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Abstract We compute the in-medium jet broadening 〈p2⊥〉
to leading order in energy in the opacity expansion. At leading
order in αs the elastic energy loss gives a jet broadening that
grows with ln E . The next-to-leading order in αs result is a jet
narrowing, due to destructive LPM interference effects, that
grows with ln2 E . We find that in the opacity expansion the
jet broadening asymptotics are – unlike for the mean energy
loss – extremely sensitive to the correct treatment of the finite
kinematics of the problem; integrating over all emitted gluon
transverse momenta leads to a prediction of jet broadening
rather than narrowing. We compare the asymptotics from the
opacity expansion to a recent twist-4 derivation of 〈p2⊥〉 and
find a qualitative disagreement: the twist-4 derivation pre-
dicts a jet broadening rather than a narrowing. Comparison
with current jet measurements cannot distinguish between
the broadening or narrowing predictions. We comment on
the origin of the difference between the opacity expansion
and twist-4 results.

1 Introduction

Hard probes such as jets and leading hadrons have long been
promised as critical tomographic tools of nuclear media,
both hot and cold, because of their sensitivity to final-state
interactions with the medium [1–4]. Enormous experimen-
tal progress in measuring hard probes has occurred since the
advent of the RHIC era [5–8], with most spectacularly the
observation of a huge suppression of leading light hadrons
in central heavy ion collisions that decreases with increasing
hadron energy out to the maximum measured ∼ 100 GeV at
the LHC [9–11]. Collaborations have made further enormous
progress by investigating the effect of the medium on heavy
hadrons [12–17], jet suppression [18–20], jet structure [21]
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and sub-structure [22,23] to name just a few. This wealth of
qualitative and quantitatively precise experimental data calls
for precise theoretical predictions in order to achieve the goal
of making hard probes a precise tomographic tool.

At the same time as this experimental work, significant
progress has been made in understanding various theoreti-
cal aspects of hard parton propagation in hot and cold media
relevant for phenomenological comparison with data. For
interactions at strong coupling, the AdS/CFT correspondence
has provided numerous insights [24–28]. Assuming that the
parton-medium interaction can be described using weak-
coupling has led to hundreds, if not thousands, of papers;
the problem is extremely complicated with multiple relevant
scales. Despite the complicated nature of the weak-coupling
approach, a weak-coupling paradigm provides much more
theoretical control than a strong-coupling one: the objects of
interest are easy to understand, interpret, and manipulate per-
turbatively. Given that the scale set by the energy of the lead-
ing parton isO(10−100) GeV � �QCD , and the scale set by
the first Matsubara frequency 2πT is marginal or semi-hard,
we expect that perturbative αs � 1 methods will describe
phenomenological jet energy loss. Further, energy loss mod-
els built on weak-coupling energy loss derivations have seen
incredible success in describing a wide range of observables
over many orders of magnitude [29–31]. We will thus focus
our attention on the weak coupling paradigm in this work.

The usual method of deriving weak-coupling energy loss
expressions that are employed in these successful energy
loss models assumes a trivial factorization that decouples
the initial hard production process from the subsequent final-
state energy loss processes [2–4,32]. In this picture, subse-
quent to production, the leading hard parton encounters direct
exchanges with the medium degrees of freedom (collisional /
elastic energy loss; leading order in αs) and the leading hard
parton also suffers from medium-induced radiation (radiative
/ inelastic energy loss; next-to-leading order in αs). Asymp-
totically, the collisional energy loss grows with the logarithm
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of the leading parton energy. In the Bethe-Heitler limit, the
radiative energy loss grows linearly with energy. In nuclear
collisions the initial hard process that creates the leading
high-energy parton involves a rapid and massive accelera-
tion of an object charged under SU(3); the hard production
process necessarily generates a huge amount of so-called
vacuum radiation. The subsequent medium-induced radia-
tion quantum-mechanically destructively interferes with this
vacuum radiation; the growth of the radiative energy loss is
softened from linear in E to logarithmic, which is known as
the Landau–Pomeranchuk–Migdal (LPM) effect. Therefore
both elastic and inelastic energy loss are equally important
at large energies, with the radiative energy loss about 4 times
larger than the collisional in phenomenologically relevant
physical situations [33].

The above qualitative estimates for the growth in energy of
the energy loss are reproduced quantitatively by many differ-
ent derivations of both collisional and radiative energy loss
within this energy loss picture that assumes a factorization of
the production process from the final-state interactions with
the medium. A proper subset of the derivations of elastic
energy loss include [1,34,35]. A proper subset of the inelas-
tic energy loss derivations includes [36–41]. Reviews include
[3,4]. In this work, we will focus on the opacity expansion
picture for computing the collisional and radiative processes
affecting leading parton propagation. Roughly speaking, the
opacity expansion is an expansion in the number of inter-
actions L/λ, where λ is the gluon mean free path, a hard
parton has with the soft in-medium quasiparticles [38,72].
We choose to focus on the opacity expansion because it nat-
urally incorporates the LPM effect, takes into account the
finite kinematics in phenomenologically relevant processes,
and has a relatively simple closed form for the radiated single
inclusive gluon distribution at first order in opacity.

For many years the field has sought to build upon these
qualitative comparisons between energy loss models and data
to achieve quantitative comparisons [30,42,43]. One avenue
of research has attempted to quantify the various system-
atic theoretical uncertainties associated with currently used
energy loss derivations [32,44,45]. Less attention has been
paid to critically examining the basic assumptions made in
deriving the energy loss formulae. Further, there are highly
non-trivial unresolved conceptual issues related to placing
energy loss derivations on more rigorous footing. What one
would really like is a systematic order-by-order expansion
of specific hard probe observables in some small quantity.
Generally speaking, the paradigm one has in mind for these
hard probes of media is that of collinear factorization.

On the other hand, we consider the potential applica-
tion of the collinear factorization framework to jet observ-
ables in nuclear processes. Collinear factorization is a highly
developed field that is central to ep and eA phenomenol-
ogy [46]. The strength of this field rests on factorization

theorems. A factorization theorem proves to all orders in
αs that one may expand an observable in inverse powers of
a large scale Q. In collinear factorization, there is a con-
volution of a short-distance hard cross section with long-
distance, non-perturbative objects such as parton distribu-
tion functions and/or fragmentation functions. Crucially, the
hard cross sections are perturbatively computable order-by-
order in αs . And while the non-perturbative objects cannot
be computed themselves from first principles, their evolu-
tion equations in Q are computable order-by-order in αs .
The essential ingredient in the proof of collinear factorization
is the cancellation of (nonperturbative) soft gluon radiation
which entangles different sectors of the scattering process.
This cancellation of soft gluon entangling radiation “quaran-
tines” non-perturbative QCD physics into a small number of
universal long-distance objects.

The expansion in powers of �⊥/Q, where �⊥ ∼ �QCD

is some typical transverse momentum scale in the problem,
is known as the twist expansion. For example a twist-2 cal-
culation may receive corrections only up to O

(
(�⊥/Q)3

)
.

Factorization has been rigorously proven for several observ-

ables at leading twist (twist-2, or O
((

�QCD/Q
)0
)

) and for

various spin asymmetries at twist-3, or O
((

�QCD/Q
)1
)

[46–51].
So far, there has been no rigorous factorization-like proof

for any medium modified hard probe observable. I.e. the
assumption of a factorization of the hard production pro-
cess from the subsequence in-medium propagation is cur-
rently uncontrolled. Further, without an overarching theo-
retical framework such as collinear factorization, it is diffi-
cult to know how to expand order-by-order in the various
competing energy loss expansion parameters such as αs or
the opacity L/λ. Should this factorization of hard produc-
tion and subsequent evolution be valid, there should be a
corresponding factorization theorem. One would hope that
a factorization theorem in energy loss would provide just
the necessary framework for a well controlled expansion for
various energy loss observables as well as a set of univer-
sal quantities valid across a variety of processes. Some work
has attempted to incorporate ideas from collinear factoriza-
tion into energy loss-type calculations: e.g. the assumption
of a factorization of the production process is kept, while
the final state energy loss is incorporated into medium mod-
ified fragmentation functions that are evolved using DGLAP
evolution, often with medium modified splitting functions
[41,44,52–59].

On the other hand, a twist-4 collinear factorization deriva-
tion was performed for the jet momentum broadening in
semi-inclusive deep inelastic scattering (SIDIS) [60–62].
While this derivation didn’t rigorously prove a factorization
theorem, the calculation did see that all IR and UV diver-
gences were safely absorbed at next-to-leading order in αs .
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Surprisingly, in this calculation the first nontrivial rescatter-
ing in the medium is expressed through the appearance of
a “double PDF,” the four parton correlator containing both
the partons participating in the hard scattering and the gluons
participating in the rescattering [60–62]. Critically, this work
derived the evolution equation for the four-parton correlator
and found a structure significantly different from the stan-
dard DGLAP evolution equations which characterize twist-2
collinear PDFs, fragmentation functions, and jet functions.
Taken at face value, this result offers a significant challenge
to the usual energy loss derivations. If one merely medium
modifies twist-2 fragmentation functions, then one misses
entirely the four parton correlators that naturally emerge in
the twist-4 framework. Moreover, in the twist-4 derivation
there are diagrams that explicitly mix the initial and final
state processes, thereby violating a naive assumption of fac-
torization as assumed in energy loss calculations; see Fig.
1.

The twist expansion in collinear factorization appears to
correspond in some limit to the opacity expansion. The hard
scattering itself is leading twist (twist-2); the first final-state
rescattering (first order in opacity) is twist-4; and succes-
sive multiple scatterings (higher orders in opacity) are cor-
respondingly further suppressed in the twist expansion. One
goal of this work is to see if one can make the matching of the
twist-4 collinear expansion to the first-order-opacity energy
loss calculation more explicit and/or rigorous.

Assuming that the twist-4 approach is “more correct” than
the usual energy loss approach since the assumption of a fac-
torization of the initial and final state processes is not made
a priori.1 one would like to assess the importance of these
terms not present in the energy loss derivation; in particu-
lar, perhaps these terms may be small and readily neglected,
providing further support to the usual energy loss approach.
In order to make contact with the twist-4 approach from the
energy loss approach, we compute the same jet momentum
broadening observable from within the opacity expansion.
We find that the two approaches agree exactly at leading
order in αs , i.e. when one considers only collisional energy
loss. However, we find that the two approaches qualitatively
differ at next-to-leading order. While the growth in energy is
the same, the twist-4 approach qualitatively differs from the
energy loss approach in that (1) the twist-4 approach includes
color triviality breaking terms not present in the energy loss
calculation and (2) even when neglecting the color triviality
breaking terms in the twist-4 approach, the twist-4 approach

1 On the other hand, the opacity expansion of the energy loss approach
fully captures the LPM effect, which corresponds to a resummation of
diagrams in the twist expansion approach. One could argue that fully
capturing the LPM effect via the opacity expansion is a “more correct”
foundation to build on [63].

yields a jet broadening, whereas the energy loss calculation
predicts jet narrowing.

Interestingly, the prediction of jet transverse momentum
narrowing from the energy loss picture is delicate to tease out
of the analytic expressions. We show that if one too carelessly
makes the usual assumption that k⊥, max ∼ x E can be taken
to ∞, then one gets a prediction of jet broadening rather
than jet narrowing. Thus the qualitative prediction from the
energy loss calculation is very sensitive to the treatment of
the finite kinematic limits for the radiated gluon transverse
momentum. Since the twist-4 approach appears to assume a
priori that one may safely integrate over all k⊥ up to infinity,
we speculate that the twist-4 prediction of jet broadening may
be an artifact of this infinite kinematics assumption.

