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Abstract: The semitauonic B−c → J/ψτ−ν̄τ decay provides an ideal and clean mode to
scrutinize possible new physics effects in b→ cτ−ν̄τ transitions as indicated by the current
data on R(D(∗)) anomalies. In this work, we use the spin density matrix method to obtain
the maximum information on the underlying physics of B−c → J/ψτ−ν̄τ decay with both
polarized τ lepton and J/ψ meson. Their subsequent decays, with J/ψ → µ+µ− as well
as τ− → π−ντ , τ− → ρ−ντ and τ− → `−ν̄`ντ , are exploited to extract the energy and
angular distributions of the charged final-state particles in the processes. Starting with
the most general effective Hamiltonian relevant for the b→ cτ−ν̄τ transitions, including all
possible Lorentz structures of the dimension-six operators with both left- and right-handed
neutrinos, we first derive the five-fold differential decay rate in terms of the visible final-state
kinematics. From this distribution, we then construct in total 34 normalized observables,
among which nine refer to the CP-violating triple product asymmetries that vanish within
the Standard Model. We also construct five new observables based on the combinations of
these normalized observables that can only be attributed to the right-handed neutrinos.
On the other hand, considering the low statistics of the fully differential distribution, we
introduce some integrated observables with only one kinematic variable left, which are
more promising to be measured due to the largely increased statistics. The sensitivities
of all these observables to the different new physics scenarios are investigated in detail.
Finally, assuming an ideal circumstance, we give an estimate of the statistical uncertainties
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of the nine CP-conserving observables at LHCb and found that τ− → π−ντ has the highest
analyzing power among the three τ decay channels.
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1 Introduction

The semitauonic b→ cτ−ν̄τ decays have raised considerable interest over the last few years
in both testing the Standard Model (SM) and searching for new physics (NP) beyond it.
Many processes induced by the b→ cτ−ν̄τ transitions at the quark level have been measured
by several experiments, showing some degrees of deviations from the SM predictions [1–13].1

Particularly, the current world average performed by the Heavy Flavor Averaging Group
(HFLAV) [15] shows that the measured ratios R(D(∗)) ≡ B(B̄ → D(∗)τ ν̄τ )/B(B̄ → D(∗)`ν̄`)
(with ` = e, µ) deviate from the SM predictions by about 3.2σ [16]. These deviations

1As argued in ref. [14], once additional constraints are taken into account, the current experimental
data on R(D(∗)) and R(Λc) can be addressed neither within nor beyond the SM simultaneously. Therefore,
further refined measurements are required in order to reach a coherent pattern of all the experimental data.
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could be explained consistently within both model-independent and model-dependent
frameworks (see, e.g., refs. [17–20] for a recent review). For instance, by performing a global
fitting analysis with dimension-six effective operators containing only left-handed neutrino
fields [21–30], it is found that some different combinations of these effective operators can
well explain the observed deviations. The case with right-handed neutrinos has also been
suggested as a possible alternative to evade some current phenomenological constraints on
the effective operators with left-handed neutrinos [31–35]. However, the masses of these
right-handed neutrinos must be small enough in order to be consistent with the measured
B̄ → D(∗)τ ν̄τ invariant-mass distributions [2, 4]. Therefore, the masses of both left- and
right-handed neutrinos will be ignored throughout this work.

The B−c → J/ψτ−ν̄τ decay proceeds through the same quark-level transition as in
B̄ → D(∗)τ ν̄τ decays. This implies that the B−c → J/ψτ−ν̄τ decay will also get affected by
the possible NP scenarios designed for explaining the R(D(∗)) anomalies. In fact, a similar
observable R(J/ψ) ≡ B(B−c → J/ψτ−ν̄τ )/B(B−c → J/ψµ−ν̄µ) has been measured by the
LHCb collaboration [9], which shows a 1.8σ discrepancy with the latest SM prediction
made by the HPQCD collaboration [36]. However, contrary to the R(D(∗)) measurements,
the background contributions from partially reconstructed Bc decays are significantly
reduced thanks to the strongly peaking µ+µ− spectrum and the clean muon final state in
B−c → J/ψτ−ν̄τ decay [9, 19]. Furthermore, the Bc lifetime is almost three times shorter
than that of the Bu,d,s mesons [37], which can be used to improve the separation of the Bc
decay from the Bu,d,s decays, providing therefore an extra handle to discriminate against
the large background that originates from the Bu,d,s decays [9, 19]. All these features make
the B−c → J/ψτ−ν̄τ decay an ideal and clean mode to scrutinize the possible NP effects as
indicated by the R(D(∗)) anomalies.

