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Abstract The astronomical observations on the accelerated
expansion of the universe generate the possibility that the
internal matter of the stars is not only formed by ordinary
matter but also by matter with negative pressure. We dis-
cuss the existence of stars formed by the coexistence of two
types of fluids, one associated to quintessence dark matter
described by the radial and tangential pressures (Prq , Ptq)

and the density ρq characterized by a parameter −1 < w <

− 1
3 and ordinary matter described by an anisotropic fluid

with radial pressure of a strange star given by the MIT
Bag model Pr = 1

3 (c2ρ − 4Bg) and tangential pressure
Pt = 1

3 (c2ρ − 4Bg) − 3
2 (1 + w)c2ρq , in which the effect

is reflected of the quintessence dark matter over the ordi-
nary matter. Via a theorem we show that the geometry that
describes this interaction is equivalent to that of a perfect
fluid with ordinary matter. Taking as geometry the one asso-
ciated with a model for neutron stars, a physically acceptable
and stable model is obtained. The application to the star Her
X-1, as a candidate to a strange quark star, generates for us
a value of the MIT Bag constant Bg = 97.0048 Mev/fm3,
which is found to be inside the expected interval.

1 Introduction

The internal description of the stars, in the context of gravi-
tation, has been approached from different perspectives from
the scope of its composition, which determines the structure
of the stress-energy tensor and the geometry, which defines
the type of gravitational theory that will be considered. In
the first of the aspects, the astronomic observations of the
accelerated expansion of the universe [1] generate the possi-
bility that the internal matter of the stars is not only formed
by ordinary matter but also by matter with negative pressure,
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like quintessence [2]. Although its origin is cosmological,
and that is where its presence is more transcendental, it is
interesting to analyze what would happen at a stellar level,
as minimal as its effects may be.

There are diverse investigations around quintessence; for
more than a decade it has been considered that quintessence
is a good candidate to solve some problems in cosmolog. For
example it has been argued that quintessence may explain
the ’cosmic coincidence’ problem and may fit the observa-
tional data better than the cosmological constant [3], while
its possible existence has already been shown based on the
observations [4,5]. Quintessential dark matter has been used
to explain the asymptotic behavior of rotation curves in spiral
galaxies; in some cases the theoretical approach is the only
work done [6–8]. In other cases there has been reported that
the theoretical model matches the observations, where the
Einstein and Klein–Gordon equations for distances smaller
than the optical radius have been solved [9].

In relation to the formation of large scale structures
quintessence has also been successful [10–12]. Considering
a scalar field and the cosmic microwave background (CMB)
anisotropies match CMB and large scale structure data very
well [10]. For quintessence with a speed of sound equal to
zero, quintessence perturbations induce effects on the evolu-
tion of structures particularly when the dark energy compo-
nent comes to dominate the energy density of the universe
[11], just to mention an example. Other more recent work
shows elements in favor of quintessence both from the the-
oretical point of view and as regards their consistency with
the observations [13–19].

On the other hand there have been some approaches at a
stellar level to describe compact objects [20–23], consider-
ing that the interior of the stars is formed by ordinary neu-
tral matter [24–30], ordinary charged matter [31–37], and
also by sources which are a combination of ordinary matter
and quintessence dark energy, consistent with neutron stars
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[38]. Neutron or quark stars are not exclusively composed
of neutrons or quarks, respectively, but rather these stars are
formed predominantly by one of those particles. Generally
their interior contains matter with a greater density than the
nuclear density, which generates an enormous pressure caus-
ing in some cases its collapse and the formation of black holes
[39,40]. There are alternative proposals to describe the case
in which collapse can be avoided. One of these considers the
interior of the star to be formed by dark energy (P = −c2ρ)
with a shell of normal matter (P = c2ρ), where ρ and P
represent the density and pressure, respectively. The core of
exotic matter would avoid the gravitational collapse and it
may be similar in appearance to a black hole, but without an
event horizon [41].

