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Critical point influenced by Bose-Einstein condensation
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A system of bosons studied within the mean-field framework has two fascinating phenomena: a liquid-gas
first order phase transition and Bose-Einstein condensation. Interplay between these two phenomena is being
investigated. Depending on the mean-field potential parameters one can observe two types of critical points,
called “Boltzmann” and “Bose,” that belong to different universality classes with distinct sets of critical
exponents. As examples of Bose and Boltzmann CPs pion and α matter are considered, respectively. In general,
the phase diagram can have one of the CPs or both of them.
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I. INTRODUCTION

When both attractive and repulsive interactions are present,
systems of classical particles demonstrate a liquid-gas first-
order phase transition (FOPT); see, e.g., Ref. [1]. This
transition ends with a critical point (CP) at temperature T =
Tc where different thermodynamic quantities show abnormal
behavior specific for a second-order phase transition. The
concept of critical exponents splits a great diversity of CP
phenomena into several universality classes with the same
critical exponents (see, e.g., Ref. [2]).

Bose-Einstein condensation (BEC) in an ideal gas of
bosons was predicted many years ago [3,4] and experimen-
tally confirmed for cold atomic gases in magnetic traps [5–8].
The theory of the BEC phenomenon for interacting particles
has been extensively discussed [9–13]. In particular, modifica-
tions of the line of onset of the BEC (further referred to as the
BEC line) due to the small repulsive interactions between par-
ticles were discussed [14–19]. Connections between the BEC
and percolation phenomena are pointed out in Refs. [20–22].

BEC phenomena have been studied in condensed matter
physics, nuclear physics, astrophysics, and cosmology (see,
e.g., Refs. [23–32]). In most cases, particle interactions need
to be taken into account. If the attractive and repulsive forces
are present, then both phenomena—the BEC and a liquid-gas
FOPT with a CP—are simultaneously expected in systems of
interacting bosons. An important property of the CP is in-
finitely high particle number fluctuations (see Refs. [33,34]).
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Some special features of the mixed liquid-gas phase within the
van der Waals model were discussed in Refs. [35] and [36].

The phase diagram of strongly interacting matter is one of
the most important problems in physics. A liquid-gas FOPT
with formation of the Bose condensate (BC) in the liquid
phase at T < Tc was considered for interacting α particles
in Ref. [23] and for interacting pions in Refs. [37] and [38].
It was also pointed out [39–41] that the CP temperature Tc

of classical Boltzmann particles increases due to the Bose
statistics while the Fermi statistics leads to the decrease of
Tc. The CP location changes a by few percent due to the
small quantum correction in α matter. On the other hand, in
the system of interacting pions the location of a CP found
in Refs. [37] and [38] lies just on the BEC line. Thus, much
stronger Bose effects are expected in the case of pions.

In the present paper we investigate the phase diagram of
interacting Bose particles within the mean-field model. The
strength of the quantum statistics effects in the vicinity of a CP
depends on the value of the system parameters. By changing
these parameters we find two qualitatively different scenarios
for CP properties, which are denoted as the Boltzmann and
Bose CPs. The critical exponents for these CPs belong to
different universality classes. For a special region of model
parameters, a double phase transition with simultaneous pres-
ence of the two CPs (Boltzmann and Bose) becomes possible.
We find that relativistic effects appear to be crucially impor-
tant for these double phase transitions.

The paper is organized as follows. The mean-field model
results are presented in Sec. II. This section includes the
ground state properties, Boltzmann approximation, and ef-
fects of the Bose statistics. In Sec. III the Boltzmann CP
and Bose CP are defined. The particle number fluctuations
and the critical exponents are calculated for the Bose CP
and compared to those for the Boltzmann CP. Scenarios with
double phase transitions are considered in Sec. IV. Summary
in Sec. V closes the paper.
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II. MEAN-FIELD MODEL

The statistical system in the thermodynamic limit is de-
fined in the grand canonical ensemble in terms of the pressure
p as a function of temperature T and chemical potential μ. All
thermodynamic functions can then be found from the pressure
function using thermodynamic identities. The particle number
density n, entropy density s, and energy density ε are equal to

n ≡
(

∂ p

∂μ

)
T

, s =
(

∂ p

∂T

)
μ

, ε = T s + μn − p. (1)

For the ideal Bose gas one finds

pid (T, μ) = g

6π2

∫ ∞

0
fk (T, μ)

k4dk√
k2 + m2

, (2)

nid (T, μ) ≡
(

∂ pid

∂μ

)
T

= g

2π2

∫ ∞

0
fk (T, μ)k2dk, (3)

fk (T, μ) =
[

exp

(√
k2 + m2 − μ

T

)
− 1

]−1

, (4)

where m and g are the particle mass and degeneracy factor,
respectively.1

In relativistic systems the chemical potential μ regulates
the conserved charge, i.e., the number of particles minus
the number of antiparticles. The thermodynamic functions
of antiparticles correspond to a substitution of μ → − μ.
In what follows we are mostly interested in the region of
large chemical potentials, μ/T > 1. Thus, a contribution from
antiparticles to the system thermodynamics can be neglected.
The number of particles plays then the role of the conserved
charge. To have closed form expressions we also often exploit
the validity of the nonrelativistic approximation

√
k2 + m2 ∼=

m + k2/(2m), accurate for T/m � 1.
The mean-field model of interacting bosons is given by the

following set of self-consistent equations (see, e.g., Ref. [42]):

p(T, μ) = pid (T, μ∗) +
∫ n

0

dU

dn′ n′dn′, (5)

n(T, μ) = nid (T, μ∗) + nBC, (6)

