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ABSTRACT: The distance conjecture claims that as the modulus traverses along the trans-
Planckian geodesic distance, the effective field theory becomes invalid by a descent of a
tower of states from UV. Moreover, according to the recent (strong version of) emergence
proposal, the kinetic term of the modulus is entirely generated by the wavefunction renor-
malization in which a tower of states are integrated out. Assuming these two conjectures,
we explore the role of a tower of states coupled to the modulus in (in)stability of the de Sit-
ter (dS) vacuum by studying the one-loop effective potential generated by a tower of states.
We find that a fermionic tower of states makes the effective potential more or less consistent
with the dS swampland conjecture: either the slope or the curvature of the potential is
sizeable. In contrast, the effective potential generated by a bosonic tower of states seems to
allow the stable dS vacuum. Therefore, in order to argue the instability of the dS vacuum,
the additional ingredient like supersymmetry breaking needs to be taken into account.
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1 Introduction

Difficulties in realizing a metastable de Sitter (dS) vacuum in the context of string theory
have raised the suspicion that the background geometry with the positive cosmological
constant is destabilized by quantum gravity effects (for recent reviews, see, e.g., [1, 2]).
This concern was formulated as the ‘dS swampland conjecture’ [3] (see also [4, 5]), the
refined version of which [6-9] states that the effective scalar potential consistent with
quantum gravity satisfies either
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~ O(1) or min(mpl ) < -0(1). (1.1)
As argued in [9], the dS swampland conjecture can be supported by the distance conjec-
ture [10], together with the covariant entropy bound [11]. The distance conjecture predicts
that the infinite distance limit of the moduli space corresponds to a particular corner of
the landscape at which the mass scale of a tower of states becomes extremely light. Then
the low energy effective field theory (EFT) description becomes invalid at this corner as an
infinite tower of states descends from UV. In particular, the covariant entropy bound of dS
space can be violated by the rapid increase in the number of low energy degrees of freedom.

In order to quantify the validity of the EFT in light of the distance conjecture, we first
need to specify an appropriate UV cutoff scale above which the EFT is no longer reliable.
Whereas the Planck scale mpj is a natural UV cutoff in quantum gravity, if we restrict our
attention to the EFT in which gravity is weakly coupled, the lower scale called the species
scale can be used as the UV cutoff. Here the species scale Ag}, is defined by the scale above
which the strength of the gravitational coupling Ngp(Asp/mp1)? becomes larger than O(1),
where Ny, is the number of light degrees of freedom below Ay, [12, 13]. According to the



distance conjecture, as the modulus traverses along the trans-Planckian geodesic distance,
at least one of tower mass scales becomes extremely light, hence N, increases rapidly. This
results in the rapid decrease in Agp, and the EFT becomes invalid when Ay, is even smaller
than the typical mass scale of the EFT. For the EFT in the background with the positive
cosmological constant, the characteristic mass scale is given by the Hubble parameter H,
the inverse of the horizon radius. Then the valid EFT description requires that Ag, must
be larger than H.

Meanwhile, the geodesic distance of the modulus can be connected to the tower mass
scale through the coupling between the modulus and a tower of states. From this we ex-
pect that parameters describing the IR dynamics of the modulus get renormalized by the
loop contributions from a tower of states below A, significantly. Regarding the wavefunc-
tion renormalization, the role of a tower of states is conjectured under the name of the
‘emergence proposal’ [14-18] (for recent relevant studies, see, e.g., [19-24]). The weak and
conservative version of the proposal predicts the existence of a tower of states which induces
quantum corrections to the kinetic term matching the tree level singular behavior. On the
other hand, the strong version of the emergence proposal suggests that all light particles in
the weakly coupled regime in fact do not have the kinetic terms in UV: the kinetic terms
of the low energy degrees of freedom are an IR effect generated by integrating out towers
of light states below Ag,. In other words, the modulus can have the kinetic term only after
a tower of states coupled to the modulus is integrated out to generated the wavefunction
renormalization.

Moreover, as the tower mass scale decreases along the trajectory of the modulus, the
loop contribution of a tower of states to the vacuum energy changes, from which the
effective potential for the modulus can be obtained [25]. Then the role of the distance
conjecture in the (in)stability of dS space can be studied in the field theoretic language by
investigating the behavior of the effective potential. For this purpose, we suppose that at
the initial value of the modulus the vacuum energy density is given by the positive value,
3m3 H?, and Ay, is much larger than the characteristic scale of the EFT, namely, H. If
the potential decreases rapidly as the modulus moves away from the initial value, we can
say that the de Sitter vacuum is destabilized by the decrease in the tower mass scale. In
contrast, if the potential is stabilized before the vacuum energy becomes negative, the dS
vacuum is not destabilized by a tower of states at least at the field theoretic level.