Another possibility for avoiding the collapse is the pres-
ence of quintessence dark matter, characterized by a negative
pressure, described by the equation of state Pq(ρ) = wc2ρq ,
where (Pq , ρq) represents the pressure and the energy den-
sity, respectively, with w ∈ (−1,− 1

3 ), which would allow
for more compact stars. Unlike the dark energy in gravas-
tars, the quintessence and the ordinary matter inside the
stars do not generate a core with negative pressure and
another region with monotonically decreasing positive pres-
sure, which has a similar structure to stars with ordinary
matter. Its effect is present in the whole region of the star
allowing the star to be denser. When the density in the star is
greater than the nuclear density, there exists the possibility
that the radial pressure Pr and the tangential pressure Pt are
different [42], a situation relevant in the stellar structure [43],
which allows one to represent stars with a greater compact-
ness [44]. So it is to be expected that the equation of state
which describes quark stars with perfect fluid (Pt = Pr ),
given by Pr = 1

3 (c2ρ − 4Bg) where Bg is the MIT Bag
constant [45], is modified in such a way that the radial and
tangential pressures are not equal. Now considering the pos-
sibility that inside the stars there exists quintessence matter,
a natural question would be which equation of state holds for
the tangential pressure.

In this work we propose a stellar model in which its interior
is formed by the interaction of quarks with the quintessence
dark matter; as a result of this interaction we suggest a new
state equation for the tangential pressure, and this proposal
is discussed in Sect. 3. For this equation, in the absence of
quintessence the anisotropy in the pressures ceases to exist;
in other words, in our model the quintessence dark matter
is responsible of this anisotropy and in consequence of the
possibility that the star has a greater density than the nuclear
density. From this proposal of an equation of state in this
work we present a new stellar model that, when it is applied
to the data of a star that is a quark star candidate, allows one
to determine its internal behavior and in particular its MIT
Bag constant.

The work is organized in the following manner: in Sect. 2
we present the system of equations for an anisotropic stel-
lar model with quintessence. In Sect. 3 we discuss two theo-
rems that allow one to build solutions for the MIT Bag model
with quintessence, starting from a stellar solution with per-
fect fluid. In Sect. 4 a physically acceptable and potentially
stable model is presented, generated by the direct application
of the theorem 1. Section 5 is dedicated to realizing a graphic
analysis of the model. In Sect. 6 we determine the MIT Bag
constant and its hydrostatic values, taking as data the obser-
vational values of mass and radius of the star HerX-1. Finally
in Sect. 7 we present the conclusions and discussion of our
results, and the possibility of new work is pointed out.

2 The field equations

The metric that describes the geometry in the case of a static
and spherically symmetric time space can be represented by
[46]

ds2 = −y(r)2dt2 + dr2

B(r)
+ r2dΩ2, (1)

where dΩ2 = dθ2 + sin2 θdφ2 is the standard line element
on the second sphere. In our case the metrical components
will be determined by Einstein’s equations:

Gμν = kTμν + kT (Q)
μν ,

where k = 8πG
c4 and

Tμν = (c2ρ + Pt )uμuν + Pt gμν + (Pr − Pt )χμχν (2)

represents the source of matter of an anisotropic fluid, with
ρ the density, Pr and Pt the radial and tangential pressures
respectively; uμ is the fluid 4-velocity and χμ is the unit
vector in the radial direction. T (Q)

μν stands for the energy-
momentum tensor of the quintessence type with components

T (Q) t
t = T (Q) r

r = −c2ρq ,

T (Q) θ
θ = T (Q) φ

φ = 1 + 3w

2
c2ρq ,

with w satisfying the constraint −1 < w < − 1
3 [47], thus

Prq = −c2ρq and Ptq = 1+3w
2 c2ρq . The Einstein equa-

tions with this form of the stress-energy tensors generate the
following system:

kc2ρ + kc2ρq = − B ′

r
+ 1 − B

r2 , (3)

k Pr − kc2ρq = 2By′

r y
− 1 − B

r2 , (4)

kPt + 1 + 3w

2
kc2ρq = (r y′′ + y′)B

ry
− (r y′ + y)B ′

2r y
, (5)
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where ′ denotes the derivative with respect to the coordinate
r . Of the equation for the conservation of the effective stress-
energy tensor we have the relation

