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The shape and dynamics of the nonrelativistic gauge vortex string in the parity-broken media is
considered, upon reducing the problem to finding the extremum of the Abelian Higgs model effective
action with the fixed B-type helicity of the gauge field. It is shown that in contrast with the case of the fixed
A-type helicity, the static solution of the Ginzburg-Landau energy functional in the London limit is the
helix with the specific relation between the curvature and torsion of the vortex line depending on the
strength of the space parity violating contribution of the Lifshitz invariant. A nonlinear dynamical equation
is linearized in case of small oscillations around the helical contour, and the polarization and dispersion law
of the propagated waves are obtained.
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I. INTRODUCTION

The interest in physical effects which could take place in
the intrinsically space parity nonsymmetric media is two-
fold. First, such type of the environment can be realized in
heavy ion collisions where the configuration of the electro-
magnetic fields, due to the macroscopic manifestation of
the quantum axial anomaly [1,2], results in appearance of
the current along the direction of the magnetic field. The
physical manifestation of such a current is the chiral
magnetic effect. See Refs. [3,4] and Ref. [5] for a review.
At the level of the effective Lagrangian density such an
effect is described by the inclusion of the term
∝ ðA · ½∇ × A�Þ, with A being the vector potential of the
gauge field. The second possibility refers to the unconven-
tional superconductivity in the crystals without inversion
center where the Ginzburg-Landau energy functional
includes additional terms, the so-called Lifshitz invariants
[6], whose form, in particular, corresponds to the scalar
product of the current and the strength B of the magnetic
field ∝

R
d3xðj · BÞ ∼ R

d3xðB · ½∇ × B�Þ [7–10]. In a more
formal context, the inclusion of the above-mentioned terms
follows from fixing the averaged value of the P-odd A-type
helicity,

hhAi ¼
1

tfi

Z
tf

ti

dt
Z

d3xðA · ½∇ × A�Þ; ð1:1Þ

in the Feynman path integral for the gauge field,

KhhAifixed ¼
Z

D½A�D½ψM�eiS½A;ψM �

× δ

�
1

tfi

Z
d4xðA · ½∇ × A�Þ − hhAi

�
; ð1:2Þ

where ψM stands for some matter fields irrelevant for
the present qualitative discussion. Using the exponential
representation for δ-function, one arrives at the mentioned
terms in the effective action of the gauge fields.
Correspondingly, one can study the Feynman path integral
for the gauge field configurations with the fixed average
B-type helicity obtained from Eq. (1.1) by the replacement
A → B ¼ ½∇ × A�,

hB ¼
Z

d3xðB · ½∇ × B�Þ: ð1:3Þ

This type of helicity was proposed, for example, in
Ref. [11]. In both mentioned cases, the search for the
saddle point solutions for the semiclassical evaluation of
the path integral would reduce to minimization of the
effective action which includes the parity-odd contribution.
Recent works [12,13] deal with the configuration of the

magnetic field strength of the vortices in the noncentro-
symmetric superconductors where the Ginzburg-Landau
energy functional includes the Lifshitz invariant of the form
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ðj · BÞ corresponding to the effective action with fixed
B-type helicity. The case of the straight static vortices was
considered in these papers.
The purpose of the present work is to consider the case of

the curved Abrikosov-Nielsen-Olesen (ANO) gauge string
vortices [14,15] in the situation of environment with the
explicitly broken space parity analogous to that studied in
Refs. [12,13]. It is well known that the Ginzburg-Landau
free energy functional describing the Abrikosov magnetic
vortices in the type II superconductors in the limit of
vanishing temperature [16,17] is equivalent to the non-
relativistic limit of the Abelian Higgs model (AHM). For
this reason the time-dependent variant of AHM will be
taken as the basis of the following treatment of the vortex
shape and its dynamics in the media with explicit space
parity breaking. In its application in the condensed matter
physics (particle physics), AHM is characterized by two
length (mass) parameters, namely, the London penetration
depth λL (the mass of the gauge boson mV) and the
correlation length ξ (the Higgs mass mH). The following
treatment will assume the London limit ln λL=ξ ≫ 1
(lnmH=mV ≫ 1). In this limit, the results can be obtained
in analytic form.
The subsequent material is organized as follows.

