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1 Introduction

Tensor multiplets of six-dimensional supersymmetry are known to play an important role
in supersymmetric and string theories. First, the fields of N = (2, 0) multiplet effectively
describe excitations of M5 brane, with the action given by Born-Infeld-type generalization
of the free action of this multiplet [1]. It is anticipated that the nonabelian generalizations
of this action describe stacks of M5 branes. In the lowest energy limit, when all Born-Infeld
nonlinearities could be neglected, stacks of M5 branes are supposed to be described by
N = (2, 0), d = 6 superconformal field theory, maximally possible superconformal theory,
which is thus also related to the tensor multiplet. Conclusion about this relation can
also be drawn from study of representations of superconformal algebras [2]. Attempts to
find the nonabelian generalization of the tensor multiplet, its action, tensor hierarchies,
typically involve studies of on-shell multiplets or even components,1 which makes this rather
nontrivial task even more complicated. This makes desirable to find off-shell framework to
develop such theories.

Even if one limits oneself to just N = (1, 0), d = 6 supersymmetry, the standard
superfield approach to the tensor multiplet allows to define it only on-shell and is not
useful in construction of the superfield action. Therefore, one has to employ more elaborate
approaches, such as harmonic superspace [5, 6]. The free action that was constructed in
this superspace involves not just one but two different multiplets, acting as Lagrangian
multipliers to each other [7]. It was proposed to use the fields of supergravity multiplet as
auxiliaries to identify these two [7]. Requirement of using two multiplets is not surprising if
one recalls that the tensor multiplet involves the two-form gauge field, which field strength
is self-dual on-shell, and such fields do not exist off-shell on their own [7, 8].

1See, for example, [3, 4].
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To construct the proper action for the tensor multiplet, one can try to find super-
symmetric generalizations of known bosonic actions that produce the self-duality equation
as the equation of motion. The long study of self-dual fields resulted in a number of
approaches, such as noncovariant actions [9, 10], introduction of infinite tower of Lagrange
multipliers [11–13], Pasti-Sorokin-Tonin approach [14] that involves one auxiliary scalar,
and Sen’s approach which uses the self-dual 3-form in 6 dimensions [15, 16]. The PST
approach seems to be favored among these for being explicitly Lorenz- and gauge-covariant,
not introducing any extra physical degrees of freedom to the theory, though being highly
nonlinear. This nonlinearity prevented construction of the superfield PST-type action for
the tensor multiplet so far. However, recently the reformulation of the PST approach was
introduced [17], which involves a scalar and an auxiliary 2-form field. The action in this
approach reduces to the PST action upon removal of the auxiliary field by its equation of
motion and is polynomial, which greatly simplifies its supersymmetrization.

The PST action involving components and superforms subjected to on-shell constraints
was constructed in [18], with this approach extended to d = 10 supergravity in [19]. The
purpose of this paper is to construct the N = (1, 0) harmonic superspace action for the
tensor multiplet without any on-shell constraints, which reduces to the PST action in the
bosonic limit upon removal of auxiliary fields. There are two reasons to limit this work to
N = (1, 0) supersymmetry. First, harmonic superspace technique is not powerful enough to
construct the action with manifest N = (2, 0) supersymmetry. One can achieve it only in
hidden way by proper coupling the N = (1, 0) theory to the hypermultiplet, which is out of
scope of this paper. Second, it is likely that for the nonabelian theory only N = (1, 0) part
of supersymmetry could be realized, much like the case of BLG and ABJM models, with
the latter possessing only N = 6, d = 3 supersymmetry instead of N = 8 [3].

2 The Pasti-Sorokin-Tonin action

The action that produces self-duality equations of motion for tensor fields in even-dimensional
spacetime was proposed by Pasti, Sorokin and Tonin in [14]. Its six-dimensional version
reads

SPST =
∫
d6x

(1
6FMNPF

MNP − 1
2∂Kz∂Kz

FABCFABD∂Cz∂Dz
)
,

FABC = FABC −
1
6εABCMNPF

MNP . (2.1)

Here FABC = ∂ABBC − ∂BBAC + ∂CBAB is the field strength of the 2-form potential BAB .
Unlike other proposals to solve the problem of contruction of action of self-dual fields,

the PST action combines a set of useful properties:

• It is manifestly Lorentz-covariant, unlike actions proposed in [9, 10];

• It contains only a finite number of fields, unlike actions with an infinite set of Lagrange
multipliers [11–13];

• It does not contain any extra physical degrees of freedom, and one does not need to
show that they decouple, unlike Sen’s approach [15, 16].
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The third property is not spoiled by the field z, as it is a purely gauge degree of freedom.
Indeed, the action (2.1) possesses a set of gauge symmetries

1) δfBMN = ∂MfN − ∂NfM , δfz = 0,
2) δaBMN = ∂[Mz aN ], δaz = 0, (2.2)

3) δλz = λ, δλBMN = λ(
∂z
)2FMNP∂

P z.

The last transformation (2.2) allows to fix the field z. By setting z = x5, one can reproduce
action proposed in [9, 10]. Equivalence of (2.1) and the action with infinite number of fields
was shown already in [14].

The supersymmetric component version of (2.1) was constructed in [18] and was already
used in studies of nonabelian version of this theory [3]. The highly nonlinear nature of this
action makes it difficult, however, to find its superfield form. The idea how to circumvent this
comes from the work by Mktrchyan [17], where polynomial version of (2.1) was constructed

SPSTpoly =
∫
d6x

(1
6FMNPF

MNP + 1
6
(
FMNP − 3∂[MzRNP ]

)(
FMNP − 3∂[MzRNP ])) =

=
∫
d6x

(1
6FMNPF

MNP −FMNP∂
MzRNP + 3

2∂[MzRNP ]∂
[MzRNP ]

)
. (2.3)

Here R[MN ] is the auxiliary tensor field. Upon its exclusion by algebraic equation of motion,
the action reduces to (2.1). Just as (2.1), (2.3) possesses a set of gauge symmetries:

1) δfBMN = ∂MfN − ∂NfM , δfRMN = 0, δfz = 0,
2) δaBMN = ∂[Mz aN ], δaRMN = −∂[MaN ], δaz = 0,
3) δbBMN = 0, δbRMN = ∂[Mz bN ], δbz = 0, (2.4)

4) δλz = λ, δλBMN = λRMN , δλRMN = 3λ
(∂z)2

(
∂[MRNP ] + 1

6εMNPRST∂
RRST

)
∂P z.

Let us note that the action above can also be written in spinor notation,2 which is most
natural and convenient when it comes to supersymmetry. In this notation the action (2.3)
and its gauge symmetries (2.4) read

S =
∫
d6x

[
∂(µσBσ

ν)∂(µρBν)
ρ − 2∂(µσBσ

ν)∂(µρzRν)
ρ + ∂(µρzRν)

ρ ∂(µσzRσ
ν)
]
, (2.5)

1) δfBαβ = ∂αγf
βγ − 1

4δ
β
α∂µνf

µν , δfRα
β = 0, δfz = 0, (2.6)

2) δaBαβ = ∂αγz a
βγ − 1

4δ
β
α∂µνz a

µν , δaRα
β = −∂αγaβγ + 1

4δ
β
α∂µνa

µν , δaz = 0, (2.7)

3) δbRαβ = ∂αγz b
βγ − 1

4δ
β
α∂µνz b

µν , δbBα
β = 0, δbz = 0, (2.8)

4) δλz = λ, δλBα
β = λRα

β , δλRα
β = −4λ ∂βρz

∂µνz ∂µνz
∂(ασRρ)

σ. (2.9)

2To relate these two notations, we use γ-matrices with properties defined in [20].
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Here spinor indices take values α = 1 . . . 4. In this notation vector aM corresponds to an
antisymmetric object a[µν], a 2-form BMN is a traceless matrix Bαβ , and objects with two
symmetric lower or upper indices are self-dual or anti-self-dual 3-forms. Antisymmetric
pairs of spinor indices can be raised and lowered by completely antisymmetric symbols
εαβµν , εαβµν , ε1234 = ε1234 = 1, εαβµνεαβµν = 24:

a[αβ] = 1
2ε

αβµνa[µν], a[αβ] = 1
2εαβµνa

[µν], (2.10)

so that one can easily form scalar product of d = 6 vectors. From (2.10) it follows that for
one and two vectors

aαγa
βγ = 1

4δ
β
α aµνa

µν , aαγb
βγ = −aβγbαγ + 1

2δ
β
α aµνb

µν . (2.11)

These properties will be widely used further in this paper.
The goal of this work is to find the superfield action that in the bosonic limit repro-

duces (2.5) with gauge symmetries that extend (2.6), (2.7), (2.8), (2.9).

