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Abstract In this paper, we attempt to construct the
anisotropic solution for compact stellar configurations using
the observed mass and radius of compact stars from the
literature under the influence of Rastall Teleparallel grav-
ity. To investigate the crucial elements of spherically sym-
metric metric space, we employed the embedding class
one spacetime paradigm with Karmarkar’s condition. The
field equations have been computed under the gravitational
action of Rastall Teleparallel gravity. However, the unknown
constants were evaluated via junction conditions using the
Schwarzschild metric as the outer geometry. The compact
stars analysis’s crucial physical and mathematical require-
ments are all admitted and shared by the model, which is
physically viable and supports the emergence of novel real-
istic stellar configurations in Rastall Teleparallel gravity. We
fix the parameters of our model to compare with three com-
pact stars (LMC X-4, Cen X-3, and EXO 1785-248) and find
that it can be regular, robust, and stable.
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1 Introduction

The curvature imported from Riemannian geometry, which
is characterized by the Ricci scalar R, is one of the cor-
nerstones of general relativity (GR). The Ricci scalar R is
switched out for some general function of R [1–3] in the
modified f (R) gravity, which is a simple modification of
GR. In addition, there are many alternatives to GR, such as
the teleparallel equivalent of GR (TEGR), in which T -torsion
is used for describing gravitational interactions. Contrary to
the Weitzenbock connection in teleparallelism which is asso-
ciated with torsion but zero curvature, the Levi-Civita con-
nection in GR is associated with curvature but zero torsion.
Meanwhile, one of the problems encountered by researchers
in these two theories is the cosmological constant � which
serves as the negative pressure fluid p� = −ρ�. Only by
including a scalar field as an additional term can GR handle
the Universe’s present state of acceleration. Researchers refer
to this topic as the “fine-tuning problem” since the observed
value of � significantly deviates from the expected value.
Researchers believe that the only ways to solve this issue are
to modify GR, add more scalar fields, or make modifications
to the standard model of physics. According to some theo-
ries, GR modification can adequately explain the behavior of
cosmic expansion in the late universe without the need for
�. When discussing the early Universe, observations of fast
expansion are referred to as the inflationary epoch. The cos-
mological constant � cannot accommodate this rapid expan-
sion. This problem can be improved by incorporating a scalar
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field, however, GR also doesn’t tell us anything about the ori-
gins or nature of inflation.

The inflationary era known as early-time expansion and
the current dark energy era are both explained by modified
gravity [4–6]. Moreover, the coincidence problem shows that
the actual energy density of matter and eventual dark energy
are identical. Some theorists believe that this is merely a coin-
cidence and not a problem, although some GR modifications
could be able to address this difficulty [6].

A modified theory of gravity known as Teleparallel The-
ory (TT), which was introduced many years after the original
formulation of GR, is based on Einstein’s investigation of the
new version of GR [7]. On the basis of the proposal described
by the authors [8–13], the relationship between the original
GR and TT has, nevertheless, once again been explained.
From a GR perspective, the source’s curvature offers the best
explanation for the gravitational effect induced by a gravi-
tating source. In general, it is argued that space-time may
possess both torsion and curvature (like Cartan space); one
can distinguish between concepts that derive from the tor-
sion of space-time, such as the Riemann tensor, relationship,
etc. Consequently, the theory that proposes gravity based on
the action of curvature of space-time (Riemann tensor) can
be considered as a theory comprising just of torsion with no
contribution from Riemann tensor without torsion [14].

In 1972 Rastall [15] suggested a generalization of Ein-
stein’s general theory of relativity. The validity of the stress-
energy tensor conservation law in curved space-time was also
questioned by Rastall. Further, the covariant derivative of the
stress-energy tensor is roughly related to the derivative of the
Ricci scalar, i.e., Tμν

;μ = R,ν in this new gravitational the-
ory. Rastall gravity [16] can be viewed in this light as a phe-
nomenological application of certain quantum fluctuations in
the background of curved space-time. Rastall gravity theory
was applied to cosmology in recent years, and it has been pro-
viding some new and exciting findings at the cosmological
level. It was also found to be in good agreement with diverse
observational data in the cosmological background [17,18].
On the other hand, the emergence of small DM fluctuations
is identical to that of the Cold-DM model, while in Rastall
theory, DE is huddled. This property causes inhomogeneities
in dark matter evolvement in a non-linear area, which differs
from the standard cold-DM model [19]. Furthermore, it has
been debated whether Rastall gravity and Einstein gravity
are equivalent or not. Some many years ago, the inequiva-
lence between the two gravity theories was highlighted in
Ref. [20]. Despite this, the equivalence has been recently
claimed [21], however soon afterward the inequivalence sur-
vived [22] due to Rastall gravity being a more open gravity
theory than Einstein gravity. The impacts of Rastall theory
on stellar configurations simulated with both polytropic and
non-relativistic equations of state (EoS) were evaluated in
[23]. They came to the conclusion that only small GR devia-

tions are coherent with stellar configuration restrictions, and
that only values of the free-parameter λ greater than those
tested due to considerations of energy bounds.