μ∗ = μ − U (n), (7)

where the density dependent mean-field potential U will be
taken in the simple form

U (n) = −An + Bn2, A > 0, B > 0. (8)

The constants A and B correspond to the attractive and re-
pulsive interactions, respectively. The quantity nBC � 0 in
Eq. (6) is the density of the BC. It corresponds to particles
at the zero-momentum state k = 0. Nonzero values nBC > 0
can only appear at μ∗ = m. Note that values of μ∗ > m are
forbidden as they lead to negative values of particle numbers
fk at small k. The relation

μ∗(T, n) = m − 0 (9)

1We use units with h̄ = c = 1.

defines the BEC line in the (n, T ) plane. At this line, one
still has nBC = 0, and it corresponds to an onset of the BE
condensation.

A. Ground state at T = 0

At T → 0 the thermal pressure (2) and particle number
density (3) go to zero, so the system can only exist in a form
of the BC. The condition of the BEC, μ∗ = m, can be then
rewritten as

Bn2
BC − AnBC − (μ − m) = 0. (10)

This yields the BC density nBC as a function of the chemical
potential μ:

nBC(T = 0, μ) = A +
√

A2 + 4B(μ − m)

2B
. (11)

At T = 0 and

μ < μ0 = m − 3A2

16B
(12)

the stable thermodynamic solution corresponds to nBC = 0
and p = 0, and at μ � μ0 the pressure behaves as

p = −An2
BC

2
+ 2Bn3

BC

3
� 0. (13)

The first-order phase transition for T = 0 takes place at μ =
μ0 (see, e.g., Ref. [38]) with jumps of n and ε from their zero
values to

nBC(T = 0, μ = μ0) = 3A

4B
, (14)

ε(T = 0, μ = μ0) = μ0nBC = 3A

4B

(
m − 3A2

16B

)
. (15)

The quantities (14) and (15) are referred as the ground state
values of the considered system. Note that at all values of μ

they are in agreement with the third law of thermodynamics.

B. Boltzmann approximation

The Boltzmann approximation corresponds to a change of
the fk function (4) to

fk (T, μ) = exp

(
−

√
k2 + m2 − μ

T

)
. (16)

The system pressure in the mean-field model in then reduced
to a simple analytical form [43,44], namely

p(T, n) = T n − An2

2
+ 2Bn3

3
. (17)

The classical equation of state (17) depends on the interaction
parameters A and B, but is insensitive to the particle mass m
and degeneracy factor g. The statistical system exhibits the
liquid-gas FOPT with a CP defined by the following condi-
tions: (

∂ p

∂n

)
T

= 0,

(
∂2 p

∂n2

)
T

= 0. (18)
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FIG. 1. (a) Phase diagram of the mean-field model in the (n, P) plane within the Boltzmann approximation. Solid lines correspond to the
stable parts of the pressure isotherms while dashed and dotted lines show their metastable and unstable parts, respectively. (b) Same phase
diagram in the (n, T ) plane.

From Eqs. (17) and (18) one finds CP parameters

T 0
c = A2

8B
, n0

c = A

4B
, p0

c = A3

96B2
. (19)

In the reduced variables T̃ = T/T 0
c , ñ = n/n0

c , and p̃ = p/p0
c,

Eq. (17) takes a universal form,

p̃ = 3T̃ ñ − 3ñ2 + ñ3, (20)

independent of the parameters A and B.
Figure 1 demonstrates several pressure isotherms p̃ = p̃(ñ)

at T̃ � 1. These isotherms include the metastable and unstable
parts denoted in Fig. 1(a) by dashed and dotted lines, respec-
tively. A region of the unstable isotherms with ∂ p̃(ñ, T̃ )/∂ ñ <

0 shown with grey color in Fig. 1 is restricted by the left and
right spinodals, where ∂ p̃(ñ, T )/∂ ñ = 0. In the (ñ, T̃ ) regions
with ∂ p̃(ñ, T̃ )/∂ ñ < 0 the system cannot exist in the homoge-
neous state. Instead, it behaves as an inhomogeneous mixture
of the gas and liquid with particle number densities ng and nl,
respectively. According to the Gibbs criteria these two phases
should have the same temperatures, chemical potentials, and
pressures. A region occupied by the liquid-gas mixed phase
is restricted by the left (gaseous) and right (liquid) binodals
with particle number densities ng and nl, respectively. These
binodals are shown by the blue solid lines in Fig. 1(b). The
pressure isotherms inside the mixed phase shown by the hor-
izontal solid lines in Fig. 1(a) are obtained from the Gibbs
conditions or, equivalently, with the Maxwell construction of
equal areas [1].

Critical exponents define the behavior of the thermody-
namic function in the vicinity of a CP. The critical exponents
α, β, γ , and δ are defined as

(
∂ε

∂T

)∣∣∣∣
n=nc

∼ |Tc − T |−α, (21)

nl − ng ∼ (Tc − T )β, (22)[(
∂ p

∂n

)
T

]−1

n=nc

∼ |Tc − T |−γ , (23)

(p − pc)|T =Tc
∼ |n − nc|δ sgn(n − nc). (24)

In the Boltzmann approximation (17) one can easily find the
following critical exponents in the mean-field model:

α = 0, β = 1
2 , γ = 1, δ = 3. (25)

In the present paper we use the Skyrme-like mean-field poten-
tial U (n) (8). Its simple form makes possible straightforward
analytical calculations for the first order liquid-gas phase
transition with the end CP for classical particles, i.e., in the
absence of the Bose statistics. The CP in the Boltzmann ap-
proximation with its critical exponents (25) belongs to the
universality class of the socalled classical models (or the
van der Waals type models). This approach gives, however,
only an approximate description of the liquid-gas CP in real
systems. A more realistic description of the CP phenomena
based on the renormalization group methods can be found in
[45] and references therein.