Section II is devoted to the derivation of the energy
functional for the nonrelativistic curved ANO gauge string
vortex with the parity-odd contribution and its variation
over the contour shape. The equation of motion and its
static solution are considered in Sec. III. Section IV
contains the study of the small oscillations around the
helical contour shape including the dispersion law of the
waves and their polarization properties. The discussion of
the obtained results is given in Sec. V. As for the notations,
we keep the velocity of light c and Planck constant ℏ in all
formulas throughout the text.

II. THE EFFECTIVE ACTION

The starting point is the effective action of the time-
dependent nonrelativistic AHM with the gauge vortices
[18,19]:

S ¼
Z

d4x

�
−

1

8π
B2 −

g
2
ðjψ j2 − n0Þ2

þ 1

2
½ψ�ðiℏ∂t þ qa0Þψ þ c:c:�

−
1

2m

����
�
−iℏ∇ −

q
c
Aþ q

c
a

�
ψ

����2
�
: ð2:1Þ

As is discussed in Refs. [18,19], the contribution from the
electric field in the charge-neutral environment is sup-
pressed by the square of the velocity of light. Let us write
this action in the London limit characterized by the
assumption of the constant density of the condensate,

ψ ¼ n1=20 eiχreg everywhere except the core of the vortex
line where it vanishes at the distance ≃ξ. Here, the regular
phase χreg can be set to zero while the singular phase χs
responsible for the vortex [16,17], see below, is already
included via the terms with a0 and a in Eq. (2.1). Adding
the parity-breaking term (∝ γ) introduced in Refs. [12,13],
one obtains the expression

Seff ¼
Z

dtd3xðn0qa0 − EÞ; ð2:2Þ

where

E ¼ 1

8π

�
B2 þ 1

λ2L
ðA − aÞ2 − 2γc

λ2L
BðA − aÞ

�
: ð2:3Þ

Since the charged current j in the presence of the vortex is
given by Eq. (2.5) below, the parity-breaking term in
Eq. (2.2) looks like B · j ∝ B · ½∇ × B� and corresponds
to fixing the B-type helicity in the energy functional. As for
the notations, n0 is the density of condensate, q (m) is the
charge (mass) of the scalar field particle, c is the velocity of
light, and

λL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2

4πn0q2

s

is the London penetration depth. The four-vector aμ ¼
− ℏc

q ∂μχs proportional to the gradient of the singular phase
χs ¼ χsðt; xÞ, of the scalar field,

½∇ × ∇�χs ¼ 2π

Z
dσX0δð3Þðx − Xðσ; tÞÞ;

describes the presence of gauge vortex whose shape in its
dependence on time is given by Xðσ; tÞ. Explicit expres-
sions for the space Fourier components of ða0; aÞ are [18]

a0k ¼ −i
Φ0

ck2

Z
dσk · ½ _X × X0�e−ik·X;

ak ¼ i
Φ0

k2

Z
dσ½k × X0�e−ik·X: ð2:4Þ

Hereafter, the overdot (prime) stands for the derivative over
time (the length parameter σ) of the contour variable
X ≡ Xðσ; tÞ;Φ0 ¼ 2πℏc=q is the flux quantum. The vortex
with single quantum of magnetic flux is assumed in the
present treatment. Because the current in this model is

j ¼ c
4πλ2L

ða − AÞ; ð2:5Þ
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the term ∝ γj · B in Eq. (2.2) is the example of the Lifshitz
invariant which violates space parity [7–10,12,13]. The
energy E ¼ R

d3xE is minimized by the field strength B
which can be found from the equation similar, up to
replacement c → 1=k, to that from Refs. [12,13]:

∇ × Bþ 4πγ∇ × j ¼ 4π

c
jþ γc

λ2L
B: ð2:6Þ

The space Fourier components of Ak − ak and Bk found
from Eq. (2.6) are

ak − Ak ¼
��

k2 þ 1

λ2L

�
2

−
4α2

λ2L
k2
�−1

×

�
k2
�
k2 þ 1 − 2α2

λ2L

�
ak

þ i
α

λL

�
k2 −

1

λ2L

�
½k × ak�

�
;