Pr
′ = c2ρ′

q −
(

Pr + c2ρ
) y′

y

+2

r

[
Pt − Pr + 3

2
(1 + w)c2ρq

]
. (6)

3 The theorems

Our interest is to get an exact solution of the system (3)–
(5) with an anisotropic strange quark matter distribution
described by the MIT Bag equation of state for the radial
pressure [45],

Pr = 1

3
(c2ρ − 4Bg), (7)

and a modified equation for the tangential pressure:

Pt = 1

3
(c2ρ − 4Bg) − 3

2
(1 + w)c2ρq , (8)

where Bg is the MIT Bag constant. From the form of the
state equation for the tangential pressure it can be observed
that it is reduced to the perfect fluid case in the absence of a
quintessence field, so in the proposed equation of state (8), the
quintessence density represents the effect of the interaction
of quintessence with ordinary matter.

This is the cause of the anisotropy in the pressures, an
effect which arises when the matter density is of the same
or higher order of magnitude than the nuclear density. Then
due to the anisotropic pressure it is possible to have objects in
equilibrium with a greater density and compactness than in
the case of a perfect fluid [44,48]. In this case that would be
the result of quintessence, which generates a negative pres-
sure counteracting the gravitational attraction caused by ordi-
nary matter.

On the other hand, the existence of the quintessence field
can be justified as a consequence of the accelerated expan-
sion of the universe and the consistency with the rotation
curves of the galaxies. However, their detection has not been
proved in an alternative manner, it would seem that it can
be confused with the ordinary matter and only its effects are
perceptible. Starting from the equation of state proposed for
the tangential pressure (8) a similar effect occurs in the case
of stellar models, since the same metric components (y, B),
associated to the geometry for the case of a perfect fluid in the
absence of the quintessence density, describe the anisotropic
case with sources of ordinary matter in the presence of the
quintessence field.

Furthermore, the possibility of a new form of an equa-
tion of state is not ruled out, since the theorems remain
valid if the state equations are replaced by Pr = Pr (ρ) and

Pt (ρ) = Pr (ρ) − 3(1 + w)c2ρq/2, giving rise to a diversity
of work that could help to understand in a clearer manner the
effect of quintessence on the stellar models. Now we focus
on the implications of these equation of states on our system.
Replacing the form of Pr and subtracting Eq. (4) from Eq. (5)
we obtain

kPt − k

3
(c2ρ − 4Bg) + 3

2
k(1 + w)c2ρq

= (r y′′ − y′)B

ry
− (r y′ + y)B ′

2r y
+ 1 − B

r2 . (9)

Of the equation of state (8) for the tangential equation, we
find that the term to the left is zero and the term to the right
generates a relation between the functions (B, y):

(r y′′ − y′)B

ry
− (r y′ + y)B ′

2r y
+ 1 − B

r2 = 0, (10)

which matches the restriction that we have between (B, y)

for the case of a model formed with only a perfect fluid [49].
On the other hand, adding Eqs. (3) and (4), and considering
the equation of state (7), we obtain the density in terms of
the functions (y, B) and their derivatives, that is to say,

kc2ρ = − 3B′

4r
+ 3By′

2r y
+ k Bg. (11)

Replacing this form of the density in the Eq. (3) there results

kc2ρq = − B′

4r
− 3By′

2r y
+ 1 − B

r2 − k Bg. (12)

This allows us to obtain a new solution once we have deter-
mined the functions (B, y) in such a way that it satisfies (10).
In summary, we have the following theorem.