The Boltzmann approximation is not valid at very low
temperatures T → 0 and finite particle number density n. The
Boltzmann gas entropy s = s(T, n) in this limit becomes neg-
ative, in contradiction with the third law of thermodynamics.
Thus the quantum statistics is needed to describe correctly the
ground state properties of the system at T = 0.

C. Effects of Bose statistics

The thermodynamic properties within considered mean-
field model depend on four parameters: A, B, m, and g. The
strength of the Bose effects in a vicinity of a CP depends on
the system parameters. We consider first the small quantum
statistics corrections (see Refs. [39,40]). The pressure (5) and
particle number density (6) can be presented as

p = αT
∞∑

k=1

K2

(
km

T

)
exp(kμ∗/T )

k2
− An2

2
+ 2Bn3

3
, (26)

n = α

∞∑
k=1

K2

(
km

T

)
exp(kμ∗/T )

k
+ nBC, (27)

where α ≡ gT m2/(2π2) and K2 is the modified Bessel func-
tion. The BEC line (9) obtained from (27) at μ∗ → m − 0 and
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nBC = 0 reads

n = α

∞∑
k=1

K2

(
km

T

)
exp

(
km

T

)
. (28)

Note that in the mean-field model this line in the (n, T ) plane
is identical to that in the ideal Bose gas. At low temperatures
T � m, one can use the nonrelativistic approximation, i.e.,
K2(x) ≈ [π/(2x)]1/2 exp(−x), at x � 1. It leads to the well
known textbook expression for the BEC line [1]:

TBC = 2π

m

(
n

gζ (3/2)

)2/3

,
TBC

m
� 1. (29)

In the ultrarelativistic limit T/m � 1, one uses K2(x) ≈ 2/x2

at x � 1 and finds [25]

TBC =
[

π2n

gζ (3)

]1/3

,
TBC

m
� 1. (30)

In Eqs. (29) and (30), ζ (l ) is the Riemann zeta function;
ζ (3/2) ≈ 2.6 and ζ (3) ≈ 1.2.

In the nonrelativistic limit and z ≡ exp[(μ∗ − m)/T ] � 1,
one finds

p ≈ gT
(mT

2π

)3/2[
z + z2

25/2

]
− An2

2
+ 2Bn3

3
, (31)

n ≈ g
(mT

2π

)3/2[
z + z2

23/2

]
. (32)

The Boltzmann approximation corresponds to z → 0 when
only the first terms k = 1 contribute to power series in
Eqs. (26) and (27).

Taking into account the next k = 2 terms, one obtains
Eqs. (31) and (32) with corrections due to the Bose statistics
that remain small at z � 1. By inverting n(z) to z = z(n) in
Eq. (32) and substituting it into (31) one finds the pressure
function

p(T, n) ≈ T n −
(A

2
+ γ T −1/2

)
n2 + 2B

3
n3, (33)

where γ ≡ π3/2(2gm3/2)−1.
The additional n2 term in the pressure (33) in comparison

to its Boltzmann approximation (17) comes from the (small)
effects of the Bose statistics. It corresponds effectively to an
increase of the attractive interactions. Thus, one expects an
increase of the CP parameters n0

c ∼ A and T 0
c ∼ A2. Indeed,

Eqs. (18) for the pressure function (33) read

T − (A + 2γ T −1/2)n + 2Bn2 = 0, (34)

−(A + 2γ T −1/2) + 4Bn = 0. (35)

Solving the system of Eqs. (34) and (35) for the CP parame-
ters, one obtains

n1
c = n0

c

2
(1 + √

1 + 4σ ) ≈ n0
c (1 + σ ), (36)

T 1
c = 2B

(
n1

c

)2 ≈ T 0
c (1 + 2σ ), (37)

where

σ ≡ (2π )3/2 B1/2

A2
g−1m−3/2 ≡ (2π )3/2 B̃1/2

Ã2
, (38)

TABLE I. Results for the CP parameters for α matter: m = 3.73
GeV, g = 1, A = 1.35 GeV fm3, and B = 28 GeV fm6.

T 0
c (MeV) n0

c (fm−3) T 1
c n1

c Tc nc σ

8.0 0.012 8.8 0.0126 8.9 0.013 0.049

with the dimensionless parameters

Ã ≡ gm2 A, B̃ ≡ g2m5 B. (39)

Note that Eqs. (36) and (37) are numerically accurate at small
σ � 1.

Equations (36) and (37) demonstrate an increase of n1
c and

T 1
c in comparison with their n0

c and T 0
c values obtained within

the Boltzmann approximation. The size of these Bose effects
is regulated by a single parameter σ (38). This parameter
increases with the repulsive interactions, σ ∼ B1/2, and de-
creases with A, g, and m as σ ∼ A−2g−1m−3/2.

To illustrate the role of Bose effects, two examples will
be discussed. The first example concerns a system of inter-
acting α particles (g = 1, m = mα = 3727 MeV). Following
Ref. [23] we fix the ground state properties of α matter as

n0 = 3A

4B
= 0.036 fm−3, W0 = 3A2

16B
= 12 MeV. (40)

From Eq. (40) one finds A ∼= 1.35 GeV fm3 and B ∼= 28 GeV
fm6. This leads to the CP parameters presented in Table I.