Bk ¼
��

k2 þ 1

λ2L

�
2

−
4α2

λ2L
k2
�−1

×

�
i
½k × ak�

λ2L

�
k2 þ 1

λ2L
− 2α2k2

�

−
α

λL

�
k2 −

1

λ2L

�
k2ak

�
: ð2:7Þ

Hereafter we introduce the new dimensionless parameter
which characterizes the parity-breaking effects,

α ¼ γc
λL

: ð2:8Þ

The energy is represented in the form

E ¼ 1

8π

Z
d3k
ð2πÞ3

�
k2

λ2L

�
k2 þ 1

λ2L

�
jakj2

× ð1 − α2Þ þ 2iαð1 − α2Þ k
2

λ3L
ðk · ½ak × a�k�Þ

�

×

��
k2 þ 1

λ2L

�
2

−
4α2

λ2L
k2
�−1

: ð2:9Þ

The gauge vortex contour shape X will appear through the
following quantities:

jakj2 ¼
Φ2

0

k2

Z
dσ1dσ2ðX0

1 · X
0
2Þeik·X21 ;

ðk · ½ak × a�k�Þ ¼
Φ2

0

k2

Z
dσ1dσ2ðk · ½X0

1 × X0
2�Þ

× eik·X21 ; ð2:10Þ

where X21 ¼ X2 − X1 and X2;1 ≡ Xðσ2;1; tÞ. The time
variable will be omitted in what follows. The integration
over wave vector k can be made analytically to obtain

E ¼ Φ2
0ð1 − α2Þ
8πλ2L

Z
dσ1dσ2

�
I1ðjX21jÞðX0

1 · X
0
2Þ

þ 2α

λL

�
½X0

1 × X0
2� ·

∂
∂X21

�
I2ðjX21jÞ

�
; ð2:11Þ

where

I1 ¼
e−jX21j

ffiffiffiffiffiffiffiffi
1−α2

p
=λL

4πjX21j
�
cos

αjX21j
λL

þ αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p sin
αjX21j
λL

�
;

I2 ¼
λ2Le

−jX21j
ffiffiffiffiffiffiffiffi
1−α2

p
=λL

8πα
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
jX21j

sin
αjX21j
λL

: ð2:12Þ

The expression for E≡ E½X� is nonlocal, but the scale of
the nonlocality, at α not too close to 1, is λL, so one can
hope to reduce the expression to the local form in the
London limit, where λL is relatively small. The criterion of
this will be established below. As is pointed out in
Ref. [12], the condition of stability (the positivity of free
energy) requires α ≤ 1. In physical terms, the effective
penetration length λeff ¼ λL=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
→ ∞ at α → 1

which means that the magnetic flux is not confined inside
the tube of a finite transverse size, and the magnetic field
spreads everywhere.
When obtaining the equation for the determination of the

vortex shape Xðσ; tÞ one should vary the effective action
Eq. (2.2). However, Eq. (2.11) is not very suitable for this
purpose. A convenient way is to vary over X before the
integration over wave vector k. When so doing, one should
require the condition Xðσf; tÞ ¼ Xðσi; tÞ, in order to drop
the surface terms when integrating over σ by parts. Then
one finds that

δ

Z
dσ1dσ2ðX0

1 ·X
0
2Þeik·X21

¼ ik ·
Z

dσ1dσ2ð½X0
2½X0

1× δX1��− ½X0
1½X0

2× δX2��Þeik·X21 ;

δ

Z
dσ1dσ2iðk · ½X0

1×X0
2�Þeik·X21

¼ 2k2
Z

dσ1dσ2ðδX1 · ½X0
1×X0

2�Þeik·X21 : ð2:13Þ

It is suitable to represent the energy E ¼ Eeven þ Eodd and
its variation in the form of the sum of parity-even and
parity-odd contributions characterized in Eq. (2.11),
respectively, by the even (∝ I1) and odd (∝ I2) powers
of the parameter α. Using Eq. (2.13) one obtains
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δEeven ¼
Φ2

0

32π2λ2L
ð1 − α2Þ

Z
dσ1dσ2
jX21j

X21 · ð½X0
2½X0

1 × δX1�� − ½X0
1½X0

2 × δX2��Þ

×
∂

∂jX21j
�
e−jX21j

ffiffiffiffiffiffiffiffi
1−α2

p
=λL

jX21j
�
cos

αjX21j
λL

þ αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p sin
αjX21j
λL

��
;