However, as pointed out in refs. [38–52], the τ three-momentum in these semitauonic
decays cannot be determined precisely since the τ lepton is very short-lived and its decay
products contain at least one undetected neutrino. One way out here is to consider only
the visible final-state kinematics in the subsequent τ decays, while integrating out all the
variables that cannot be directly measured. To this end, we shall make use of the three
subsequent decays of the τ lepton, τ− → π−ντ , τ− → ρ−ντ and τ− → `−ν̄`ντ , to construct
all the measurable distributions. These three channels account for more than 70% of the
total τ decay width [37]. Moreover, the energy of the visible decay product (i.e., π, ρ and `
for the three different decay channels, respectively) can serve as a τ polarimeter [46–55].
In addition, by considering the subsequent decay J/ψ → µ+µ−, we can further extract
the spin asymmetries of the J/ψ meson along with that of the τ lepton. Therefore, the
full cascade decay we are considering is B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ , ρ

−ντ , `
−ν̄`ντ )ν̄τ ,

which includes three visible final states µ+, µ− and {π−, ρ−, `−}, with their three-momenta
all being able to be measured.

From the theoretical point of view, the main obstacle for studying the semileptonic
B−c → J/ψl−ν̄l (with l = e, µ, τ) decays is the precise determination of the Bc → J/ψ

transition form factors. In the literature, a wide range of different approaches has been used
to evaluate these form factors, such as the quark models [56–59], the QCD sum rules [60–63],
the Bethe-Salpeter equation [64–66], the relativistic constituent quark model on the light
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front [67–70], the perturbative QCD calculations [71–74], as well as the nonrelativistic
QCD (NRQCD) approach [75–82]. Particularly, there exist high-precision lattice QCD
determinations of the Bc → J/ψ vector and axial-vector form factors [83], which will be
adopted by us. The scalar and pseudo-scalar form factors, which are also needed for a full
description of possible NP effects in a most general model-independent framework, can be
directly related to the vector and axial-vector ones through the equations of motion [82].
However, we are still missing a direct determination of the tensor form factors from lattice
QCD, which precludes an accurate NP analysis. To this end, we shall follow the results
obtained in ref. [84], where the tensor form factors are related to the (axial-)vector ones
by using the NRQCD relations including the next-to-leading-order relativistic corrections,
and then determined in terms of the lattice QCD results for the latter. These form factors
are all parameterized in a z expansion to cover the full kinematic range of the dilepton
invariant mass squared q2, with 0 ≤ q2 ≤ (mBc −mJ/ψ)2 [82–84].

This paper is organized as follows. In section 2, we first define the various observables
in terms of the asymmetries of spins and/or angles with the help of spin density matrix
method [85–87], and then give the analytic results for the five-fold differential decay rate of
B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ , ρ

−ντ , `
−ν̄`ντ )ν̄τ decays in terms of the visible final-state

kinematics. In section 3, we present our numerical results for the normalized observables
and discuss their sensitivities to the different NP scenarios. Some combinations of these
observables that can only be attributed to the right-handed neutrinos are also discussed.
Due to the limited experimental statistics, we also present the integrated observables with
only one kinematic variable left. In section 4, taking the LHCb experiment as an example,
we estimate the statistical uncertainty in extracting the spin and spin-angular asymmetries
from the full five-fold differential decay rate. Our conclusions are finally made in section 5.
For convenience, details of the calculation procedures of the three spin density matrices
along with the explicit expressions of the observables as well as the phase-space integrations
are presented in appendices A and B, respectively.

2 Energy and angular distributions

In this section, we begin by describing our method for calculating the full energy and
angular distributions of B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ , ρ

−ντ , `
−ν̄`ντ )ν̄τ decays.

2.1 Effective Hamiltonian

Assuming that the NP scale is much higher than the electroweak scale, we can integrate
out all the heavy degrees of freedom, and thus both the SM and NP contributions can be
described by a low-energy effective Hamiltonian. With both the left- and right-handed
neutrinos as well as all the possible Lorentz structures of the dimension-six four-fermion
operators taken into account, the most general effective Hamiltonian relevant for the
b→ cτ−ν̄τ transitions can be written as [35]

Heff = 4GFVcb√
2

OVLL +
∑

X=V,S,T

A,B=L,R

CXAB OXAB

 , (2.1)
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where GF is the Fermi constant and Vcb is the Cabibbo-Kobayashi-Maskawa matrix element
involved. The ten four-fermion operators are defined, respectively, by2

OVAB ≡ (c̄γµPAb)(τ̄ γµPBντ ),

OSAB ≡ (c̄PAb)(τ̄PBντ ),

OTAB ≡ δAB(c̄σµνPAb)(τ̄σµνPBντ ),

(2.2)

with PL(R) = (1 ∓ γ5)/2 and σµν = i
2 [γµ, γν ]. All the NP effects are encoded in the

short-distance Wilson coefficients CXAB , which are defined at the characteristic energy scale
µ = mb, with mb being the bottom-quark mass. Within the SM, all CXAB = 0 and the only
non-zero operator comes from OVLL (i.e., the first term in eq. (2.1)).