By embedding the four-dimensional spherically symmet-
ric space-time into the five-dimensional flat metric, a signif-
icant number of compact star models are constructed. If an
embedding into a (n+ p)-dimensional flat space-time is pos-
sible, then a Riemannian space-time with n-dimensions is of
class p. Only embedded class-1 metrics are relevant to the
Karmarkar condition. According to Pandey and Sharma [24],
embedding class-1 space-time is a prerequisite for the imple-
mentation of Karmarkar condition. The Riemannian tensor,
which joins the two gravitational potentials into a single dif-
ferential equation, and geometry alone are the sole sources of
the Karmarkar condition. Although many different methods
might be accessible, Karmarkar condition offers a convenient
and straightforward way to describe the model’s intricate
gravitational behavior. One of the metric potentials’ compo-
nents must be stated, and the other must be taken from Kar-
markar condition by solving the differential equation. When
modeling various compact objects using Karmarkar condi-
tion, attempts to generate stellar attributes like radius, mass,
redshift, and compactness that are well-consistent with obser-
vational data have been remarkably successful, as shown
in the Refs. [25–52]. Ruderman [53] has looked into the
effects of anisotropy. According to him, a star may exhibit
anisotropic properties at very high energy densities, where
nuclear interactions turn relativistic. Following that, Bow-
ers and Liang [54] explored the generally populated, static,
spherically symmetric, relativistic anisotropic matter disper-
sion’s limiting properties. Anisotropy is originally developed
by relaxing the isotropic condition, i.e. pr �= pt . Importantly,
the general procedure described in [55–66] can be employed
to derive any methodology for static isotropic, anisotropic,
and charged anisotropic solutions of Einstein’s field equa-
tions based on spherically symmetric space-time.

It is broadly acknowledged that a variety of physical events
that we would expect to appear in compact astrophysical
objects (for a detailed discussion on this topic, see Refs. [58])
might cause deviations of the isotropy and fluctuations of the
local anisotropy in pressures. Additionally, even if a system
is initially thought to be isotropic, the existence of physi-
cal aspects such dissipative fluxes, energy density inhomo-
geneities, the appearance of shear in the fluid flow, and/or any
of these will always tend to cause pressure anisotropy. Super-
fluids or type-A fluids, rotations, electromagnetic fields, pion
and meson condensations, core formation, and other phe-
nomena have all been mainly investigated in [58,60–65],
and they all contribute to the concept of anisotropy emerg-
ing in self-gravitational compact stars. This shows that the
radial component (pr ) and the tangential component (pt )
are two different types of pressure components present in
self-gravitational systems. In the study of self-gravitational
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fluids, local anisotropy is introduced as a consequence of
the inequalities in radial and tangential pressures (pt �= pr ).
In this regard, the implications of the Newtonian and gen-
eral relativistic regimes in static anisotropic stars have been
explored by Herrera et al. [66–69].

In this paper, we try to construct a new anisotropic solu-
tion for compact stellar configurations having observed mass
and radius under the influence of Rastall Teleparallel gravity.
For this purpose, we explore the key components of spheri-
cally symmetric metric space, using the embedding class one
spacetime paradigm with Karmarkar’s condition. The paper
is organized as follows. In Sect. 2, we briefly describe the
fundamentals of Rastall teleparallel gravity. Using matching
criteria, Sect. 3, calculates the unidentified parameters. We
provide some significant discussion on the stellar properties
in Sect. 4. The concluding remarks are given in Sect. 5.