Specifically, after the careful treatment of finite kinemat-
ics, we find that the opacity expansion predicts a jet narrowing
due to radiative corrections as

〈p2⊥〉 ∼ −CRαs
L

λ
μ2 ln2

(
E

μ2L

)
. (1)

Superficially, taking μ2/λ = q̂ , Eq. (1) appears similar to
work that found radiative corrections led to a double loga-
rithmic enhancement to jet broadening [64] or to work which
reabsorbed a double logarithmic enhancement to jet broad-
ening into the jet transport coefficient q̂ [65–67]. The most
important difference between these works and ours is that
none of these works include the physics of the initial hard
scattering (and subsequent emission of vacuum-like radia-
tion). Rather, these calculations assume the existence of a
high-energy parton for all time, but which enters a slab of
nuclear material at a finite time. In contrast, in our work we
explicitly include the vacuum production radiation necessary
for a comparison to hadronic collision measurements. To fur-
ther drive home the point, [64–67] all predict jet broadening,
in contradistinction to our finding of jet narrowing. When
the finite creation time and the full kinematics are taken into
account, the light-cone path integral formalism of BDMPS-Z
also predicts jet narrowing in a dense medium [68–70]. Sec-
ond, only [67] considers the case of a few hard scatterings,
although, again, without the associated initial state radiation;
the others only consider the dense medium saturation limit.
Given that estimates of the mean free path in even the hottest
LHC fireballs areO(1) fm, phenomenologically relevant cal-
culations are likely closer to the dilute rather than dense limit.
Possibly worse, the dense limit calculations make the har-
monic oscillator approximation, which completely misses
the power law tails associated with perturbative scattering.

Third, the arguments of the double logarithms found here
and in [64,67] for 〈�p2

T 〉 are completely different with com-
pletely different physical interpretations. For us, the argu-
ment of the double logarithm is E/μ2L . Importantly, the μ

and L dependencies of this argument do not come from kine-
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Fig. 1 Two of the contributing Feynman diagrams to the transverse
momentum broadening in SIDIS at twist-4 (reproduced from [60]).
The left diagram is topologically equivalent to the one used for energy
loss in Fig. 2. The right diagram includes cross talk between the parton
production and subsequent evolution, which is neglected in energy loss
formalisms

Fig. 2 After the initial hard process, the deconfined parton traverses
the medium. Transverse momentum can be transferred to this parton
via collisions with the medium (q⊥) or the stimulated emission of soft
gluons (k⊥)

matic limits. One is tempted to interpret the argument as a
double logarithmic enhancement of the transport coefficient
q̂ by the ratio of the gluon formation time τ f orm = xE/k2

T ∼
E/μ2 for moderate x to the length of the medium L .2 On the
other hand, [64] find an argument of the double logarithm
due explicitly to phase space limitations of L/�0 where �0 is
a minimum propagation distance and is given by the nucleon
size in cold nuclear matter and by the inverse temperature in
hot nuclear matter. Thus the argument of their double loga-
rithm is composed purely of medium properties and is energy
independent. In [67], the authors claim that in the dilute limit
(e.g. in an opacity calculation), the argument of one of the
double logarithms depends only on medium properties while
the argument of the second logarithm is p2/μ2, where p is
the measured transverse momentum of the hard particle.

We attempt to distinguish between the two very different
qualitative predictions for 〈�p2⊥〉 from the twist-4 approach
and the opacity expansion by comparing to recent ALICE
data on jet momentum broadening [71]. At the present stage,
the uncertainties in the ALICE data yield a result consis-
tent with both broadening or narrowing of jet transverse
momenta.

The rest of this paper is organized as follows. In Sect. 2
we summarize the DGLV model and its application to energy
loss and momentum broadening at first order in opacity. In

2 One should distinguish between the typical formation time for the
soft gluons of x ∼ μ/E , τt yp ∼ 1/μ, that do not affect the transverse
broadening much as compared to the more rare, harder emissions with
x ∼ O(1) that are argued to affect the jet transverse broadening [67].

Sect. 3 we evaluate these expressions numerically, keeping
the full kinematic bounds on the integrals with no further
approximation. Results are given for the collisional and radia-
tive contributions to the broadening, including the surprising
feature that the coefficient appearing in Eq. (17) is nega-
tive (medium-induced narrowing, rather than broadening).
In Sect. 4 we compute the leading high-energy asymptotics
within the DGLV model analytically, illustrating explicitly
how sensitive the result is to different choices of the kinematic
limits of integration, and carefully reproducing the numerical
results of Sect. 3. In Sect. 5 we compare the results obtained
here with the twist-4 formalism of Refs. [60–62] and with
experimental data. Finally, we conclude in Sect. 6.

2 The opacity expansion

We consider two ways in which jet broadening can occur
from an energy loss perspective. First, a parton propa-
gating through the medium can undergo elastic scattering
off the medium constituents, broadening the jet transverse
momentum distribution through direct exchange with the
medium. We refer to this as the “collisional” or “leading
order (LO)” momentum broadening. Second, interactions
with the medium can stimulate the emission of gluons off
the jet parton, broadening the jet transverse momentum dis-
tribution through the recoil against the emitted radiation. This
broadening is referred to as “radiative” or “next-to-leading
order (NLO)”. The contribution to jet broadening arising
from the interactions with the medium must be carefully
distinguished from the radiative broadening (as in Sudakov
emissions) which can occur even in vacuum.

In the opacity expansion, the leading parton or jet process
is expanded in numbers of interactions with the medium. To
wit, at zeroth order in opacity, the jet amplitude has no inter-
actions with the medium; we’ll denote zeroth order in opacity
with a subscript “0.” At first order in opacity, the jet process
contains two interactions with the medium. These two inter-
actions could come from one interaction in the amplitude and
one in the complex conjugate amplitude. These two inter-
actions could also occur in the amplitude with none in the
conjugate amplitude, or vice-versa. We’ll denote first order
in opacity with a subscript “1.”

2.1 Collisional (LO) momentum broadening

The defining feature of collisional, or “leading order” (LO),
momentum broadening for us is the lack of any radiation in
the process. Thus the αs power counting goes as αn

s for the
nth order in opacity contribution to the collisional momen-
tum broadening, even though we refer to these processes as
“leading order.”
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Fig. 3 The zeroth order in opacity contribution to the amplitude for
leading order momentum broadening

2.1.1 0th order in opacity

Figure 3 shows the diagram contributing to collisional broad-
ening at zeroth order in opacity. Notice that in the energy
loss approach the production process for the high-energy par-
ton is represented by a blob, and there is no communication
between the blob and the subsequent evolution of the par-
ton. Since we are interested in the modification of the jet due
to the presence of the medium, the zeroth order in opacity
contribution to leading order jet broadening is trivial,

〈p2⊥〉LO, 0 = 0. (2)

2.1.2 1st order in opacity

Figure 4 shows the diagram contributing to collisional broad-
ening at first order in opacity. In principle, one must also
include the zeroth order in opacity diagram shown in Fig. 3
along with the diagrams with two interactions with the
medium (often referred to as “double Born” diagrams); when
the amplitude is squared, the diagrams with zero and two
interactions interfere and contribute to the same order in
opacity as the diagram shown in Fig. 4. However, since the
leading order zeroth order in opacity amplitude leaves the
hard parton unchanged, the double Born diagrams can only
interfere with the zeroth order diagram if they also leave the
hard parton unchanged.

Consistent with other opacity expansion derivations [38,
72] we model the interaction with the medium shown in Fig. 4
as a Gyulassy-Wang static scattering center [73]. The elastic
differential cross section to first order in opacity is then

d2σ qg→qg

d2q⊥

∣
∣∣∣
1

= 2α2
s

(q2⊥ + μ2)2
, (3)

where μ ≈ gT is the chromoelectric Debye screening mass
of the medium and q⊥ is the transverse momentum of the
t-channel gluon exchanged with the medium [72]; see Fig. 2
for a schematic of the momenta used in our formulae. Note
that we have assumed that the medium contains only gluons,
although this assumption can be straightforwardly relaxed.

On average, the leading order momentum broadening is
given by the mean transverse momentum squared picked up
per elastic collision times the number of collisions. The mean

momentum squared picked up per collision is given by the
weighted average

∫
d2q⊥ q2⊥

d2σ qg→qg

d2q⊥

/∫
d2q⊥

d2σ qg→qg

d2q⊥
.

The number of elastic collisions suffered by the hard par-
ton is given by L/λ, where L is the length of the medium
and λ is the mean free path of the hard parton. Using the first
order in opacity result for the leading order cross section, the
leading order, first order in opacity transverse momentum jet
broadening is

〈p2⊥〉LO, 1 ≡ L

λ

∫
d2q⊥ q2⊥

d2σ qg→qg

d2q⊥

/∫
d2q⊥

d2σ qg→qg

d2q⊥
.

(4)

Imposing the kinematic limit

qmax = √
3Eμ � √

6ET , (5)

which comes from the maximum t channel exchange for an
incoming particle of momentum E and of another particle of
momentum 3μ ∼ 6T , from μ ∼ g T and g(2πT ) ≈ 2 for
T ∼ 400 MeV, one finds asymptotically

〈p2
T 〉LO, 1 = Lμ2

(
3E + μ

)(
ln(

3E+μ
μ

) − 3E
3E+μ

)

3Eλ

≈ Lμ2

λ
ln(

E

μ
)

= q̂ L , (6)

where q̂ = μ2

λ
ln E

μ
is the momentum broadening of a quark

per unit path length. Since q̂ denotes the rescattering in the
gluon field of the in-medium scattering center which gener-
ates the elastic cross section (3), it is natural that q̂ can be
expressed in terms of the gluon PDF [74]. For the Gyulassy-
Wang model one assumes that the target is composed of
heavy, static partons whose gluon distribution can be readily
calculated in pQCD3 [75] to be

xG = 2αsC ′
R

π
ln

E

μ
, (7)

where C ′
R is the color Casimir of the medium partons. The

momentum broadening per unit length q̂ can then be written
in terms of the gluon distribution as

q̂ = μ2 L

λ

π

2αsC ′
R
xG . (8)

3 This expression is derived in the leading logarithmic approximation
at small xg , where xg denotes the momentum fraction of the gluons
being exchanged with the target, which is in general xg ∼ μ

E even if
the Bjorken variable xB is large xB ∼ O (1).
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Fig. 4 The first order in opacity contribution to the amplitude for lead-
ing order momentum broadening

Fig. 5 The zeroth order in opacity contribution to the amplitude for
next-to-leading order momentum broadening

Thus we see that the large logarithm arising in the collisional
broadening term (6) is associated with the large number of
gluons produced by a single parton ∼ dk2⊥/k2⊥. Physically,
the mean transverse momentum squared per gluon is of order
∼ O

(
μ2

)
, the number of gluons xG per scattering center is

of order αs ln E
μ

, and the typical number of scatterings in the

medium is ∼ L
λ

. Together this reasoning gives 〈p2
T 〉LO, 1 ∼

μ2 ln E
μ

L
λ

as in Eq. (6).
We’ll truncate our opacity expansion at first order for two

reasons. First, most radiative energy loss calculations trun-
cate at this order, and, second, truncation at this order allows
one to best make contact with the twist-4 calculation.