In this article, we assume the distance conjecture and the strong version of the emer-
gence proposal such that both the effective potential and the kinetic term of the modulus
are entirely generated by one-loop contributions of a tower of states. Then we explore the
(in)stability of dS space reflected in the effective potential. In section 2, we first review how
the one-loop wavefunction renormalization of the modulus is generated by integrating out
the bosonic and fermionic towers of states. When the strong version of the emergence pro-
posal is assumed, it turns out that the canonically normalized modulus is given by the expo-
nent of the tower mass scale. In section 3, the one-loop effective potential of the modulus in-
duced by a tower of states is calculated. Since the tower mass scale is typically heavier than
H the leading term of the effective potential in the background with the positive cosmologi-
cal constant is the same as that in the flat spacetime background. Nevertheless, we work on



Figure 1. One-loop diagrams for the wavefunction renormalization of the modulus ¢. Contribu-
tions from a bosonic and fermionic tower of states are depicted in (a) and (b), respectively.

the curved background from beginning, which may be useful in the future work considering
the subleading terms of the effective potential. Since the closed fermion loop contains the
extra minus sign, the behavior of the effective potential generated by a fermionic tower of
states is different from that generated by a bosonic one. Discussion in section 4 shows that
the effective potential generated by a fermionic tower of states is well consistent with the re-
fined dS swampland conjecture. In contrast, the effective potential generated by a bosonic
tower of states seems to allow the stable dS vacuum by the appropriate renormalization.
This suggests that to argue the instability of dS space, we need another reason. After
discussing the possible additional ingredient for the instability of dS space, we conclude.

2 Wavefunction renormalization of the modulus

In the presence of a tower of states with the mass scale Am, the species scale above which

gravity becomes strong satisfies
mpl

’
Ngp

Agp = (2.1)
where Ny, = Agp/Am is the number of states in a tower with masses m,, = nAm (n € Z)
below Agp. In terms of Am, Ny, and Ay, are given by
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respectively. Here Ag}, is assumed to be much larger than Am such that Ny, > 1 is satisfied.
We will consider the loop contributions of a tower of states below Agp to the IR dynamics
of the modulus ¢ when the tower mass scale Am depends on the field value of ¢.

For a bosonic (more precisely, scalar) tower of states ®,,, the mass term can be ex-

panded as
2 ].
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where 0 = ¢ — (¢) is the shifted field around the (classical) field value. When ®,, are
integrated out, the second term in the r.h.s. of (2.3) gives rise to Zs4, the one-loop wave-
function renormalization of ¢ as depicted in figure 1 (a). By an explicit calculation, one



obtains [16]
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where we use Ngp > 1 and [(27)/(3v/3)] — 1 ~ 1/5. From (2.2), this can be rewritten as
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Meanwhile, for a (Dirac) fermionic tower of states ¥,,, the expansion of the mass term
leads to
M (), U, = my,((¢) ¥, ¥, + 8¢mn|(¢>5¢@n\ﬂn 4+ (2.6)

from the second term of which we can consider the one-loop wavefunction renormaliza-
ton depicted in figure 1 (b). Summing up the contributions of ¥, to the wavefunction
renormalization, we obtain [16]
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where for the last expression, we approximated the summation with the integral, which is
valid for Ng, > 1. From (2.2), this can be rewritten as

2
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Above results show that if the kinetic term of the modulus ¢ in IR is emerged by
integrating out a tower of states, it is given by

L s 0,006 — - 2( 8¢Am)2 Y b8, (2.9)
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where the loop factor ¢ depends on the statistics of a tower of states. From this, we can
redefine the modulus field such that the kinetic term is written in the canonical form. For
this purpose we note that J,Am is negative by the distance conjecture: the tower mass
scale decreases rapidly as the value of ¢ increases. Then the redefined modulus ¢ gets
larger as ¢ increases through the relation

Oy Am

B = —Cmplzimauqb, (2.10)
or equivalently,
B Am/(0)
@ = cmp log (Am(d))) (2.11)



That is, the canonically normalized modulus is given by the exponent of the tower mass
scale.

Discussion so far visits the simplest case, where only the single tower of states con-
tributes to the wavefunction renormalization. In the presence of several towers, the mass
scales of which are labelled by Am; (i =1,2,---), the species scale Ay, and N, the number
of states below Ay, for each tower, are given by

mpi Asp
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respectively. Then the wavefunction renormalization is given by the sum of loops generated
by all towers of states,
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To obtain the canonically normalized field ¢ as in (2.11), we consider the following specific

(2.13)

cases.