Theorem 1 Let (M, g) be a differentiable manifold that
describes a static and spherically symmetric spacetime, reg-
ular, with metric g given by

ds2 = −y(r)2dt2 + dr2

B(r)
+ r2

[
dθ2 + sin2 θdφ2

]
, (13)

such that the metric functions (B, y) satisfy Einstein’s equa-
tions with a perfect fluid, that is to say,

Gμν = k[(c2ρ0 + P0)uμuν + P0gμν], (14)

or equivalently

kc2ρ0 = − B ′

r
+ 1 − B

r2 , (15)

k P0 = 2By′

r y
− 1 − B

r2 , (16)

kP0 = (r y′′ + y′)B

ry
− (r y′ + y)B ′

2r y
. (17)

Then any regular solution (B, y) of (15)–(17) is a regular
solution of the system (3)–(5) with state equations for the
radial and tangential pressures described by (7) and (8), with
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densities (ρ, ρq) determined by Eqs. (11) and (12) respec-
tively.

The condition of regularity means that the Kretschmann
scalar is regular, that is to say [50],

Rαβσδ Rαβσδ = 4

[
1 − B

r2

]2

+ 2B ′2

r2 + 8B2

y2

y′2

r2

+
[

B ′y′

y
+ 2y′′

y
B

]2

(18)

is finite. Since both sets of solutions (B, y, P0, ρ0) and (B,
y, Pr , Pt , ρ, ρw) are described by the same metric functions
(B, y), geometrically they are equivalent although with dif-
ferent sources of matter. This property of the same met-
ric form being associated to two stress-energy tensors, is
not exclusive of this system, another example of this is the
Reissner–Nordstrom extreme solution, for the case of elec-
trovacuum, and Bekenstein’s solution for a scalar field with
compliant coupling [51], which has the same metric form.
An important point to emphasize is that if we put aside the
geometrical aspect and the regularity of the geometry we
have the following theorem.

Theorem 2 Let (B, y) be differentiable function such as that
they satisfy Eq. (10) then the system (3)–(5) admits a solution
with equation of state for the tangential pressure Pt given by
(8) and densities (ρ, ρq) determined by the Eqs. (11) and
(12), respectively.

Theorem 1 could be applied to the set of known regular solu-
tions for a perfect fluid [49,52–55] and we obtain for each one
of these a model that tentatively describes stars formed by
quintessence and MIT Bag matter. The existence of these
with the equations for the radial and tangential pressures
given by (7) and (8) is a new theoretical proposal presented in
this work., Its possible physical existence is justified by the
astrophysics observations related to the accelerated expan-
sion of the universe. In previous work stellar models with
quintessence dark energy have already been approached [20–
23,38] as well as proposals based on the MIT Bag model for
strange stars [56–60]. One substantial difference in our case
is the proposal of the equation of state (8), which can be
understood as the consequence of the interaction between
ordinary matter and the quintessence.

3.1 Physical conditions

The physical conditions to impose on the geometry deter-
mined by (B, y) and the functions (Pr , Pt , ρ) are in part the
ones known for the case without quintessence, the only dif-
ference being that the condition, near the origin, required for
Δ = Pt − Pr ≈ αr2, now is not present and additionally one
is required to impose conditions on ρq . In general, we find

that a solution for the system (3)–(5) is physically acceptable
if the following conditions are met [50,61–63]:

(a) Regularity conditions

(i) The solution should be free from physical and geo-
metric singularities i.e. Kretschmann’s scalar given
by (18) must be finite and y2(r) > 0 and B(r) > 0
in the range 0 ≤ r ≤ R. This implies, based on the
relation for Kretschmann’s scalar given by (18), near
the origin [50]

B(r) ≈ 1 − αr2, y(r) ≈ β + γ r2,

y′ ≈ σr, B ′ ≈ δr.

The conditions on B and B ′ are obtained from the first
two terms of Eq. (18) by imposing the requirement
that each must be finite, since this expression is the
sum of squares. Meanwhile the requirement for y and
y′ has to be imposed and the regularity of the third
and fourth terms in (18).

(ii) The radial and tangential pressures and density are
positive, (Pr ≥ 0), (Pt ≥ 0) and (ρ > 0).

(iii) The radial pressure Pr should be zero at boundary
r = R, i.e. Pr (r = R) = 0, the energy density and
tangential pressure may obey ρ(r = R) ≥ 0 and
Pt (r = R) ≥ 0.