3 Harmonic superspace and tensor multiplets

To reproduce the action (2.5) using superspace techniques we introduce the N = (1, 0),
d = 6 harmonic superspace [6, 20] and consider all the fields involved as the components of
harmonic superfields. The N = (1, 0), d = 6 harmonic superspace in the standard basis
can be parameterized by the usual spacetime coordinates x[αβ], odd coordinates θαi and the
harmonics u+i, u−j , i, j = 1, 2, which satisfy

u+iu−jεij = 1, εij = −εji, ε12 = 1 (3.1)

and parameterize unit 2-sphere. The covariant derivatives with respect to these coordinates
are given by the relations

∂αβ , Di
α = ∂

∂θαi
− iθiβ∂αβ , ∂++ = u+i ∂

∂u−i
, ∂−− = u−i

∂

∂u+i , ∂0 = u+i ∂

∂u+i −u
−i ∂

∂u−i
.

(3.2)
Superfields defined on this superspace have to possess definite charge: ∂0f

q = qf q. This
reflects the fact that harmonics describe S2 = SU(2)/U(1), not whole SU(2). Thus harmonic
superfields are power series in harmonics with properly balanced charges. For example, for
positive charge q

f q(x, θ, u) =
∞∑
n=0

f(i1 ... iq+n,j1,...,jn)(x, θ)u+i1 . . . u+iq+nu−j1 . . . u−jn . (3.3)

For f q with negative charge, roles of u+i and u−i are inverted. If net charge is zero, a
harmonic-independent part may be present.

Important reason for using the harmonic superspace formalism is the ability to perform
change of the coordinates and pass to the so-called analytic basis with the new coordinates
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being xαβ(a), θ
+α, θ−α, u+i, u−j . Let us omit explicit relations between coordinates in these

bases and write down only the covariant derivatives:

D+
α = ∂

∂θ−α
,

D−α = − ∂

∂θ+α − 2iθ−β∂αβ ,

D0 = ∂0 + θ+γ ∂

∂θ+γ − θ
−γ ∂

∂θ−γ
,

D++ = ∂++ + iθ+αθ+β∂αβ + θ+γ ∂

∂θ−γ
,

D−− = ∂−− + iθ−αθ−β∂αβ + θ−γ
∂

∂θ+γ .

(3.4)

They satisfy the (anti)commutation relations{
D+
α , D

−
β

}
= 2i∂αβ ,

{
D+
α , D

+
β

}
= 0,

{
D−α , D

−
β

}
= 0,[

D++, D−−
]

= D0,
[
D0, D

++] = 2D++,
[
D0, D

−−] = −2D−−,[
D++, D+

α

]
= 0,

[
D−−, D+

α

]
= D−α ,

[
D0, D

+
α

]
= D+

α ,[
D++, D−α

]
= D+

α ,
[
D−−, D−α

]
= 0,

[
D0, D

−
α

]
= −D−α . (3.5)

In the analytic basis xαβ(a), θ
+α, u+i, u−j form a subspace, invariant with respect to N =

(1, 0), d = 6 supersymmetry transformations, and the covariant derivative D+
α involves

differentiation with respect to θ−α only. This property allows to consider so-called analytic
superfields, which do not depend on θ−α and can be integrated over the analytic subspace xαβ(a),
θ+α, u+i, u−j . These superfields play crucial role in the description of the N = (1, 0), d = 6
Yang-Mills theory and matter, as the Yang-Mills prepotential V ++ and the hypermultiplet
superfield q+

a are unconstrained analytic superfields [6]. The situation with tensor multiplet
is more complicated, which we discuss below. However, the action we are going to construct
will be an integral over analytic subspace.

Integration over Grassmann coordinates in the analytic superspace is defined as∫
d4θ(−)θ+4 = 1.3 Integration over harmonics can be performed using the rules [5]∫

du 1 = 1,
∫
duu+

(i1 . . . u
+
in
u−j1 . . . u

−
jm) = 0, m or n 6= 0. (3.6)

N = (1, 0) tensor multiplet, both in conventional and harmonic superspaces, can be
described in two different ways [7].

The first way is to introduce the real superfield Φ that satisfies the constraint D(i
αD

j)
β Φ =

0. This constraint reduces the component content of Φ to φ = Φ|θ→0, χiα = Di
αΦ|θ→0,

G(αβ) = Di
(αDiβ)Φ|θ→0 and puts these components on shell:

∂αβ∂αβφ = 0, ∂αβχiβ = 0, ∂αβG(βγ) = 0. (3.7)

The field G(αβ) is usually assumed to be the self-dual part of the field strength of some
2-form: G(αβ) = ∂(αγB

γ
β).

3We define
(
θ+3)

α
= 1

6 εαµνλθ
+µθ+νθ+λ, θ+4 = − 1

24 εαβµνθ
+αθ+βθ+µθ+ν , θ+α(θ+3)

β
= −δαβ θ+4.
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As the components involve just one SU(2) spinor, the constraint D(i
αD

j)
β Φ = 0 is

equivalent to harmonic ones D+
αD

+
β Φ = 0 and D++Φ = 0. One, therefore, can consider

the harmonic superfield Φ(x, θ+, θ−, u) constrained by D+
αD

+
β Φ = 0 and treat D++Φ = 0

as the equation of motion. The constraint D+
αD

+
β Φ = 0 implies that Φ is linear in θ−:

Φ = b(x, θ+, u) + θ−αb+α (x, θ+, u).
Alternatively, one can introduce the superfield Xiα and subject it to the condition

D
(i
αXj)β = 1

4δ
β
αD

(i
γXj)γ , which looks like the condition on the vector multiplet superfield

strength but without additional restriction on the scalar component. Unlike the superfield
Φ, Xiα contains the 2-form potential explicitly and has nontrivial gauge transformation
law δX iα = W iα, where W iα is an infinitesimal abelian vector multiplet field strength. As
Di
αW

α
i = 0, this gauge transformation preserves the constraint on Xiα. Just like the previous

formulation, this one is on-shell and selects bosons q = Di
αX

α
i |θ→0, Bαβ = Di

αX
β
i |θ→0 and

the fermion ψiα = Di
αD

j
βX

β
j |θ→0 as only independent dynamical components, while some

first components are purely gauge degrees of freedom. Fields q, Bαβ and ψiα are subjected
to the equations of motion

∂αβ∂αβq = 0, ∂αβψiβ = 0, ∂(αγBγ
β) = 0, (3.8)

which include self-duality equation. In the harmonic superspace, the constraint on Xiα is
equivalent to D+

αX
+β = 1

4δ
β
αD

+
γ X

+γ and D++X+α = 0. Again, one can treat D++X+α = 0
as an equation of motion, making the other constraint off-shell. The condition D+

αX
+β ∼ δβα

implies that superfield X+α has structure X+α = v+α(x, θ+, u) + θ−αv++(x, θ+, u).
As both formulations involve superfields that depend on θ−α, construction of integrals

over analytic superspace that could serve as the action functional is non-trivial. However,
using the constraints D+

αD
+
β Φ = 0 and D+

αX
+β = 1

4δ
β
αD

+
γ X

+γ , it is possible to show that

D+
α

[
D+
β ΦX+β + 1

4ΦD+
βX

+β
]

= 0 and, as
[
D++, D+

α

]
= 0,

D+
α

[
D+
β ΦD++X+β + 1

4ΦD++D+
βX

+β
]

= 0. (3.9)

The second invariant has the right charge and dimension and can serve as the superfield
Lagrangian [7, 20]:

S =
∫
d6xd4θ−du

[
D+
αΦD++X+α + 1

4ΦD++D+
αX

+α
]
. (3.10)

As the superfields Φ, X+α are not analytic, to find the equations of motion it is necessary
to introduce unconstrained prepotentials for each supermultiplet4 Φ =

(
D+3)αΦ−3

α , X+α =(
D+3)αX−−, rewrite the action as the integral over the whole superspace and vary with
respect to prepotentials. The equations of motion are, actually, the right ones D++Φ = 0,
D++X+α = 0. The obvious disadvantage of this action is the fact that it describes two
physical multiplets, not one. The idea of how to relate these two multiplets was given by
Sokatchev [7] and involves using the supergravity multiplet fields as Lagrangian multipliers,
though this approach leads to a condition qφ = 1.