First, when one of tower mass scales, say, Am; is extremely light compared to others,
Ni is much lager than N; (i = 2,3,---) and the species scale is approximated by Agp, ~
mpl/Nll/Q, almost independent of N; with ¢ # 1. If we assume that mp10yAm;/Am; ~ O(1)
for any tower mass scales, the wavefunction renormalization (2.13) is dominated by a tower
of states with the lightest mass scale:
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Then we can define the (approximate) canonically normalized field ¢ by considering the
lightest tower mass scale only. Meanwhile, if n towers have the same and the lightest tower
mass scale Am, N; for these towers are given by the same value N = Agy,/Am, satisfying
>.i Ni ~¥nN. In this case, A, and N can be written as

1 1 (mpr\”
respectively. Then the wavefunction renormalization (2.13) becomes

8¢,Am
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so we can define the canonically normalized field in the form of (2.11) with the replacement

of ¢ by (¥, ¢2)/n.
We note that a tower of states considered so far is the simplest type in which the

mass is given by an integral multiple of the single tower mass scale. On the other hand,



the mass of a tower of states can be associated with more than two tower mass scales, as
can be found in, for example, the compactification on more than two extra dimensions of
comparable sizes or the string compactification on the circle of radius close to the string
length scale. In this case, the expressions for Ny, and Agp, given by (2.2) are significantly
modified as Ny, is given by the product, rather than the sum of the numbers of states
associated with different tower mass scales. Moreover, even if these tower mass scales are
determined by the single modulus, a simple expression for the canonically normalized field
like (2.11) is in general not defined. In appendix A, we discuss such differences in detail by
considering the case of two tower mass scales as an example.

3 One loop effective potential of the modulus

As the tower mass scale decreases along the trajectory of ¢, their one-loop contributions to
the vacuum energy also change, resulting in the deformation of the (almost) flat potential
depending on the field value of ¢. From this we obtain the effective potential of ¢. To see
this, consider the metric of dS space in the flat coordinates,

ds* = —dt*> + a(t)’dx?®, where a(t) = ettt (3.1)

Then the mode expansion of the bosonic field ®,, in a tower is given by
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Now let us rewrite fp as
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such that W (t) is well interpreted as the ‘energy’ under the adiabatic expansion in which
time derivatives like (a/a)? = d/a = H?, as well as (W /W)? and W /W are smaller than
p2/a? (see [26] and references therein). Then the equation of motion (O +m,(4)?)®, = 0,

or equivalently,
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can be solved iteratively. In particular, when Am is sufficiently large that the heaviest
mass (the mass just below Agp) in a tower is much smaller than Ay, the leading term of W
near |p|/a ~ Asp is just given by |p|/a.! Then to the first subleading order, we obtain [26]

(see also [27])
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where R is the Ricci scalar. The appearance of —(1/6)R can be also found from the

2N7
W~ =

heat kernal expansion [28, 29]. Since we are interested in the UV behavior of the effective
potential, i.e., the contributions from |p|/a ~ Ay, to the loop integral, we employ this as a
good approximation of W.

1Since the physical momentum in the expanding universe is given by p /a, the integration range of the
momentum is taken to be |p|/a < Asp, or equivalently, |p| < aAsp.



Then the one-loop effective potential generated by ®,, is given by
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Here 1/a® in the denominator reflects the fact that the physical volume is given by

a®x (comoving volume). After the Wick rotation W — iW and redefinition py = aW,

we obtain

Nsp(9)

P Ne L o
Ve =51 2 / log(p}; + a*(mn(¢)? — 2H?)). .
W 2 ne1 “PE<aAsp(d) (2m)4 8P (M () ) (3.7)

The explicit calculation gives
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expansion of which in terms of Ay, is written as
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Putting m,(¢) = nAm(¢) and approximating the summation with the integral, one obtains
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Then from (2.2), Vog can be rewritten as
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On the other hand, whereas Ay, = m%/l?’Am((b)l/ 3 is required to be larger than H, the

characteristic scale of dS space, Am(¢) is also larger than H in many realistic cases. The
observed value of the cosmological constant in the current universe gives H ~ 10~ mp,
which is much smaller than the electroweak scale as well as the predicted energy scales
of new physics. Moreover, it seems that the ‘effective theory of inflation’, in which the
curvature perturbation and the graviton are the low energy degrees of freedom below H,
well describes the universe in the inflationary era [30, 31]. Indeed, so far as we are interested
in the model for dS space based on the four-dimensional particle description, the mass scale
of a tower of states like the Kaluza-Klein modes or the string excitations is typically larger
than H.? This is also what the swampland conjectures concerning a tower of states try to
explain, as can be found in, for example, the discussion on the dark dimension [32]. When
mp1 > Am(¢) > H, Veg is dominated by
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where in the second line Vig is rewritten in terms of the canonically normalized field ¢
defined in (2.11). A scale Ag is introduced for renormalization. We also note that there
can be contributions to the vacuum energy from other fields, which do not change under

©
cmpy

2In this case, approximations to obtain Veg is valid only for Am(p) = Am(0)exp|[— ] much larger

m()

than H, thus ¢/(cmp1) much larger than log cannot be considered.



the evolution of . Parametrizing them by a constant added to Vig, we arrive at
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where (2.2) is used in the second line. Constants Ap and Bp are determined by the
renormalization condition that the vacuum energy density at ¢ = 0 is given by Sm%IH 2,
which reads
_Asp(0)°miy Ap + Bp = 3mp H?. (3.14)

9672
This does not fix the constants completely, allowing various behaviors of the potential as
will be discussed in the next section.