2.2 Spin density matrices

The cascade processes B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ , ρ
−ντ , `

−ν̄`ντ )ν̄τ can be broken
down into four successive decays of the Bc meson and the three intermediate states.
Explicitly, the fully differential decay width can be written as

dΓ = 1
2mBc

dΠ2(pBc ; pJ/ψ, q)
dq2

2π dΠ2(q; pτ , pν̄τ )

× dp2
τ

2π
1

(p2
τ −m2

τ )2 +m2
τΓ2

τ

dΠ2(3)(pτ ; pd(, pν̄`), pντ )

×
dp2

J/ψ

2π
1

(p2
J/ψ −m

2
J/ψ)2 +m2

J/ψΓ2
J/ψ

dΠ2(pJ/ψ; pµ− , pµ+)

× Tr
[
ρBc(s, s′, λ, λ′)

(
ρτ (s, s′)⊗ ρJ/ψ(λ, λ′)

)T ]
,

(2.3)

where ρBc(s, s′, λ, λ′) denotes the spin density matrix [86] of the B−c → J/ψτ−ν̄τ process,
while the decay density matrices for the τ lepton and the J/ψ meson are denoted by
ρτ (s, s′) and ρJ/ψ(λ, λ′), respectively. The indices s, s′ = {1/2,−1/2} and λ, λ′ = {1, 0,−1}
characterize the helicities of the particles τ and J/ψ, respectively. Here, q = pBc − pJ/ψ =
pτ + pν̄τ denotes the momentum transfer to the lepton pair, and pd refers to the momentum
of the visible τ decay product, with d = π, ρ, ` corresponding to the three different channels
of the τ lepton. Since the decay widths of both τ and J/ψ are much smaller than their
respective masses [37], we can apply to eq. (2.3) the narrow-width approximation,

lim
Γ→0+

1
π

mΓ
(p2 −m2)2 +m2Γ2 = δ(p2 −m2). (2.4)

This will put τ and J/ψ on their mass-shell, respectively. The two- and three-body phase
spaces in eq. (2.3) are all Lorentz invariant, and their integrations can be therefore performed
in any frame of reference without loss of generality. For convenience, we present the details
of these phase-space integrations in appendix B.

2Note that the tensor operators with different quark and lepton chiralities vanish identically, which can
be derived from the Dirac-algebra identity σµνγ5 = − i

2 ε
µναβσαβ . We use the convention ε0123 = −ε0123 = 1.
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Since the polarizations of both τ and J/ψ in the decays are considered, the spin density
matrix ρBc(s, s′, λ, λ′) is now a 6× 6 Hermitian matrix and can be parameterized as [86–88]

ρBc(s, s′, λ, λ′)
Tr [ρBc ] = 1

6

[
I ⊗ I + 3

2P
U
i I ⊗ ti +

√
3
2T

U
ij I ⊗ (titj + tjti)

+ P i
′
Uσ

i′ ⊗ I + 3
2P

i′
i σ

i′ ⊗ ti +
√

3
2T

i′
ijσ

i′ ⊗ (titj + tjti)
]
,

(2.5)

where σi′ are the Pauli matrices, with

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.6)

and ti the three-dimensional traceless spin operators for a spin-1 particle, with

tx = 1√
2

0 1 0
1 0 1
0 1 0

 , ty = i√
2

0 −1 0
1 0 −1
0 1 0

 , tz =

1 0 0
0 0 0
0 0 −1

 . (2.7)

For a normalized 6× 6 Hermitian matrix, there are in total 35 independent real parameters
which, in our definition, refer to the three components of the τ vector polarization P i′U , the
three components of the J/ψ vector polarization PUi , the five components of the J/ψ tensor
polarization TUij that is a symmetric traceless rank-2 tensor, as well as the (3×3+3×5) = 24
components of the mixed τ -J/ψ polarizations P i′i and T i′ij .

