if we can discriminate
them, we use the Akaike Information Criterion (AIC) [21,
22], and its indicator

AIC = −2 lnLmax + 2kp + 2kp(kp + 1)

Ntot − kp − 1
, (49)

where Ntot is the total number of data and kp the number of
free parameters (of the cosmological model). In our case we
have Ntot = 815, and kp = 6. It turns out that the smaller
is the value of AIC the better is the fit to the data. To com-
pare different cosmological models we introduce the model
difference ΔAIC = AICmodel−AICmin . The relative differ-
ence corresponds to different cases: 4 < ΔAIC < 7 indicate
a positive evidence against the model with higher value of
AICmodel , while ΔAIC ≥ 10 indicate a strong evidence.
ΔAIC ≤ 2 is an indication that the two models are consis-
tent. In our case we have found that the model with the lower
AIC is the GPS model and ΔAIC = 0.7 if we consider GRBs,
and ΔAIC = 5.7 without GRBS. This result indicates that the
two models are statistically consistent, if we consider GRBs
data, and that the ΛCDM model would be slightly favoured
without GRBs.

3 σint is the intrinsic dispersion, characterizing the Ep,i – Eiso relation
[6].
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9 Conclusions

We have compared two different models of dark energy with
presently available observational data. We show that with
appropriate choice of the parameters of these models they are
compatible with observations. Our statistical analysis indi-
cates that the GPS model seems to be slightly more favoured
than the ΛCDM model, if we consider the GRBs Hubble
diagram. It means that to further restrict different models of
dark energy it will be necessary to increase the precision of
the Hubble diagram at high redshifts, and to perform more
detailed analysis of the influence of dark energy on the pro-
cess of formation of large scale structure and in particular on
its late evolution at z < 2. Of course, more and more precise
observational data will reduce statistical errors and could lead
to further restrictions on parameters describing properties of
dark energy and better differentiate different models.
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