4We define
(
D+3)α = − 1

6 ε
αµνλD+

µD
+
ν D

+
λ , D

+4 = − 1
24 ε

αβµνD+
αD

+
βD

+
µD

+
ν , Dβ

(
D+3)α = δαβD

+4.
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4 Extending the PST action

Not satisfied with the results of [7], we decided to follow different approach and construct
the superfield action that would involve only one physical multiplet and extend the Pasti-
Sorokin-Tonin action [14] in formulation suggested by [17]. Thus, as the first step, we should
reproduce the standard bilinear kinetic term of the 2-form gauge field. As the Φ superfield
does not involve the 2-form explicitly, one should construct the bilinear functional of X+α

which would be an integral over analytic superspace. The idea how to find one is to observe
that the analog of the superfield Φ can be constructed in terms of superfield X+α. Indeed,
taking into account dimensions and charges, one can suggest that

Φ
[
X
]

= a1D
−−D+

αX
+α + a2D

−
αX

+α. (4.1)

This expression satisfies D+
αD

+
β Φ
[
X
]

= 0 if a2 = −2a1. Thus we could take a1 = 1, a2 = −2
and consider the kinetic term functional as

S1 =
∫
d6xd4θ(−)du

[
D+
αΦ
[
X
]
D++X+α + 1

4Φ
[
X
]
D++D+

αX
+α
]
. (4.2)

Quick check can be performed by substituting X+α ≈ θ+β(δαβ q + Bβ
α
)

+ θ−αθ+µθ+νaµν ,
where fermionic and charged bosonic components, as well as harmonic dependence, were
neglected. Extracting θ+4 component of the superfield Lagrangian (4.2) and taking into
account that harmonic integration becomes trivial, one obtains

S1 ≈
∫
d6x

[
8
(
aαβ − i∂[αρBβ]

ρ − i∂αβq
)(
aαβ + i∂[ασBσ

β] + i∂αβq
)

− 8∂(αρBβ)
ρ∂(ασBσ

β) − 16iaµν∂µνq
]
. (4.3)

Removing auxiliary field aαβ by its equation of motion, one obtains

S1 ≈
∫
d6x

[
− 8∂(αρBβ)

ρ∂(ασBσ
β) + 16∂αβq∂αβq

]
. (4.4)

Thus S1 contains the correct kinetic terms for both scalar and tensor fields. However, S1 can
not be a correct action for the tensor multiplet on its own. Equation of motion, obtained by
varying (4.2) with respect to prepotential X−−, reads D++Φ[X] = 0. It does not contain
the self-duality equation for the field strength of Bαβ. Moreover, it does not show that
Bα

β does not depend on harmonics. Instead, it implies equation ∂(αγ∂
++Bβ)

γ = 0, and,
therefore, Bαβ contains infinite tower of anti-self-dual fields in its harmonic expansion. All
these results are consistent with the already known one that it is not possible to construct
an action of self-dual field that does not contain supplementary fields. Therefore, more
terms should be added to the action to remove these unwanted terms. As will be shown
later, parts of the Lagrangian needed to obtain the PST action perfectly play this role.

The second term that should be added to the action should be linear in the physical
fields and bilinear in auxiliary ones. Moreover, it should contain a coupling to the anti-self-
dual part of B field strength, ∂(αγBγ

β). As Φ
[
X
]
does not contain it, the X+α superfield

– 7 –
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could enter this cubic term only as D++X+α or D++D+
αX

+α. It can be shown that analytic
coupling, linear in D++X, has to take the form

D+
βHD++X+β + 1

4HD++D+
βX

+β , D+
αD

+
βH = 0. (4.5)

Superfunction H should be bilinear in auxiliary superfields. Though the field content of
the polynomial action requires one scalar and one tensor field which nicely matches the
components of a tensor multiplet Y +α, one can show by analyzing the appropriate ansatz
that it is not possible to construct H that is bilinear in Y +α and satisfies D+

αD
+
βH = 0.

To circumvent this, we introduce an analytic superfield Z which first component is the
auxiliary scalar. The proper coupling, therefore, should be

S2 =
∫
d6xd4θ(−)du

[
D+
αH

[
Z, Y

]
D++X+α + 1

4H
[
Z, Y

]
D++D+

αX
+α
]
, (4.6)

with D+
αD

+
βH[Z, Y ] = 0. As H

[
Z, Y

]
is linear in Z and Y , it could only be a combination

of Φ
[
Z · Y +α] and ZΦ

[
Y +α]. To avoid excessive derivatives on one of the fields, one

should take

H
[
Z, Y

]
= Φ

[
Z · Y +α]− ZΦ

[
Y +α] = D−−Z D+

α Y
+α − 2D−αZ Y +α. (4.7)

The third term should be bilinear in Z and Y . It can also be modelled analogously to (4.6),
replacing D++X+α with D++ZY +α, which does not spoil analyticity and does not introduce
excessive derivatives:

S3 =
∫
d6xd4θ(−)duD++Z

[
D+
αH

[
Z, Y

]
Y +α + 1

4H
[
Z, Y

]
D+
α Y

+α
]
. (4.8)

Combination S1 + k2S2 + k3S3 contains the complete PST action in form suggested by
Mkrtchyan [17]. This can be quickly checked by inserting superfields with neglected fermionic
and charged bosonic components:

X+α ≈ θ+β(δαβ q +Bβ
α)+ θ−αθ+µθ+νaµν ,

Y +α ≈ θ+β(δαβ c+Rβ
α)+ θ−αθ+µθ+νbµν , (4.9)

Z ≈ z.

Performing θ-integration and excluding auxiliary fields by their equations of motion, one finds

L ≈ −2∂αβq∂αβq + ∂(αρBβ)
ρ∂(ασBσ

β) + k1∂(αρz Rβ)
ρ ∂(ασBσ

β) (4.10)

+ 1
4k

2
1∂[αρz Rβ]

ρ∂[ασz Rσ
β] − k2∂αβz∂

µνz Rµ
αRν

β +
(
−1

4k
2
1 − k2

)
c2∂αβz∂

αβz.

Therefore, the desired bosonic action (2.5) can be recovered if k2 = −2, k3 = 1. This
is not the end of the story, however, as we also need to find the gauge symmetries of
our action and show that it does not contain excessive degrees of freedom, which could
appear in the harmonic expansions. As the solution to the second problem strongly
depends on the results of solving the first one, let us reconstruct the gauge symmetries that
generalize (2.6), (2.7), (2.8), (2.9) and show that action −8S = S1 − 2S2 + S3 is invariant
with respect to them after minor modifications.
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5 Gauge symmetries

The Pasti-Sorokin-Tonin action in its original and polynomial forms possesses a set of gauge
symmetries which are needed to show that this action produces self-dual equation of motion
for 2-form field and does not introduce new degrees of freedom. It should be expected that
these symmetries extend to the supersymmetric action

−8S[X,Y, Z] =
∫
d6xd4θ−du

[
D+
β Φ
[
X
]
D++X+β + 1

4Φ
[
X
]
D++D+

βX
+β (5.1)

− 2
(
D+
βH

[
Z, Y

]
D++X+β + 1

4H
[
Z, Y

]
D++D+

βX
+β
)

+D++Z

(
D+
βH

[
Z, Y

]
Y +β + 1

4H
[
Z, Y

]
D+
β Y

+β
)]
.

The first symmetry, a shift of the 2-form physical field by a differential of one-form field, is
built into the structure of tensor multiplet and is realized as δX+α = W+α, where W+α is
an infinitesimal abelian vector multiplet strength, satisfying [20]

D+
αW

+β = 1
4δ

β
αD

+
γW

+γ , D++W+α = 0, D−−D+
αW

+α − 2D−αW+α = 0. (5.2)

Looking at the structure of the second transformation, which involves shift of R 2-form by
differential of 1-form, one can guess that Y +α should have transformation law δY +α = W+α.
The X+α transformation then should be taken as δX+α = ZW+α to make whole action
invariant. It could be checked that actually (5.1) is invariant with respect to infinite set of
transformations

δX+α = Zn+1

n+ 1W
+α, δY +α = ZnW+α ⇒

−8δS
[
X,Y, Z

]
=
∫
d6xd4θ−du

[
2D+

βH
[
Z,W

]
D++X+β + 1

2H
[
Z,W

]
D++D+

βX
+β

− 2
(
D+
βH

[
Z, Y

]
D++ZW+β + 1

4H
[
Z, Y

]
D++ZD+

βW
+β
)

(5.3)

− 2
(
D+
βH

[
Z,W

]
D++X+β + 1

4H
[
Z,W

]
D++D+

βX
+β
)

+ 2D++Z

(
D+
βH

[
Z,W

]
Y +β + 1

4H
[
Z,W

]
D+
β Y

+β
)]
Zn = 0.