2.2 Radiative (NLO) Momentum Broadening

The defining feature of radiative processes is the emission of
one or more gluons; i.e. in addition to the original hard parton,
there are one or more final state gluons. In general the goal of
the opacity expansion approach is to compute the differential
distribution of the radiated gluons. The production process
is assumed factorized and unaffected by the emission of the
(predominantly) soft and collinear gluon radiation; the final
state of the hard parton is integrated over. As a result, the
derived gluon distribution is inclusive. Therefore, as will be
seen below, the predicted average number of emitted gluons
is not fixed.

2.2.1 Vacuum Emissions (0th0th Order in Opacity)

Figure 5 shows the diagram contributing to radiative broad-
ening at zeroth order in opacity. The distribution of gluons

with energy fraction x � 1 and transverse momentum k⊥
emitted by such a high-energy parton in vacuum is given by

d3N (0)
g

dxd2k⊥
= CRαs

π2x

k2⊥
(k2⊥ + m2

g + M2x2)2
, (9)

where CR is the quadratic Casimir factor in the color repre-
sentation R of the jet parton, M is the mass of the jet parton
(potentially a heavy quark), and mg is a mass associated with
the radiated gluon arising from the Ter-Mikayelian effect
[76–78].

The elementary splitting function (9) dictates both the
radiative broadening and energy loss in vacuum. The inte-
gral of the distribution (9) just gives the average number of
radiated gluons 〈Ng〉0. The fraction �E/E |NLO, 0 of the ini-
tial jet energy E which is carried away by the gluon radiation
is similarly obtained by computing the average energy frac-
tion x from the distribution (9). Likewise the mean-square
transverse momentum broadening 〈pT 〉NLO, 0 produced by
the emissions is obtained from (9) by computing the mean-
square momentum k2⊥ of the radiated gluons:

〈Ng〉0 ≡
∫

dx d2k⊥
d3N (0)

g

dx d2k⊥
, (10a)

�E

E

∣∣∣
∣
NLO, 0

=
∫

dx d2k⊥

(

x
d3N (0)

g

dx d2k⊥

)

, (10b)

〈p2
T 〉NLO, 0 =

∫
dx d2k⊥

(

k2⊥
d3N (0)

g

dx d2k⊥

)

, (10c)

giving the vacuum contributions as

〈Ng〉0 ≈ αsCR

π
ln2 E

μ
(11a)

�E

E

∣∣
∣∣
NLO, 0

≈ 2αsCR

π
ln

E

μ
, (11b)

〈p2
T 〉NLO, 0 ≈ 2

αsCR

π
E2 (11c)

in the high-energy limit at leading-logarithmic or leading-
power accuracy. Here we have integrated 0 ≤ x ≤ 1 and 0 ≤
k⊥ ≤ 2xE and set the scale of the dimensionless logarithm
to be μ ∼ T at this accuracy (later we will take μ to be the
Debye mass of the medium).

2.2.2 DGLV energy loss (1st order in opacity)

In this section, we present the Djordjevic–Gyulassy–Levai–
Vitev (DGLV) formalism for the radiative energy loss. Gyu-
lassy et al. (GLV) [38] computed the all orders in opacity
(L/λg)

n expansion of the radiative energy loss for a fast
massless parton in the QCD medium in the soft (x � 1)
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and collinear gluon emission (k⊥ � xE) limits. Djordje-
vic and Gyulassy [72] later generalized the massless result
of GLV to derive the heavy quark medium-induced radia-
tive energy loss to all orders in opacity (L/λg)

n , also for
x � 1 with k⊥ � xE . Djordjevic and Gyulassy’s work
involved the generalization of the GLV opacity series [38] to
include massive quark kinematic effects and the inclusion of
the Ter-Mikayelian plasmon effects for gluons discussed in
[78]. These calculations assumed the radiation to be soft and
collinear; that is, the fraction x of energy carried away by an
emitted gluon and the angle k⊥/xE at which it is emitted are
both small. Additionally, it was assumed that the energy E of
the parton was the largest scale in the problem (the eikonal
approximation).

Figure 6 shows schematically the amplitude squared used
to compute the medium induced single inclusive radiative
gluon spectrum. Since the vacuum emissions are explicitly
subtracted out, the resulting single inclusive distribution can
be positive or negative; when negative, the destructive inter-
ference from the LPM effect is dominant, and the amount of
emitted radiation is less than in vacuum.

The resulting distribution of gluon radiation at first order
in opacity generalizes the vacuum expression (9) to be dif-
ferential in the collisional momentum transfer q⊥ with the
medium, giving the kerne

d5N (1)
g

dxd2k⊥d2q⊥
= 1

π

d5N (1)
g

dxdk2⊥d2q⊥

= CRαs

π3x

L

λ

1

k2⊥ + m2
g + M2x2

μ2

(q2⊥ + μ2)2
×

× 2
k⊥ · q⊥(k⊥ − q⊥)2 + (m2

g + M2x2)q⊥ · (q⊥ − k⊥)

( 4Ex
L )2 + ((k⊥ − q⊥)2 + M2x2 + m2

g)
2 .

(12)

Note that the expression for (12) assumes an exponentially
falling distribution ∼ exp(−�z/L)/L between the jet pro-
duction and target rescattering center. This simplified model
of the medium was employed previously in Ref. [38] to
smooth out the LPM interference pattern, roughly mimic the
medium expansion, and permit an analytic expression for
the distribution (12) in closed form. The details about the

assumptions of the medium geometry are inessential for the
qualitative comparison we wish to make, so it suffices for us
to employ the same exponential model here. For a quantita-
tive comparison between formalisms it will be important to
implement the same model of the medium in the twist-4 side
as well.

As with the vacuum case (10), the distribution (12) of
medium-induced radiation serves as the kernel for computing
both the energy loss and momentum broadening. Together,
this gives

〈Ng〉1 ≡
∫

dx d2k⊥ d2q⊥
d5N (1)

g

dx d2k⊥ d2q⊥
. (13a)

�E

E

∣
∣∣
∣
NLO, 1

=
∫

dx d2k⊥ d2q⊥ x
d5N (1)

g

dx d2k⊥ d2q⊥
, (13b)

〈p2
T 〉NLO, 1 =

∫
dx d2k⊥ d2q⊥ (k⊥ − q⊥)2 d5N (1)

g

dx d2k⊥ d2q⊥
,

(13c)

Writing the expression for the medium-induced, radiative
energy loss out completely, we have

�E

E

∣∣∣∣
NLO, 1

= 4CRαs

π2

L

λ

∫ 1

0
dx

∫ kmax

0

kdk

k2 + m2
g + M2x2

∫ qmax

0
qdq

μ2

(q2 + μ2)2

×
∫ 2π

0
dθ

kq cos θ(k2 + q2 − 2kq cos θ) + (m2
g + M2x2)(q2 − kq cos θ)

( 4Ex
L )2 + ((k2 + q2 − 2kq cos θ) + M2x2 + m2

g)
2

,

(14)

where we have defined k ≡ |k⊥| and q ≡ |q⊥|. Note that
θ measures the angle between k⊥ and q⊥. The kinematic
limit

kmax = 2x(1 − x)E (15)

is obtained by imposing collinearity on the emitted gluon,
yielding k⊥ � 2xE , and collinearity on the parent parton,
yielding k⊥ � 2(1 − x)E . Recalling that x � 1, it is suffi-
cient to approximate Eq. (15) by kmax = 2xE to determine
the asymptotic scaling.

To illustrate the behavior of the radiative energy loss given
by (14), we plot the fractional energy loss for a charm and
bottom quark as a function of initial parton energy E , and as
a function of QGP effective length L for fixed E = 10 GeV,
both in Fig. 7. The implementation in this work is compared
to the same plots produced by Djordjevic and Gyulassy (Fig-
ures 1 and 2 in [72]). We find that our Eq. (14) reproduces
well the calculation from the original work of Djordjevic and
Gyulassy. As expected, the fractional energy loss decreases
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Fig. 6 Schematic depiction of the amplitude squared contributing to
the first order in opacity contribution to the single inclusive radiative
gluon emission spectrum; the diagrams corresponding to one or more

interactions with the medium are representative of all possible attach-
ments of the gluon exchange from the medium. The vacuum contribu-
tion is explicitly removed

Fig. 7 The first order in opacity fractional energy loss for charm and
bottom quarks given by (14) is plotted as a function of parent parton
energy (upper plot) and the effective static thickness L (lower plot) of
a plasma characterised by αs = 0.3, μ = 0.5 GeV and λ = 1 fm. The
black solid curves show the implementation of this work, while the blue
dashed curves are given by the results of Djordjevic and Gyulassy (see
Figures 1 and 2 in [72]). For the upper plot we take L = 4 fm, while
the lower plot takes E = 10 GeV. The charm and bottom quark masses
are taken to be mc = 1.6 GeV and mb = 4.75 GeV respectively

with the quark mass M and increases like L2 at small L ,
softening to a linear dependence ∝ L at large L .

2.3 Total (LO + NLO) transverse momentum broadening

Having quantitatively verified in Fig. 7 the agreement of
the DGLV energy loss expression (14) as obtained by using
the distribution (12) as the energy loss kernel in Eq. (13b),
we next consider the DGLV radiative momentum broaden-
ing (13c) obtained from the same kernel. The observable of

interest is the difference in momentum broadening due to the
medium, which is experimentally determined by a compari-
son of jet broadening in heavy-ion collisions versus proton–
proton collisions:

�〈p2
T 〉tot ≡ [〈p2

T 〉tot, AA
] − [〈p2

T 〉tot, pp
]

= [
Pno rad〈p2

T 〉el,AA + Prad,AA〈p2
T 〉inel,AA

]

− [
Prad,pp〈p2

T 〉inel,pp
]

= e−〈Ng〉0−〈Ng〉1〈p2
T 〉LO, 1

+ (1 − e−〈Ng〉0−〈Ng〉1)
(〈p2

T 〉NLO, 0 + 〈p2
T 〉NLO, 1

)

− (1 − e−〈Ng〉0)〈p2
T 〉NLO, 0 , (16)

where the different collisional and radiative terms are
weighted by the average number of gluon emissions 〈Ng〉
at the indicated orders in opacity. The collisional broadening
term 〈p2

T 〉LO, 1 is weighted by the probability not to radiate
a gluon e−〈Ng〉0−〈Ng〉1 up to first order in opacity. The radia-
tive broadening for both the vacuum and the medium-induced
radiation are similarly weighted by the probability 1−e−〈Ng〉
at the corresponding accuracies. We will next proceed to eval-
uate Eq. (16) and its various contributions both numerically
and analytically in a leading-logarithmic analysis.