On the other hand, for a fermionic tower of states, an overall minus sign should be

taken into account. Moreover, the relations (see [26])
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1
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which replaces 2H? in the effective potential generated by a bosonic tower of states by
3H?, but this does not affect the leading terms of Vig. Since (3.16) is the squared Dirac
operator, Ve ~ Tr(v#V, + im,) is given by ~ $Tr(0 + m2 — 3H?). As an operator
O+ m2 — 3H? is diagonal to the spinor indices, the trace over the spinor indices for the
Dirac spinor gives a factor 4, then Vg becomes ~ 4 x $tr(0+ m2 — 3H?) where tr denotes
the trace over the momentum space and the summation over the states in a tower below
Agp. For the Weyl or Majorana spinor, the trace over the spinor indices gives a factor 2,
thus we obtain Vg ~ 2 X %tr(D +m2 — 3H?). We can compare it with Vg generated by
one complex scalar, or equivalently, two real scalars given by ~ —2 x %tr(D +m2 — 2H?):
both the Weyl spinor and one complex scalar have two real degrees of freedom, hence when
they have the same mass and H — 0, i.e., in the supersymmetric case, the sum of these
one-loop effective potentials vanishes. Therefore, we obtain
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where f = 4 for the Dirac spinor and f = 2 for the Weyl or Majorana spinor. Here
Vet (o = 0) = 3mp, H? is satisfied by requiring

Asp (O)Qm%l
9672

We now consider the one-loop effective potential generated by several towers of states.

f Ap + Bp = 3m} H?. (3.18)

In particular, we restrict our attention to the case in which the canonically normalized
modulus can be written in the simple form as (2.11), e.g., either one particular tower
mass scale is much lighter than others or n towers have the same mass scale. Going back
0 (3.10), one finds that the dominant effective potential terms generated by several bosonic
towers of states are given by

AX N; /3 A2
o T () ) 0

2
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- 9602 Am; (2 %8 | 12 Bii B

and the similar expression can be found for fermionic towers of states with the extra minus

(3.19)

sign attached. When one of tower mass scales, say, Am; is extremely light compared to
others, Ny is much lager than N; with ¢ = 2,3,---, hence Ag, >~ mp; /N1 . Then the first
line of above can be approximated by

4 2

m N; (3 A
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and since N;/N; < 1 for i = 2,3,---, a tower corresponding to i = 1 gives the dominant

contribution to Veg. Meanwhile, if n towers have the same and the lightest tower mass
scale Am, (2.15) is satisfied, then Vg becomes

R
=-n e 3cem
off n5/39672

+AB> +BB, (3.21)
cmpi

where ¢ = (3, ¢;)/n = ¢; since contributions of all the bosonic towers of states to the
wavefunction renormalization are the same. If the effective potential is generated by both
the bosonic and fermionic towers of states of the same mass scale,

ne = Zci =ngcp + npcp, (3.22)
i
where np (cp) and ng (cr) are the number (the loop factor in the wavefunction renormal-
ization) of real bosonic and fermionic towers, respectively, with n = np + np, then Vg is
given by

A 02/3 10/3 2 o
Vett = —(np — fnr) m(0) <

e 3 cmpy
n5/3967T2

If ng = fng by supersymmetry (for example, a chiral supermultiplet of A' =1 supersym-

4 A) +B. (3.23)
cmp

metry contains two real scalars and one Weyl spinor, hence we have ng = 2, f = 2, and
nr = 1), the leading term of Vg is just given by the flat potential.

~10 -
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Figure 2. The shape of V.g(p) generated by a fermionic tower of states. Here the specific case
in which Vg is maximized at ¢ = 0 is considered. The graph depicts the potential shifted below,
Vert () — Vet (¢ = 0) such that a maximum value is given by zero.