(b) Causality condition

(iv) The conditions 0 ≤ v2
r ≡ dPr

dρ
≤ 1 and 0 ≤ v2

r ≡
dPt
dρ

≤ 1 entail the conditions that the radial and tan-
gential speed of sound should not exceed the speed
of light.

(d) Energy conditions

(v) A physically reasonable energy-momentum tensor
has to obey the conditions

(
c2ρ ≥ Pr

)
,
(
c2ρ ≥ Pt

)
and

(
c2ρ + Pr + 2Pt ≥ 0

)
.

(e) Monotone decrease of physical parameters

(vi) The radial pressure and density should be maximum
at the center and monotonically decreasing towards
the pressure free interface (i.e. boundary of the fluid
sphere). Mathematically,

P ′
r (r)

∣∣
r=0 = 0, ρ′(r)

∣∣
r=0 = 0,

P ′′
r (r)

∣∣
r=0 < 0, ρ′′(r)

∣∣
r=0 < 0.

Thus
[

P ′
r < 0, ρ′ < 0, 0 < r ≤ R.

]

(f) Matching condition
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(vii) The interior solution should match continuously with
an exterior Schwarzschild geometry, r ≥ R,

ds2 =
(

1 − 2G M

c2r

)
dt2 −

(
1 − 2G M

c2r

)−1

dr2

+r2dΩ2,

where M represents the total mass inside the fluid
sphere, respectively. This requires the continuity of
y2(r) and B(r) across the boundary r = R.

(g) Quintessence distribution

(viii) The regularity of the geometry, in particular y′(0) ≈
σr and the behavior required of the radial pressure
and density in the origin being positive and finite, that
is, P ′

r (0) = 0, in conjunction with Eq. (6) imply that
near the origin

Pt − Pr + 3

2
(1 + w)c2ρq ≈ νr2;

the behavior required for this case is different from
the case in which there is no quintessence matter. In
the absence of this it is seen as a result that near the
origin Pt − Pr ≈ νr2.

(h) Stability conditions

(iiix) In order to have an equilibrium configuration the mat-
ter must be stable against the collapse of local regions.
v2

t − v2
r < 0 [64].

3.2 The Schwarzschild’s interior solution

The previous theorem does not guarantee that the solutions
obtained for the quintessence and MIT Bag matter system
are physically acceptable and that these are stable. Here we
will show that for the case in which Schwarzschild’s internal
solution is taken, the corresponding solution for (3)–(5) is not
stable since this does not satisfy the condition v2

t −v2
r < 0. To

show this we start from Eq. (3), with (B, y) the corresponding
functions to the solution with constant density ρS , in that case
B = 1 − kc2ρSr2/3, so

ρ + ρq = ρS ⇒ ρq = ρS − ρ.

Subtracting Eqs. (7) and (8), and replacing the form obtained
from ρq we arrive at

Pt (ρ) − Pr (ρ) = −3

2
(1 + w)c2

ρq = 3

2
(1 + w)c2(ρ − ρS). (19)

Taking the derivative of this equation with regard to the den-
sity we have

v2
t − v2

r = 3

2
(1 + w)c2, (20)

and since the admissible values of w are given by −1 < w <

− 1
3 , there results 0 < v2

t − v2
r < c2. This implies that the

solution is not stable. A detailed analysis is not presented
in this work; here we focus on a model which is stable and
allows us to describe the Her X-1 star.

4 The model

The metric functions (y, B) that we choose were previously
proposed to describe compact stars like quark stars or neu-
tron stars. According to the requirement of Theorem 1, these
satisfy Einstein’s equations with a perfect fluid [65]:

y (r) = C(5 + 4ar2)√
1 + ar2

, (21)

B(r) = (5 + 11ar2 + 6 a2r4 − 4ar2S(r))(1 + ar2)

5 + 12ar2 + 8a2r4 , (22)

where

S (r) =
(1 + ar2)2

[
A + arctanh

(
1+2ar2√

5+12ar2+8a2r4

)]
√

5 + 12 ar2 + 8 a2r4
,

and (C, A, a) are constants. The solution mentioned depends
on a the parameter (W ∈ (0, 2.0375509325]) related to the
compactness of the star u = G M/c2 R, with maximum value
u = 0.2660858316. This choice guarantees that at least in the
absence of quintessence matter we have the representation of
a model for compact stars. Replacing this in Eqs. (11) and
(12) we obtain