3 Asymptotic scaling: numerical

In this section, we demonstrate the numerical implementa-
tion of LO (4), NLO (4) and total momentum broadening
formulae (16) for massive and massless parent quarks from
the opacity expansion energy loss formalism. We focus in
particular on the high-energy asymptotic limit E → ∞ of
this model, with the aim of comparing with the asymptotic
behavior of the twist-4 calculation of Refs. [60–62]. There,
in the twist expansion, the radiative broadening effect (NLO)
appears as a quantum evolution effect associated with large
logarithms of Q2/μ2

F with μF the factorization scale. The
result indicates that the radiative (NLO) and collisional (LO)
broadening should be related by one step of logarithmic evo-
lution, such that their ratio is proportional to the resummation
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Fig. 8 The LO, NLO, and vacuum-subtracted total transverse momen-
tum picked up by a charm quark (M = 1.5 GeV) propagating through a
plasma characterized by L = 5λ = 1 fm and μ = 0.5 GeV. We observe
ln(E/μ) and (ln(E/μ))2 scaling for the LO broadening 〈p2

T 〉LO, 1 and
first order in opacity NLO broadening 〈p2

T 〉NLO, 1 respectively

parameter of the evolution equation:

〈p2
T 〉NLO, 1

〈p2
T 〉LO, 1

∝
(

αs ln
E

μ

)
, (17)

with some constant of proportionality to be determined.
Unless otherwise specified, the broadenings defined by

Eqs. (4), (13c) and (16) are computed using the upper inte-
gration limits Eqs. (5) and (15). In Fig. 8, we consider the
LO, NLO (at zeroth and first order in opacity), and vacuum-
subtracted total broadening of a heavy charm quark with mass
M = 1.5 GeV. We observe that the vacuum broadening scales
quadratically with the energy ∼ E2, consistent with Eq. (11).
Similarly, the collisional (LO) broadening appears to scale
like ln(E/μ), consistent with Eq. (6). Finally, the radiative
(NLO) broadening at first order in opacity appears to scale
like ln(E/μ)2, consistent with the expectation (17) of a single
step of quantum evolution relative to the collisional broad-
ening.

However, a close examination of the radiative broadening
component in Fig. 8 reveals that the coefficient of proportion-
ality anticipated in Eq. (17) is in factnegative. This negativity,
implying a narrowing, rather than a broadening, of the aver-
age transverse momentum when compared to the vacuum
distribution, is robust for O (1) variations in the parameters
of the calculation, as shown dramatically in Figs. 9, 10, and
11. Such a result, while counterintuitive, is a indeed a reason-
able physical outcome of the LPM effect, which is in general
a destructive interference between the vacuum and medium-
induced radiation. While the LPM effect adds a net positive
contribution to the energy loss of jets, the nontrivial redistri-
bution of the radiated gluons leads to a net reduction of the
radiative broadening compared to vacuum.

Fig. 9 The radiative broadening of charm (solid), bottom (dashed),
and massless (dot-dashed) quarks at first order in opacity, as a function
of the effective medium length L . The charm and bottom quark masses
were taken to be M = 1.5 GeV and M = 4.75 GeV respectively

Fig. 10 DGLV radiative broadening contribution at first order in opac-
ity for different choices of the kinematic limits of integration

For heavy quarks (charm and bottom), we see explicitly
the simultaneous increase in radiative energy loss (Fig. 7)
and decrease in radiative broadening (Fig. 9). Both effects
show a mass ordering, with the heavier bottom quarks los-
ing less energy and narrowing less compared to the charm
quarks. Massless quarks lose the most energy [38] and are
narrowed the most. Variations in the precise choice of the
kinematic limits shown in Fig. 10 do not change the quali-
tative narrowing of the momentum distribution, shown here
for the massless case. Moreover, the rate of this logarithmic
growth with E (slope of the curves in Fig. 10) is independent
of the precise values of the limits as well.

Focusing on the massless limit (M = mg = 0) to better
study the high-energy asymptotics, we plot the absolute value
of the ratio 〈p2

T 〉NLO, 1/〈p2
T 〉LO, 1 in Fig. 11 to study the coef-

ficient of the logarithm anticipated by Eq. (17). In this limit
the distribution (12) simplifies to the original expression of
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Fig. 11 The ratio of (first-order) NLO to LO broadening of a massless
parton as a function of E/μ, for various values of μ. For all values of
μ considered, we observe a clear negative logarithmic dependence of
the ratio on E/μ

Gyulassy et al. for massless partons [38]

d5N (1)
g

dxd2k⊥d2q⊥
= CRαs

π3x

L

λ

1

k2⊥

μ2

(q2⊥ + μ2)
2

× 2
k⊥ · q⊥(k⊥ − q⊥)2L2

(4Ex)2 + (k⊥ − q⊥)4L2
.

(18)

The linearity of the curves shown in Fig. 11 confirms that
the scaling is indeed logarithmic as expected. However, the
negativity of the constant of proportionality is concerning.
If it is indeed the true prediction of energy loss approaches
such as DGLV, then we would like to substantiate that by an
explicit analytic evaluation of the high-energy asymptotics.
We perform this analysis next in Sect. 4 and compare with the
asymptotic high-energy behavior seen in the direct numerical
evaluation.

4 Asymptotic scaling: analytic

As we shown strikingly in Figs. 8 and 11, a direct numerical
evaluation of the radiative (NLO) broadening in the DGLV
formalism predicts a narrowing of the transverse momen-
tum distribution in medium. To understand the origin of this
asymptotic behavior, we undertake in this section an ana-
lytic treatment of the high-energy limit in various ways. First
we will consider a simplified (but standard) treatment of
the high-energy kinematics, which ignores finite kinematic
bounds and integrates the distributions to infinity. This proce-
dure is known to provide an accurate asymptotic estimate of
the energy loss, but as we will show, fails qualitatively for the
transverse momentum broadening. The origin of this discrep-
ancy is also relevant to comparing between energy loss frame-
works such as DGLV and the collinear twist-4 approach, so
it is instructive to begin there as a baseline for comparison.

Then we will re-examine the high-energy asymptotics by
carefully treating the finite kinematic bounds. To ensure the
accuracy of the analytics, we will benchmark all necessary
approximations with direct numerical comparison. The final
result of our analysis does qualitatively change the sign of
the effect, predicting a net narrowing as seen in the exact
numerics.

4.1 Infinite kinematics approximation

4.1.1 As applied to radiative energy loss

The calculation of the fractional parton energy loss �E/E in
the vacuum (NLO, 0) and at first order in opacity (NLO, 1)
was performed previously in Ref. [38]. Here we summarize
their method, which simplifies the kinematic bounds to make
the results more analytically tractable, before applying the
same logic to the calculation of the momentum broadening.
The vacuum result (11b) is trivially obtained from Eqs. (10)
by integrating k⊥ ∈ [0, 2xE]. Note that the result (11b) we
show here differs from Eq. (122) of Ref. [38] by a factor of
2
3 due to their retention of the full polynomial 1 − x + x2

2 ,
which we approximate as 1 under the condition x � 1 under
which it was derived.

To perform a similar calculation of the energy loss �E/E
at first order in opacity from Eq. (13b), we follow the cal-
culation performed in Ref. [38]. First we change integration
variables to define

q ′⊥ ≡ k⊥ − q⊥ (19)

in terms of which the differential distribution (18) becomes

dN (1)

dx d2k⊥ d2q′⊥

= C

x

k⊥ · (k⊥ − q ′⊥)

k2⊥

μ2

((k⊥ − q ′⊥)2 + μ2)2

q ′ 2⊥
A2 + q ′ 4⊥

= C

x

μ2

k2⊥

k2⊥ − k⊥q ′⊥ cos θ

(k2⊥ + q2⊥ − 2k⊥q ′⊥ cos θ + μ2)2

q ′ 2⊥
A2 + q ′ 4⊥

(20)

with unit Jacobian. Here θ is the angle between k⊥ and q ′⊥,
and for brevity we have introduced the coefficients

A = 4xE

L
(21a)

C = 2
αsCR

π3

L

λ
= 8αs

3π3

L

λ
. (21b)

To study the high-energy asymptotics, Gyulassy et al. inte-
grated the kernel (20) as in Eq. (13b) over the entire range
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from q ′⊥, k⊥ ∈ [0,∞), giving

�E

E

∣∣
∣∣
NLO, 1

= Cπ

2

1∫

0

dx

∞∫

0

dk2⊥

2π∫

0

dθ

∞∫

0

dq ′ 2⊥

× μ2

k2⊥

k2⊥ − k⊥q ′⊥ cos θ

(k2⊥ + q2⊥ − 2k⊥q ′⊥ cos θ + μ2)2

q ′ 2⊥
A2 + q ′ 4⊥

. (22)

We observe that the numerator k2⊥−k⊥q ′⊥ cos θ from Eq. (22)
can be simply obtained by differentiation of the denominator:

k2⊥ − k⊥q ′⊥ cos θ

(k2⊥ + q2⊥ − 2k⊥q ′⊥ cos θ + μ2)2

= −k⊥
2

∂

∂k⊥

(
1

k2⊥ + q2⊥ − 2k⊥q ′⊥ cos θ + μ2

)

. (23)

Equation (23) allows us to perform the dθ integration first
over the simpler integrand, then differentiate back after-
wards:

�E

E

∣
∣∣∣
NLO, 1

= Cπ2μ2

1∫

0

dx

∞∫

0

dq ′ 2⊥

∞∫

μ2

dk2⊥
q ′ 2⊥

A2 + q ′ 4⊥

× k2⊥ − q ′ 2⊥ + μ2

[
k4⊥ − 2k2⊥(q ′2⊥ − μ2) + (q ′2⊥ + μ2)2

]3/2 .

(24)

Then the dk2⊥ integral can be performed analytically, giving

�E

E

∣∣∣
∣
NLO, 1

= Cπ2μ2

1∫

0

dx

∞∫

0

dq ′ 2⊥
q ′ 2⊥

A2 + q ′ 4⊥

1

q ′ 2⊥ + μ2
,

(25)

and similarly for the dq ′ 2⊥ integral:

�E

E

∣∣∣∣
NLO, 1

= Cπ2μ2

1∫

0

dx
Aπ − 2μ2 ln A

μ2

2(A2 + μ4)

= Cπ2

1∫

0

dx

(
4xE
μ2L

)
π − 2 ln

(
4xE
μ2 L

)

2

[(
4xE
μ2L

)2 + 1

] . (26)

Assuming that the dominant limit is

4xE

μ2L
� 1 → x � μ2L

4E
(27)

the remaining dx integral becomes logarithic

�E

E

∣∣∣
∣
NLO, 1

≈ Cπ3 μ2L

8E

1∫

0

dx

x
. (28)

This last integral must be regulated in the small-x regime
with x � O

(
μ
E

)
, giving

�E

E

∣∣∣
∣
NLO, 1

≈ Cπ3 μ2L

8E
ln

E

μ

= αsCR

4

μ2L2

λ E
ln

E

μ
. (29)

Comparing the high-energy asymptotics (29) to the vacuum
energy loss (11b), we see that the medium-induced contribu-
tion is suppressed compared to the vacuum by a factor

�E

E

∣∣∣
∣
NLO, 1

=
(

π

8

μ2L2

λ E

)
�E

E

∣∣∣
∣
NLO, 0

, (30)

indicating that the LPM effect has softened the medium-
induced energy loss relative to the vacuum.