When checking the invariance one should use identities

δΦ
[
X
]

= ZnH
[
Z,W

]
, δD++X+α = ZnD++ZW+α, (5.4)

which follow from the properties of the abelian vector multiplet (5.2). Combining transfor-
mations (5.3) with different parameters W+α, one can reproduce all three transformations of
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the basic fields that leave Z invariant. TakingW1,W2,W3 with following tensor components

W+α
1 = . . .+ θ+ρ

(
∂ργb

αγ − 1
4δ

α
ρ ∂µνb

µν
)

+ . . . ,

W+α
2 = . . .+ θ+ρ

(
∂ργ
(
zbαγ

)
− 1

4δ
α
ρ ∂µν

(
zbµν

))
+ . . . , (5.5)

W+α
3 = . . .+ θ+ρ

(
∂ργ
(
z2bαγ

)
− 1

4δ
α
ρ ∂µν

(
z2bµν

))
+ . . . ,

one can reproduce the third transformation (2.8) via

δbY
+α = W+α

2 − ZW+α
1 , δbX

+α = ZW+α
2 − Z2

2 W+α
1 − 1

2W
+α
3 . (5.6)

In the latter transformation terms with bµν cancel entirely, as should be expected. It is not
yet known how many transformations (5.3) are truly independent.

The fourth symmetry (2.9), which involves shift of z by arbitrary function, has to be
generalized in different way. Moreover, it is required to introduce semi-trivial modification
of the action to reconstruct it. Let us take

− 8Smod = −8S +
∫
d6xd4θ−duM

(
D++D+

γ X
+γ −D++ZD+

γ Y
+γ +N+4), (5.7)

whereM and N+4 are some analytic superfields. Then one can write down variation of (5.7),
assuming that Z acquires a shift by an unconstrained infinitesimal analytic superfield Λ:

−8δΛSmod =
∫
d6xd4θ−du

[
2D+

β Φ
[
δΛX

]
D++X+β+ 1

2Φ
[
δΛX

]
D++D+

βX
+β

−2
(
D+
β δΛH

[
Z,Y

]
D++X+β+ 1

4δΛH
[
Z,Y

]
D++D+

βX
+β
)
−2
(
D+
βH

[
Z,Y

]
D++δΛX

+β

+ 1
4H

[
Z,Y

]
D++D+

β δΛX
+β
)

+D++Λ
(
D+
βH

[
Z,Y

]
Y +β+ 1

4H
[
Z,Y

]
D+
β Y

+β
)

+D++Z

(
D+
βH

[
Z,Y

]
δΛY

+β+ 1
4H

[
Z,Y

]
D+
β δΛY

+β
)

+D++Z

(
D+
β δΛH

[
Z,Y

]
Y +β+ 1

4δΛH
[
Z,Y

]
D+
β Y

+β
)

(5.8)

−D+
αX

+αD++δΛM+MD++D+
α δΛX

+α−δΛMD++ZD+
γ Y

+γ

−D++ΛMD+
γ Y

+γ−D++ZMD+
γ δΛY

+γ +δΛMN+4 +M δΛN
+4
]
.

As transformations of all the fields in (2.9) do not depend on Bαβ , one can assume that the
superfield ones do not involve X+α. Therefore, one can represent all the terms with X+α

as an integral

− 2
∫
d6xd8θdu

[
X−−D++(Φ[δΛX

]
− δΛH

[
Z, Y

]
+ 2δΛM

)]
(5.9)

and deduce that the transformations should satisfy relation D++(Φ[δΛX
]
− δΛH

[
Z, Y

]
+

2δΛM
)

= 0. As it looks like variation of equation of motion, one can strengthen this
condition to

Φ
[
δΛX

]
− δΛH

[
Z, Y

]
+ 2δΛM = 0. (5.10)
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As δΛH
[
Z, Y

]
= H

[
Λ, Y

]
+ H

[
Z, δΛY

]
, one can use nonanalytic part of (5.10) to find

δΛY
+α and then find δΛM from analytic part:

D+
αΦ
[
δΛX

]
−D+

αH
[
Z, δΛY

]
−D+

αH
[
Λ, Y

]
= 0 ⇒

4i∂αβZ δΛY
+β + 1

2D
−
αZ δΛD

+
β Y

+β −D+
αH

[
Λ, Y

]
+D+

αΦ
[
δΛX

]
= 0 ⇒

δΛY
+α = −i ∂αβZ

∂µνZ ∂µνZ

[1
2D
−
β Z δΛD

+
γ Y

+γ +D+
β Φ
[
δΛX

]
−D+

βH
[
Λ, Y

]]
,

δΛM = −1
2

[(
Φ
[
δΛX

]
−H

[
Λ, Y

])
− 2i

D−β Z ∂
βγZ D+

γ

(
Φ
[
δΛX

]
−H

[
Λ, Y

])
∂µνZ ∂µνZ

(5.11)

− D̂−−ZδΛD
+
γ Y

+γ
]
,

where D̂−−Z = D−−Z + i
∂αβZ D−αZ D

−
β Z

∂µνZ ∂µνZ
, D+

α D̂
−−Z = 0.

Note that δΛD
+
α Y

+α remains independent, and equation (5.10) effectively determines
analytic part of δΛY

+α.
Variations (5.11) can be substituted back to (5.8) to simplify it. However, as

D+
βH

[
Z, Y

]
δΛY

+β + 1
4δΛH

[
Z, Y

]
D+
β δΛY

+β = D+
βH

[
Z, δΛY

]
Y +β + 1

4H
[
Z, δΛY

]
D+
β Y

+β

(5.12)
and, therefore,

δΛ

(
D+
βH

[
Z,Y

]
Y +β+ 1

4H
[
Z,Y

]
D+
β Y

+β
)

(5.13)

= 2D+
β δΛH

[
Z,Y

]
Y +β+ 1

2δΛH
[
Z,Y

]
D+
β Y

+β−D+
βH

[
Λ,Y

]
Y +β− 1

4H
[
Λ,Y

]
D+
β Y

+β ,

it is easier to rewrite (5.8) in such a way that it would involve δΛY
+α only through

δΛH
[
Z, Y

]
(with one exception) and remove it by (5.10) directly:

−8δSmod =
∫
d6xd4θ−du

[
−2
(
D+
βH

[
Z, Y

]
D++δΛX

+β + 1
4H

[
Z, Y

]
D++D+

β δΛX
+β
)

+ 2D++Z

(
D+
β Φ
[
δΛX

]
Y +β + 1

4Φ
[
δΛX

]
D+
β Y

+β
)

+D++Λ
(
D+
βH

[
Z, Y

]
Y +β + 1

4H
[
Z, Y

]
D+
β Y

+β
)

−D++Z

(
D+
βH

[
Λ, Y

]
Y +β + 1

4H
[
Λ, Y

]
D+
β Y

+β
)

+M D++D+
α δΛX

+α −D++ΛM D+
γ Y

+γ −D++ZM D+
γ δΛY

+γ
]
. (5.14)

As variation of Bαβ is proportional to Rαβ (2.9), transformation of X+α can be expected
to be proportional to Y +α. Indeed, substitution δΛX

+α = ΛY +α reduces (5.14) to

−8δSmod =
∫
d6xd4θ−du

[
M ΛD++D+

γ Y
+γ−M D++ZδΛD

+
γ Y

+γ+δΛM N+4+M δΛN
+4
]
.

(5.15)
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This expression vanishes if one takes

δΛN
+4 = −ΛD++D+

γ Y
+γ +D++ZδΛD

+
γ Y

+γ − 1
M
δΛM N+4, (5.16)

and the complete transformations that extend (2.9) read

δΛZ = Λ, δΛX
+α = ΛY +α, δΛY

+α =−i ∂αβZ

∂µνZ ∂µνZ

[1
2D
−
β Z δΛD

+
γ Y

+γ +ΛD+
β Φ
[
Y
]]
,

δΛM =−1
2

[
ΛΦ
[
Y
]
−2iΛ

D−β Z ∂
βγZD+

γ Φ
[
Y
]

∂µνZ ∂µνZ
−D̂−−ZδΛD

+
γ Y

+γ
]
,

δΛN
+4 =−ΛD++D+

γ Y
+γ +D++ZδΛD

+
γ Y

+γ (5.17)

+N+4

2M

[
ΛΦ
[
Y
]
−2iΛ

D−β Z ∂
βγZD+

γ Φ
[
Y
]

∂µνZ ∂µνZ
−D̂−−ZδΛD

+
γ Y

+γ
]
.