The phase diagram of α matter is shown in Fig. 2(a) in
terms of the variables ñ = n/n0

c and T̃ = T/T 0
c . One observes

rather small Bose effects near the CP (σ ≈ 0.049 � 1).
Within the reduced variables ñ and T̃ the phase diagram is

defined in terms of the single parameter σ � 1. As seen from
Table I, the values of n1

c and T 1
c obtained in Eqs. (36) and (37)

give good approximations to their exact values nc and Tc.
Our second example corresponds to interacting pion matter

(g = 1, m = mπ = 140 MeV). We take A = 19.6 MeV fm3

and B = 1426 MeV fm6 obtained in Ref. [38] from fitting the
lattice data for pion Bose condensate at T = 0 as a function
of electric chemical potential. The results for Tc and nc values
are presented in Table II, and the (n, T ) phase diagram is
shown in Fig. 2(b). In contrast to α matter, the effects of Bose
statistics for pions are very large. One finds σ � 1 and thus
Tc/T 0

c � 1. Approximations (36) and (37) lose their validity
at large σ � 1, and thus the n1

c and T 1
c values have no physical

meaning. The BEC line goes through the CP in pion matter,
as seen in Fig. 2(b). One finds a limiting value of the critical
particle number density,

nlim
c = A

2B
= 2n0

c , (41)

TABLE II. Results for the CP parameters for pion matter: m =
0.14 GeV, g = 1, A = 0.0196 GeV fm3, and B = 1.426 GeV fm6

T 0
c (MeV) n0

c (fm−3) Tc nc σ

0.034 0.0035 29.2 0.007 7 × 103
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FIG. 2. The phase diagram of α matter (a) and pion matter (b) in terms of the reduced variables n/n0
c and Tc/T 0

c . Dashed lines present the
BEC lines and solid lines are the gaseous and liquid binodals. The Boltzmann CP and Bose CP are shown by yellow and blue stars, respectively,
the triple point is shown by an open circle, and red stars correspond to the CP in the Boltzmann approximation.

that is exactly two times larger than n0
c obtained in the Boltz-

mann approximation. Note that the ground state BC density
given by Eq. (14) equals n0

BC = 3n0
c . The limiting critical den-

sity nlim
c (41) corresponds to the n value where dU/dn = 0,

and it is independent of parameters m and g.
On the other hand, the Tc value at nc = nlim

c is still depen-
dent on m and g. One finds

Tc = TBC ≈ 2π

m

[
nlim

c

gζ (3/2)

]2/3

, T/m � 1. (42)

Interacting α matter and pion matter are considered within
the same mean-field model. We are interested in possible
changes of the system parameters A, B, m, and g in both
systems. Our goal is to study an interplay between the in-
teraction parameters A and B, and the Bose statistics effects
that are also sensitive to the particle mass m and degeneracy
factor g. In Ref. [23] the mean-field potential U (n) for α

matter was considered as a function of three parameters: a,
n0, and γ . In the present study we use a particular case of
that potential with γ = 1, n0 = 3A/(4B), and a = A/2. This
simplifies the model consideration and both α matter and pion
matter are considered within the same model. Note also that
pure α matter is not a realistic system. A minimal extension of
this model would require one to add the interacting nucleons
and some light nuclei like d , t , etc. The presence of these
additional particles in the nuclear mixture can strongly affect
the α particles [46]. We do not insist on the existence of pure
α matter in nature. The pure α matter in our consideration is
only a useful and well studied toy model example to illustrate
a limiting case of the Boltzmann-like CP.

III. BOLTZMANN AND BOSE CP REGIMES

The CPs shown in Figs. 2(a) and 2(b) correspond to two
limiting cases of small and large effects of quantum statistics.
In what follows we denote these two scenarios as the Boltz-
mann CP and Bose CP, respectively. The reduced variables
n/n0

c and T/T 0
c appear to be rather useful for the analysis.

As discussed in Appendix A all possible sets of the model
parameters A, B, m, and g can be combined to the two-

dimensionless parameters Ã and B̃ (39) which define the type
of the CP.

In the nonrelativistic approximation this is further simpli-
fied to a dependence on the single dimensionless parameter σ

(38). At fixed A and B the value of σ remains a function of m
and g. One can lead the pion system to a region of small values
of σ by artificially increasing the pion values of m and/or g
with fixed A and B values for pions. Similarly one can lead
the α system to a region of large values of σ by artificially
decreasing the m value of α with fixed A and B values for α

matter. These procedures will move the system parameters for
pions and α particles between the regions of small and large
values of σ .

The phase boundaries and their CPs for different sets of
model parameters obtained by changing the m and g values
for pion and α matter are presented for several values of σ in
Fig. 3(a). The σ value works as a single universal parameter.
A common feature for these physical systems is a validity
of the nonrelativistic approximation, i.e., Tc/m � 1 in all
these cases. A transition between Boltzmann CP and Bose CP
regimes takes place at σ = σcr

∼= 1.62. This is discussed in
Appendix B.