4.1.2 As Applied to Radiative Broadening

Next we want to apply the same logic to the calculation of
the radiative momentum broadening (4) in the medium. As
before, we will change variables to q ′⊥ ≡ k⊥ − q⊥, but
we must take additional care with the limits because of the
different weighting of the x and q ′⊥ integrals. To that end,
let us determine the appropriate kinematic bounds on the q ′⊥
integration corresponding to Eq. (15). The upper limit of the
q ′⊥ < q ′

max integration is determined by the condition

(q2⊥)max = k2⊥ + q ′ 2
max − 2k⊥q ′

max cos θ = 3Eμ . (31)

This quadratic equation in q ′
max has the two solutions

q ′
max = k⊥ cos θ ±

√
3Eμ − k2⊥ sin2 θ (32)

which define the inner / outer boundaries of the q ′⊥ integration
region. The (log-divergent) large-E behavior is governed by
the large phase space of the q ′⊥ integration; as we will show,
the leading behavior of q ′ 2

max with E is what generates the
leading double-logarithmic behavior. Subleading corrections
which scale like

√
E may contribute to single-logarithmic

corrections which are higher-order, and terms which are finite
in E can never generate divergences as E → ∞. With this
analysis, we conclude that the leading behavior of the q ′⊥
phase space as E → ∞ is

q ′ 2
max ≈ 3Eμ (33)
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which is nicely independent of the other variables k⊥ and
θ which enter into the integral (13c). It is only because the
leading upper limit is a constant independent of k⊥ and θ
that the machinery developed in Ref. [38] can be applied in
the same form. The radiative momentum broadening (13c)
is then given by

〈p2⊥〉NLO, 1 = Cπ

2

1∫

μ
E

dx

x

4x2E2∫

μ2

dk2⊥

2π∫

0

dθ

3Eμ∫

0

dq ′ 2⊥

× μ2

k2⊥

k2⊥ − k⊥q ′⊥ cos θ

(k2⊥ + q2⊥ − 2k⊥q ′⊥ cos θ + μ2)2

q ′ 4⊥
A2 + q ′ 4⊥

,

(34)

where integrating over the angle of the absolute coordinate
axes gave a factor of (2π) and changing variables from
k⊥dk⊥ to dk2⊥ (and similarly for q ′) generated a factor of
(1/2)2.

Because the leading upper limit of q ′⊥ is independent
of the angle θ , we can perform the angular integration of
Eq. (34) using the derivative technique from before. Writing
the numerator k2⊥ − k⊥q ′⊥ cos θ from Eq. (34) in terms of a
derivative allows us to perform the angular integral, giving

〈p2⊥〉NLO, 1 = Cπ2μ2

1∫

μ
E

dx

x

3Eμ∫

0

dq ′ 2⊥

4x2E2∫

μ2

dk2⊥
q ′ 4⊥

A2 + q ′ 4⊥

× k2⊥ − q ′ 2⊥ + μ2

[
k4⊥ − 2k2⊥(q ′2⊥ − μ2) + (q ′2⊥ + μ2)2

]3/2 .

(35)

In the energy loss calculation, it was sufficient to extend
the UV limit of the dk2⊥ integral to infinity, neglecting the
finite kinematic bound k⊥ < 2xE . As we shall see, while
this approximation sufficed for the case of energy loss, it
becomes much more tenuous for the case of radiative momen-
tum broadening. Therefore, as a baseline for comparison, let
us consider the result we obtain by similarly integrating k2⊥
all the way from 0 to ∞ instead of over its appropriate finite
bounds. Then the dk2⊥ can be performed analytically, giving

〈p2⊥〉NLO, 1 = Cπ2μ2

1∫

μ
E

dx

x

3Eμ∫

0

dq ′ 2⊥
q ′ 4⊥

A2 + q ′ 4⊥

1

q ′ 2⊥ + μ2
.

(36)

We note that the dq ′ 2⊥ integral becomes logarithmic ∼ dq ′ 2⊥
q ′ 2⊥

if we satisfy the two criteria

q ′ 2⊥ � A = 4xE

L
(37a)

q ′ 2⊥ � μ2 . (37b)

When both of these criteria are satisfiedq ′ 2⊥ � (max[A , μ2]),
the integral becomes logarithmic, but which of the two cri-
teria (37) is the more restrictive depends on x . For x < xc
with the critical switching value of x being

xc = μ2L

4E
(38)

the maximum is μ2; if x > xc the maximum is A = 4xE/L .
Splitting up the x integral into these two regions gives

〈p2⊥〉NLO, 1

= Cπ2μ2

⎡

⎢
⎣

xc∫

μ
E

dx

x
ln

3E

μ
+

1∫

xc

dx

x
ln

3Eμ

4xE/L

⎤

⎥
⎦

≈ 4αs

3π
μ2 L

λ
ln2 E

μ
+ O

(
αs ln

E

μ

)
, (39)

where only the second integral over the parametrically large

region μ2L
4E < x < 1 produces a double logarithm of the jet

energy.
Compared to the collisional broadening (6), we see that

the radiative broadening (39) is suppressed by a factor of αs ,
but enhanced by a logarithm of the jet energy:

〈p2⊥〉NLO, 1

〈p2⊥〉LO, 1
= 4αs

3π
ln

E

μ
. (40)

This result is indeed compatible with the expectation from
(17) that the radiative broadening occurs as a quantum evo-
lution correction to the collisional broadening. Notably, the
coefficient of the logarithmic, evolution-like correction is
positive, reflecting an increase in the broadening compared
to the collisional term, in direct contrast to the narrowing
observed numerically in the previous section.

Finally we note that direct numerical evaluation of Eq. (34)
is extremely delicate and must be handled with care. The
rapidly decaying and oscillating integrand is highly suscep-
tible to numerical cancellation and roundoff error, so care-
ful convergence and consistency tests of the numerics are
essential. Wherever possible, evaluating part of the expres-
sion analytically (as in the dk2⊥ integral performed in obtain-
ing Eq. (36)) helps stabilize the numerics.

4.2 Subtleties of Finite Kinematics

4.2.1 Preliminaries

In particular, we wish to evaluate Eq. (13c) analytically for
〈�p2

T 〉 from radiative energy loss in the limit of E � μ.
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We have not found an easy way to isolate the leading dou-
ble logarithmic behavior of the integral. This difficulty is
likely related to the fact that, despite the superficially log
IR divergent 1/x and linearly UV divergent (k⊥)0 nature of
the integrand, the integral is actually convergent. This con-
vergence appears to be due to an extremely delicate cancel-
lation of competing divergences. (It’s perhaps worth noting
that even subleading corrections to the radiative energy loss
kernel can destroy this delicate cancellation of divergences,
changing the leading in E behavior from �E ∼ ln E to
�E ∼ E [79].) Possibly another way of seeing the difficulty
of extracting the leading behavior is that we expect the lead-
ing contribution to come from k⊥ ∼ q⊥ with 4xE/L acting
as a regulator; however we must also integrate over x , and,
worse, kmax ∼ x for small x . We were successful in extract-
ing the leading in energy behavior only through brute force
evaluation of the integral, then expanding for large energies.

The advantage of the form of the equation in Eq. (13c)
is that the domains of integration are especially simple: x ∈
(0, 1), k⊥ ∈ (

0, kmax (x, E)
)
, and q⊥ ∈ (

0, qmax (μ, E)
)
.

In particular, there’s no non-trivial angular dependence in
any of the regions of integration. The penalty is the difficult
dependence on (q⊥ − k⊥)4. One way to make progress, as
shown in the previous section, is to perform a change of vari-
ables to q′⊥ ≡ q⊥ − k⊥. The trade-off is that the domain of
integration becomes significantly more complicated. Theq′⊥
integration is still a disc of radius qmax = √

3μE ; however,
this disc is now shifted away from the origin by a distance k⊥.
There are two possibilities: the q′⊥ integration region con-
tinues to contain the origin (q′⊥ = 0⊥), what we’ll from now
on refer to as a “small shift”; or the q′⊥ integration region
no longer contains the origin, what we’ll from now on refer
to as a “large shift.” Clearly the large shift only occurs when
k⊥ is large; in particular, a large shift can only occur when
k⊥ > qmax . We thus have that, after the shift in integration
variables,

〈p2⊥〉NLO, 1 = CRαs

π2

L

λ

∫
dxd2k⊥d2q⊥

1

x

k⊥ · q⊥
k2⊥

μ2

(q2⊥ + μ2)2

(k⊥ − q⊥)4

(4xE/L)2 + (k⊥ − q⊥)4

= 2CRαs

π

L

λ

{∫ xmin

0
dx

∫ kmax

0
dk⊥

∫ 2π

0
dθ

∫ q ′
max,+

0
dq ′⊥ I (x, k⊥, q⊥, θ, E, L , μ)

+
∫ 1

xmin

dx
∫ qmax

0
dk⊥

∫ 2π

0
dθ

∫ q ′
max,+

0
dq ′⊥ I (x, k⊥, q⊥, θ, E, L , μ) (41)

+
∫ 1

xmin

dx
∫ kmax

qmax

dk⊥
∫ θmax

−θmax

dθ

∫ q ′
max,+

q ′
max,−

dq ′⊥ I (x, k⊥, q⊥, θ, E, L , μ)

}
;

I ≡ q ′⊥(k⊥ − q ′⊥ cos θ)

x

μ2

(k2⊥ + q ′2⊥ − 2k⊥q ′⊥ cos θ + μ2)2

q ′4⊥
(4xE/L)2 + q ′4⊥

(42)

where

xmin ≡
√

3μ

4E
kmax ≡ 2xE

qmax ≡ √
3μE

θmax ≡ sin−1
(qmax

k⊥

)

q ′
max,± ≡ k⊥ cos θ ±

√
q2
max − k2⊥ sin2 θ. (43)

Note that xmin is the solution to kmax (xmin, E) = qmax (μ, E)

such that for x > xmin one has that kmax > qmax . In Eq. (41),
the first two lines correspond to the “small shift” while the
third line corresponds to the “large shift.” Here we’ve taken
kmax = 2xE instead of the usual 2x(1 − x)E for simplicity.
The GLV formula is derived in the limit x � 1, so using the
simpler kmax is consistent with the usual GLV approxima-
tions.

We show in Fig. 12 the three separate contributions from
the three lines in Eq. (41) to 〈p2⊥〉NLO, 1. One can see the onset
of significant numerical instability for E � 2000 GeV. As
can be seen in the figure, in the high-energy limit, one may
safely neglect the large shift integral as, at most, contributing
a very small, approximately energy-independent amount. We
will therefore neglect the large shift integral from now on.

Of the small shift integrals, there are two relevant regions:
when k⊥ is cut off by kmax , the first line of Eq. (41), and
when k⊥ is cut off by qmax , the second line of Eq. (41). k⊥
is cut off by kmax when x < xmin and by qmax otherwise;
thus we refer to these two contributions as the small shift,
small x integral and the small shift, large x integral. Figure
12 suggests that the two small shift contributions grow like
ln2(E), with the small shift, large x contribution about 3
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Fig. 12 Comparison of the three contributions to 〈p2⊥〉NLO, 1 from the
three lines of Eq. (41) for L = 5 fm and μ = 0.5 GeV: the small shift,
small x contribution from the first line of Eq. (41) (dashed); the small
shift, large x contribution from the second line of Eq. (41) (dash-dotted);
the large shift contribution from the third line of Eq. (41) (dotted); and
the sum of the three contributions (solid)

times larger than the small shift, small x contribution. We
will evaluate the small shift, large x contribution first for two
reasons: the small shift, large x contribution is the larger of
the two; and because qmax doesn’t depend on x , the small
shift, large x contribution is easier of the two to evaluate.