ρ(r) = Bg

c2 − 3a(25 + 40ar2 + 28a2r4 + 16a3r6)(1 + ar2)

2kc2(5 + 12ar2 + 8a2r4)2(5 + 4ar2)

+6a(25 + 75ar2 + 70a2r4 + 24a3r6)S(r)

kc2(5 + 12ar2 + 8a2r4)2(5 + 4ar2)
, (23)

ρq(r) = − Bg

c2 −
(
525 + 2935ar2 + 6776a2r4 + H(r)

)
a

2kc2(5 + 12ar2 + 8a2r4)2(5 + 4ar2)

+6a(1 + ar2)(5 + 8ar2)(5 + 10ar2 + 8a2r4)S(r)

kc2(5 + 12ar2 + 8a2r4)2(5 + 4ar2)
,

(24)

where H(r) = 7996a3r6 + 4784 a4r8 + 1152 a5r10. The
radial and tangential pressures are given by (7) and (8). Due
to this the radial and tangential speeds are

v2
r (r) = 1

3
c2, v2

t (r) = 1

3
c2 − 3

2
(1 + w)c2 dρq

dr

[
dρ

dr

]−1

,

(25)

where we see that the condition for stability,

v2
t (r) − v2

r (r) = −3

2
(1 + w)c2 dρq

dr

[
dρ

dr

]−1

< 0, (26)
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requires that the function ρq(r) is monotonic decreasing, that
is,

dρq

dr
< 0. (27)

This is due to the parameter w ∈ (−1,−1/3) so that 0 <

w+1 and, since the density must be a monotonic decreasing
radial function, dρ

dr < 0. Also, by Eq. (26) and the condition
(27) we see that the tangential speed of sound is lower than
c2/3.

5 Analysis of the solution

Once that we have found the functions (Pr , Pt , ρ, ρq) and the
form of the radial and tangential speeds of sound we proceed
to realize the graphical representation of the solution. This
requires that we set the constants (A, a, C, w, Bg) or that we
determine the validity intervals of these, although we already
know that w ∈ (−1,− 1

3 ) and Bg ∈ (80, 120) Mev/fm3. Of
the condition that the pressure is zero on the surface of the
star, we obtain A:

A =
(
25 + 40 ν + 28 ν2 + 16 ν3

) √
5 + 12 ν + 8 ν2

4
(
25 + 75 ν + 70 ν2 + 24 ν3

)
(1 + ν)

+
(
5 + 12 ν + 8 ν2

)5/2
(5 + 4 ν) σ

2 (1 + ν)2 (
25 + 75 ν + 70 ν2 + 24 ν3

)
ν

−arctanh

(
1 + 2 ν√

5 + 12 ν + 8 ν2

)
, (28)

where ν = a R2 and σ = k Bg R2. Applying the coupling
condition of the solution with Schwarzschild’s metric on the
surface of the star there results

u = G M

c2 R

= (1 + ν)
(
5 + 12 ν + 8 ν2

)
(5 + 4 ν) σ

25 + 75 ν + 70 ν2 + 24 ν3

−
(
15 + 51 ν + 48 ν2 + 16 ν3

)
ν

2(25 + 75 ν + 70 ν2 + 24 ν3)
, (29)

C = (1 − 2u)
√

1 + u

(5 + u)
, (30)

where u is the compactness value. From these conditions
on the surface we have determined the constants A and C ,
together with ν = a R2, w and σ = k R2 Bg; these are the
parameters of the solution. Although there exists the possibil-
ity that ρq < 0 in the whole interior or in certain regions, we
will analyze solutions for which ρq > 0 in the whole region,
in concordance with what happens to the quintessence matter
in cosmology where ρq > 0 and Pq < 0. The property that
we impose, that ρq > 0, and Eq. (8) evaluated in the surface
of the star imply Pt (R) = − 3