Though the N+4 variation is singular in M , which does not allow to straightforwardly
put transformations (5.17) on-shell, this is a price to be paid to find the transformations
explicitly. If Lagrange multipliers M and N+4 were removed from the action, variations of
X+α and Y +α would be related by equation obtained by setting δΛM = 0 in (5.11)

(
Φ
[
δΛX

]
−H

[
Λ, Y

])
− 2i

D−β Z ∂
βγZ D+

γ

(
Φ
[
δΛX

]
−H

[
Λ, Y

])
∂µνZ ∂µνZ

− D̂−−ZδΛD
+
γ Y

+γ = 0.

(5.18)
Equation (5.18) does not allow, in general, to obtain δΛD

+
β Y

+β, as this would require
division by a charged object, and should be solved with respect to δΛX

+α, which is quite
difficult. Moreover, obtained δΛX

+α should be substituted back to the variation of the
action, and it is not possible to show just from (5.18) that it vanishes. Equation (5.18) can
be solved for δΛD

+
γ Y

+γ in one particular case when the gauge parameter and variation of
X+α are chosen as Λ = D̂−−ZΛ++ and δX+α = D̂−−ZΛ++Y +α, so that D̂−−Z factors
out. Though such transformation leaves the action invariant, it is still not acceptable as a
general solution, as such variation of Z will always contain harmonics and thus would not
allow to partially fix the gauge by removing harmonic dependence from components of Z,
leaving only transformations (2.9).

In the next section we partially fix gauge symmetry (5.17) by removing harmonic
dependence from Z to show that no new degrees of freedom appear and to calculate the
component action. Alternative approach that does not rely on gauge symmetries but uses
direct constraints on Z is discussed in the appendix A.

6 Equations of motion and component action

After gauge symmetries of the supersymmetric PST action (5.7) were established (5.4), (5.17),
one can find equations of motion, show that they, after partial gauge fixing, remove extra
degrees of freedom contained in the harmonic expansions and finally evaluate the component
action. For simplicity, let us perform latter two tasks in the bosonic limit.
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Equations of motion, obtained by varying the action (5.7)

−8Smod =
∫
d6xd4θ−du

[
D+
β Φ
[
X
]
D++X+β + 1

4Φ
[
X
]
D++D+

βX
+β (6.1)

− 2
(
D+
βH

[
Z, Y

]
D++X+β + 1

4H
[
Z, Y

]
D++D+

βX
+β
)

+D++Z

(
D+
βH

[
Z, Y

]
Y +β + 1

4H
[
Z, Y

]
D+
β Y

+β
)

+M
(
D++D+

γ X
+γ −D++ZD+

γ Y
+γ +N+4)],

with respect to Z, M , N+4 and tensor multiplet prepotentials X−−, Y −− read

δX−− : D++(Φ[X]−H[Z, Y ]+ 2M
)

= 0, (6.2)
δY −− : H

[
Z,D++X+α −D++Z Y +α]+ 2D++ZM = 0, (6.3)

δZ : D+
αΦ
[
Y
](
D++X+α −D++ZY +α)+ 1

4Φ
[
Y
](
D++D+

αX
+α −D++ZD+

α Y
+α)

+D+
αD

++(Φ[X]−H[Z, Y ])Y +α + 1
4D

+
α Y

+αD++(Φ[X]−H[Z, Y ])
+ 1

2D
++(MD+

β Y
+β) = 0, (6.4)

δM : D++D+
γ X

+γ −D++ZD+
γ Y

+γ +N+4 = 0, (6.5)
δN+4 : M = 0. (6.6)

Note that the last two equations are clearly algebraic, expressing N+4 in terms of other
superfields and setting M to zero. Therefore, M and N+4 contain no new degrees of
freedom. Removing M from equations (6.2), (6.3), (6.4) one obtains just the equations that
follow from unmodified action (5.1)

δX−− : D++(Φ[X]−H[Z,Y ])= 0, (6.7)
δY −− : H

[
Z,D++X+α−D++Z Y +α]= 0, (6.8)

δZ : D+
αΦ
[
Y
](
D++X+α−D++ZY +α)+ 1

4Φ
[
Y
](
D++D+

αX
+α−D++ZD+

α Y
+α)

+D+
αD

++(Φ[X]−H[Z,Y ])Y +α+ 1
4D

+
α Y

+αD++(Φ[X]−H[Z,Y ])= 0. (6.9)

To show that no new degrees of freedom appear and to calculate the component action
one needs to analyze just the first two equations (6.7), (6.8). Let us perform this analysis
in the bosonic limit by substituting appropriate θ-expansions of superfields X+α, Y +α

and Z. Note that invariance of the action with respect to gauge transformations (5.17)
allows to take the Z superfield in its short form, partially fixing the gauge and leaving only
transformations of type (2.9):

X+α ≈ θβ
(
δαβ q +Bα

β)+
(
θ+3)

β
E−2βα + θ−α

(
f+2 + θµθνaµν +

(
θ+4)C−2),

Y +α ≈ θβ
(
δαβ c+Rα

β)+
(
θ+3)

β
K−2βα + θ−α

(
g+2 + θµθνbµν +

(
θ+4)D−2),

Z ≈ z, ∂++z = 0. (6.10)
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Expanded in components, (6.7) produces five equations:

∂++
(
q + 1

2∂
−−f+2

)
= 0, (6.11)

8i∂µν
(
q + 1

2∂
−−f+2

)
+ ∂++

(
4∂−−aµν + 2E−2

[µν]

)
+ 4aµν − 4i∂[µσBν]

σ − 4i∂µνq + 4i∂[µσzRν]
σ + 4i∂µνzc = 0, (6.12)

4∂++∂−−C−2 − 2i∂µν
(
4∂−−aµν + 2E−2

µν

)
−
(
−8C−2 − 4i∂µνE−2µν + 4i∂µνzK−2µν

)
= 0, (6.13)

∂++ (4aµν − 4i∂µσBνσ − 4i∂µνq + 4i∂µαzRνα + 4i∂µνz c) = 0, (6.14)
− 2i∂νλ (4aµν − 4i∂µνq − 4i∂µσBνσ + 4i∂µαzRνα + 4i∂µνz c)

+ ∂++
(
−2δλµC−2 + 4i∂αµE−2λα − 4i∂αµz K−2λα

)
= 0. (6.15)

Equation (6.8) should be expanded in components, too. Note that applying D+
α to (6.8)

one can obtain

D++X+α −D++ZY +α = − i
2
∂αγZD−γ Z

∂µνZ∂µνZ

(
D++D+

βX
+β −D++ZD+

β Y
+β
)
⇒

D̂−−Z
(
D++D+

βX
+β −D++ZD+

β Y
+β) = 0. (6.16)

In our gauge (6.10) D̂−−Z (5.11) equals zero. Therefore, (6.8) contains only two independent
component equations that come from its analytic part:

− 4i∂µαz
(
∂++Bν

α + ∂++qδαν + f+2δαν
)

= 0, (6.17)

4i∂αµz
(
∂++E−2λα + 2i∂λσBσα + 2i∂λαq + 2aλα − 2i∂λσz

(
Rσ

α + δασ c
))

= 0. (6.18)

Note that one can multiply each of these equations by ∂ρµz and divide by appearing
∂αβz ∂

αβz 6= 0. Thus factors of ∂µαz can be forgotten in both equations, and one should put
to zero contents of brackets in (6.17), (6.18). Trace and traceless parts of bracket in (6.17)
are equal to zero independently:

∂++Bα
β = 0, ∂++q + f+2 = 0. (6.19)

Therefore, Bαβ does not contain any extra degrees of freedom, related to the harmonics.
Combining (6.19) with (6.11), one can exclude ∂++q and obtain

− f+2 + 1
2∂

++∂−−f+2 = 0 ⇒ ∂−−∂++f+2 = 0 ⇒ f+2 = f iju+
i u

+
j . (6.20)

Equations (6.11), (6.17) are certainly algebraic and do not restrict dynamics of the main
fields Bαβ and q.