4.2.2 Small shift, large xx integral

We’d like to examine the leading in energy behavior of the
second line of Eq. (41). Let’s first make the integral dimen-
sionless by scaling out

√
3μE from both k⊥ and q ′⊥. Defining

k ≡ k⊥/
√

3μE and q ≡ q ′⊥/
√

3μE the integral to consider
is

〈p2⊥〉I2 ≡ 2πμ2
∫ 1

α′
dx

∫ 1

0
dk

∫ 2π

0
dθ

∫ q+(k,θ)

0
dq

× 1

x

k − q cos θ

(k2 + q2 − 2kq cos θ + α2)2

q5

x2β2 + q4 ,

(44)

q+ ≡ k cos θ +
√

1 − k2 sin2 θ, (45)

where α ≡ √
μ/3E , β ≡ 4/3μL , and α′ ≡ 3α/2. (For

notational simplicity we’ve dropped the overall factors of
CRαs L/π2λ.) GLV energy loss is derived in the limit L �
1/μ, so we will always have β � 1. The large energy limit
corresponds to taking α � 1. One may straightforwardly
perform the x integration to yield

〈p2⊥〉I2 = 2πμ2
∫ 1

0
dk

∫ 2π

0
dθ

∫ q+(k,θ)

0
dq

k − q cos θ

(k2 + q2 − 2kq cos θ + α2)2

1

2
q ln

( q4 + α′2β2

(q4 + β2)α′2
)
,

The strong dropoff of the original integrand with ∼ q−2
⊥ sug-

gests that the result may be insensitive to the q upper bound;
numerically, one finds small and decreasing corrections to
the exact result when one taken the upper bound of the q
integral to infinity, q+ → ∞. Taking q+ → ∞ we are able
to immediately perform both the k and θ integrals, yielding

〈p2⊥〉I2 � −2πμ2
∫ ∞

0
dq

πq

2

q2 + α2 − √
q4 − 2q2(1 − α2) + (1 + α2)2

(q2 + α2)
√
q4 − 2q2(1 − α2) + (1 + α2)2

ln
( q4 + α′2β2

(q4 + β2)α′2
)
, (46)

where we explicitly note with the � the approximation made
by taking the upper limit of the q integration to infinity. Of
the result, notice first the emergence of an overall minus sign.
Second, notice the explicit delicate subtraction occurring in
the numerator of the ratio in the integrand. We separately
evaluate the contributions from the two subtracting terms.
Each contribution individually UV log diverges, so we must
artificially cut off the upper limit of the integral; we’ll call
this artificial cutoff u. We will take u → ∞ when we put the
two contributions together.

One may evaluate

∫ u2

0
dq2 1

q2 + α2 ln
( q4 + α′2β2

(q4 + β2)α′2
)

(47)

in closed form in an uninsightful combination of logs and
dilogarithms.

The integral

∫ u2

0
dq2

ln
(

q4+α′2β2

(q4+β2)α′2
)

√
q4 − 2q2(1 − α2) + (1 + α2)2

(48)

cannot be evaluated in closed form. However, the integrand
is highly peaked around q = 1, and the integral is dominated
by the region around q = 1. When q � 1, β � 1 and α � 1
implies that the argument of the log can be approximated by

q4 + α′2β2

(q4 + β2)α′2 � 1 + α′2β2

(1 + β2)α′2 ≈ 1

α′2 . (49)

This is a particularly good approximation for the entire inte-
gration region: the log only serves to enhance the dying off
of the integrand for both large and small q. But for large q
the integrand is already dying off like 1/q2, and for small q
the integral is already dying off like q. See Fig. 13 to see just
how good the approximation is for E = 1000 GeV, L = 5
fm and μ = 0.5 GeV.

123



Eur. Phys. J. C (2022) 82 :437 Page 15 of 23 437

Fig. 13 Comparison between the full integrand Eq. (48) (thick, black)
and the approximate integrand Eq. (50) (thin, green) for E = 1000
GeV, L = 5 fm and μ = 0.5 GeV

Fig. 14 Comparison between the full numerical 〈p2⊥〉I2 from Eq. (44)
to the approximation Eq. (51) for L = 5 fm and μ = 0.5 GeV with the
overall factor of CRαs L/π2λ restored

For large u2 we have

∫ u2

0
dq2 ln(1/α′2)

√
q4 − 2q2(1 − α2) + (1 + α2)2

≈ ln(1/α′2) ln(u2/α2). (50)

When the two contributions are combined, the ln(u2)

divergences cancel (as they must) and the remainder is

〈p2⊥〉I2 = −1

2
π2μ2 ln

(3

2
α
)(

3 ln(α)

−2 ln(β) − ln
(3

2

))
. (51)

We compare the full numerical 〈p2⊥〉I2 from Eq. (44) to
the approximation Eq. (51) (with the overall factor of
CRαs L/π2λ restored) in Fig. 14.

4.2.3 Small shift, small xx integral

As was done for the small shift, large x integral, let’s
first make the integral dimensionless by scaling out

√
3μE

from both k⊥ and q ′⊥. Defining k ≡ k⊥/
√

3μE and q ≡
q ′⊥/

√
3μE the integral to consider is

〈p2⊥〉I1 ≡ 2πμ2
∫ α′

0
dx

∫ x/α′

0
dk

∫ 2π

0
dθ

∫ q+(k,θ)

0
dq

1

x

k − q cos θ

(k2 + q2 − 2kq cos θ + α2)2

q5

x2β2 + q4 , (52)

From the intuition gained from the small shift, large x
integral, one can check numerically that lifting the upper
bound of the q integral to infinity, q+ → ∞, is a negligible
change. With the dependence on k and θ removed from the
upper limit of q we may perform the θ and k integrals. We
may further define y ≡ (x/α′)2. Then we are left with

〈p2⊥〉I1 � 2πμ2
∫ 1

0
dy

∫ ∞

0
dq

π

2y

( 1

q2 + α2

− 1
√
y2 − 2y(q2 − α2) + (q2 + α2)2

) q5

yβ ′2 + q4 , (53)

where β ′ ≡ α′β. We see again a subtraction leading to a
delicate cancellation of (this time IR) divergences.

We may readily perform the y integral over the integrand
resulting from the first term in the parentheses. Temporarily
inserting an IR regulator ε to be taken to 0, one has that
∫ 1

ε

dy
q5

y(q2 + α2)(yβ ′ + q4)

= q

(q2 + α2)
ln

(
q4

(β ′ + q4)ε

)
. (54)

One may also perform the integral over y from the inte-
grand resulting from the second term in the parentheses.
The result is complicated, including powers of q and α,
square roots, and arctanh’s of complicated arguments. When
expanding the result for small ε one finds exactly the ln ε

required to cancel the IR divergence from the first term.
Numerically, it turns out the remaining contributions deli-
cately approximately cancel each other and yield a negligible
contribution in the high energy limit.

We are thus left to compute

∫ ∞

0
dq2 1

q2 + α2 ln

(
q4

β ′2 + q4

)
, (55)

which yields another uninsightful combination of logs and
dilogarithms.

However, in the limit of very small α one finds that

〈p2⊥〉I1 = − 1

24
π2μ2

(
12 ln2 α − 24 ln

(
3

2
β

)
ln α
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Fig. 15 Comparison between the full numerical 〈p2⊥〉I1 from Eq. (52)
to the approximation Eq. (56) for L = 5 fm and μ = 0.5 GeV with the
overall factor of CRαs L/π2λ restored

+12 ln2
(

3

2
β

)
+ 5π2

)
. (56)

We show in Fig. 15 a comparison between the full numeri-
cal 〈p2⊥〉I1 from Eq. (52) to the approximation Eq. (56) for
L = 5 fm and μ = 0.5 GeV and with the overall factor of
CRαs L/π2λ restored.

4.2.4 Complete leading order in EE expansion

Combining the leading order in energy results from the pre-
vious two subsubsections leads to a surprising simplification.
Restoring the relevant prefactors, we find

〈p2⊥〉NLO, 1 = −CRαs

4

L

λ
μ2

[
ln2

( 4E

μ2L

)
+ 5π2

12

]
. (57)

We show in Fig. 16 (top) a comparison of the leading in
energy approximation from Eq. (57) with the full result from
Eq. (13c) for L = 5 fm and μ = 0.5 GeV. In Fig. 16 (bottom)
we show the ratio of the numeric to analytic expressions. One
can see especially well in the ratio plot the onset of significant
numerical instabilities for E � 2000 GeV. Despite the sig-
nificant numerical instabilities, the analytic approximation
appears to do an extremely good job of capturing the large
energy behavior of the full numerical result.

With the approximations detailed in the previous subsub-
sections, Eq. (57) is correct to O(E−1). One should question
the confidence we have in the lack of a subleading log and
also our confidence in the constant in Eq. (57). While none
of our calculations were performed with absolute mathemat-
ical rigor – we did not rigorously assess the importance of
the approximations we made – the systematic comparison
with numerical results gives us a very high degree of confi-
dence in the lack of any significant subleading log. We did

Fig. 16 (Top) Comparison between the full result for the momentum
broadening from radiative emissions from Eq. (13c) (dots) and the lead-
ing energy behavior from Eq. (57) for L = 5 fm and μ = 0.5 GeV.
(Bottom) Ratio of the full numerical result Eq. (13c) to the asymptotic
analytic result Eq. (57) for L = 5 fm and μ = 0.5 GeV

completely neglect the nearly energy-independent contribu-
tion from the large shift, I3. Whether this contribution from
I3 grows with a log or is approximately energy independent
isn’t completely clear; this integral is the least numerically
stable of all three. Nevertheless, the large shift I3 is orders
of magnitude smaller than the small shift I1 and I2. We thus
believe our result Eq. (57) to a very good approximation fully
holds to O(E−1).

In order to more readily compare with other approaches,
one can also express Eq. (57) as a ratio of the radiative to col-
lisional broadening components. Dividing (57) by (6) gives

〈p2
T 〉NLO, 1

〈p2
T 〉LO, 1

= −αsCR

4
ln

E

μ
= −αs

3
ln

E

μ
. (58)

One can see that this ratio of the correct, finite kinematics
asymptotic radiative energy loss with the elastic energy loss
differs from the same ratio as computed with the infinite
kinematics given by (40) by a factor of −π/4 ≈ −0.79.
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5 Discussion of results

5.1 Comparison to Kang et al.

Now that we have the asymptotic behavior of the radiative
energy loss contribution to jet broadening under control, we’d
like to interpret our results. In particular, we’d like to compare
the energy loss approach, which assumes a factorization of
the production process from the subsequent in-medium evo-
lution, and the twist-4 approach of [60–62], which does not
assume a priori such a factorization.

We’ll first compare at leading order, which in the energy
loss formalism is elastic energy loss.

5.1.1 Leading order

From [62], the leading order in αs twist-4 contribution to jet
broadening is

d〈�2⊥σ 〉
dxBdydzh

= σhe
2
q

∫ 1

xB

dx

x
Tqg(x, 0, 0, μ2

f )

∫ 1

zh

dz

z
Dh/q(z, μ

2
f )δ(1 − x̂)δ(1 − ẑ), (59)

where

σh = 4π2αs z2
h

Nc
σ0 (60)

σ0 = 2πα2
EM

Q2

1 + (1 − y)2

y
(61)

x̂ = xB
x

; ẑ = zh
z

. (62)

Tqg is the twist-4 quark-gluon correlation function, a gener-
alization of the usual twist-2 parton distribution function. In
the limit of a large and loosely bound nucleus, in which one
may neglect the spatial and momentum correlations between
the two nucleons, one has [62] an approximate factorization

Tqg(xB, 0, μ2
f ) ≈ Nc

4π2αs
fq/A(xB, μ2

f )

∫
dy−q̂(μ2

f , y
−)

= Nc

4π2αs
fq/A(xB, μ2

f )q̂(μ2
f )L , (63)

where in the last line we assumed for simplicity that the
parton propagates through a nucleus of constant density of
thickness L .