2 (1 + w)ρq(R) and since we

require that Pt (R) ≥ 0, we have ρq(R) = 0, which gives us
a relation between ν and σ :

σ = ν
(
45 + 145 ν + 144 ν2 + 48 ν3

)

2
(
5 + 12 ν + 8 ν2

) (
5 + 15 ν + 12 ν2

) . (31)

Since σ = k R2 Bg > 0 this relation determines the values
of the MIT Bag constant given ν. Replacing (31) in Eq. (30)
we arrive at the finding that the rate of compactness u for
this model matches the one obtained for the case of a perfect
fluid with (y, B), given by (22) and (21) [65]:

u = (3 + 4 ν) ν

5 + 15 ν + 12 ν2 . (32)

This occurs because the effective mass is given by

mef (r) = kc2

2

∫ r

0
ρe f y2dy

=
(
4S (r)

(
1 + ar2

) − 4 − 9 ar2 − 6 a2r4
)

ar3

2(5 + 12 ar2 + 8 a2r4)
,

(33)

and this function of the effective mass is the same as that for
the case of a perfect fluid analyzed in [65].

5.1 Graphical representation of the solution

As regards the function’s algebraic representation (ρ, ρq)

and the radial and tangential pressures it is not clear that these
show the required behavior (of being monotone decreasing
functions). Graphical analysis shows that these do meet the
required properties. Although we only represent the graphics
for specific values of (ν,w) this behavior is similar for ν ∈
(0, 0.78787).

Figures 1, 2 and 3 represent the behavior of the densities
and the radial pressure. For a set value of ν they are the same,
independently of the value w. Each one of these functions
decreases as the parameter ν decreases. They also show that
0 ≤ k R2c2ρq ≤ k R2 Pr < k R2c2ρ, or equivalently, 0 ≤
c2ρq ≤ Pr < c2ρ.

The behavior of the tangential pressure depends of w, in
Figs. 4 and 5 its behavior is presented for the values of
w = −0.34 and w = −0.9 from which we see that for an
equal value of ν the pressure is lower if w is lower.

In Figs. 6 and 7 we observe the behavior of the tangential
speed of sound, and just like in the case of the tangential
pressure this depends of the parameters (ν,w) showing that
it approximates 1

3 c2 when w → −1. The radial speed of
sound v2

r = 1
3 c2 and in conjunction with Figs. 6 and 7 we

see that v2
t −v2

r < 0, implying that the solution is potentially
stable.
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Fig. 1 Graphical representation of the density

Fig. 2 Graphical representation of the quintessence matter’s density

6 Application to the star Her X-1

The form of the function’s behavior for the presented model
is adequate according to the characteristics imposed for it to
be physically acceptable, except for the orders of magnitude
that may have been considered. To determine the orders of
magnitude and see if these are consistent with what we expect
for strange quark stars we take the data of the star Her X-1
being a candidate to be strange quark star [66] to obtain its

Fig. 3 Graphical representation of the radial pressure

Fig. 4 Graphical representation of tangential pressure for w = −0.34

associated values. We know that its mass is M = 0.87M�
and its radius R = 7.866km, replacing this in (32) we obtain
(ν = 0.51192), and replacing this value in Eq. (31) and since
σ = k R2 Bg we determine the value of Bg to be

Bg = 97.00476509
Mev

fm3 .

The value that we obtained differs a little from the one
obtained previously for the same star, considering a model
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Fig. 5 Graphical representation of tangential pressure for w = −0.9

Fig. 6 Graphical representation of the tangential speed of sound for
w = −0.34

without quintessence, which was Bg = 99.7207866 Mev/fm3

[66] . Figures 1, 2, 3, 4, 5, 6 and 7 with the value of
ν = 0.51192 describe the behavior for the data for the star
Her X-1.