Equations (6.12), (6.14) are algebraic also. Part of (6.14), symmetric in µ, ν together
with (6.19) implies restriction on harmonic-dependent part of Rαβ :

∂(µσz∂
++Rν)

σ = 0 ⇒ Rα
β =

(
R0
)
α
β + ∂αγzS

[βγ] − 1
4δ

β
α∂µνzS

[µν], (6.21)

where R0 does not depend on harmonics and Sµν is proportional to harmonics.
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The antisymmetric part of (6.14) implies that (6.12) can be split into two parts that
vanish independently. First one is proportional to harmonics

∂++
(
4∂−−aµν + 2E−2

[µν]

)
= 0 ⇒ E−2

[µν] = −2∂−−aµν , (6.22)

while other does not contain harmonics at all:

8i∂µν
(
q + 1

2∂
−−f+2

)
+ 4aµν − 4i∂[µσBν]

σ − 4i∂µνq + 4i∂[µσzRν]
σ + 4i∂µνzc = 0 ⇒

aµν = i∂[µσBν]
σ + i∂µνq − 2i∂µν

(
q + 1

2∂
−−f+2

)
− i∂[µσzRν]

σ − i∂µνzc. (6.23)

Using (6.23) to simplify equation (6.15), one extracts harmonic-independent portion, which
naturally splits into trace and traceless parts

∂νλ
(
∂(µσBν)

σ − ∂(µαzRν)
α) = 0, ∂αβ∂

αβ
(
q + 1

2∂
−−f+2

)
= 0. (6.24)

Both of them are true physical equations of motion. The first one in (6.24) after exclusion
of auxiliary field Rα

β leads to self-duality equation in the same way as the equation of
motion that comes from the PST action. We do not either use or analyze (6.24) further.
Remaining part of (6.15) leads to algebraic constraint. Together with (6.13) it could be
solved for C−2 and K−2αβ , though explicit result is unimportant.

The only remaining equation is (6.18). Simplified with help of other algebraic equations,
it can be split into symmetric and antisymmetric parts:

∂++E−2(λβ) + 2i∂(λσBσ
β) − 2i∂(λσzRσ

β) = 0, (6.25)
−2∂λβz

(
∂++∂−−c− 2c

)
− 2∂[λσz ∂++∂−−Rσ

β] = 0. (6.26)

Note that E−2(λβ) = 0 as the rest of equation (6.25) does not depend on harmonics.
Therefore, (6.25) reduces to an algebraic equation that should be solved for Rαβ. As we
want to keep Rαβ field in the action, we do not solve (6.25) explicitly. Last equation (6.26),
being multiplied by ∂λβz, reduces to ∂++∂−−c − 2c = 0, resulting in c = ciju+

i u
−
j . The

remaining term in (6.26) implies ∂++∂−−Sλβ = 0, or simply Sλβ = 0, as it was assumed to
be proportional to harmonics (6.21).

We see that equations (6.7), (6.8) remove most of harmonic dependence of the com-
ponents of the superfields X+α, Y +α, which makes possible calculation of the component
action. Performing integration in (5.1) over θ variables,

−8S =
∫
d6xdu

[
8
(
q + 1

2∂
−−f+2

)(
∂++C−2 − 2i∂µνaµν

)
−2
(
∂++aµν + i∂µνf+2

) (
4∂−−aµν + 2E−2

µν

)
− (4aαµ − 4i∂αρBµρ − 4i∂αµq + 8i∂αρzRµρ + 8i∂αµz c)

×
(
∂++E−2µα + 2i∂µσBσα + 2i∂µαq + 2aµα

)
+ 8∂µνz∂ρσz

(
Rµ

ρ + δρµc
)(
Rν

σ + δσν c
)]
. (6.27)
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After applying algebraic equations, only harmonic-independent fields remain, making
harmonic integration trivial:

S =
∫
d6x

[
−2∂µνq0∂

µνq0 + ∂(µσBσ
ν)∂(µρBν)

ρ − 2∂(µσBσ
ν)∂(µρzRν)

ρ

+∂(µρzRν)
ρ ∂(µσzRσ

ν)
]
. (6.28)

Here q0 = q + 1/2∂−−f+2. As expected, the obtained action coincides, up to term with q0,
with the polynomial PST action (2.5).

The fermionic contribution to the component action can also be found. To obtain it, let
us note that due to the gauge symmetry (5.17) that involves shifts of the superfield Z by an
arbitrary analytic function one can choose the gauge Z = z, ∂++z = 0 so Z does not contain
fermionic components. Therefore, odd fields are contained only in X+α and Y +α and enter
the equations of motion (6.7), (6.8) only linearly and the action (5.1) bilinearly. Moreover,
there are no terms in the equations of motion and the action that contain both bosonic and
fermionic fields of X+α and Y +α. Therefore, fermionic parts of the equations (6.7), (6.8)
and the action (5.1) can be treated separately from the bosonic ones. To calculate them
exactly, let us take

X+α = bosons + ξ+α + θ+βθ+γπ−αβγ +
(
θ+4)σ−3α + θ−α

(
θ+βω+

β +
(
θ+3)

β
γ−β

)
,

Y +α = bosons + Ξ+α + θ+βθ+γΠ−αβγ +
(
θ+4)Σ−3α + θ−α

(
θ+βΩ+

β +
(
θ+3)

β
Γ−β

)
. (6.29)

From equation D++(Φ[X]−H[Z, Y ]
)

= 0 (6.7), five fermionic ones can be obtained:

4∂++(∂−−ω+
α + π−ββα

)
+ 2ω+

α − 4i∂αβξ+β + 4i∂αβz Ξ+β = 0, (6.30)

∂++(4∂−−γ−α − 2σ−3α)+ 8i∂αβ
(
∂−−ω+

β + π−σσβ
)

+ εαβγρ
(
− 4i∂ρσπ−σβγ + εµβγργ

−µ + 4i∂ρσzΠ−σβγ
)

= 0, (6.31)

∂++(2ω+
α − 4i∂αβξ+β + 4i∂αβzΞ+β) = 0, (6.32)

∂++(− 4i∂αβπ−βρσ + εµαρσγ
−µ + 4i∂αβzΠ−βρσ

)
+ i∂ρσ

(
2ω+

α − 4i∂αβξ+β + 4i∂αβzΞ+β) = 0, (6.33)
∂++(− 4i∂αβσ−3β + 4i∂αβzΣ−3β)

− 2i∂βγ
(
− 4i∂αρπ−ρβγ + εµαβγγ

−µ + 4i∂αρzΠ−ρβγ
)

= 0. (6.34)

Equation H
[
Z,D++X+α −D++Z Y +α] = 0 (6.8) produces only three fermionic ones, as in

gauge Z ≈ z only analytic part of (6.8) in nontrivial:

∂++ξ+α = 0, (6.35)

∂++π−αµν + i∂µνξ+α + 1
2δ

α
µω

+
ν −

1
2δ

α
ν ω

+
µ − i∂µνz Ξ+α = 0, (6.36)

∂++σ−3α − 2i∂µνπ−αµν − γ−α + 2i∂µνzΠ−αµν = 0. (6.37)

Note that fields Ω+
β and Γ−β are absent in these equations. This is manifestation of the

gauge symmetry (5.17), which allows to arbitrarily shift D+
α Y

+α.
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Equations (6.30), (6.32), (6.33), (6.35), (6.36) are strictly algebraic and only express
some of the fields in terms of others and constrain harmonic expansions. Equation (6.35)
implies that ξ+α is linear in harmonics, ξ+α = u+iξαi . Comparing (6.30) with the trace
of (6.36), one notes that

∂++∂−−ω+
α − ω+

α = 0 ⇒ ω+
α = u+iωiα. (6.38)

Then (6.32) implies just ∂++Ξ+α = 0, or Ξ+α = u+iΞαi . Equations (6.36) and (6.33) then
can be solved with respect to π−αβγ and Π−αβγ , respectively:

π−αβγ = u−i
(
−i∂βγξαi −

1
2δ

α
βωiγ + 1

2δ
α
γωiβ + i∂βγzΞαi

)
,

Π−αβγ = i ∂λαz

∂ρσz∂ρσz
εµλβγγ

−µ − 2 ∂λαz

∂ρσz∂ρσz
εµλβγu

−i∂µνωiν

+ 4i∂
λαz∂βγz

∂ρσz∂ρσz
∂λνΞνi u−i − i∂βγΞαi u−i. (6.39)

Equation (6.39) does not determine whether Π−αβγ and γ−α contain higher powers of harmon-
ics. It can be shown by analyzing equations (6.31), (6.34), (6.37) that indeed such terms, as
well as the fields σ−3α and Σ−3α, are equal to zero. Harmonic expansion of σ−3α begins
with the cube of harmonics, σ−3α = u−iu−ju−kσαijk + . . .. After substitution of Π−αβγ (6.39)
into (6.37), it reduces to

∂++σ−3α + linear terms = 0. (6.40)

Therefore, σ−3α = 0. Similarly, (6.31) reduces to

4∂++∂−−γ−α + linear terms = 0, (6.41)

so γ−α and, consequently, Π−αβγ are linear in harmonics. For the same reasons, (6.34) implies
Σ−3α = 0, and higher powers in harmonic expansions are absent altogether. After that,
taking into account that γ−α and Π−αβγ occur in the equations of motion only as a single
combination, one can absorb γ−α into Π̃−αβγ by substituting

Π−αβγ = Π̃−αβγ + i ∂λαz

∂ρσz∂ρσz
εµλβγγ

−µ. (6.42)

In contrast, harmonic-linear parts of (6.31), (6.34), (6.37) are not algebraic. Both (6.31)
and (6.37) imply the same equation

∂αβψ−β = 0, ψ−α = u−i
(
ωiα − 2i∂αβξβi + 2i∂αβzΞβi

)
, (6.43)

which is true physical equation of motion of the free fermionic field, and (6.34) is just its
derivative.