In order to most readily and clearly compare to the energy
loss derivation that we will show below, we will remove the
complication of the fragmentation process from the twist-4
approach by assuming exact parton-hadron duality, i.e. we
will take

Dh/q(z, μ
2
f ) = δ(1 − z). (64)

We then have that

∫ 1

0
dzh

∫ 1

zh

dz

z
Dh/q(z, μ

2
f )δ(1 − ẑ) = 1. (65)

Putting together Eqs. (59), (63), and (65), we have for
the leading in αs contribution from the twist-4 approach a
completely factorized result

d〈�2⊥σ 〉
dxBdy

= dσ0

dxBdy
q̂(μ2

f )L , (66)

where

dσ0

dxBdy
≡ 4πα2

EMe2
q

yQ2

(
1 − y + 1

2
y2
)
fq/A(xB, μ2

f ) (67)

gives the differential production cross section.
On the other hand, as was shown in Sect. 2.1.2, a simple

estimate for the jet broadening from 2 → 2 elastic scattering
in medium is given by

〈p2
T 〉LO, 1 ≈ Lμ2

λ
ln

(
E

μ

)
. (68)

If we identify a “running” q̂ from the energy loss perspective
as

q̂(μ) ≡ μ2

λ
ln

( E
μ

)
, (69)

as was done in Sect. 2.1.2, then we see an exact equivalence
between the leading order in αs result from twist-4, Eq. (66),
and the energy loss result Eq. (6). (Recall that in the energy
loss approach the in-medium jet broadening is conditional
on the production of a high momentum parton; hence the
production cross section dσ0/dxBdy is divided out.)

5.1.2 Next-to-leading order

We would now like to go one step further, building on the
asymptotic analysis of the previous section, and attempt to
compare the asymptotics of the radiative energy loss contri-
bution to jet broadening to the asymptotics of the next-to-
leading order contribution to jet broadening from the twist-4
approach.

As a first step, we would like to compare the leading
asymptotics of the two approaches. We saw in Sect. 5.1.1
that the leading order energy loss contribution to jet broad-
ening grows with the log of energy. As we saw in Sect. 4.2.4,
the leading order asymptotics of the jet broadening from
radiative emissions within the energy loss approach shows
a leading double logarithmic growth with energy. The full
twist-4 next-to-leading order result from [60–62] includes

123



437 Page 18 of 23 Eur. Phys. J. C (2022) 82 :437

both leading as well as subleading contributions in energy.
We will focus here only on the leading contribution. From
[62] the twist-4 approach has an overall log enhanced con-
tribution given by

d〈�2⊥σ 〉
dxBdydzh

∣∣
∣∣
NLO

= σh
αs

2π
e2
q ln

(Q2

μ2
f

) ∫ 1

zh

dz

z
Dh/q(z, μ

2
f )

∫ 1

xB

dx

x
{
δ(1 − x̂)Pqq(ẑ)Tqg(x, 0, 0, μ2

f ) + δ(1 − ẑ)
(
Pqg→qg ⊗ Tqg + Pqg(x̂)Tgg(x, 0, 0, μ2

f )
)}

, (70)

Pqg→qg ⊗ Tqg ≡ Pqq(x̂)Tqg(x, 0, 0) + CA

2

{
4

(1 − x̂)+
Tqg(xB, x − xB, 0) − 1 + x̂

(1 − x̂)+
[
Tqg(x, 0, xB − x)

+Tqg(xB, x − xB, x − xB)
]} + 2CAδ(1 − x̂)Tqg(x, 0, 0). (71)

We would again like to isolate and trivialize the fragmen-
tation function contribution to ease the comparison to the
energy loss approach. At leading order, we could accomplish
this trivialization by simply replacing the fragmentation func-
tion with a delta function. At next-to-leading order, trivializ-
ing the fragmentation function contribution is more difficult
as we must remove not only the fragmentation function but
also its evolution. The term proportional to δ(1− x̂) is exactly
this NLO evolution of the fragmentation function. Removing
this evolution and replacing Dh/q(z, μ2

f ) → δ(1− z) we are
left with

d〈�2⊥σ 〉
dxBdy

∣∣
∣∣
NLO

= σh
αs

2π
e2
q ln

(Q2

μ2
f

) ∫ 1

xB

dx

x
{
Pqg→qg ⊗ Tqg + Pqg(x̂)Tgg(x, 0, 0, μ2

f )
}
. (72)

One immediately sees that – unlike the energy loss
approach – the twist-4 approach involves significantly more
physics. The result is clearly color non-trivial: there are sev-
eral contributions proportional to CA. There is also a mixing
of the Tqg and Tgg twist-4 distribution functions.

If we assume that the color triviality breaking terms are
small compared to the CF behavior, then we have that

d〈�2⊥σ 〉
dxBdy

∣∣
∣∣
NLO

= σh
αs

2π
e2
q ln

(Q2

μ2
f

) ∫ 1

xB

dx

x
[
Pqq(x̂)Tqg(x, 0, 0, μ2

f ) + Pqg(x̂)Tgg(x, 0, 0, μ2
f )

]
.

(73)

If we again assume a large and loosely bound nucleus, we
again can take that the twist-4 distribution functions factorize.
For Tqg we have again Eq. (63). For Tgg we have the obvious
generalization

Tgg(xB, 0, μ2
f ) ≈ Nc

4π2αs
fg/A(xB, μ2

f )

∫
dy−q̂(μ2

f , y
−)

= Nc

4π2αs
fg/A(xB, μ2

f )q̂(μ2
f )L . (74)

Note that the q̂ in the above is the same as in Eq. (63): in
both cases it is the high-momentum quark that is propagating
through and being kicked by the nucleus.

We therefore find that at next-to-leading order in the twist-
4 approach, assuming small color triviality violating contri-
butions, the jet broadening is given by

d〈�2⊥σ 〉
dxBdy

∣∣∣∣
NLO

= dσ0

dxBdy LL
q̂(μ2

f )L , (75)

where dσ0/dxBdy|LL is the leading logarithmic, next-to-
leading order production cross section for a hard parton in a
DIS event [80].

In order to facilitate comparison between the twist-4 result
and the energy loss result, we consider the ratio of the radia-
tive (NLO) component (73) and collisional (LO) component
(66) within the twist-4 formalism. Note also that the observ-
able d〈�2⊥σ 〉/dxBdy is proportional to 〈p2

T 〉 up to a normal-
ization factor which cancels in the ratio. Thus we may write
for the twist-4 formalism

〈p2
T 〉NLO, 1

〈p2
T 〉LO, 1

= αs

2π
ln

Q2

μ2
f

×
∫ 1
xB

dx
x

[
Pqq(x̂) fq/A(x, μ2

f ) + Pqg(x̂) fg/A(x, μ2
f )
]

fq/A(xB, μ2
f )

≈ 4αs

3π
ln

E

μ

×
∫ 1
xB

dx
x

[
1+x̂2

(1−x̂+ + 3
2δ(1 − x̂)

]
fq/A(x, μ2)

fq/A(xB, μ2)
, (76)

where the last line follows for a target composed of ele-
mentary quarks fg/A → 0, setting the factorization scale
μ f = μ, and identifying the hard scale Q as the jet energy
E .

There are very important remarks to make when we com-
pare the leading twist-4 broadening Eq. (75) with the leading
broadening from the energy loss approach Eq. (57). First, if
we again interpret q̂(μ) ∼ (μ2/λ) ln(E/μ), then we again
see agreement in terms of the strength of the growth: both the
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twist-4 and energy loss broadenings grow like ln2(E). How-
ever, we learn something very interesting about the energy
loss approach by comparing to the twist-4 approach: the
twist-4 approach tells us that the leading logarithmic growth
in 〈p2

T 〉 as computed in the energy loss approach should
really be associated with a modification of the initial state
parton distribution function, rather than a modification of
the fragmentation function. This point is further emphasized
by the ratio (76) of the radiative to collisional broadening
components in the twist-4 framework. Clearly the ratio of
radiative to collisional broadening is linked in the twist-4
formalism to the x dependence of the PDFs – a feature that is
notably absent from the energy loss framework. Moreover, if
one neglects the modification of the PDFs between LO and
NLO by hand, setting the ratio of PDFs in the second line of
Eq. (76) to unity, then the coefficient 4αs

3π
ln E

μ
agrees exactly

with the one obtained in Eq. (40) for the DGLV formalism
under the (oversimplified) assumption of infinite kinemat-
ics. This prediction of broadening, however, puts the twist-
4 prediction in stark contrast with the DGLV high-energy
asymptotics obtained with exact kinematics in Sect. 4.2:
although the leading logarithmic energy dependence is the
same between the two approaches, the coefficients in the two
approaches have the opposite signs. While the true predic-
tion of the DGLV formalism with finite kinematic bounds is
a net narrowing of the transverse momentum distribution, the
twist-4 approach predicts a broadening.

Our careful analysis of the effect of the kinematic lim-
its suggests that the broadening predicted by the twist-4
approach is an artifact of neglecting kinematics limits as is
done in the usual collinear factorization approach: integrat-
ing over all k⊥ of the emitted gluon is a bad approximation to
the correct limited kinematics and leads to the wrong sign for
the coefficient of the leading double logarithmic contribution
to jet broadening.

With the above said, one may naturally ask: what do the
data show?

5.2 Comparison to LHC Data

Given the range of predictions for the transverse momentum
broadening seen numerically and analytically, under different
approximations to the kinematic limits, it is prudent to look
to experiment to benchmark our expectations.

The ALICE collaboration presented a new approach [71]
to the measurement of jet quenching, which was based on
the semi-inclusive distribution of charged jets recoiling from
a high transverse momentum charged hadron trigger in 0-
10% central Pb-Pb collisions at

√
sNN = 2.76 TeV. The

collaboration also investigated the medium-induced acopla-
narity, or “inter-jet broadening,” by extending their analysis
to the measurement of the angular distribution of recoil jet
yield with respect to the axis defined by the trigger hadron

Fig. 17 The �(�ϕ) distributions for 0-10% centrality Pb-Pb colli-
sions (red) measured by the ALICE collaboration [71] and PYTHIA-
simulated pp collisions embedded into central Pb-Pb collisions (black),
at

√
sNN = 2.76 TeV. The error bars indicate statistical errors only.

Both datasets are fit to exponential functions of the form shown in (77);
this work fits over the whole �ϕ range (solid lines), while the ALICE
collaboration fitted over 2π/3 < �ϕ < π (dashed lines). Both sets of
fits are shown by the lower red (Pb-Pb) and upper black (pp) lines

momentum. The azimuthal correlation between the trigger
hadron and coincident recoil charged jets is measured via the
distribution �(�ϕ).

Figure 17 shows the �(�ϕ) distribution for 0–10% cen-
tral Pb-Pb collisions at

√
sNN = 2.76 TeV measured by

the ALICE collaboration [71]. This data includes jets with
40 < preco,ch

T,jet < 60 GeV/c, where the reconstructed charged

jet transverse momentum preco,ch
T,jet is not corrected for back-

ground fluctuations and instrumental effects. Due to the
insufficient statistical significance of the current data for pp
collisions at

√
s = 2.76 TeV, the reference pp distribution for

the reported Pb-Pb measurements was calculated using the
PYTHIA event generator. The simulated reference distribu-
tions were validated through comparison with ALICE data
of pp collisions at

√
s = 7 TeV. The pp data points shown in

Fig. 17 were simulated using PYTHIA 6.425 with the Peru-
gia 2010 tune, and are modified by the expected instrumental
and background effects for central Pb-Pb collisions.

The �(�ϕ) distributions for Pb-Pb and pp collisions are
fit to functions of the form

f (�ϕ) = p0 × e(�ϕ−π)/σ + p1 , (77)

where the width of the exponential distribution is character-
ized by the parameter σ .