In Figs. 2(a) and 3(a) the open circles denote triple points,
namely the points of intersections of the BEC line with the
liquid binodals at Ttr < Tc. The liquid component of the mixed
phase at T < Ttr includes the BC, nBC > 0, which affects
part of the liquid binodal. In Ref. [47] a notion of “binodal
anomaly” was introduced to indicate a special form of liquid
binodal. It is a result of the influence of the Bose statistics
effects. This corresponds to Ttr < Tc in our notation, in a case
when the CP is still the Boltzmann type one. This corresponds
to in our notation when the CP is still the Boltzmann type one.
When Ttr = Tc the BEC affects the whole liquid binodal. In
addition, this has anomalous influence to the end point of the
binodal: the Boltzmann CP is transformed to the Bose CP.

In Fig. 3(b) the plane of the parameters Ã and B̃ is pre-
sented. The solid red line of σcr

∼= 1.62 defines the boundary
between the Boltzmann and Bose regimes. It is calculated
in the nonrelativistic approximation. The original sets of the
π and α parameters are shown in the (Ã, B̃) plane by the
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FIG. 3. (a) Phase diagrams at different values of the parameter σ . (b) The (Ã, B̃) diagram calculated in the nonrelativistic approximation.
The red solid line shows the boundary σcr = 1.62 between two regimes (see Appendix B). Pion matter and α matter are indicated with symbols
π and α. Dotted lines with arrows illustrate pion matter with increasing m and g values, and α matter with decreasing m value.

corresponding symbols in Fig. 3(b). The dotted lines in
Fig. 3(b) illustrate the changes of the pion system parameters
by increasing m or g and the changes of the α system param-
eters by decreasing m. For the pion and α matter parameters
A and B the transitions between the Boltzmann and Bose CPs
at σ ∼= 1.62 take place at Tc/m � 1, thus the nonrelativistic
approximation is valid.

A. Fluctuations

The particle number N fluctuates in the grand canonical en-
semble. These fluctuations can be characterized by the scaled
variance

ω ≡ 〈N2〉 − 〈N〉2

〈N〉 = T

[
∂ p(T, n)

∂n

]−1

T

= ωid (T, μ∗)

[
1 + n

T

dU

dn
ωid(T, μ∗)

]−1

, (43)

where

ωid(T, μ∗) = T

n

(
∂n

∂μ∗

)
T

(44)

is the scaled variance for the ideal Bose gas.
In the Boltzmann approximation, it follows that ωid = 1,

and one obtains from (43) the simple analytical expression

ω0(T, n) =
[
1 + n

T
U ′(n)

]−1
=

[
1 − 2ñ − ñ2

T̃

]−1

. (45)

The gaseous and liquid spinodals in the Boltzmann approxi-
mation shown in Fig. 1 are defined by the equation[

∂ p̃

∂ ñ

]
= ñ2 − 2ñ + T̃ = 0. (46)

Therefore, along the spinodals ω0 = ∞, and ω0 < 0 in the
unstable (n, T ) region between spinodals.

As seen from Eq. (43), the infinite values of ω emerge in
the Boltzmann CP where

Tc

nc
= − dU

dn
ωid, (47)

i.e., this requires dU/dn < 0. In the Boltzmann CP at nc <

2n0
c the infinite values of ω appear due to the interplay be-

tween repulsive and attractive interactions between particles.
The presence of attractive interactions leads to dU/dn < 0 at
n = nc < 2n0

c . Equation (47) then leads to ω → ∞ at the CP
(nc, Tc). This mechanism does not require Bose statistics, and
it takes place already within the Boltzmann approximation,
i.e., for ωid = 1.

The infinite fluctuations in the Bose CP at nc = 2n0
c have a

different origin. On the BEC line one finds [25] ωid(T, μ∗ →
m − 0) → ∞ and therefore

ω = T

n

(
dU

dn

)−1

. (48)

The particle number fluctuations are infinite, ω = ∞, in the
Bose CP at nc = 2n0

c because of dU/dn = 0. At n > 2n0
c ,

dU/dn > 0, and Eq. (48) lead to finite values of ω on the
BEC line.

The scaled variances ω for α matter and pion matter are
shown in Figs. 4(a) and 4(b), respectively, on the (μ, T ) plane.
They give examples of the Boltzmann and Bose CPs. In both
cases, infinite values of the scaled variance appear at the CP.
However, the regions of large fluctuations look rather differ-
ent. For the Boltzmann CP shown in Fig. 4(a) the large values
of ω are localized in a narrow region of the (μ, T ) plane that
looks like a continuation of the FOPT line. The region with
the BEC does not generate large fluctuations. For the Bose
CP shown in Fig. 4(b) a region of large fluctuations is much
wider. It is localized under the BEC line and the FOPT line in
the vicinity of the Bose CP.

B. Critical exponents

The Bose CP corresponds to nc = 2n0
c and Tc = TBC(nc).

The heat capacity (21) in the considered mean-field model can
be calculated in terms of the ideal Bose gas quantities,(

∂ε

∂T

)
n=nc

∼= cid (T = Tc, μ
∗ = m) + c(Tc − T ), (49)

that corresponds to the critical exponent α = −1.
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FIG. 4. The scaled variance ω in the (μ/m, T ) plane for α matter (a) and pion matter (b).

At T < Tc the chemical and mechanical equilibrium be-
tween the gaseous phase with density ng and the liquid phase
with density nl are given by the Gibbs conditions:

μg = μl, p(T, ng) = p(T, nl ). (50)

Equation (50) can be rewritten as

m − μ∗ = U (ng) − U (nl ), (51)

pid (T, μ∗) − pid (T, m) =
∫ nl

ng

dn n dU/dn. (52)

Using

pid (T, μ∗) ∼= pid (T, m) + nid (T, m)(μ∗ − m) (53)

one finds at small values of δng = nc − ng and δnl = nl − nc

nl − ng ≡ δng + δnl ∼ (Tc − T ), (54)

that means β = 1. The details are presented in Appendix C.
In particular, an asymmetry between the gaseous and liquid
binodals with δng/δnl � 2 observed. This is different from the
properties of the Boltzmann CP where δng/δnl = 1.