We close this section with a comment on the renormalization condition on the vacuum
energy, Veg(p = 0) = Bm%IH 2. The strong version of the emergence proposal claims
that the scalar potential is an IR effect: the potential vanishes in UV and it is entirely
generated by a tower of states which would be integrated out. This can be supported by an
observation that the moduli potentials are typically generated by fluxes, the background
vacuum expectation values of the p-form gauge field strengths [18]. Since the gauge field
strength plays a role of the kinetic term, it vanishes in UV according to the emergence
proposal, which leads to the vanishing UV flux potential. On the other hand, as can be
found in the stabilization of the Kéhler moduli, the flux potential can be combined with
the non-perturbative effect and the uplift potential [33, 34]. Whereas it is not clear that
each of these additional ingredients is generated by integrating out a tower of states, even
if it is the case, all these towers of states need not be associated with the single modulus
. Some of moduli can be heavy enough such that their stabilized values are almost fixed,
and integrating out them is reflected in the coefficients of the potential of ¢, which are
given by the renormalization conditions including Veg(p = 0) = 3md H>.

4 De Sitter instability induced by a tower of states

As we have seen in the previous section, a descent of a tower of states from UV along the
trajectory of the modulus ¢ leads to the change in the vacuum energy, from which Veg(¢)
is obtained. This indicates that when the initial (¢ = 0) vacuum energy density is given
by the positive value 3m%lH 2 the (in)stability of dS space is determined by the shape
of the potential which can be different depending on the choice of constants (Ap, Bg) or
(Ap, Br) in (3.13) and (3.17), respectively.

- 11 -



4.1 Effects of a fermionic tower of sates

We first consider Veg(p) generated by a fermionic tower of states in a loop, given by (3.17).
The extra minus sign of the closed fermion loop leads to the behavior of Vg opposite to that
generated by a bosonic tower of states. More concretely, Vg has a barrier separating two
minima, Veg = —00 at ¢ = —oo and Vg = Bp at ¢ = 4+00. Suppose we choose (Ap, Br)
such that Vg is maximized at ¢ = 0 as shown in figure 2. Then the potential is given by

_ Ap(0)Pmy _2e (o 3 3, Asp(0)*mp, 2 172
Véf—f—fwe Pl (mm+2> + (—2f967r2+3mle > (41)

If » moves in the negative direction, the potential decreases indefinitely without bound,
which is unphysical. Hence we restrict our discussion to the case in which ¢ rolls down in the
positive direction only. The transition from dS to AdS takes place, i.e., Vg becomes zero, at

2 [96 H
- ~ 2 — . 4.2
3 cmpl T f Asp(o) ( )

On the other hand, the slope of the potential

dVegr Agp(0)? —2_e 2
— _ cmp] W —— 43
dp I oem ¢ 327 (43)
vanishes at ¢ = 0 and ¢ = oo which correspond to the maximum and minimum of

Vet, respectively. In the inflationary cosmology, the decreasing rate of the vacuum en-
ergy along the inflaton trajectory is parametrized by the ‘potential slow-roll parameter’
ev = (m3,/2)[(dV/dp)/V]?, which is well defined so far as V is always positive (or always
negative). In our case, however, Vg can be either positive or negative, and in particular,
ey defined by just replacing V' with Veg diverges when Veg = 0. Therefore, we parametrize

the decreasing rate of the vacuum energy by
mpy dVest /dp

V=T (v;ff(sa) ~Ver(p = oo>)2’

that is, we put Veg () — Ve (¢ = 00), the height of Vg (¢) measured from the local minimum

(4.4)

at ¢ — oo, instead of Vg in the denominator. An explicit calculation gives

2/ o \? 1
E— , 4.5
=g (cmm) 7 — (4.5)
(2 + cmp1>
which becomes one when 5 5
LA 0.2, (4.6)

3empr V2 -3¢
where for the last estimation ¢ ~ 1/(47) is used. This value is larger than the value of ¢
at which Vig vanishes provided H/Aq,(0) < 0.003 f 1/ 2 which means that the cosmological
constant in this case becomes negative even before ey becomes O(1). We also note that
while € is a monotonically increasing function of ¢, the increasing rate slows down as
©/(emp)) becomes larger than 3/4.
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Indeed, from

(4.7)

Plig 2002 oty 2 )
dp? 3" 9672c2 ’

Cmpl
3 cmpi

which is negative and sizeable for 0 < (2/3)[¢/(cmp1)] < 1, one finds that Vg rapidly
decreases when ¢ rolls down in this range. This can be well quantified by defining

d*Veg /dip? 41— 55
2 e 3 cmp)
o - _ = 3omm 4.8
W= TRy () — Ve (p = o0) 9e? 1 + 3 5o )

in the similar way to ny in the inflationary cosmology: when (2/3)[¢/(cmp;)] moves from 0
to 1, the absolute value |ny/| decreases monotonically. In particular, since gy = —4/(9¢?) ~
—O(1) at ¢ = 0, the vacuum energy quickly decreases at the initial stage. Since the
absolute value |7y | becomes smaller than one for

2 4 —9c?

— ~ Q. 4.
3 cmp; = 4+ 9¢2 0.7, (4.9)

we can say that ny ~ —O(1) in the region where €y is much smaller than one.