Note that all the four sequential decays in eq. (2.3) are given in the rest frames of the
corresponding decaying particles. Further details of the calculation procedures as well as
the explicit expressions of the decay density matrices ρτ (s, s′) and ρJ/ψ(λ, λ′) can be found
in appendices A.1 and A.2, respectively.

2.3 Observables

Let us now introduce the spin basis to discuss the polarizations defined in the last subsection.
For the polarizations of the J/ψ meson, we choose

~nL =
~pJ/ψ
|~pJ/ψ|

, ~n⊥ =
(~pJ/ψ × ~pτ )× ~pJ/ψ
|(~pJ/ψ × ~pτ )× ~pJ/ψ|

, ~nT =
~pJ/ψ × ~pτ
|~pJ/ψ × ~pτ |

, (2.8)

where the subscripts L, ⊥ and T denote the polarization components that are longitudinal,
perpendicular and transverse to the J/ψ momentum, respectively. Particularly, in the J/ψ
rest frame, ~nL, ~n⊥ and ~nT correspond to the Cartesian basis ~nz, ~nx and ~ny, respectively.
For the polarizations of the τ lepton, we choose

NL =
( |~pτ |
mτ

,
Eτ~pτ
mτ |~pτ |

)
, N⊥ =

(
0,

(~pJ/ψ × ~pτ )× ~pτ
|(~pJ/ψ × ~pτ )× ~pτ |

)
, NT =

(
0,

~pJ/ψ × ~pτ
|~pJ/ψ × ~pτ |

)
,

(2.9)
where the basis vectors are defined in a Lorentz covariant form for our later convenience.
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Combining the parametrization of eq. (2.5) with the explicit expressions of ρτ (s, s′)
and ρJ/ψ(λ, λ′) as detailed in appendices A.1 and A.2, we can obtain

Tr
[
ρBc (s,s′,λ,λ′)

(
ρτ (s,s′)⊗ρJ/ψ(λ,λ′)

)T ]
Tr[ρBc ]Tr [ρτ ]Tr

[
ρJ/ψ

] =

1
6

[
1+
√

3
2T

U
ij (~ni ·p̂µ−)(~nj ·p̂µ−)− 2ατmτ

m2
τ−m2

d

P i
′

U (N i′ ·pd)−
2ατmτ
m2
τ−m2

d

√
3
2T

i′

ij (N i′ ·pd)(~ni ·p̂µ−)(~nj ·p̂µ−)
]
,

(2.10)
for the hadronic τ− → π−ντ and τ− → ρ−ντ decays, while

Tr
[
ρBc(s,s′,λ,λ′)

(
ρτ (s,s′)⊗ρJ/ψ(λ,λ′)

)T ]
Tr[ρBc ]Tr [ρτ ]Tr

[
ρJ/ψ

] =

1
6

[
1+
√

3
2T

U
ij (~ni ·p̂µ−)(~nj ·p̂µ−)− mτ

pν̄`
·pτ

P i
′

U (N i′ ·pν̄`
)− mτ

pν̄`
·pτ

√
3
2T

i′

ij (N i′ ·pν̄`
)(~ni ·p̂µ−)(~nj ·p̂µ−)

]
,

(2.11)
for the leptonic τ− → `−ν̄`ντ decay. Here we have already used the spin bases introduced
above, and the indices i, j, i′ should be summed over the components {L,⊥, T}. As the
decay J/ψ → µ+µ− is an electromagnetic process, where parity is conserved, we are unable
to extract the vector polarizations of J/ψ through this channel [88]. Furthermore, since∑
i(~ni · p̂µ−)(~ni · p̂µ−) = 1, the three vector polarizations are not linearly independent. These

facts imply that we cannot extract all of these polarization coefficients from the decays. For
convenience, we can redefine

T̃Uii =
√

2
3 + TUii , T̃ i

′
ii =

√
2
3P

i′
U + T i

′
ii . (2.12)

Note that there is no information lost in this redefinition, since the tensor polarizations TUii
and T i′ii are all traceless, and we can regain the τ vector polarizations through the relation
P i
′
U =