δEodd ¼
Φ2

0αð1 − α2Þ
8π2λ3L

Z
dσ1dσ2

ð½X0
1 × X0

2� · δX1Þ
jX21j

�
cos

αjX21j
λL

þ αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p sin
αjX21j
λL

�

× e−jX21j
ffiffiffiffiffiffiffiffi
1−α2

p
=λL : ð2:14Þ

Our goal is to obtain the local form which is exact in α but
to the first order in the product κ2λ2L ≪ 1, where κ2 ¼ X002
is the square of the contour curvature. See Eq. (3.5). This
can be done upon using the expansion

Xðσ2Þ ¼ Xðσ1Þ þ
z
1!
X0ðσ1Þ þ

z2

2!
X00ðσ1Þ

þ z3

3!
X000ðσ1Þ þ � � � ; ð2:15Þ

where z ¼ σ2 − σ1. The integration in Eq. (2.14) can be
represented in the form

R
dσ1dσ2 ≈

R
dσ

R
∞
−∞ dz. The limits

of integration over z can be set to �∞ in view of
exponential damping of the gauge field profile at large
distances. When integrating over z one should use the
integral

Z
∞

0

zn
� cos αzλL
sin αz

λL

�
e−z

ffiffiffiffiffiffiffiffi
1−α2

p
=λLdz

¼ n!λnþ1
L

"
cos ðnþ1Þαffiffiffiffiffiffiffiffi

1−α2
p

sin ðnþ1Þαffiffiffiffiffiffiffiffi
1−α2

p

#
: ð2:16Þ

First, let us evaluate the parity-even contribution Eeven.
Using Eq. (2.14) and the expansion Eq. (2.15) one gets

δEeven ¼
Φ2

0ð1 − α2Þ
16π2λ2L

Z
∞

0

dzz
∂
∂z

�
e−z

ffiffiffiffiffiffiffiffi
1−α2

p
=λL

z

×

�
cos

αz
λL

þ αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p sin
αz
λL

��

×
Z

dσðX00 · δXÞ

¼ Φ2
0G1ðαÞ
16π2λ2L

Z
dσðX00 · δXÞ; ð2:17Þ

where

G1ðαÞ ¼ ð1 − α2Þ
�
ln

λL

ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p −
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p

× arcsin αþ 2α2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p cos
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p

− 2α sin
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p

�
≈ ð1 − α2Þ ln λL

ξ
: ð2:18Þ

Here, the divergence at short distances is regularized as is
typical to the London limit. Recall that the modulus of the

Higgs field n1=20 is assumed to be constant everywhere
except the vortex core where it goes to zero at the distance
∼ξ (1=mH). The answer is valid with the logarithmic
accuracy, hence the approximate equality in Eq. (2.18).
However, it cannot be valid at α too close to unity.
Nevertheless, one can estimate the limit of validity of
the large logarithm approximation. The estimate from
Eq. (2.18) gives

1 − jαj ≫
�
2 ln

λL
ξ

�
−2
: ð2:19Þ

Taking ln λl
ξ ∼ 10 one obtains 1 − jαj ≫ 1=400. Note also

that the correctionsOðκ2λ2LÞ to the parity-even contribution
do not include the large logarithm and can be neglected
[18]. In fact, the above inequality states the limit of validity
of the London limit adopted in the present work.
The variation of the parity-odd contribution is obtained

in the same manner:

δEodd ¼
Φ2

0λLG2ðαÞ
8π2

Z
dσκ2ð½X0 × X000� · δXÞ; ð2:20Þ

where the function G2ðαÞ looks as follows:
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G2ðαÞ ¼ αð1 − α2Þ
�
1

4
cos

4αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

þ 2α2 − 1

8α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p sin
4αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

þ
�
1 −

2α2 − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
�
cos

5αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

þ
�
αþ 2α2 − 1

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
�
sin

5αffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
�
: ð2:21Þ

It is the odd function, G2ð−αÞ ¼ −G2ðαÞ. The plot of this
function at α ≥ 0 is shown in Fig. 1. Its behavior at α ≪ 1 is
G2ðαÞ ¼ −5α=4, and GðαÞ goes to 0 nonanalytically when
α → 1. One should have in mind that α ¼ 1 is the border of
the vortex state stability of the present model, i.e., the
energy is positive at α < 1. See Ref. [12]. One can see that
E being proportional to 1 − α2 vanishes everywhere at
α ¼ 1. Since the effective London penetration depth is
λeff ¼ λL=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
, this means the full penetration of the

magnetic field at α → 1 and demands going beyond the
London limit to take into account the Higgs field profile.
See Ref. [12].