2 Basic concepts of Rastall’s teleparallel gravity

To begin, we must introduce the notion of indices. For exam-
ple, we use Greek alphabets (μ, ν, . . . = 0, 1, 2, 3) to
identify space-time indices and Latin alphabets (i, j, . . . =
0, 1, 2, 3) to indicate tangent space indices. Tangent space
is commonly defined as Minkowski space with the met-
ric ηi j = diag(1, −1, −1, −1). The tangential space
indices are significantly raised and lowered along with the
Minkowski metric ηi j . To achieve this raising and lowering
of the space-time indices, the space-time indices Riemannian
metric is employed, which is provided by,

gμν = ηi j e
i
μe

i
ν, (1)

here, tetrad fields are represented by the formula ei (xμ) =
eiμ∂μ. These nontrivial tetrad fields serve as the orthogonal
basis of the tangential space, where (ei .e j ) = ηi j . According
to (1), the aforementioned nontrivial tetrad fields attach to the
gravitational field and leave a teleparallel structural imprint
on space-time. Based on the following tetrad fields,

�α
μν = ei

α∂νe
i
μ = −eiμ∂νei

α, (2)

the Weitzenbock connection can be explained and their
covariant derivative of such tetrad fields leads to zero, i.e.,

∇μei ν = ∂μei ν − �α
μνe

i
α = 0. (3)

The general parallelism requirement is expressed in Eq. (3).
Null curvature and non-vanishing torsion result from this
connection, which is stated as,

T α
μν = �α

νμ − �α
μν = ei

α(∂μe
i
ν − ∂νe

i
μ). (4)

The Weitzenbock connection and the Levi-Civita connection
are related by the expression,

�̂α
μν = �α

μν − K α
μν, (5)

where �̂α
μν is Levi-Civita connection and K α

μν is the con-
torsion tensor explained as shown below,

K α
μν = 1

2
(Tμ

α
ν + Tν

α
μ − T α

μν). (6)

The torsion scalar is defined as

T = SαμνTαμν, (7)

where Sαμν represents super-potential and is specified as,

Sαμν = −Sανμ = 1

2
(Kμνα − gανT γμ

γ + gαμT γ ν
γ ). (8)

The formulation of the Lagrangian, which defines the gravi-
tational field in teleparallel gravity, reads

LG = e

16π
T, (9)

by considering the suppositions c = G = 1 and e =
det (eiμ). The action [70] in teleparallel gravity can be
expressed as follows for non-empty space-time,

S = −
∫

e

(
T

16π
+ Lm

)
d4x, (10)

where, Lm is the matter Lagrangian notation. One can obtain
the equation shown below by varying this action associated
with the tetrad fields,

e−1eiμ∂p(eei
γ Sγ

νp)+T γ
λμSγ

νλ+ 1

4
δν
μT = 4π
ν

μ, (11)

where 
ν
μ notions the perfect fluid stress energy tensor. It’s

proven that

Dν

(
e−1eiμ∂p(eei

γ Sγ
νp) + T γ

λμSγ
νλ + 1

4
δν
μT

)
= 0.

(12)

Here DνVμ is the teleparallel form of the covariant deriva-
tive, which is defined as

DνV
μ = ∂νV

μ + (�μ
λν − Kμ

λν)V
λ. (13)

From Eq. (11) one may obtain

Dν
μ
ν = 0. (14)

Since this work depends on anisotropic fluid material con-
tents, the stress-energy tensor is stated as


μ
ν = (ρ + pt )uμu

ν − ptδ
ν
μ + (pr − pt )vμvν. (15)

For a space-like velocity vector, the notation uμ can be used,
where u0u0 = 1. The unitary space-like vector along the
radial direction is vν , where v1v

1 = −1, and the radial and
tangential pressure components are pr and pt , respectively. It
is crucial to note that pt− pr �= 0, which specifies anisotropy,
is justified by the surface tension within the stellar body. The
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most general form of static and spherically symmetric space-
time is given by

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ2 + sin2 θdϕ2). (16)

Here a(r) and b(r) are arbitrary functions of the radial coor-
dinate r . It is widely acknowledged that the Einstein theory
of gravity is predicated on the supposition that 
ν

μ;ν = 0.
Rastall asserts, based on a few presumptions, that the rela-
tion 
ν

μ;ν = 0 has been accepted and all of those presump-
tions are still up to criticism. According to his presumption

ν

μ;ν = aμ, the functionaμ should vanish in flat space-time,
as noted in [71]. As it is admitted that curvature space-time
and gravitation are similar in nature, i.e., the gravitational
field generated by the existence of matter generates curvature
and vice versa. So, the factor Tμν must be determined by the
curvature. As an example, one may assume an elastic sphere
of an elementary particle. So the existence of non-vanishing
curvature tidal gravitational forces is produced which reshape
the sphere by altering its rest mass and energy [71]. In light
of the argument presented above, Rastall formulated the fol-
lowing relationship about energy conservation,


ν
μ;ν = λR,μ, (17)

where, λ notions the Rastall constant [71]. This Eq. (17)
shows the relationship between matter and geometry, and
how matter-geometry can be formed or destroyed. The stress-
energy tensor Dν
μ