∑
i T̃

i′
ii /
√

6.
For the B−c → J/ψτ−ν̄τ process, which is a three-body decay of a massive spinless

particle, there are only two independent kinematic parameters that can be chosen as the
dilepton invariant mass squared q2 and the helicity angle θτ . Here θτ is the angle between
the flight direction of the τ and J/ψ in the centre-of-mass frame of the τ ν̄τ pair. Since
the spin density matrix ρBc(s, s′, λ, λ′) depends on θτ , we can further consider asymmetries
with respect to this angle together with the spin asymmetries. To this end, we can define
the following spin and spin-angular asymmetries:

dΓ
dq2

〈
T̃ i
′
ij

〉
=
∫ 1

−1
d cos θτ

d2Γ
dq2d cos θτ

T̃ i
′
ij ,

dΓ
dq2 Z̃

i′
ij =

(∫ 1

0
−
∫ 0

−1

)
d cos θτ

d2Γ
dq2d cos θτ

T̃ i
′
ij ,

dΓ
dq2 Ã

{U,L}
ii

(
Ã
{⊥,T}
{⊥L,TL}

)
= 5

2

∫ 1

−1
d cos θτP 0

2 (cos θτ ) d2Γ
dq2d cos θτ

T̃
{U,L}
ii

(
T̃
{⊥,T}
{⊥L,TL}

)
,

(2.13)

where dΓ
dq2 is the unpolarized differential decay rate. Explicit expressions of these observables

expressed in terms of the transversity amplitudes can be found in appendix A.3.
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z

x

y

J/ψ µ−

µ+

θJ/ψ

N∗

τ−

ν̄τ

π−

θπ
ντ

Bc

ϕπ

Figure 1. Definitions of the visible angles in the B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ )ν̄τ decay.

2.4 Visible final-state kinematics

So far, we have been discussing all the successive decays in the rest frames of their parent
particles. However, as mentioned already in the introduction, it is generally not possible
to fully reconstruct the τ momentum experimentally [38–52]. Therefore, the kinematic
variables that are defined in the τ rest frame or referred to the τ momentum direction are
hard to be reconstructed in practice. This requires us to build the angular distributions
based on a set of new frames of reference, which are illustrated in figure 1 by considering
the channel τ− → π−ντ as an example. Here, θJ/ψ denotes the polar angle of µ− in the
J/ψ rest frame, while Ed, θd and φd represent the energy, the polar and the azimuthal angle
of the visible product d, with d = π, ρ, `, as viewed in the τ ν̄τ centre-of-mass frame.

With the above setup of the kinematics, we can then write the scalar products appearing
in eqs. (2.10) and (2.11) explicitly as

NL · pd = |~pτ |Ed
mτ

− |~pd|Eτ
mτ

cos θτd, N⊥ · pd = |~pd|
cos θd − cos θτ cos θτd

sin θτ
,

NT · pd =− |~pd| sin θd sin(φd − φτ ),
(2.14)

for the leptonic, and

~nL · p̂µ− = cos θJ/ψ, ~n⊥ · p̂µ− = sin θJ/ψ cosφτ , ~nT · p̂µ− = − sin θJ/ψ sinφτ , (2.15)

for the hadronic side. Here θτ and φτ denote the polar and the azimuthal angle of the τ
lepton relative to the z-axis, while θτd and φτd characterize the direction of the charged
particle d produced from the τ decay. They are related to each other through

cos θτ = cos θd cos θτd − cosφτd sin θd sin θτd,

sinφτ = cos θτd sinφd sin θd + (cosφτd cos θd sinφd + sinφτd cosφd) sin θτd√
1− cos2 θτ

.

(2.16)

For the τ− → π−(ρ−)ντ channels, the angle θτd can be expressed in terms of other visible
variables as

cos θτd = 2EτEd −m2
τ −m2

d

2 |~pτ | |~pd|
, (2.17)
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while for the τ− → `−ν̄`ντ channel, it is an independent variable that cannot be measured.
For our later convenience, we introduce the variable

x = 2(pd · pτ )
m2
τ

= 2
m2
τ

(EdEτ − |~pd||~pτ | cos θτd) , (2.18)

which is the energy of the charged particle d in the τ rest frame up to a constant, and will
be integrated out in our final result. In addition, for all the three τ decay channels, the
angle φτd is also an unmeasurable variable, and hence will be integrated out too. After
performing the phase-space integrations, details of which could be found in appendix B,
we can get the normalized five-fold differential decay rate of the process B−c → J/ψ(→
µ+µ−)τ−(→ d−(ν̄`)ντ )ν̄τ , which reads

d5Γ
dq2dEddcosθddφddcosθJ/ψ

/
dΓ
dq2

=NU
[(〈

T̃U⊥⊥

〉
+ÃU⊥⊥−ÃUTT +2cosθτdP1(cosθd)Z̃U⊥⊥

+ 1
2(3cos2 θτd−1)P2(cosθd)

(
ÃU⊥⊥+ÃUTT

)
− 1

4(3cos2 θτd−1)P 2
2 (cosθd)