Fermionic part of the action (6.1) reads

−8Sferm =
∫
d6xdu

[(
2w+

α − 4i∂αβξ+β + 8i∂αβz Ξ+β)(− 2i∂µνπ−αµν − γ−α
)

− εβγµν
(
− 4i∂αρπ−ρβγ + εραβγγ

−ρ + 8i∂αρzΠ−ρβγ
)(
∂++π−αµν + i∂µνξ+α + δαµω

+
ν

)
+ 4

(
∂−−ω+

β + π−ααβ
)(
∂++γ−β + 2i∂βρω+

ρ

)
+ 16∂ρσz∂αβz Ξ+αΠ−βρσ

]
. (6.44)
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The fields Ω+
β and Γ−β are absent from the action. Taking into account only algebraic

equations, one can simplify (6.44) to

− 8Sferm = 8i
∫
d6xduu+iu−jψiα∂

αβψjβ . (6.45)

Note that it depends on ωiα, ξαi and Ξαi only through a combination ψiα = ωiα − 2i∂αβξβi +
2i∂αβzΞβi . This is manifestation of the gauge symmetries of the action: under transforma-
tions (5.3)

δX+α = W+α
1 + ZW+α

2 , δY +α = W+α
2 , (6.46)

where W+α
1 and W+α

2 are field strengths of some vector multiplets, ξ+α and Ξ+α are shifted
by the functions that are linear in harmonics but otherwise arbitrary. Therefore, one can
choose gauge ξ+α = 0 and Ξ+α = 0, and the physical degrees of freedom are associated
with ψiα ∼ ωiα.

Performing integration over harmonics using (3.1) and (3.6), one can obtain the fermionic
part of the action. Together with (6.28), it combines into the complete component action
of the N = (1, 0), d = 6 tensor multiplet:

S =
∫
d6x

[
−2∂µνq0∂

µνq0 + ∂(µσBσ
ν)∂(µρBν)

ρ − 2∂(µσBσ
ν)∂(µρzRν)

ρ

+ ∂(µρzRν)
ρ ∂(µσzRσ

ν) + i
2ψiα∂

αβψiβ

]
. (6.47)

Up to normalization of the fields, it coincides with the component action obtained in [18]. In
particular, the only fermionic contribution to the action is the kinetic term, just as in [18].

7 Conclusion

In the present paper we constructed the superfield action for the free N = (1, 0), d = 6 tensor
multiplet, which generalizes the Pasti-Sorokin-Tonin action for self-dual tensor field. As
standard description of the d = 6 tensor multiplet involves on-shell superfields, we employed
superfields defined on N = (1, 0), d = 6 harmonic superspace, with the action given by
the integral over analytic subspace. Our construction was inspired by the polynomial
form of the PST action found by Mkrtchyan [17]. In this formulation, one can provide a
superfield analog to each of three terms of the bosonic action. The superfields involved in
the construction are the spinor potentials X+α, Y +α, associated with physical and auxiliary
tensor multiplets, analytic superfield Z, first component of which is the gauge PST scalar,
and auxiliary analytic superfields M and N+4. We provided superfield generalizations of all
gauge symmetries of the PST action. After partial gauge fixing, we checked that algebraic
equations of motion that follow from our action remove all the auxiliary fields contained in
the harmonic expansions of tensor superfields and gauge analytic ones, while the remaining
equations are dynamical and lead to self-duality constraint on the 2-form field in the same
manner as in the original bosonic case. Therefore, our action contains correct number of
degrees of freedom and is the proper one for the tensor multiplet.
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The present off-shell construction could be used as a framework to study couplings of the
tensor multiplet to matter and to itself, and, most importantly, nonabelian generalization
of the tensor multiplet. It would be also interesting to construct analogous mechanism for
N = (1, 0), d = 6 supergravity, which involves the tensor field of opposite duality.

Let us finally note that once analytic superfield Z is introduced one can use it to split
the nonanalytic potential X+α, D+

βX
+α ∼ δαβ into two unconstrained analytic ones, X̃+α

and X++. This points to a possibility of describing the tensor multiplet in terms of purely
analytic unconstrained superfields following ideas of Buchbinder, Ivanov and Zaigraev who
found that not only Yang-Mills theory, hypermultiplet and supergravity but also higher
spin theories are naturally described by analytic superfields [21].
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A Alternative constraints

As an alternative to fixing one of the gauge symmetries of the action (5.7), one may consider
adding constraints that remove excessive components from superfield Z. Such constraints
are not easy to find, as they should not affect the harmonic-independent part of the first
component of Z, otherwise important transformations (2.9) could not be extended to the
supersymmetric case. We propose the following constraints

(
D++)3Z = 0, D̂−−Z = D−−Z + i

D−ρ Z D
−
σ Z ∂

ρσZ

∂µνZ∂µνZ
= 0. (A.1)

They can be added to the action (5.1) with analytic Lagrange multipliers:

Snew = S +
∫
d6xd4θ−du

[
Ω−2

1
(
D++)3Z + Ω+6

2 D̂−−Z
]
. (A.2)

As added terms (A.2) do not contain either X+α or Y +α, equations obtained by varying
S (5.1) with respect to X−− and Y −− are unmodified (6.7) and (6.8). Varying with respect
to Ω1, Ω2, one recovers (A.1). Finally, varying with respect to Z one finds (6.9) plus terms
with Lagrange multipliers. We would not use it explicitly anyway, as (6.7), (6.8) and (A.1)
would be sufficient for our purposes.

Just as we did previously, let us analyze equations (6.7), (6.8), (A.1) in the bosonic
limit, neglecting fermions but keeping both charged and uncharged bosonic components
and not restricting their harmonic dependence. Thus we consider the θ-expansions of X+α,
Y +α as defined in (6.10) while the Z superfield reads

Z ≈ z + θ+µθ+νd−2
µν +

(
θ+4)L−4. (A.3)

– 19 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
3

A.1 Z equations

At first, let us show that (A.1) remove unnecessary components from Z superfield. The first
constraint

(
D++)3Z = 0 is linear. After applying three derivatives to Z (A.3), one obtains(

∂++)3z = 0, 3i
(
∂++)2∂µνz +

(
∂++)3d−2

µν = 0,(
∂++)3L−4 + 4∂++∂µν∂

µνz − 6i
(
∂++)2∂µνd−2µν = 0. (A.4)

From the first of these equations it follows that z has the harmonic expansion

z = z0 + u+
i u
−
j z

(ij) + u+
i u

+
j u
−
k u
−
l z

(ijkl). (A.5)

From the second one, it follows that

d−2
µν = d(ij)µνu−i u

−
j − i∂µνz(ijkl)u+

i u
−
j u
−
k u
−
l . (A.6)

The third equation reduces to two projections, proportional to u2 and u4, which result in

L−4 = 24∂µν∂µνz(ijkl)u−i u
−
j u
−
k u
−
l , 4∂µν∂µνz(ij) − 12i∂µνd(ij)

µν = 0. (A.7)

Therefore, d(ij)
µν can be taken as

d(ij)
µν = − i

3∂µνz
(ij) + d̃(ij)

µν , ∂µν d̃(ij)
µν = 0. (A.8)

Thus we conclude that constraint
(
D++)3Z = 0 is off-shell and imposes no equations on

the field z0, relating other fields to harmonic expansion of z (with exception of d̃(ij)
µν ).

The second constraint D̂−−Z = 0, in spite of being nonlinear, drastically simplifies
superfield Z. It reduces to three bosonic equations,5

∂−−z = 0, ∂−−d−2
µν + 4i

∂αβzd−2
αµd

−2
βν

∂ρσz∂ρσz
= 0, (A.9)

∂−−L−4 + 4i
∂αβz d−2

αβL
−4

∂ρσz∂ρσz
− 8i

∂αβd−2µνd−2
αµd

−2
βν

∂ρσz∂ρσz
+ 16i

∂αβz ∂λτz ∂λτd
−2µνd−2

αµd
−2
βν(

∂ρσz∂ρσz
)2 = 0.