Equation (23) at the Bose CP can be presented as[(
∂ p

∂n

)
T

]−1

n=nc

= ω

T
= ωid(T, μ∗ = m))

T
∼ |Tc − T |−1,

(55)

that corresponds to γ = 1, the same as in the Boltzmann CP.
In the vicinity of the CP at T = Tc and n → nc − 0, one

has μ∗ → m − 0 and finds (see also Ref. [25])

p(T, μ∗) ∼= pid (T, μ∗ = m) + nid (T, μ∗ = m) (m − μ∗)

+
∫ n

0
dn′n′ dU

dn′ = pc −
∫ nc

n
dn′n′ dU

dn′

+ nc (m − μ∗)

∼= pc +
(

B − 2π2

T 2
c g2m3

)
nc(n − nc)2. (56)

In the nonrelativistic regime when Tc/m � 1 the value of
Tc/T 0

c is a function of σ given by Eq. (B4). This leads to

p(Tc, n) ∼= pc +
[
1 −

( σ

σcr

)2/3]
Bnc(n − nc)2. (57)

Equation (57) corresponds to the Bose CP in the non-
relativistic approximation and, thus, it requires σ > σcr

∼=
1.62. In the vicinity of the CP at T = Tc and n → nc + 0, one
has μ∗ = m and finds

p(Tc, n) ∼= pc + Bnc(n − nc)2. (58)

Equations (57) and (58) reveal the critical exponent δ = 2 at
the Bose CP. Thus, in contrast to the Boltzmann CP, the value
of (∂2 p/∂n2)T =Tc at n = nc is not equal to zero. Instead, this
second derivative of the pressure has a discontinuity equal to
A(σ/σcr )2/3 at the Bose CP.

To summarize, the set of the critical exponents at the Bose
CP,

α = −1, β = 1, γ = 1, δ = 2 (59)

is different from that (25) at the Boltzmann CP. The set of
critical exponents (59) corresponds to a universality class of
ordinary percolation in 6+ dimensions and directed percola-
tion in 4+ dimensions (see Refs. [48–50]). Each set of the
critical exponents (25) and (59) satisfies the scaling relations:

2 − α = 2β + γ = β(δ + 1) = γ
δ + 1

δ − 1
. (60)

In the special case of σ = σcr both sets of the critical
exponents (25) and (59) are simultaneously realized. The
Boltzmann set (25) corresponds to n < nc = 2n0

c and the Bose
set (59) to n > nc = 2n0

c . This is a new feature of the critical
exponents. For this single value σ = σcr the CP keeps a mem-
ory of the Boltzmann-like behavior at n < nc and the Bose one
at n > nc.

IV. DOUBLE PHASE TRANSITIONS

Our discussion up to now in most cases assumes the
nonrelativistic approximation T 0

c /m � 1. If the relativistic
effects become important, another interesting possibility with
the two CPs emerges: the Boltzmann CP at nc < 2n0

c and
the Bose CP at nc = 2n0

c . Both conditions (47) and (48) are
then simultaneously satisfied, and at both CPs the particle
number fluctuations are singular with ω → ∞. For very large
attractive interactions such a possibility was observed at zero
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chemical potential in Ref. [51]. The double phase transitions
at μ > 0 will be discussed in this section.

Let us consider first the small Bose effects in the ultra-
relativistic limit m/T � 1. This permits us to obtain simple
analytical approximations. Taking into account only the k = 1
and k = 2 terms in the power series (26) and (27) one obtains
in the m/T � 1 limit

pid ≈ gT 4

π2

[
X + X 2

4

]
, n ≈ gT 3

π2

[
X + X 2

2

]
, (61)

where X = exp[μ∗/T ]. By inverting n(X ) to X = X (n) and
substituting it into pid (X ) one finds

pid ≈ T n − 3π2

4gT 2
n2, (62)

and then

p(T, n) ≈ T n −
(

A

2
+ �

T 2

)
n2 + 2B

3
n3. (63)

where � = 3π2/(4g). This is the ultrarelativistic analog of
nonrelativistic approximation (33). From Eq. (63) one finds
condition for the CP parameters

T − (A + 2�T −2)n + 2Bn2 = 0, (64)

−(A + 2�T −2) + 4Bn = 0. (65)

From Eqs. (64) and (65) one obtains approximate relations

n1
c ≈ n0

c (1 + κ ), T 1
c ≈ T 0

c (1 + 2κ ), (66)

valid at

κ = 96π2B̃2

Ã5
� 1,

m

T 0
c

� 1. (67)

With increasing κ the critical density nc reaches its limiting
value of nlim

c = 2n0
c , and the critical temperature behaves as

Tc = TBC ≈
[
π2nlim

c

gζ (3)

]1/3

. (68)

Let us denote by ntr the particle number density at the
triple point, i.e., the point of intersection of the BEC line
with a liquid binodal. This point is shown by an open circle
in Fig. 2(a). The values of nc and ntr satisfy the following
inequalities:

n0
c < nc � nlim = 2n0

c � ntr < 3n0
c . (69)