III. EQUATION OF MOTION
AND THE STATIC SOLUTION

To obtain the equation of the vortex motion, one should
vary the effective action over Xðσ; tÞ. All concerning the
variation δE is done in the previous section. The remaining
piece is obtained by varying the a0 term in Eq. (2.2) with
the help of Eq. (2.4) to give [18]

δ

Z
d4xa0 ¼ −

Φ0

c

Z
dtdσð½ _X × X0� · δXÞ; ð3:1Þ

where the overdot means the derivative over time variable.
The equation of the curved vortex motion looks as follows:

½ _X × X0� ¼ ℏG1ðαÞ
2m

X00 þ ℏλ3LG2ðαÞ
2m

κ2½X0 × X000�: ð3:2Þ

As is evident from Eq. (3.2) and Fig. 1, there is a discrete
series of parameters for which G2ðαnÞ ¼ 0, so that the
parity-odd effects in the vortex motion disappear at
α ¼ αn ≠ 0. In the following treatment we will assume
that α ≠ αn. Introducing the vectorW ¼ ½ _X × X0�, one finds
from Eq. (3.2)

Wn ≡ ðW · nÞ ¼ κða − dκ2τÞ;
Wb ≡ ðW · bÞ ¼ dκ2κ0;

Wk ≡ ðW · X0Þ ¼ 0; ð3:3Þ
where

a ¼ ℏG1ðαÞ
2m

;

d ¼ ℏλ3LG2ðαÞ
m

: ð3:4Þ

Equation (3.3) is obtained upon taking into account the
pure geometric Frenet-Serre equations

X00 ¼ κn;

n0 ¼ −κX0 þ τb;

b0 ¼ −τn; ð3:5Þ
where τ stands for the torsion of the contour, and n, b are
the vectors of normal and binormal, respectively. The
vectors ðn; b;X0Þ comprise the right triple of the unit
orthogonal vectors, so that X0 ¼ ½n × b� (and similar
relations obtained by the cyclic permutation).
The longitudinal component of velocity vk ¼ ð _X · X0Þ

cannot be found from Eq. (3.2). One can find it from the
requirement that the gauge condition X02 ¼ 1 should be
satisfied during evolution [20]. This results in the relation
ð _X0 · X0Þ ¼ 0. Representing the velocity in the form

_X ¼ Wnb −Wbnþ vkX0

and taking the derivative of this expression over σ, one
obtains that

_X0 ¼ ð−W0
b − τWn þ κvkÞnþ ðW0

n − τWbÞb
þ ðv0k þ κWbÞX0; ð3:6Þ

resulting, in particular, in the expression

v0k ¼ −κWb: ð3:7Þ

Taking into account Eqs. (3.3) and (3.7), one can see that
the condition of preserving the gauge constraint X02 ¼ 1 is

FIG. 1. The function describing the coupling strength depend-
ence of the space parity violating term in the vortex equation of
motion.
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vk ¼
d
4
ðκ40 − κ4Þ; ð3:8Þ

where κ0 is the constant of integration. Then the expression
for the gauge vortex velocity can be represented in the
following equivalent forms:

_X ¼ κða − dκ2τÞb − d
3
ðκ3Þ0nþ d

4
ðκ40 − κ4ÞX0;

_X ¼ a½X0 × X00� − dκ2
�
X000 þ 5

4
κ2X0

�
þ dκ40

4
X0: ð3:9Þ

The equivalence is verified with the help of Eq. (3.5).
The static vortex contour should satisfy the condition

_X ¼ 0, hence κ ¼ κ0 and

ða − dκ2τÞ ¼ 0: ð3:10Þ

The static torsion τ0 is related to the static curvature κ0:

τ ¼ τ0 ¼
a
dκ20

¼ G1ðαÞ
2λ3Lκ

2
0G2ðαÞ

: ð3:11Þ

The contour with constant curvature κ and torsion τ is a
helix [21]. BecauseG1 > 0, the sign of the torsion τ, that is,
the helix right or left, depends on the sign of the function
G2ðαÞ plotted in Fig. 1. To be specific, let us choose the z-
oriented helix parametrized with the radius R and step h (do
not confuse with Planck constant) of the winding:

X0ðσÞ ¼ R

�
ex cos

σ

l
þ ey cos

σ

l

�
þ hσ
2πl

ez; ð3:12Þ

where

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ

�
h
2π

�
2

s
: ð3:13Þ

Then the basic contour characteristics are

κ ¼ R=l2;

τ ¼ h=2πl2: ð3:14Þ

The relation Eq. (3.11) reduces to the relation between R
and h which, upon introducing the ratio x ¼ h=2πR, reads

ð1þ x2Þ3
x

¼ 2

�
λL
R

�
3 G2ðαÞ
G1ðαÞ

: ð3:15Þ

To be specific, let us take the parameter α such that
G2ðαÞ > 0. One should conform Eq. (3.15) with the
condition of validity of the present treatment, κ2λ2L ≪ 1.
Taking into account Eqs. (2.18), (2.21), and (3.14) one
obtains that

x ≫
G1ðαÞ
2G2ðαÞ

: ð3:16Þ

Using numerical values of G1;2ðαÞ at α ≠ αn [recall that
G2ðαnÞ ¼ 0] one can convince that x ≫ 1. Qualitatively,
the overall treatment is valid for helices with the step h
much greater than the radius of winding R.

IV. SMALL OSCILLATIONS AROUND
STATIC SHAPE

Let us turn to the dynamical treatment of the problem
and consider the small oscillations around the static contour
shape found in the previous section. To this end one should
take Xðσ; tÞ ¼ X0ðσÞ þ ξðσ; tÞ, where ξ is the small
deviation from the static contour X0, and substitute this
to the equation of motion keeping the terms up to the first
order in ξ. One obtains the equation

½_ξ × X0
0� ¼ aξ00 − 2aðn0 · ξ00Þb0

þ dκ20ð½X0
0 × ξ000� þ ½ξ0 × X000

0 �Þ: ð4:1Þ

Hereafter the quantities with the index 0 refer to the
unperturbed contour X0ðσÞ, with the corresponding vectors
of normal n0, binormal b0, and tangent X0

0, and the
curvature κ0 and torsion τ0. These three vectors can be
considered as the local coordinate frame. Taking the scalar
products of Eq. (4.1) by, respectively, X0

0, n0, and b0 one
obtains the relation aðX0

0 · ξ
0Þ0 ¼ 0 which is integrated to

give the constraint

ðX0
0 · ξ

0Þ ¼ 0; ð4:2Þ

and the following dynamical equations:

_ξb ≡ ðb0 · _ξÞ ¼ −aðn0 · ξ00Þ − dκ20½ðb0 · ξ000Þ
þ κ20ðb0 · ξ0Þ�;

_ξn≡ðn0 · _ξÞ ¼ −aðb0 · ξ00Þ − dκ20½ðn0 · ξ000Þ
þ κ20ðn0 · ξ0Þ�: ð4:3Þ

Note that Eq. (4.2) provides that the relations X02 ¼ 1 and
ðX0 · ½n × b�Þ ¼ 1 are preserved in the course of the contour
evolution up to the first order in ξ. Since

ξ ¼ ξnn0 þ ξbb0 þ ξkX0
0; ð4:4Þ

Eq. (4.2) results in the relation

ξ0k ¼ κ0ξn ð4:5Þ

which shows that the only dynamical quantities in the
gauge vortex dynamics are the locally transverse quantities
ξn and ξb. By taking the derivatives over σ and using
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Eq. (3.5) one can obtain the scalar products of the above by
the unit vectors n0, b0, and X0

0 resulting in the equations

_ξn ¼
a
τ0
½−ξ000n þ 2τ0ξ

00
b þ ðτ20 − κ20Þξ0n�;