One point to highlight is that the order of magnitude of
the quintessence matter’s density is two orders lower than the
energy for the ordinary matter. Both pressures are zero on the
surface, just like the density of quintessence. The densities,

Fig. 7 Graphical representation of the tangential speed of sound for
w = −0.9

Table 1 Values of the hydrostatic variables for the star Her-X1

r(km) ρ(1018 kg
m3 ) ρq (1016 kg

m3 ) Pr (1034 N
m2 )

0 1.664843 4.214636 2.626327

0.7866 1.647391 4.091964 2.574042

1.5732 1.596685 3.736507 2.422135

2.3598 1.517506 3.188466 2.184929

3.1464 1.417210 2.519137 1.884454

3.9330 1.304473 1.817495 1.546714

4.7196 1.187771 1.170519 1.197090

5.5062 1.074047 0.645002 0.856391

6.2928 0.968075 0.274818 0.538913

7.0794 0.872482 0.064992 0.252531

7.866 0.788189 0 0

central and in the surface, reported in Table 1, match with
those expected for this type of stars. The magnitude of the
radial and tangential pressures reported in Table 2 do not
match in the center; however, both are nullified on the surface,
the tangential pressure being lower than the radial pressure
for any value of w ∈ (−1,− 1

3 ).

7 Conclusions

(a) We have proposed a model with an equation of state for
the tangential pressure that reflects the interaction between
ordinary matter composed of quarks and quintessence. (b) It
was demonstrated that this equation of state in the presence
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Table 2 Values of the hydrostatic variables for the star Her X-1

r(km) Pt (1034 N
m2 ) Pt (1034 N

m2 ) v2
t (c2) v2

t (c2)

w = −0.34 w = −0.9 w = −0.34 w = −0.9

0 2.251334 2.569506 0.263691 0.322781

0.7866 2.209973 2.518880 0.263738 0.322789

1.5732 2.089693 2.371758 0.264177 0.322855

2.3598 1.901223 2.141944 0.265706 0.323087

3.1464 1.660313 1.850491 0.269050 0.323593

3.9330 1.385028 1.522212 0.274668 0.324445

4.7196 1.092943 1.181307 0.282676 0.325658

5.5062 0.799013 0.847696 0.292911 0.327209

6.2928 0.514481 0.535211 0.305038 0.329046

7.0794 0.246766 0.251654 0.318639 0.331107

7.866 0 0 0.333284 0.333326

of quintessence leads to the geometry that it describes being
equivalent to the one that represents a stellar solution with
perfect fluid. Its content is reflected in Theorem 1, which
guarantees the regularity of the geometry. In the case of new
solutions for the system of quintessence with an MIT Bag
equation for the radial pressure and a modified MIT Bag for
the tangential pressure the one of the theorem does not guar-
antee the existence of regular solutions. (c) For the case of
Schwarzschild’s internal solution it was proven that the solu-
tion to the new model is not stable in the sense of cracking
[64], which shows that although there exists a way to obtain
a model for quintessence, starting from a solution with a
perfect fluid, this is not necessarily physically acceptable or
potentially stable. (d) A physically acceptable and potentially
stable model was constructed; for its construction we started,
according to Theorem 1, from a solution that represents com-
pact stars with a compactness rate of u ∈ (0, a), and its analy-
sis was done in a complementary manner in a graphical form.
(e) As an application of the constructed model we obtained
the MIT Bag constant for the candidate to strange quark star
Her X-1. (f) It is shown that at a stellar level, the possible
existence with the proposed radial and tangential equations
of state generates a quintessence density which is two orders
of magnitude lower than the density of ordinary matter. As a
result of this work a question arises. What conditions must
the solutions of a perfect fluid satisfy for them to allow them
to represent quintessence stars? This work represents a mile-
stone for the generation of new solutions associated with
quintessence matter as well as its generalization for other
equations of state different from the MIT Bag one. Particu-
larly it is natural to ask the following questions. What type
of star represent the perfect fluid models in the context of the
model posed in this investigation [67–69]? How is the spec-
trum of solutions modified if we allow ρq to admit regions
where it is negative? It is not clear that ρq ≥ 0. If stars consti-

tuted by this type of matter did exist, what is their formation
mechanism? What is the way to detect them? This work is
a starting point for future work in different directions, both
theoretical and observational, which may allow one to solve
the questions we present here and those that would arise as
a result of these investigations.
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