In the nonrelativistic approximation a transition to the
Bose CP takes place as a merger of the Boltzmann CP and
the triple point at n = 2n0

c that happens at σ = σcr
∼= 1.62

(see Appendix B). In a presence of the relativistic effects a
transition of the Boltzmann CP to the Bose CP takes place
through a double phase transition. This happens in a region
of the parameters Ã and B̃ noted as “double CP” in Fig. 5
and shown with yellow color. Several examples of the si-
multaneous presence of the two CPs are shown in Fig. 6. A
transition from the Boltzmann CP to the Bose CP has the
following general features seen in Fig. 6. First, the triple point
reaches the limiting density 2n0

c . Thus, both the Boltzmann CP
at n = nc < 2n0

c and the Bose CP at nc = 2n0
c simultaneously

FIG. 5. The relativistic (Ã, B̃) diagram in the mean-field model.
The region of the double CPs is shown by yellow color between the
Bose and Boltzmann regions. See text for details.

exist. Then the Boltzmann CP continues to move to larger nc

values, and finally disappears at nc < 2n0
c .

A big variety of the mutual arrangements of both CP tem-
peratures are found at different sets of the Ã and B̃ values. As
seen from Fig. 5, this (Ã, B̃) region is not far away from the
T 0

c = m line, i.e., a presence of the double CPs requires mod-
erate relativistic effects, and it is absent in both nonrelativistic
and ultrarelativistic limits.

The double phase transitions require a “quadruple point”
where the two phase transition lines in the (μ, T ) plane inter-
sect. This point at T = Tqd is shown as a full circle in Fig. 6(b)
where an example of a double phase transitions is presented in
the (μ, T ) phase diagram. The horizontal dotted line in Fig. 6
(b) corresponds a fixed temperature T that is larger than Tqd

and smaller than both Tc(Boltz) and Tc(Bose). With increasing
μ at fixed T the system moves right along the dotted line in
Fig. 6(b). Two consecutive phase transitions take place. The
first one is between the gaseous and liquid phases, where both
phases do not include the BC. The second transition takes
place between the liquid phase without the BC and the liquid
with the nonzero BC density nBC > 0.

Note that a contribution of antiparticles to the thermo-
dynamic functions is small in comparison with that from
particles at μ/T > 1. In the Boltzmann approximation one
finds for the CP values

μ0
c

T 0
c

= ln
[
4π2Ã−1K−1

2 (2B̃/Ã2)
] − 1. (70)

The line μ0
c/T 0

c = 1 is shown in the (Ã, B̃) diagram in Fig. 5
by a dashed line. From Fig. 5 one observes that both relations,
T 0

c ≈ m and μ0
c ≈ m, are approximately satisfied in the region

of the (Ã, B̃) parameters with the double CP.
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FIG. 6. (a) An example of the phase transitions with two CPs in the (n, T ) plane. It corresponds to Ã = 12.5 and B̃ = 60. The Boltzmann
CP corresponds to Ã = 8 and B̃ = 1.3, and the Bose CP to Ã = 9.7 and B̃ = 59. (b) The (μ, T ) plane with the double phase transition.
Yellow and blue stars correspond to the Boltzmann CP and Bose CP, respectively. A horizontal dotted line illustrates two serial transitions with
increasing μ at fixed T .

V. SUMMARY

Thermodynamic properties of interacting Bose particles
are studied with a relativistic mean-field model. The mean-
filed potential is chosen to be U (n) = −An + Bn2, where
A > 0 and B > 0 terms correspond to attractive and repulsion
interactions, respectively. The whole range of the system pa-
rameters (A, B, m, g) is considered. The CP temperature T 0

c
and particle number density n0

c in the Boltzmann approx-
imation are given by the functions (19) of the interaction
parameters A and B, and they are independent of the values
of m and g. The Bose effects are sensitive to the values of
m and g, and they lead to increase of the Tc and nc values in
comparison to their T 0

c and n0
c Boltzmann limits.

We found two different implementations of the CP, de-
noted as the Boltzmann CP and Bose CP, in the system
of interacting bosons. These two scenarios correspond to
small and large Bose effects, respectively. The diagram of
the dimensionless parameters (Ã, B̃) gives us a possibility
to study a diverse physical systems of Bose particles. The
interacting α particles and pions are presented as illustrative
examples of the Botzmann CP and Bose CP, respectively. The
Bose CP has the limiting density nc = 2n0

c and the BEC line
touches the Bose CP. The Boltzmann CP and Bose CP have
rather different properties. They have two different sets of
the critical exponents and, thus, belong to distinct universality
classes.

On the (Ã, B̃) diagram a special region of the system
parameters was found. In this region T 0

c ≈ m and μ0
c ≈

m corresponding to the double phase transitions with two
CPs: the Boltzmann CP at nc < 2n0

c and the Bose CP
at nc = 2n0

c .
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APPENDIX A: DIMENSIONAL ANALYSIS

Introducing dimensionless variables

T̂ = T

m
, μ̂∗ = μ∗

m
, n̂ = n

gm3
, p̂ = p

gm4
, (A1)

one can rewrite Eqs. (26) and (27) as the following functions:

p̂ = p̂(T̂ , μ̂∗; Ã, B̃), n̂ = n̂(T̂ , μ̂∗; Ã, B̃), (A2)

where Ã and B̃ are given by Eq. (39). Presenting μ̂∗ as
μ̂∗(T̂ , n̂; Ã, B̃), one obtains

p̂ = p̂(T̂ , n̂; Ã, B̃). (A3)

At fixed temperature T̂ > T̂c the system isotherm is a mono-
tonic function of n̂, i.e., (∂ p̂/∂ n̂)T̂ > 0. When T̂ decreases,
one comes to the critical isotherm T̂c for which (∂ p̂/∂ n̂)T̂c

= 0
at the critical density n̂c. From these critical quantities one can
then find the values of Tc/T 0

c and nc/n0
c as functions of the two

parameters, namely, the functions of Ã and B̃. Therefore, the
type of the CP, either Boltzmann CP or Bose CP, is defined by
the values of the dimensionless parameters Ã and B̃. As shown
in Appendix B, in the nonrelativistic approximation this is re-
duced to a dependence on the single parameter σ = σ (Ã, B̃).