ν in Eq. (11) is a function based on tor-
sion that vanishes in flat space-time. Then, using Rastall for-
mula in Eq. (17), we take

Dν
μ
ν = λ

4
T,μ, (18)

where T denotes the torsion scalar and λ is a real Rastall con-
stant. The support of geometry’s torsion produces an alliance
between matter and geometry. By incorporating Eqs. (15–16)
into Eqs. (11) and (18), we get the field equations as follows,

ρ =
e−b(r)(a′(r)+b′(r))

2r + 1
2r2 + 1

4 (λ − 1)T (r)

4π
, (19)

pr =
1
4 (−(λ − 1))T (r) − 1

2r2

4π
, (20)

pt =
1
2e

−b(r)
(
a′′(r)

2 +
(
a′(r)

4 + 1
2r

) (
a′(r) − b′(r)

))

4π

−
1
4λT (r)

4π
. (21)

The extraction of Eq. (7) gives the torsion written as

T (r) =
(
2e−b(r)

) (
a′(r) + 1

r

)
r

, (22)

where prime denotes the derivative with respect to r (radial
coordinate).

To close the stellar system, we select two unknown viz.,
ea(r) and eb(r) using a well-known Karmarkar condition via
an embedding approach provided as,

R1414R2323 = R1212R3434 + R1224R1334. (23)

Here R2323 �= 0 (this is known as Pandey–Sharma con-
straint). It is worth noting that the space-time that agrees
with this requirement is known as embedding space-time.
By plugging the Ricci scalar values into Eq. (23), we get the
differential equation (24) shown below,

b′(r)a′(r)
1 − eb(r)

= −2
(
a′′(r) + a

′2(r)
)

+ a
′2(r)+b′(r)a′(r).

(24)

The following formula occurs from simplifying (24) in terms
of eb(r),

eb(r) = k1 + 1 + a
′
(r)2ea(r). (25)

For simplicity, we select the gravitational potential ea(r) as,

ea(r) = ζ1

(
ζ2r

2 + 1
)η

. (26)

Term η (an integer) is important to construct the physical
solutions of stellar objects. For physical solutions, η varies
from 3 to ∞. η < 3 does not contain any physical solutions.
If η → ∞, then the metric function ea(r) takes the form
ea(r) = ζ1eC1r2

, where C1 = nζ2. In our study we discussed
the the compact stars solution by variating η from 3 to 20.
By substituting the Eq. (26) into the Eq. (25), we obtain eb(r)

as stated,

eb(r) = ζ2ζ3r
2
(
ζ2r

2 + 1
)η−2 + 1. (27)

Using Eqs. (26 and 27) in Eqs. (19–21), we obtain the fol-
lowing final formulations for ρ, pr , and pt ,

ρ = 1

8r2
(
πζ2ζ3r2

(
ζ2r2 + 1

)η−2 + π
)

×
[
λ + ζ2ζ3r

2
(
ζ2r

2 + 1
)η−2 + 2ζ2ηλr2

ζ2r2 + 1

+2ζ2ζ3r2
(
ζ2(η − 1)r2 + 1

) (
ζ2r2 + 1

)η−1

ζ 2
2 r

4 + ζ2r2
(
ζ3

(
ζ2r2 + 1

)η + 2
) + 1

]
, (28)

pr = − 1

8r2
(
πζ2ζ3r2

(
ζ2r2 + 1

)η−2 + π
)

×
[
λ + ζ2ζ3r

2
(
ζ2r

2 + 1
)η−2 + 2ζ2η(λ − 1)r2

ζ2r2 + 1

]
,

(29)

pt = −
(
ζ2r2 + 1

)
8π

(
ζ 2

2 r
5 + ζ2r3

(
ζ3

(
ζ2r2 + 1

)η + 2
) + r

)2

×
[
λ + ζ 3

2 r
6
(
−η2 + 2ηλ + λ

)
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+ζ2r
2
[
2η(λ − 1) + 3λ + ζ3(λ + 1)

(
ζ2r

2 + 1
)η ]

−ζ 2
2 r

4
(
η2 + η(2 − 4λ) − 3λ

−ζ3(2ηλ + λ − 1)
(
ζ2r

2 + 1
)η) ]

. (30)

3 Matching conditions

The measurement of the study’s metric function-related
unknowns is a crucial step in the study of compact stars since
it directly affects how exactly the findings can be relied upon.
Here, we match the interior space-time expressed in (16) to
the exterior Schwarzschild space-time given by,

ds2 =
(

1 − 2M

R

)
dt2 −

(
1 − 2M

R

)−1

dr2 − r2

(
dθ2 + sin2 θdφ2

)
. (31)