_ξb ¼
a
τ0
½−ξ000b − 4τ0ξ

00
n þ ð5τ20 − κ20Þξ0b

þ 2τ0ðτ20 − 2κ20Þξn�: ð4:6Þ

The plane wave solution

ξðσ; tÞ ¼ ðCn; Cb; CkÞe−iωtþikσ

gives the dispersion law

ω�ðkÞ ¼
a
τ0

h
−k3 − ð3τ20 − κ20Þk

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2τ20ðk2 þ τ20 − κ20Þ

q i
: ð4:7Þ

The potential instability of small oscillations could arise
when τ20 − κ20 < 0. However, because of the relation

τ20 − κ20 ¼ κ20

��
G1ðαÞ=2G2ðαÞ

ðκ0λLÞ3
�
2

− 1

�
;

and the inequality κ0λL ≪ 1, one can see that τ20 − κ20 > 0 in
the domain of applicability of the present treatment, so the
instability domain cannot be reached. In fact, the stronger
inequality τ0 ≫ κ0 takes place. See the discussion follow-
ing inequality (3.16).
The relations between the Fourier amplitudes are

Cð�Þ
n ¼ ikCð�Þ

b

τ0 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2 þ τ20 − κ20Þ

p ;

Cð�Þ
k ¼ −

iκ0
k

Cð�Þ
n ¼ κ0C

ð�Þ
b

τ0 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2 þ τ20 − κ20Þ

p : ð4:8Þ

Recall that the second line of these the above relations is the
consequence of the constraint Eq. (4.5). The general
solution is represented as the sum over modes:

ξðσ; tÞ ¼
Z

dk
2π

�
CðþÞ
b ðkÞ

�
b0þ

ikn0þ κ0X0
0

τ0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2þ τ20− κ20Þ

p �

× e−iωþðkÞtþCð−Þ
b ðkÞ

�
b0þ

ikn0þ κ0X0
0

τ0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2þ τ20− κ20Þ

p �

× e−iω−ðkÞt
�
eikσ þ c:c: ð4:9Þ

Avisible singularity for the mode with ω ¼ ωþ (in the case
of τ0 > 0) and one with ω ¼ ω− (in the case of τ0 < 0)
arising at the wave number k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ20 − τ20=2

p
, in view of

Eq. (4.8) means the vanishing of the corresponding b-
component of the vortex displacement at this wave number.
But, in fact, this singularity cannot be encountered because
τ0 ≫ κ0 in the present treatment. It is important that the
dynamics of small oscillations is expressed solely through
the local contour variables n0ðσÞ (curvature), τ0ðσÞ (tor-
sion), and X0

0ðσÞ (tangent vector). One can express ξðσ; tÞ
in terms of the global unit vectors ex;y;z for the specific
orientation of the helix, as, for example, specified
by Eq. (3.12).
The dynamics of curvature κðtÞ and torsion τðtÞ can be

obtained, in particular, along the lines presented in
Refs. [19,22]. The equations of motion of curvature and
torsion read

_κ ¼ ð−W0
b − τWn þ κvkÞ0 − τðW0

n − τWbÞ;

_τ ¼
�
1

κ
½ðW0

n − τWbÞ0 þ τð−W0
b − τWn þ κvkÞ�

�0

þ κðW0
n − τWbÞ: ð4:10Þ

The longitudinal component of the velocity vk ¼ ð _X · X0Þ is
given by Eqs. (3.7) and (3.8). After expanding the system
Eq. (4.10) near the static solution Eq. (3.11), κ ¼ κ0 þ δκ
and τ ¼ τ0 þ δτ, one arrives at the equations for small
deviations:

∂δκ
∂t ¼ a

τ0
½−δκ000 þ ð5τ20 − κ20Þδκ0 þ 2κ0τ0δτ

0�;
∂δτ
∂t ¼ a

τ0

�
−δτ000 þ ðτ20 − κ20Þδτ0 −

4τ0
κ0

δκ000 −
2τ0
κ0

δκ0
�
:

ð4:11Þ

The plane wave solutions,

δκðσ; tÞ ¼ Cκe−iωtþikσ;

δτðσ; tÞ ¼ Cτe−iωtþikσ; ð4:12Þ

result in the dispersion law which coincides with Eq. (4.7),
and the relationship between the Fourier amplitudes:

Cð�Þ
κ ¼ −

κ0C
ð�Þ
τ

τ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2 þ τ20 − κ20Þ

p :

The longitudinal component of velocity, δvk ¼ −aκ0δκ=τ0,
is determined by the dynamics of the curvature and has not
a proper dynamical meaning. As usual, the general solution
for κðtÞ and τðtÞ is represented by the sum over
these modes.