(
cos2φd(ÃU⊥⊥−ÃUTT )+sin2φd

〈
T̃U⊥T

〉))
sin2 θJ/ψ

−
( 4
π

cosθτdP 1
1 (cosθd)

(
cosφd

〈
T̃U⊥L

〉
−sinφd

〈
T̃UTL

〉)
+ 1

2(3cos2 θτd−1)P 1
2 (cosθd)

(
cosφdZ̃U⊥L−sinφdZ̃UTL

))
sin2θJ/ψ

+
(〈
T̃ULL

〉
+2cosθτdP1(cosθd)Z̃ULL+(3cos2 θτd−1)P2(cosθd)ÃULL

)
cos2 θJ/ψ

]

−NL
[(〈

T̃L⊥⊥

〉
+ÃL⊥⊥−ÃLTT +2cosθτdP1(cosθd)Z̃L⊥⊥

+ 1
2(3cos2 θτd−1)P2(cosθd)

(
ÃL⊥⊥+ÃLTT

)
− 1

4(3cos2 θτd−1)P 2
2 (cosθd)

(
cos2φd(ÃL⊥⊥−ÃLTT )+sin2φd

〈
T̃L⊥T

〉))
sin2 θJ/ψ

−
( 4
π

cosθτdP 1
1 (cosθd)

(
cosφd

〈
T̃L⊥L

〉
−sinφd

〈
T̃LTL

〉)
+ 1

2(3cos2 θτd−1)P 1
2 (cosθd)

(
cosφdZ̃L⊥L−sinφdZ̃LTL

))
sin2θJ/ψ

+
(〈
T̃LLL

〉
+2cosθτdP1(cosθd)Z̃LLL+(3cos2 θτd−1)P2(cosθd)ÃLLL

)
cos2 θJ/ψ

]

+N⊥
[(
− 2
π

sin2 θτdP1(cosθd)
(〈
T̃⊥⊥⊥

〉
+
〈
T̃⊥TT

〉)
− 3

2 cosθτd sin2 θτdP2(cosθd)
(
Z̃⊥⊥⊥+Z̃⊥TT

)
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+cosθτd sin2 θτdP
2
2 (cosθd)

( 2
π

cos2φd
〈
T̃ T⊥T

〉
− 3

2 sin2φdZ̃⊥⊥T
))

sin2 θJ/ψ

−
(

sin2 θτdP
1
1 (cosθd)

(
cosφd(

〈
T̃ TTL

〉
+ 1

2Ã
T
TL)+sinφd(

〈
T̃ T⊥L

〉
+ 1

2Ã
T
⊥L)

)
+ 3

2 cosθτd sin2 θτdP
1
2 (cosθd)

(
cosφdÃ⊥⊥L−sinφdÃ⊥TL

))
sin2θJ/ψ

−
( 4
π

sin2 θτdP1(cosθd)
〈
T̃⊥LL

〉
+3cosθτd sin2 θτdP2(cosθd)Z̃⊥LL

)
cos2 θJ/ψ

]
, (2.19)

where we have introduced the abbreviations,

NU =
√

6m2
τ

16π|~pτ |(m2
τ −m2

d)
, NL =

√
6ατm2

τEτ |~pd|
8π|~pτ |(m2

τ −m2
d)2

( |~pτ |Ed
|~pd|Eτ

− cos θτd
)
,

N⊥ =
√

6ατm3
τ |~pd|

8π|~pτ |(m2
τ −m2

d)2 ,

(2.20)

for the hadronic τ− → π−(ρ−)ντ channels, and

NU =
∫
dx

√
6

8π|~pτ |
θ(1 + y2 − x)

[
x (3− 2x)− y2 (4− 3x)

]
1− 8y2 + 8y6 − y8 − 24y4 ln y ,

NL =
∫
dx

√
6|~pd|Eτ

4πm2
τ |~pτ |

θ(1 + y2 − x)
(
1 + 3y2 − 2x

)
1− 8y2 + 8y6 − y8 − 24y4 ln y

( |~pτ |Ed
|~pd|Eτ

− cos θτd
)
,

N⊥ =
∫
dx

√
6|~pd|

4πmτ |~pτ |
θ(1 + y2 − x)

(
1 + 3y2 − 2x

)
1− 8y2 + 8y6 − y8 − 24y4 ln y ,

(2.21)

for the leptonic τ− → `−ν̄`ντ channel, where θ(x) denotes the step function and the
integration over the variable x is implicit. Explicit expressions of the observables that can
be extracted from the differential distribution given by eq. (2.19) are listed in appendix A.3.
It should be noted that some observables can only be extracted from eq. (2.19) in a
combination way. We also find the following interesting relations among the observables:

1
2
〈
T̃
{U,L}
⊥⊥

〉
+ Ã

{U,L}
⊥⊥ = 1

2
〈
T̃
{U,L}
TT

〉
+ Ã

{U,L}
TT , Z̃

{U,L}
⊥⊥ = Z̃

{U,L}
TT ,

〈
T̃
{⊥,T}
⊥⊥

〉
−
〈
T̃
{⊥,T}
TT

〉
= ±3π

2 Z̃
{T,⊥}
⊥T , Z̃

{⊥,T}
⊥⊥ − Z̃{⊥,T}TT = ± 8

3π
〈
T̃
{T,⊥}
⊥T

〉
,

1
2
〈
T̃
{⊥,T}
⊥L

〉
+ Ã

{⊥,T}
⊥L = ±Z̃{T,⊥}TL ,

1
2
〈
T̃
{T,⊥}
TL

〉
+ Ã

{T,⊥}
TL = ±Z̃{⊥,T}⊥L ,

(2.22)
which hold in the presence of any of the ten NP operators in eq. (2.1). Therefore, these
relations can provide no extra information for searching and distinguishing the different NP
effects, and have already been used in eq. (2.19) to get a more compact result.

3 Numerical results

In the previous sections, we have defined various asymmetries of the spins and/or angles that
can be extracted from the fully differential distribution of the visible final-state kinematics
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in the B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ , ρ
−ντ , `

−ν̄`ντ )ν̄τ decays. In order to get a general
idea about the sensitivities of these asymmetries to the different Wilson coefficients CXAB
in eq. (2.1), we shall select in this section some best-fit values inferred from the R(D(∗))
resolutions as the NP benchmark points, and study how these observables will be affected
by these NP scenarios.

3.1 Bc → J/ψ transition form factors

For the Bc → J/ψ (axial-)vector form factors, V (q2) and A0,1,2(q2), we shall use the
high-precision lattice QCD results obtained in ref. [83]. As a direct determination of the
Bc → J/ψ tensor form factors, T1,2,3(q2), from lattice QCD is still missing so far, we
shall adopt the results presented in ref. [84], where the tensor form factors are related to
the (axial-)vector ones by using the NRQCD relations including the next-to-leading-order
relativistic corrections, and then determined in terms of the lattice QCD results for the
latter. In this way, we can parametrize all the Bc → J/ψ transition form factors in a z
expansion to cover the full q2 range in the decays [82–84].

3.2 NP benchmark points

Since we include both the left- and right-handed neutrinos, the most general effective
Hamiltonian given by eq. (2.1) contains in total ten four-fermion operators. The large
number of free parameters makes it difficult to perform a global fit to the full basis of
these operators, and it means little to have a complete discussion about all the possible NP
scenarios. Therefore, for the NP scenarios with purely left-handed neutrinos, we choose
only the following four benchmark points as discussed in ref. [30]:

BP1 : CVRL = 0.02± i0.43,

BP2 : CSLL = −0.58± i0.88,

BP3 : CTLL = 0.06± i0.16,

BP4 : CVRL = ±i0.68, CSLL = +8.4CTLL = 0.04∓ i0.65 for the R2 leptoquark.

(3.1)

Let us first consider the NP scenarios where only a single Wilson coefficient CXAB is present at
a time. The case with a SM-like CVLL equals to a global modification of the SM prediction by
the factor 1 + CVLL at the amplitude level, and thus its effect on the normalized observables
is completely cancelled. Therefore, we are not going to discuss this scenario even though
it can well resolve the R(D(∗)) anomalies [22, 24]. The BP1 contains only CVRL that is
naively suppressed by the small factor v4/Λ4, with v and Λ denoting the electroweak and
the NP scale respectively, because the corresponding operator can only be generated at
tree level starting from a dimension-eight operator in the standard model effective field
theory (SMEFT) formalism [22, 89, 90] (for a recent review, see ref. [91] and references
therein). This means that a sizable contribution from CVRL would indicate an effective
field theory with non-linear realization of the SM gauge group SU(2)L × U(1)Y [92, 93].
The scenarios with a single scalar operator OSLL or OSRL, like BP2, are already ruled out
by the LEP data on the leptonic B−c → τ−ν̄τ decay rate [94–97]. However, as pointed
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out in refs. [25, 26], there is a sizable charm-mass dependence of the Bc lifetime (which
is also confirmed later in ref. [98]) and the transverse momentum pT dependence of the
fragmentation function f(b → Bc) extracted from the Tevatron and LHC data has been
entirely overlooked when applied to the LEP Z-peak analyses [97]. Therefore, a more
conservative bound, with B(B−c → τ−ν̄τ ) . 60%, is obtained and the scenarios with a
single scalar operator are still revived at present [25, 26]. Finally, the scenario with a single
CTLL gives unique predictions for some observables like the D∗ longitudinal polarization
fraction [10], which can be used to distinguish it from the other NP scenarios [22, 24, 30].