A wonderful way to compare internal and external space-time
is supplied by the following system at boundary r = R,

ζ1

(
ζ2r

2 + 1
)η = 1 − 2M

R
, (32)

ζ2ζ3r
2
(
ζ2r

2 + 1
)η−2 + 1 = 1

1 − 2M
R

, (33)

ζ1ζ2ηr
(
ζ2r

2 + 1
)η−1 = M

R2 . (34)

The following constant expressions are obtained at boundary
r = R by solving the set of equations represented by ((32)
to (34)),

ζ1 =
(R − 2M)

(
1 − M

2ηM+M−ηR

)−η

R
, (35)

ζ2 = − M

R2(2ηM + M − ηR)
, (36)

ζ3 =
2η2(2M − R)

(
1 − M

2ηM+M−ηR

)−η

2ηM + M − ηR
. (37)

The values of these constants are calculated in Table 1 for
compact stars LMC X-4, Cen X-3, EXO 1785-248 respec-
tively.

4 Physical analysis of the anisotropic solutions in
Rastall’s teleparallel gravity

The fundamental focus of the study of compact stars is the
discussion of the stellar system’s physical properties. In this
section, we provide a detailed physical analysis of our solu-
tions presented here for anisotropic stellar configurations
generated by an embedding class one approach in Rastall’s
teleparallel gravity. We will look at the graph’s trends for

Table 1 The values of model constants using mass and radius of Stars
LMC X-4 [81], Cen X-3 [82] and EXO 1785-248 [83] for different
values of η. Here we have fixed λ = 044416

η ζ1 ζ2 ζ3
prc
ρc

(r = 0)

LMC X-4 (M = 1.29 M⊙ and R = 9.711 km)

3 0.432949 0.001273 4.78208 < 1

5 0.436329 0.436329 7.66407 < 1

10 0.438748 0.000352 14.90070 < 1

20 0.439922 0.000173 29.39275 < 1

50 0.440616 0.000068 72.88283 < 1

100 0.440846 0.000034 145.37080 < 1

500 0.441029 6.827742 × 10−6 725.28338 < 1

Cen X-3 (M = 1.49 M⊙ and R = 10.136 km)

3 0.376525 0.001421 4.56839 < 1

5 0.380781 0.000805 7.27511 < 1

10 0.383803 0.000386 14.08281 < 1

20 0.385292 0.000185 28.26760 < 1

50 0.386124 0.000074 68.65688 < 1

100 0.386411 0.000036 138.25224 < 1

500 0.386635 7.447003 × 10−6 682.74357 < 1

EXO 1785-248 (M = 1.30 M⊙ and R = 8.849 km)

3 0.376886 0.001862 4.56985 < 1

5 0.381136 0.001055 7.27776 < 1

10 0.384211 0.000496 14.36100 < 1

20 0.385612 0.000248 27.73312 < 1

50 0.386471 0.000098 68.68534 < 1

100 0.386755 0.000048 136.94443 < 1

500 0.386981 9.759977 × 10−6 683.02989 < 1

three different realistic compact stars, namely LMC X-4 [81],
Cen X-3 [82], and EXO 1785-248 [83], to see how they stand
up physically.

4.1 Physical behavior of metric potentials, energy,
pressure, Eos and gradients profiles

It is necessary for the gravitational pull responsible com-
ponents of the metric space to exhibit regular and smooth
behavior, such as ea(r) > 0 and eb(r) > 0. The behavior of
three stars, LMC; X-4, Cen; X-3, EXO;1785-248, is shown
in Fig. 1. It is clear that this behavior fits the desired behavior
perfectly. An important quality that shows the stellar body’s
physical existence is its energy profile. The energy density of
a stellar body should, by definition, be positive and maximum
at the center (r → 0), and then show a smooth and coherent
decrease towards the stellar surface (r → R), where it should
be minimum. The energy density behavior is perfectly con-
sistent with the requirement, as shown by the graphs in Fig. 2.
The physical existence of compact stellar objects can also be
shown by pressure profiles like pr and pt . These parameters,
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Fig. 1 Shows metric potentials of stars with η = 3 (Solid), η =
5 (Dotted), and η = 20 (Dashed)