The ALICE collaboration fit the pp and Pb–Pb data shown
in Fig. 17 to the function (77) over the range 2π/3 <

�ϕ < π and obtained the width fit parameters σPb-Pb =
0.173 ± 0.031(stat.) ± 0.005(sys.) and σPYTHIA = 0.164 ±
0.015(stat.). Nominally, these results indicate a broadening
of the acoplanarity distribution due to the medium: σPb-Pb >

σPYTHIA. However, the two cases are also consistent within
uncertainties (σPb-Pb = σPYTHIA). On the other hand, we can
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compare this with a fit we have performed over the entire
measured �ϕ region, obtaining σPYTHIA = 0.200 ± 0.014
and σPb-Pb = 0.191 ± 0.027. These fit parameters also agree
within uncertainties, but now nominally suggest a slight nar-
rowing (σPb-Pb < σPYTHIA).

The ALICE data presented here are inconclusive about
the modification of the jet broadening distribution due to
the medium. Depending on the region over which one per-
forms the exponential fit, one can infer either a narrowing or a
broadening, and overall neither set of results provide conclu-
sive evidence for any medium-induced acoplanarity of recoil
jets. Clearly, differentiating experimentally between differ-
ent theoretical formalisms is challenging and requires further
development both theoretically and experimentally.

6 Discussion and conclusions

In this work, we studied jet-medium interactions at first order
in opacity in the DGLV energy loss formalism [38,72] and
compared it with the predictions of the collinear twist-4 for-
malism of Kang et al. [60–62]. We find that the opacity expan-
sion predicts a leading order (collisional) momentum broad-
ening that grows like ln E/μ with a next-to-leading order
(radiative) momentum narrowing due to destructive LPM
effects, a narrowing that grows like ln2 E/μ. We find that the
leading order opacity expansion broadening agrees exactly
with the leading order twist-4 broadening. The next-to-
leading order twist-4 broadening includes many terms absent
from the opacity expansion next-to-leading order asymp-
totics (including terms that break color triviality and that
are subleading in energy). Most important, though, the twist
expansion appears to predict a jet broadening (as opposed
to the narrowing from the opacity expansion). This quali-
tative difference is likely due to a less careful treatment of
finite kinematics and the LPM effect in the twist-4 approach.
At the same time, the twist-4 approach shows that “final
state” energy loss manifests in the modification of initial
state objects that are the natural twist-4 generalization of the
twist-2 parton distribution functions. This in striking contrast
to their interpretation as “final state effects” in energy loss
approaches, such as their use as kernels of “medium-modified
DGLAP evolution” [41,44,52–54,56,59].

To discriminate between the predictions of these two for-
malisms, the medium-modification effects must be distin-
guishable from the background: energy loss and transverse
momentum broadening which occurs already in vacuum.
As summarized in Eq. (11), the number of emitted gluons
and the fractional energy loss both grow logarithmically (as
powers of ln E

μ
). However the mean momentum broadening

〈p2
T 〉NLO, 0 grows much faster – quadratically with E – due to

the k2⊥ weighting of the splitting function. The strong dom-

inance of this vacuum broadening is clearly seen from the
numerical calculation of Sect. 3 as illustrated in Fig. 8.

For the medium-induced component at first order in opac-
ity, the fractional energy loss in the DGLV formalism was
derived in Ref. [38] and is summarized in Sect. 4.1.1. The
DGLV prediction (29) indicates a softening of the energy
loss relative to the vacuum due to the destructive interfer-
ences of the LPM effect: the single logarithm from Eq. (11)
survives, but is further suppressed by a power of the energy
in Eq. (30). Moreover, for the energy loss calculation the
integrand decays sufficiently fast in the UV that the integral
is well behaved even if the integration limits are extended
to infinity. This allows for a straightforward calculation of
the high-energy asymptotics which is fairly insensitive to the
assumptions made about the integration limits.

As seen in Sects. 4.1.2 and 4.2, this simple picture does
not extend to the case of transverse momentum broadening,
which is much more sensitive to the choice of UV limits
due to the weighting by k2⊥. The calculation of the radia-
tive (NLO) component of jet broadening in both the DGLV
and twist-4 formalisms is predicted to be double-logarithmic,
growing as ln2 E

μ
as E → ∞. However, the coefficient of that

double logarithm differs substantially between the two for-
malisms and based on the approximations used to compute
it. The calculation Eq. (40) in the DGLV framework with
the assumption of infinite kinematics resulted in a coeffi-
cient which was positive. A direct numerical evaluation of
the coefficient obtained from the DGLV framework incorpo-
rating the finite kinematic limits obtained a coefficient which
was negative, as shown in Fig. 11. A comparable calculation
using the twist-4 formalism of Refs. [60–62] in Eq. (76) found
a numerical coefficient consistent with Eq. (40), but with an
explicit dependence on the PDFs. This feedback between the
medium-induced branching and the initial hard scattering is
an entanglement of initial and final states which is generally
neglected in the energy loss approach.

In a detailed tandem analytic-numerical analysis per-
formed in Sect. 4.2 we explored the origin of this discrep-
ancy. We found that, when including the constraints of finite
kinematics, the integration range for the radiative broaden-
ing in medium includes multiple double-logarithmic regimes
whose relative weights depend sensitively on the boundaries
of the integration region. Thus while a naive implementation
of the integrals using infinite kinematics predicted a positive
coefficient, both the numerical evaluation in Fig. 11 and the
analytic evaluation in Eq. (58) show that for finite kinematics
in DGLV, the coefficient is negative.

The substantial sensitivity of the jet momentum broad-
ening to the assumptions employed in the calculation raises
significant questions about the most theoretically sound basis
to study such effects. For instance, the appearance of a convo-
lution over the PDFs in the twist-4 formalism (76) indicates
a substantial cross-talk between the initial-state physics and
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the final-state modification of the jets. This feature stands
in contradistinction to the assumption common in energy-
loss frameworks that the initial- and final-state physics can
be factorized. Moreover, the energy loss kernels are often
implemented in the form of a “medium-modified DGLAP
evolution” applied to the fragmentation functions; this seems
difficult to reconcile with the terms in (76) which enter as
corrections to the initial state PDF.

On the other hand, there are important questions to ask
about the assumptions underlying the collinear twist-4 cal-
culation as well. For instance, the collinear operators which
characterize the double-PDF Tqg of Eq. (59) are collinear
(that is, light-like separated); the Fourier-conjugate momen-
tum variables have been integrated to infinity. But as we saw
in Sect. 4.1.2, extending the momentum integrals to infinity
can drastically change the coefficient of the radiative momen-
tum broadening compared to the full result including finite
kinematics. What then, is the proper role of the finite kine-
matic limits in the collinear twist-4 calculation, and how can
one construct an apples-to-apples comparison of those effects
in the two formalisms? Further, the twist-4 work in princi-
ple only includes leading in ⊥ /E contributions; to capture
the full destructive interference of the LPM effect requires
a resummation of a subset of higher order in ⊥ /E terms.
One may also rightly note that, while the calculation of Refs.
[60–62] demonstrated that at NLO the corrections are finite
and consistent with an assumption of factorization, no twist-4
factorization theorem has yet been proven. We note, however,
that the presence of additional (potentially nonperturbative)
factorization-breaking corrections would only enhance the
entanglement of initial and final state, projectile and target.

It’s worth now briefly revisiting the discussion of the radia-
tive corrections within the BDMPS-Z approach [64–67]. Just
like the twist-4 formalism, these works predict a jet broaden-
ing from energy loss, as opposed to the jet narrowing we find
from the opacity approach. Recall that in [64–67], the high
momentum parent parton exists for all time before entering
a brick of QCD matter at a finite time. Therefore these cal-
culations only have positive 〈p2

T 〉(L) and do not have any
jet broadening in the absence of the brick (in the limit of
〈p2

T 〉(L → 0) = 0), unlike in the case of a real hadronic col-
lision. In even ep and p+p collisions, the hard scattering pro-
duction process generates a large vacuum shower that broad-
ens the jet; this broadening has been observed experimentally
[81]. In the opacity expansion approach, that vacuum radia-
tion is destructively interfered with by the stimulated emis-
sion of radiation from interactions with the medium, and the
result is that the presence of the medium leads to a reduction
of the broadening compared to hard scattering in vacuum—
an important consequence of the LPM effect. What we have
shown here is that it’s highly non-trivial to determine the
arguments of those logarithms for realistic phenomena.

One may wonder why the three different approaches to
jet broadening – twist-4, opacity expansion, and BDMPS-Z
– all yield double logarithms. The answer appears to be that
the Sudakov double logarithm is simply ubiquitous; spin-1
radiated quanta generally have a spectrum whose structure
goes roughly as ∼ dx/x dk2⊥/k2⊥. Unlike in [64–67] where
significant simplifying assumptions lead to a reduction of
phase space from 4D (in x, kT , qT , and θkq ) to 2D (x and
kT ), in Sect. 4.2 we found a highly nontrivial competition
between multiple double-logarithmic regions, in which even
the angular integral played a nontrivial role. A more careful
treatment within the BDMPS-Z framework also predicts a
jet narrowing [68–70].

As noted in [67] a noteworthy feature of some of the work
of [64,66] is the use of the size of the QCD medium brick to
set an upper limit to the formation time of the emitted radia-
tion. This cutoff is completely artificial: the radiated quanta
could of course form in the vacuum beyond the extent of
the brick. (These derivations are not taken in a finite-sized
universe whose extent is given by the length of the QCD
medium brick.) However, in the language of [64–67], the
Sudakov double logarithm has one logarithmic contribution
that scales likedτ/τ , where τ is the formation time. It appears
that should those calculations allow their radiated quanta to
come on-shell outside of their brick – i.e. without the artifi-
cial cutoff on the formation time – then their jet broadening
prediction would always be infinite.

The data shown in Fig. 17 on jet momentum broadening
in AA collisions from ALICE is ambiguous, being consis-
tent with a broadening, narrowing, or no change relative to
the vacuum given current experimental uncertainties. Clearly
progress in controlling the uncertainties of the theoretical
calculations will be important for discriminating model pre-
dictions once more precise data become available. Outside
of heavy-ion collisions, one may also look at jet momentum
broadening in cold nuclear matter in eA and pA collisions. To
this end, in Ref. [82] the authors perform a global analysis at
leading order in the twist-4 framework (collisional momen-
tum broadening), finding that a nontrivial dependence on q̂
with kinematics is required to describe the data. The data in
eA and pA collisions unambiguously show a net broaden-
ing compared to vacuum, but strikingly, the HERMES data
shown in Fig. 3 of Ref. [82] shows that the amount of broad-
ening decreaseswith increasing current jet energy ν. We note
that this curious energy dependence is qualitatively consis-
tent with the prediction of the opacity expansion for �〈p2

T 〉tot

shown in our Fig. 8: at low jet energies, the positive contri-
bution of collisional broadening dominates, whereas at high
jet energies the growing radiative component reduces the
amount of broadening. Based on these observations, it would
be interesting to perform a similar global analysis based on
the DGLV / energy loss approach in future work.
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As we have shown here, constructing an apples-to-apples
comparison between the energy loss and twist-4 formalisms
will require significant progress on the theoretical uncertain-
ties of both theories. We regard this work as a step toward
reconciling the commonalities and differences of the two the-
oretical frameworks to improve the theoretical description of
jet-medium interactions.
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