The first of these equations implies that z is harmonic-independent, which together
with (A.6), (A.7), (A.8) puts to zero L−4 and reduces d−2µν to d̃−2µν . Therefore, ∂−−d−2

µν

disappears from the second equation, and it becomes an algebraic constraint

∂αβz d−2
αµd

−2
βν = 0 ⇒ 1

2
(
∂ρσzd

−2ρσ)d−2
µν −

1
4∂µνz

(
d−2
ρσ d

−2ρσ) = 0. (A.10)

Multiplying this equation by ∂µνz or by d−2µν , one can conclude that both ∂ρσzd−2ρσ and
d−2
ρσ d

−2ρσ are equal to zero, which is sufficient to satisfy this equation. Finally, the third
equation in (A.9) is satisfied identically if all others are taken into account. The doubly
constrained superfield Z, therefore, reads

Z ≈ z + θ+µθ+νd−2
µν , ∂−−z = 0, ∂−−d−2µν = 0,

d−2
ρσ d

−2ρσ = 0, ∂ρσzd
−2ρσ = 0, ∂ρσd

−2ρσ = 0. (A.11)

As constraints (A.1) result in algebraic equations, the Lagrange multipliers Ω1 and Ω2 do
not give rise to independent degrees of freedom.

5In general case, ∂−−z will be proportional to the fermions.
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A.2 X equation

Component expansions of X and Y equations (6.7), (6.8) are modified compared to (6.11)–
(6.15), (6.17), (6.18) by the presence of d−2

αβ . X equation, expanded in components, now
reads

∂++
(
q + 1

2∂
−−f+2

)
= 0, (A.12)

8i∂µν
(
q + 1

2∂
−−f+2

)
+ ∂++

(
4∂−−aµν + 2E−2

[µν] + 4d−2
[µαRν]

α + 4d−2
µν c

)
+ 4aµν − 4∂[µσBν]

σ − 4g+2d−2
µν + 4i∂[µσzRν]

σ + 4i∂µνzc = 0, (A.13)

∂++
(
4∂−−C−2 − 4d−2

µνK
−2µν

)
− 2i∂µν

(
4∂−−aµν + 2E−2

µν + 4d−2
[µαRν]

α + 4d−2
µν c

)
−
(
−8C−2 − 4i∂µνE−2µν − 8d−2

µν b
µν + 4i∂µνzK−2µν + 8i∂αµd−2βµRβ

α
)

= 0,
(A.14)

∂++
(
4aµν − 4i∂µσBνσ − 4i∂µνq − 4g+2d−2

µν + 4i∂µαzRνα + 4i∂µνz c
)

= 0, (A.15)

− 2i∂νλ
(
4aµν − 4i∂µνq − 4i∂µσBνσ − 4g+2d−2

µν + 4i∂µαzRνα + 4i∂µνz c
)

(A.16)

+ ∂++
(
−2δλµC−2 + 4i∂αµE−2λα + 8d−2

µν b
νλ − 4i∂αµz K−2λα + 8i∂αµd−2βλRβ

α
)

= 0.

The analysis of these equations is mostly similar compared to one of gauge-fixed equations.
The first of these equations (A.12) implies that the multiplet contains harmonic-independent
quantity

q0 = q + 1
2∂
−−f+2, ∂++q0 = 0. (A.17)

Looking at equation (A.13), one can notice with help of (A.12) and (A.15) that its first
bracket and second line do not depend on harmonics while the rest is proportional to
harmonics. These parts should vanish independently:

aµν = i∂[µσBν]
σ + i∂µνq − i∂[µαzRν]

α − i∂µνz c− 2i∂µνq0 , (A.18)
E−2

[µν] = −2∂−−aµν − 2d−2
[µαRν]

α − 2d−2
µν c = 0. (A.19)

Third equation (A.14), just as the symmetric part of (A.15), is an algebraic one and can be
solved for C−2. Finally, (A.16), after taking (A.18), (A.19), (A.15) into account, splits into
harmonic-dependent algebraic equation, solvable for K−2αβ, and harmonic-independent
part, which is physical equation of motion. Consequences of (A.16) are not useful in
calculation of the component action anyway.

A.3 Y equation

Remaining important equation is the Y +α one (6.8). Its analytic part vanishes due to
constraints on Z (6.16), (A.1). The first relevant component equation reads

4d−2
µν ∂

++f+2 − 4i∂µαz
(
∂++Bν

α + ∂++qδαν + f+2δαν
)

= 0. (A.20)

Multiplying it by ∂µνz, due to properties of d−2
µν one finds f+2 + ∂++q = 0. Comparing

with (A.12), one obtains, as before,

f+2 = f iju+
i u

+
j . (A.21)
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In particular, ∂++f+2 = 0 and equation (A.20) reduces to just

∂µαz ∂
++Bν

α = 0 ⇒ ∂++Bβ
α = 0. (A.22)

Therefore, Bβα does not depend on harmonics, and additional degrees of freedom do not
appear. Symmetric part of equation (A.15) then implies

∂(µσz∂
++Rν)

σ = 0 ⇒ Rα
β =

(
R0
)
α
β + ∂αγzS

[βγ] − 1
4δ

β
α∂µνzS

[µν], (A.23)

where R0 does not depend on harmonics and Sµν is proportional to harmonics. Final
equation also gets modified compared to (6.18):

−8d−2
µν

(
∂++aνλ + i∂νλf+2 − ig+2∂νλz − g+2∂++d−2νλ

)
+4i∂αµz

(
∂++E−2λα + 2i∂λσBσα + 2i∂λαq

+2aλα − 2
(
i∂λσz + ∂++d−2λσ)(Rσα + δασ c

))
= 0. (A.24)

Multiplying it by ∂αβz, one can split this equation into antisymmetric and symmetric parts:

− 2∂λβz
(
∂++∂−−c− 2c

)
− 4i∂++(c d−2λβ)− 2i∂++∂−−

(
g+2d−2λβ)

+ 4id−2[λσ∂++Rσ
β] − 2∂[λσz ∂++∂−−Rσ

β] = 0,
E−2(λβ) = d−2(λσRσ

β). (A.25)

These equations should be used in calculation of the component action. Performing
integration in (5.1) over θ variables,

−8S =
∫
d6xdu

[
8q0∂

++C−2 − 16iq0∂µνa
µν

− 2
(
∂++aµν + i∂µνf+2

) (
4∂−−aµν + 2E−2

µν + 8
(
Rµ

α + δαµc
)
d−2
αν

)
−
(
4aαµ − 4i∂αρBµρ − 4i∂αµq − 8g+2d−2

αµ + 8i∂αρzRµρ + 8i∂αµz c
)

×
(
∂++E−2µα + 2i∂µσBσα + 2i∂µαq + 2aµα

)
+ 16

(
i∂µνz + ∂++d−2µν

)
g+2d−2

µβ

(
Rν

β + δβν c
)

+ 8
(
∂µνz − i∂++d−2µν)∂ρσz(Rµρ + δρµc

)(
Rν

σ + δσν c
)]
. (A.26)

After taking the algebraic equations of motion into account, one can reduce (A.26) to

−8S =
∫
d6xdu

[
16∂µνq0∂

µνq0 − 8∂(µσBσ
ν)∂(µρBν)

ρ + 16∂(µσBσ
ν)∂(µρzRν)

ρ

−8∂(µρzRν)
ρ ∂(µσzRσ

ν) + 8i∂µρzRνρRσν∂++d−2µσ
]
. (A.27)

As Rαβ has structure (A.23), one can check that S-terms in Rαβ cancel, and whole last
term can be presented as a total harmonic derivative

∂++(∂µρz(R0
)
ν
ρ(R0

)
σ
ν d−2µσ), (A.28)
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and, therefore, makes no contribution to the integral. Also Sµν cancels from all other terms
in the action, making harmonic integration trivial. Therefore, we obtain the action in its
expected form

S =
∫
d6x

[
−2∂µνq0∂

µνq0 + ∂(µσBσ
ν)∂(µρBν)

ρ − 2∂(µσBσ
ν)∂(µρz

(
R0
)
ν)
ρ

+∂(µρz
(
R0
)
ν)
ρ ∂(µσz

(
R0
)
σ
ν)
]
. (A.29)

Thus we see that it is possible to show that the action (5.1) leads to, after minor modification,
to the polynomial PST action even without invoking gauge symmetries. It is also possible
that used constraints are stronger than minimal needed, and just D̂−−Z = 0 or analogous
condition would suffice. This is a question for further study. It is also desirable to find
gauge transformations of the action with constraints (A.2), which could be nonsingular if
appropriate restrictions on δZ were enforced.
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