Fig. 2 Shows the energy density profile of stars (ρ in [km−2] vs. radial
coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

like energy density, have maximum values at the center and
then smoothly fall to reach their minimum values at the stel-
lar boundary (pt > pr and pr |r=R → 0 and pt |r=R > 0).
The findings of our solutions in this manuscript clearly show
that they meet the necessary requirements for pressure pro-
files, as shown in Figs. 3 and 4. Nevertheless, the positive and
negative behaviors of equation of state (EoS) are employed
to determine the matter composition of a stellar body and
whether it is made up of normal or dark matter. The behavior
of EoS for a normal matter distribution should be positive
and lie between 0 and 1 (like 0 < wr , wt < 1). Otherwise,
the matter composition is considered exotic if this criterion
is not satisfied. The expression for EoS is,

Fig. 3 Shows the radial pressure profiles of stars (pr in [km−2] vs.
radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

Fig. 4 Shows the tangential pressure profile of stars (pt in [km−2] vs.
radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

wr = pr
ρ

and wt = pt
ρ

. (38)

The behavior of graphs, as shown in Figs. 5 and 6, reflects the
real distribution of matter. On the other hand, gradients pro-
files dρ

dr
dpr
dr

dpt
dr should be rising negatively starting at zero

and moving toward the center such as dρ
dr |r=0 = dpr

dr |r=0 =
dpt
dr |r=0 = 0, otherwise dρ

dr ,
dpr
dr ,

dpt
dr < 0 in the entire matter

distribution. Figures 6, 7, 8 and 9 displays the graphs of gra-
dient profiles. The behavior of pt is somewhat different since
it propagates into negative behavior after starting at zero in
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Fig. 5 Shows the radial component of EoS of stars ( pr
ρ

dimensionless
vs. radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

Fig. 6 Shows the tangential component of EoS of stars ( pt
ρ

dimen-
sionless vs. radial coordinate, r in [km]), with η = 3 (Solid),
η = 5 (Dotted), and η = 20 (Dashed)

the center and showing positive values near the center (for
some values of η).

4.2 Physical behavior of anisotropic profiles

By neutralizing the effect of gradients on the stellar system,
anisotropy balancing is maintained. In this context, a positive
anisotropic factor (� = pt − pr where pt > pr ) acts as a
repulsion force that balances the gradient attraction force
and improves the system’s equilibrium and stability. Also,
� → 0 when r → 0 i.e., at the stellar body’s center, when
pt and pr are both equal and hence the anisotropy is zero.

Fig. 7 Shows the gradient component of stars ( dρdr in [km−2] vs. radial
coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

Fig. 8 Shows the gradient component of stars ( dprdr in [km−2] vs. radial
coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

Consequently, this phenomena allows for a more massive
and compact formation. The graph of anisotropy in Fig. 10 is
regular and increasing. It is evident that in our solutions for
compact stellar systems, anisotropy propagates from negative
to positive for one value of η = 3 (Solid).

4.3 Physical behavior of energy conditions profiles

The behavior of energy constraints also ensures a physically
plausible distribution. The stellar energy must be distributed
evenly throughout the stellar mass and may admit some
inequalities, which are famously known as Strong Energy
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Fig. 9 Shows the gradient component of stars ( dptdr in [km−2] vs. radial
coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

Fig. 10 Shows the anisotropic profile of stars (� in [km−2] vs. radial
coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

Conditions (SEC), Null Energy Conditions (NEC), Weak
Energy Conditions (WEC), and Dominant Energy Condi-
tions (DEC) as seen below in the relations,

SEC : ρ + pγ ≥ 0, ρ + pr + 2pt ≥ 0, (39)

WEC : ρ ≥ 0, ρ + pγ ≥ 0, (40)

NEC : ρ + pγ ≥ 0, (41)

DEC : ρ > |pγ |. (42)

Figures 11, 12 and 13 shows the graphs of positive energy
constraints in our stellar system.

Fig. 11 Shows the energy limit profile of stars (ρ − pr in [km−2] vs.
radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

Fig. 12 Shows the energy limit profile of stars (ρ − pt in [km−2] vs.
radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

4.4 Stability analysis via causality conditions and adiabatic
index

The sound speeds v2
sr and v2

st are crucial indicators of the
system’s stability. The following expressions represent sound
speeds in mathematical form,

v2
r = dpr

dρ
and v2

t = dpt
dρ

. (43)

The region for stability v2
r > v2

t was specified by Abreu et al.
[72], where there is no change of sign is observed in v2

r −v2
t .