It is remarkable that the behaviors of Vg observed so far are well consistent with the
claims in the refined dS swampland conjecture [7-9], which is supported by the distance
conjecture as well as the covariant entropy bound [9]. That is, for small value of ¢, ey < 1
but ny ~ —O(1) so the positive Vog decreases rapidly. Meanwhile, as ¢/mp; gets larger
than O(1), ey becomes O(1). On the other hand, one may realize the monotonically but
slowly decreasing behavior of the potential by choosing (A, Br) such that

Ay (0)2m3, _2_e + A (0)2m2
Vig = f sp(0) Pl, % (‘00)+(—f sp(0)*mp; o

3 cmp)
9672  cmp

3 2Hﬁ, 4.10
9672 cmp ] +omE ( )

where ¢g/(cmpy) is taken to be much larger than one. Note that ¢o/(cmp)) here is just a
constant determined by the choice of (Ap, Br), not the specific field value. We can define
ey and ny in the same way as the previous case,

2 dVeg/d 2 dPVeg ) dip?
ey = mPl( Ven/dyp ) ;v =mpy LIk ;o (411
2 \Verr(¢) — Vet (p = 00) Vet () — Veg(p = 00)
an explicit calculation of which gives
2
(3 _ 50+900>
2 2 cmp)
V=92, N2
Jr
(Qﬁv (4.12)
+
4 =g
nv = 9c2  efeo
3cmpy

respectively. Then both ey and 7y are given by O(1), just like the quintessence model.
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Figure 3. The shape of Vog(p) generated by a bosonic tower of states. The constants (Ap, Bg)
are chosen such that ¢ rolls down the potential.

4.2 Effects of a bosonic tower of sates

We now consider the case in which Vg is generated by a bosonic tower of states in a loop.
Requiring Vg (¢ = 0) = 3m3,H?, (3.13) can be written in the form of

_ASP(O)Qm%l -352 (‘P+900>+<ASP(O)2m%1 0

Vg = ——2~-~2_ Ll 3emp 3m? H2>, 4.13
off ¢ cmpl 9672 cmp +Ompl (4.13)

9672

the shape of which is shown in figure 3. From

d‘/veﬂr . 7Asp(0)2mPle—% £ <1 . 290 + SOO)
dp 9672c

em 4.14
" 3 cmp] ( )

one finds that if ¢po/(cmp1) < 3/2, ¢ initially at zero rolls down the potential to the
minimum. On the other hand, when ¢o/(cmp;) > 3/2, the vacuum energy increases as
the value of ¢ increases, hence ¢ moves backward, i.e., in the negative direction until it
is stabilized at the minimum, at which Am is heavier than Am(0). This can be one way
to realize the stable dS vacuum: by choosing ¢g/(cmpi) larger than but sufficiently close
to 3/2, the vacuum energy at the stabilized value of ¢ can be still positive, and a bosonic
tower of states no longer descends from UV.

In contrast, when ¢o/(cmp;) < 3/2, the vacuum energy decreases rapidly, which can
be parametrized by dimensionless parameters ey and 7y defined by

_ml%l( dVer /dip )2 = m? APVegr [ dip?

ey = S L LV 4.15
V=% (Vale) - v P (0) = Vi (4.15)

where in the denominator we put Veg(¢) — Vinin, the height of the potential measured from
the minimum. Since Vg is minimized at ¢ = (3/2)cmp; — pg and Vi is given by

2 A 2 2 w0 _ 2 _2_¢0
Vmin = _mPl P (07) ! (1 — 7900

3om empy T1 2 772
647-(-2 63 Pl gcmple 3 Pl >+3mP1H7 (416)
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two parameters become

2
3 _ pt¥o
2 2 cmp)
€V = —5
902 3 % p+eo -1 o+p0 27
= cm
26 Pl cmpy (417)
p+po
nv = 0~ o
- 2 2 v+eq )
9C §e§ cmpy -1 Y+¢¥o
2 cmp]

respectively. They indicate that in the limit of ¢g/(cmp;) < 1, both ey and ny are O(1) at
o =0: ey ~ (2/9)(e/c)? and ny =~ (8/9)(e/c?), respectively. In particular, ny is positive
for ¢ < 3emp; — o hence ¢ moves very quickly at the initial stage where the vacuum
energy is positive. Indeed, when ¢go/(cmp1) < 1, the vacuum energy becomes zero at

2
® of H ) 1
~ 3 x 96 . 4.18
cmpy 4 (Asp(O) 1-— 220 (4.18)

cmp]