APPENDIX B: NONRELATIVISTIC APPROXIMATION

The spinodal is defined by the condition (∂ p/∂n)T = 0,
that can be written as

T + n
dU

dn
ωid(T, μ∗) = 0. (B1)

The functions Ts = Ts(n) given by Eq. (B1) are shown
in Fig. 7. These spinodal lines intersect with the BEC lines
TBC(n) at n = nlim = 2n0

c as shown in Fig. 7. The analytical
approximations valid near the BEC line can be used for ωid in
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FIG. 7. The spinodal lines Ts = Ts(n) for different values of the
parameter σ . The liquid spinodal becomes the vertical line at n =
2n0

c .

Eq. (B1) (see Refs. [24,25]):

ωid (T, μ∗) = gm3/2T 2

2
√

2πn
(m − μ∗)−1/2, (B2)

m − μ∗(T ) = 9ζ 2(3/2)

16π

(T − TBC)2

TBC
. (B3)

The BEC temperature TBC in the nonrelativistic approxima-
tion (29) can be written as

T̃BC = TBC

T 0
c

= 2

[
2ñσ

ζ (3/2)

]2/3

, (B4)

where σ is given by Eq. (38).
By substituting Eqs. (B2)–(B4) into Eq. (B1) and rewriting

it in the reduced variables, one finds the function T̃s(ñ) at
ñ → 2 − 0. The Boltzmann CP corresponds to dT̃s/dñ < 0
and the Bose CP to dT̃s/dñ > 0 at ñ = 2 (see Fig. 7). Thus,
the condition

dT̃s

dñ

∣∣∣∣
ñ=2

= 0 (B5)

corresponds to the transition between the Boltzmann CP and
the Bose CP.

The solution of Eq. (B5) gives the critical value for the
parameter σ = σcr. The straightforward analytical solution of
Eq. (B5) gives

σcr = 2π3/2

ζ 2(3/2)
∼= 1.62. (B6)

APPENDIX C: BINODALS NEAR THE BOSE CP

In a case of the Bose CP we introduce
nc − ng

nc
≡ δng

nc
= Cg

Tc − T

Tc
, (C1)

nl − nc

nc
≡ δnl

nc
= Cl

Tc − T

Tc
. (C2)

At T < Tc − 0 one finds μ∗
g(T ) < m on the gaseous binodal

and μ∗
l = m on the liquid one.

At T → Tc one has μ∗
g → m and, using Eq. (B3), obtains

the following system for dimensional binodal slope parame-
ters Cg and Cl:

2
(
C3

g + C3
l

) = 3
(
C2

g − C2
l

)Tc

nc

dnid (T, m)

dT

∣∣∣∣
T =Tc

+ 2R
(
C2

g − C2
l

)3/2
, (C3)

Cg = Tc

nc

dnid (T, m)

dT

∣∣∣∣
T =Tc

+ R
(
C2

g − C2
l

)1/2
,

(C4)

where R = √
BgTcm3/2/(4

√
2π ).

In the nonrelativistic approximation the derivative will be

dnid (T, m)

dT

∣∣∣∣
T =Tc

= 3nc

2Tc
. (C5)

Using Eqs. (B3), (C3), and (C4) one finds

(
C3

g + C3
l

) = 9

4

(
C2

g − C2
l

)

+
(σcr

σ

)1/3(
C2

g − C2
l

)3/2
, (C6)

Cg = 3

2
+

(σcr

σ

)1/3√
C2

g − C2
l . (C7)

From Eqs. (C6) and (C7) at σ → σcr + 0

Cg → ∞, Cl → ∞,
Cg

Cl
→ ∞, (C8)

and

Cg = 3

2
, Cl = 3

4
,

Cg

Cl
= 2 (C9)

at σ � σcr. Thus, there is an asymmetry between the gaseous
and liquid binodals. This asymmetry becomes very large when
σ approaches its critical value σcr.

At σ = σcr Eq. (C1) is broken and should be substituted
by δng/nc = Cg

√
(Tc − T )/Tc. It means that for σ = σcr the

critical exponent β has the Boltzmann value β = 1/2 at n <

nc = 2n0
c and the Bose value β = 1 at n > nc = 2n0

c
With increasing Tc value in Eqs. (C3) and (C7) one obtains

a limiting behavior

Cg
∼= Tc

nc

dnid (T, m)

dT

∣∣∣∣
T =Tc

, Cl = 1

2
Cg (C10)

that corresponds to the large σ behavior (C9) in the nonrela-
tivistic approximation.

In the ultrarelativistic limit one has

dnid (T, m)

dT

∣∣∣∣
T =Tc

= 3nc

Tc
(C11)

instead of Eq. (C5). Using Eq. (C10) in the ultrarelativistic
limit,

Cg = 3, Cl = 3

2
,

Cg

Cl
= 2. (C12)
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