Andréasson [73] then floated the concept of no cracking and
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Fig. 13 Shows the energy limit profile of stars (ρ+ pr +2pt in [km−2]
vs. radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

Fig. 14 Shows the velocity of sound profile of stars (v2
r in [km−2] vs.

radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

stability region to present a more generalized form of this
requirement as 0 < |v2

t − v2
r | < 1. The results of our stellar

system are shown in Figs. 14, 15 and 16. For some values of
η, our results in the center and very close to the center break
the stability conditions followed by v2

t . For all circumstances,
the Abreu and Andréasson limits for stability are followed a
little away from the center.

We keep focusing on the stability of our anisotropic stel-
lar models generated by an embedding class one approach in
Rastall’s teleparallel gravity. But this time, we do it employ-
ing the adiabatic index, which was first derived for isotropic
pressure gradients by Chandrasekhar [76,77].

Fig. 15 Shows the velocity of sound profile of stars (v2
t in [km−2] vs.

radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

Fig. 16 Shows the casuality condition profile of stars (v2
t − v2

r and
v2
r −v2

t in [km−2] vs. radial coordinate, r in [km]), with η = 3 (Solid),
η = 5 (Dotted), and η = 20 (Dashed)

Adiabatic index is a crucial factor for indicating the sys-
tem’s stability. The adiabatic index predicts the solidity of
the compact objects as a crucial component in the case study
of spherically symmetric space-time. According to literature
[78], the adiabatic index limit is � > 4

3 . If this limit of the
adiabatic index inside the star’s radius is met, the stellar com-
position is stable. The expression represents the adiabatic
index � in its mathematical form,

� ≡ �r = pr + ρ

pr
v2
r . (44)
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Fig. 17 Shows the forces profile of stars (Fi in [km−2] vs. radial
coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

Fig. 18 Shows the adiabatic index profile of stars (�r vs. radial coor-
dinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

It is clear from Fig. 18 that the adiabatic index profile’s sta-
bility and solidity limit are admissible in our case study of
stellar systems.

4.5 Physical behavior of Tolman–Oppenheimer–Volkoff
equilibrium

We provide the well-known Tolman–Oppenheimer–Volkoff
(TOV) equation, which has been indicated as an equilibrium
criteria for stellar systems [74,75]. Their modified version
for Rastall’s teleparallel gravity is turns out to be,

dpr
dr

+ ν
′
(ρ + pr )

2
− 2(pt − pr )

r

− λ

4λ − 1

(
dρ

dr
− dpr

dr
− dpt

dr

)
= 0, (45)

Fg + Fh + Fa + Fr = 0, (46)

where

Fg = −ν
′
(ρ + pr )

2
, (47)

Fh = −dpr
dr

, (48)

Fa = 2(pt − pr )

r
, (49)

Fr = λ

4λ − 1

(
dρ

dr
− dpr

dr
− dpt

dr

)
. (50)

These forces (Fg, Fh, Fa and Fr ) balance each other to
maintain the stellar body in equilibrium. The system is kept
from collapsing to a point singularity by the balancing effect
of TOV forces. The graphs of these regular and balanced
forces are shown in Fig. 17.

4.6 Physical behavior of mass function, redshift and
compactification profiles

The mass-to-radius ratio m(R)
R and its relationship to the stel-

lar system’s degree of compactification are both described.
The mass function m(R) utilized in this ratio can be calcu-
lated using the formula,

m(R) = 4π

∫
r2ρdr. (51)

The compactness degree u is specified by the mass function
m(R) in Eq. (51), which is then employed to compute the
redshift function zs .

u = m(R)

R
, (52)

zs = (1 − 2u)−
1
2 − 1. (53)

The aforementioned characteristics must satisfy some crite-
rion available in literature on the study of compact objects. In
the research [79], the peak value for the compactness factor
was proposed as u = m(R)

R < 4
9 for isotropic matter. Further

this limit was generalized by Andréasson [73] for anisotropic
matter. The maximum value for the redshift, according to
Buchdhal’s findings [80], is zs ≤ 4.77. The graphed mass
function in Fig. 19 predicts a regular and smooth behavior
that is very similar to the original masses of the stars selected
for this current study. The compactness and redshift param-
eter graphs shown in Figs. 20 and 21 are both regular and
perfectly meet the specified requirements.
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Fig. 19 Shows the mass function profile of stars, (m(r) in [M
] vs.
radial coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted),
and η = 20 (Dashed)

Fig. 20 Shows the compactification profile of stars (u(r) vs. radial
coordinate, r in [km]), with η = 3 (Solid), η = 5 (Dotted), and
η = 20 (Dashed)