On the other hand, when ¢g/(cmp)) is close to 3/2, the initial value ¢ = 0 is near to
the minimum of the potential which is still positive, hence Veg will be stabilized at the dS
minimum even before Am sufficiently decreases. Therefore, unlike the effective potential
generated by a fermionic tower of states in a loop, that generated by a bosonic tower of
states in a loop seems to allow the stable dS vacuum at which a bosonic tower of states
is still decoupled from the EFT. This implies that the distance conjecture alone is not
sufficient to show the instability of the dS vacuum at least at the field theoretic level.
This may not be surprising since in the argument of [9] supporting the dS swampland
conjecture, another conjecture of the covariant entropy bound is imposed in addition to
the distance conjecture. In order to argue the dS instability at the field theoretic level, we
need to explain how the contributions from a bosonic tower of states can be suppressed
at initial stage where ¢ is much smaller than cmp; and the vacuum energy is positive.
Presumably, supersymmetry can be an additional ingredient for the dS instability since
even if supersymmetry is imposed in UV, it must be broken to realize dS space. Such a
supersymmetry breaking typically makes the bosonic mass scale much heavier than the
mass scale of the fermionic partner, so the mass scale of a fermionic tower of states can be
smaller than that of a bosonic tower of states. Then the total effective potential can be
dominated by the contribution from a fermionic tower of states in a loop, at least at initial
stage where supersymmetry breaking is strongest. Moreover, whereas V,g generated by a
fermionic tower of states in a loop decreases indefinitely for ¢ < 0, this can be cancelled by
the loop contribution from the bosonic superpartner, which is possible in the presence of
supersymmetry. Indeed, in the region of the negative potential, supersymmetry is restored,
thus the bosonic and fermionic loop contributions become the same in size but opposite
in sign. Then we expect other effects like the non-perturbative term must be dominant to
stabilize ¢ (for relevant discussion based on the string model, see, e.g., [35]).

The fact that the stabilization of ¢ requires the sum of several potential terms may im-
ply that it is difficult to relate the vacuum energy density at the stabilized value of ¢ to the
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tower mass scale, as the AdS/dS distance conjecture [36] claims. Indeed, our analysis can be
applied to the rolling behavior of ¢ in the region where one specific one-loop effective poten-
tial generated by a tower of states is dominant, rather than the stabilization of ¢. Neverthe-
less, the one-loop effective potential generated by a tower of states becomes exponentially
small (Veg ~ Am(p)?/3) for the trans-Planckian value of ¢ at which the tower mass scale
becomes light thus the effective field theory is no longer valid. In other words, the part of
the potential, instead of the vacuum energy density at the stabilized value, becomes small as
the tower mass scale gets light along the increasing value of . The similar situation can be
found in the string model for the metastable dS vacuum. When the uplift potential is gener-
ated by D3-branes at the tip of the throat [37], the uplift potential is redshifted in the same
way as the Kaluza-Klein mass scale, satisfying the scaling behavior Vg ~ mil{K [38, 39].

5 Conclusions

In this article, we investigate the (in)stability of dS space by assuming the distance conjec-
ture and the strong version of the emergence proposal such that both the effective potential
and the kinetic term of the modulus are generated by integrating out a tower of states.
In particular, we focus on the simple cases, in which one particular tower mass scale is
extremely light or several towers of states have the same mass scale. Then the canonically
normalized modulus is given by the exponent of the tower mass scale. When a tower of
states is fermionic, the one-loop effective potential is more or less consistent with the dS
swampland conjecture: either mp)|VV/V| ~ O(1) or m?ﬂV?V/V ~ —0O(1) is satisfied. In
contrast, because of the absence of the extra minus sign in the closed loop, the effective
potential generated by a bosonic tower of states shows the opposite behavior: the modulus
can be stabilized in the dS vacuum. Therefore, at least at the field theoretic level, the
instability of dS space requires that at the early stage of the traverse of the modulus, the
one-loop effective potential is dominated by the loop contributions from a fermionic tower of
states. In other words, when the vacuum energy is positive, the fermionic tower mass scale
needs to be much lighter than the bosonic one. This can be achieved when supersymmetry
is broken since in this case the vacuum energy can be positive and the bosonic mass scale is
heavier than the fermionic mass scale. As another (and presumably equivalent) possibility,
since the dS swampland conjecture is also supported by the covariant entropy bound, the
thermodynamic properties of quantum gravity may provide supplementary reason to argue
the instability of dS space (for relevant discussions, see, e.g., [40-48]).
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A A tower of states associated with two tower mass scales

In this appendix, we discuss how the expressions for Ny, and Ay, are modified when a
tower of states is associated with two tower mass scales. Our study also shows that the
simple expression for the canonically normalized field like (2.11) is not defined in this case.
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In the presence of two tower mass scales Amy and Ameo, the squared mass of the state
in a tower is given by
m2 = ntAm? + n3Am3, (A.1)
with n; and ny integers. If both Am; and Amsy are sufficiently smaller than Agp,, the
number of states below Ay, is proportional to 1/4 of the area of the ellipse with semi-axes
N1 = Agp/Amy and No = Agp/Amg: Ngp >~ NNy = Agp/(AmlAmg) with O(1) coefficient
omitted. Since the species scale is still given by Ag, = mpi/\/Nsp, we obtain
mpi

TPl Ay = Am A AmY i, (A.2)
Am}/QAmlm P 1 2 Pl

Ny =

Indeed, when a tower of states is associated with N tower mass scales labelled by Am;,
Nyp and Ag, are given by

2N

ml:1:]1+2 2 1

_ N2 N2

Nsp - 3 Asp = Mp H Aml s (Ag)
iy Am[T =1

respectively, which are consistent with above as well as (2.2).