V. DISCUSSION

The main goal of the present work is to consider the
shape and dynamics of the curved nonrelativistic gauge
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vortex string upon taking into account the effects of the
space parity breaking environment. So additional terms in
the vortex equation of motion arising due to the exchange
of the Bogolyubov-Anderson excitations between distant
sectors of the string [18,19,22] were neglected. Using the
results of the cited works one can show that the criterion of
this is the following inequality:

ðξκ0Þ2 ln
λL
ξ
ln

�
λLℏ
mcξ2

�
≪ 1: ð5:1Þ

Despite the fact that the product of logarithms in the above
inequality can be large, the inequality is satisfied because of
the inequalities κ0λL ≪ 1 (thin string approximation
adopted in the present work) and ξ ≪ λL (the London
limit).
Let us compare the equation of motion (3.2) describing

the dynamics in the case of the fixed B-type helicity with
the analogous equations which take place in the media
with the chiral imbalance [19,20,22,23] corresponding to
fixing the A-type one. In these works the term in the
equation of the gauge vortex motion induced by quantum
anomaly, ∝ ½X0 × X000�, appears to be multiplied by the
chemical potential μF characterizing the chiral imbalance.
Hence, the chiral imbalanced environment exerts the gauge
vortex string motion at any μF ≠ 0. The case of the gauge
vortex string in the parity-odd media, as, for example that
suggested in Refs. [12,13], which shape and dynamics in
the curved situation is considered in the present work, is
completely different. First, the influence of the parity-odd
environment on the vortex equation of motion is governed
by the function G2ðαÞ, Eq. (2.21), with infinite discrete
series of zeros αn; see Fig. 1 where α given by Eq. (2.8)
characterizes the strength of the parity breaking term
(Lifshitz invariant) in the effective action. So, at α ¼ αn
the vortex does not feel the parity-breaking environment.
Second, the term ∝ ½X0 × X000� in Eq. (3.2) enters with the
factor κ2 (the contour curvature squared) which, formally, is
the result of fixing the B-type helicity in the Feynman path
integral. Such factor is absent in the case of fixing the A-
type helicity. This is the reason for appearance of the
relation Eq. (3.11) between the curvature κ0 and torsion τ0
of the static helical contour. The small oscillations around
this static helical contour given by Eq. (4.9) demonstrate

nontrivial polarization properties which depend on the
wave number k.
It is interesting to compare the second expression for the

gauge vortex velocity in Eq. (3.9) with its analog in the case
of fixing the A-type helicity (1.1). In this situation, the
parity-odd contribution to velocity _X, up to constant
multipliers, is analogous to Eq. (3.2), but appears without
the multiple κ2 ¼ X002 [19,22,23]. Repeating the derivation
that results in the second line of Eq. (3.9), one arrives at the
expression

_X ¼ a½X0 × X00� − d

�
X000 þ 3

2
κ2X0

�
þ dκ20

2
X0;

where d is proportional to the chemical potential
characterizing the chiral imbalance. Taking integration
constant κ0 ¼ 0 and setting a ¼ 1 one gets the nonlinear
equation [20] studied in hydrodynamics [24] which, using
the Hasimoto transformation [25],

ψ ¼ κei
R

σ

0
τdσ; ð5:2Þ

can be mapped into the integrable Hirota equation [26],

i _ψ þ ψ 00 þ 1

2
jψ j2ψ þ id

�
ψ 000 þ 3

2
jψ j2ψ

�
¼ 0: ð5:3Þ

(See Ref. [20] for the detailed studies of the nonlinear
soliton dynamics and small oscillations around specific
contour shapes.) The analogous mapping can be made for
nonlinear equation (3.9) to obtain

i _ψ þ ψ 00 þ 1

2
jψ j2ψ þ id

�
ðjψ j2ψ 0Þ00 þ 5

4
jψ j4ψ

�
¼ 0; ð5:4Þ

where the time variable has been rescaled to set a ¼ 1 in
Eq. (3.9), and κ0 was set to zero. Whether this equation is
integrable like Eq. (5.3) or not is an open question.
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