5 Concluding remarks

In this study, we have successfully investigated a new
anisotropic solution for compact stellar configurations hav-
ing observed mass and radius under the influence of Rastall
Teleparallel gravity. For this purpose, we explore the key
components of spherically symmetric metric space, using the
embedding class one spacetime paradigm with Karmarkar’s
condition. Following that, we evaluated the unknown con-
stants using well-known junction conditions taking
Schwarzschild space-time as the exterior geometry. The
major objective of our research is to construct a new real-

Fig. 21 Shows the redshift profile of stars (z(r) vs. radial coordinate, r
in [km]), with η = 3 (Solid), η = 5 (Dotted), and η = 20 (Dashed)

istic family of Rastall Teleparallel gravity solutions in the
presence of anisotropic fluid. It is interesting to mention that
the parameter η has an important role in the current study.
We have checked the effect of η for larger values like η = 20
and found that the small values of η affect the results and
larger values of η have a minor effect on our investigations.
So, we limited ourselves to the small values of η like η = 3,
η = 5, and η = 20. The relevant findings are presented here.

Firstly, as can be shown in Fig. 1, the behavioral response
of the metric potentials is regular, positive, and in accor-
dance with the principles of the embedding class one space-
time paradigm with Karmarkar’s condition. Secondly, the
behavioral propagation of energy density ρ is positive, regu-
lar, and smoothly declines from maximum to minimum from
center to the boundary as shown in Fig. 2. Similarly, pres-
sure profiles are also positive and regular as shown in Figs. 3
and 4 such that pt > pr and pr → 0 as r → 0. Mean-
while, as shown in Figs. 5 and 6, pr

ρ
and pr

ρ
are regular,

positive and express the essence of real matter by admitting
0 ≤ pr

ρ
,
pr
ρ

< 1 as shown in Figs. 5 and 6. However, gradi-

ents profiles ρ
dr ,

pr
dr and pt

dr are also regular and negatively
propagating as can be seen in Figs. 7, 8 and 9. But pt

dr violates
the condition pt

dr ≤ 0 for some values of η, detail is given
in Table 2. Furthermore, anisotropy is positive and regular,
with an increasing trend along the radius r , indicating the
stellar system’s equilibrium. But, for for η = 3, anisotropy
violates the principle by propagating from negative to pos-
itive, as seen in Fig. 10. According to Figs. 11, 12 and 13,
the energy conditions are justified and represent the realistic
matter distribution.

A stability analysis using adiabatic index and superlumi-
nal speeds reveals that the eventual models are stable. On
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the one hand, sound speeds v2
t and v2

r are well within limits,
indicating the system’s general stability. But near the center
v2
t violates the stability criteria for some values of η as shown

in Table 2, before returning to the stability seen in Figs. 14
and 15. Stability by cracking concept limit is also supported,
as graphed in Fig. 16. On the other hand, the plot in Fig.
18 shows that the adiabatic index, which follows the con-
straint �r > 4

3 , predicts that our system of stellar objects is
solid, anisotropic and completely stable. Additionally, TOV
forces are balanced, ensuring the stellar system’s equilibrium
as shown by Fig. 17. As observed in Figs. 19, 20 and 21, the
graphic behavior of the mass function, compactification, and
redshift function is regular and appropriate.

We have shown a comparative and interesting result with
the one announced by Nashed and El Hanafy [84] in the
Rastall theory of gravity. Further studies by Nashed and El
Hanafy [84] provide a non-trivial class of anisotropic com-
pact stellar models and reveal that the matter-geometry cou-
pling in Rastall gravity allows a size slightly smaller than GR
for a given mass. They showed that the mass of candidate
stellar configurations increases with progressively increas-
ing values of the surface densities and reached the maximum
possible mass with stable configurations using strong energy
condition (SEC) to set an upper limit on the compactness
u ≈ 0.603 (where the Rastall parameter goes to −0.1) less
than Buchdahl compactness u = 8/9, which in our study is
a captivating case because of the increasing estimates of the
parameter η. Interestingly, Nashed and El Hanafy [84] found
that in the context of Rastall gravity, the values of the physi-
cal quantity zs decrease accordingly as the Rastall parameter
moves away from the GR, while in our case we find the same
behavior in the context of Rastall teleparallel gravity, as the
values of η increase, the values of the physical quantity zs
gradually decrease. It is therefore easy to compare the effects
of Rastall gravity and Rastall teleparallel gravity by studying
the physical quantity known as the redshift of the surface of
compact stellar systems.

Finally, by getting witnessed from the foregoing argu-
ments and also from the summarized results in Table 2 that
our estimated results are, on the whole, acceptable, intrigu-
ing, and suitable for use in future research.
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