Now suppose both Am; and Amgy are determined by the single modulus ¢ (if only
one of tower mass scales, say, Amy, is determined by ¢, we just take d3Amgy = 0). Then
the contribution of a bosonic tower of states to the wavefunction renormalization of ¢ is
proportional to

Zos <y D (Oymn)?, (A.4)

ny no
where the summation is taken over the values of n; and ng satisfying mn, < Agp. From (A.1),
one finds that

(6¢mn)2 =Ny <Am1

n

Amg 2 Am1 AmQ

6¢Am1 3¢ATTL2
(A.5)

) (8¢Am1)2+”é( > (0pAma)*+2nin;

n n

Since my depends on both n; and ng, the r.h.s. of (A.4) can be approximated by

Z Z(a¢mn)2 =1 (Aml, AMQ)(8¢Am1)2 + Il(AmQ, Aml)(8¢Am2)2
niy na (Aﬁ)
+ 2]2(Am1, Am2)8¢Am18¢Am2,

where
Am
(Aml, Amg /dnldn2 1 N
2A 1 + n2Am§ (A 7)
n3n3Ami Ams '

Io(Amy, Amy) = / dnyd .
2(Ami, Ams) nans n2Am? + n2Am?3

These integrals can be evaluated by changing the integration variables from (ni,n2) to
(r,0) defined by ny = (r/Am;) cos6 and ny = (r/Amsz)sinf. Since r and 6 lie in the range
0 <r <Ay and 0 <60 < 7/4, respectively, we obtain

37 ml%l ™ ml%l

Ii(Amy, Amg) = 1AM Ir(Amy, Amy) = 64 AmiAmsy’
1

(A.8)
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Therefore, the r.h.s. of (A.4) is given by

OsAmi\>  [9sAma\%  205Amy OyAmo
a n 2 — 2 |:( ¢ ) ( ¢ ) <Yy ¢ A9
%: %: ¢m 4 mpy Amy + Amo * 3 Ami; Amg |’ ( )

which cannot be written in the form of [0sF(Amy, Amg)]? for some function F(Amy, Ams)
unless one of dyAmy and 9,Ams vanishes. Therefore, Zy,(8,¢)? cannot be written in the
form of (9,)?. We note that such a failure of obtaining the simple canonically normalized
field originates from the fact that the numerical coefficient of Iy (37/64) is different from
that of Iy (w/64). More precisely, I and Iy have the same r integration, but different 6
integrations given by

3w

w/2 4 w/2 9 9 T
/ cos” 0df = —, / cos” fsin” 6df = (A.10)
0 0

16 16’
respectively. The similar analysis also shows that we cannot rewrite Zy4 generated by a
fermionic tower of states,

Z¢¢ X ZZ 8¢mn 10g (A

ni ng

) (A.11)

in a simple form, [0sF(Amy, Am2)]?. To see this, we note that the r.h.s. is estimated as

A2
> (9smn) log< ) ~ I (Ami1, Ama)(9yAm1)? + I1 (Ama, Amy)(DgAmsz)? (A1)
ny no 12

+ 2I5(Amy, Amg)0gAmi0gAma,

where
niAm? A?
I/(Amy, A / dnyd 1, ( s >
1( mq m2 niansg 2A + H%Am% g n%Am% + n%Am% (A13)
IL(Amy, Amg) = /dn dn nanAmlAmQ 0 ( Ay
2 bR Y02 AmM? + n2Am3 n?Am? + n3Am3

In these integrals, log(Agp/mfl) = 2log(Asp/r) depends only on r so the r integration in
I is the same as that in I3, but the 6 integrations in I{ and I} are still given by (A.10).
Therefore, the r.h.s. of (A.11) is written in the form of

A? 2 9
S 3 (9sm) log( )_% K@Aml) +<6¢Am2> 28¢Am18¢Am2]

n1 g Aml Amg 3 Am1 Amz
(A.14)
and the explicit calculation fixes the value of the coefficient k by 7/128. In any case,

Z5(0,¢)? cannot be written in the form of (9,p)? even if Zy4 is generated by a fermionic
tower of states.
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