For the NP scenarios with purely right-handed neutrinos, on the other hand, we choose
only the following two benchmark points as obtained in ref. [35]:

BP5 : CTRR = 1
8C

S
RR = 0.054 for the R̃2 leptoquark,

BP6 : CVRR = 0.422, CTRR = −1
8C

S
RR = 0.022 for the S1 leptoquark.

(3.2)

Here the benchmark points BP4–BP6 correspond to the scenarios with different leptoquarks,
and the values of these Wilson coefficients have already run from the NP scale down to the
mb scale. Following the same treatments as in refs. [36, 49, 99–101], we consider only the
central values of these best-fit results to qualitatively discuss the influence of these different
NP scenarios on the observables.

3.3 CP-violating observables

Among all the observables that can be extracted from the fully differential decay rate
given by eq. (2.19), some are related to the triple products (TP) of the kinematic variables
involved or, to be more specific, to the sine of the azimuthal angle sinφd. Since the TP get
a minus sign under time reversal, the corresponding observables may serve as a powerful
tool for displaying the CP-violating effects [102–104] according to the CPT theorem.

From the explicit expressions listed in appendix A.3, we can see that these kinds of
observables are all proportional to Im[AiA∗j ], where Ai and Aj are two different transversity
amplitudes that can be written in general as

Ai = |Ai|eiφieiδi , Aj = |Aj |eiφjeiδj , (3.3)

with φi(j) and δi(j) denoting the weak and strong phases respectively. With these definitions,
we can get

Im[AiA∗j ] = |Ai||Aj |

sin(φi − φj) cos(δi − δj)︸ ︷︷ ︸
CP-odd

+ cos(φi − φj) sin(δi − δj)︸ ︷︷ ︸
CP-even

 , (3.4)

where the first term in the bracket is non-zero and hence a clear signal of CP violation only
when the weak-phase difference between Ai and Aj is non-negligible. The second term is,
on the other hand, non-zero only in the presence of a strong-phase difference between Ai
and Aj , regardless of whether there exists a weak-phase difference or not. Therefore, it is
in fact not CP-violating and usually dubbed as the “fake TP” [102–104]. Strictly speaking,
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Figure 2. The CP-violating observables as a function of q2, predicted both within the SM and in
the four complex NP benchmark points. The black, cyan, red, orange and purple curves represent
the results of the SM, BP1, BP2, BP3 and BP4, respectively. The band of each curve is induced by
the theoretical uncertainties of Bc → J/ψ transition form factors [83, 84].

we should compare these observables with the corresponding ones of the CP-conjugated
process to get a true TP. However, we shall assume here the strong-phase difference to be
zero, because Bc → J/ψ is the only hadronic transition in the decays considered and all
the transversity amplitudes will have approximately the same strong phases [105–107]. For
simplicity, all these observables will be simply called the CP-violating ones from now on.

Since there exist no direct constraints on the imaginary parts of the NP Wilson
coefficients CXA,B from the current experimental data, the complex NP benchmark points
can only be fitted up to a two-fold ambiguity, as indicated by eq. (3.1). Here, for simplicity,
we choose the imaginary parts to be positive for BP1–BP3, whereas for BP4 a positive
CVRL and a negative CSLL will be assumed. The numerical results of all the CP-violating
observables as a function of q2 are illustrated in figure 2. Since the weak-phase difference of
the processes considered is zero within the SM, any observation of these observables being
different from zero will be a definite signal of CP-violating NP. It can also be seen that
these different NP benchmark points can be distinguished from each other through these
CP-violating observables. This makes the measurements of them very promising at the
future experiments like the LHCb [108].
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Figure 3. The nine CP-conserving observables as a function of q2, predicted both within the SM
and in the six NP benchmark points. Here, compared with figure 2, two more NP benchmark points,
BP5 and BP6, are considered, which are represented by the magenta and blue curves, respectively.
The other captions are the same as in figure 2.

3.4 CP-conserving observables

The CP-conserving observables can be constructed even in the absence of any NP contribu-
tion. In order to demonstrate the NP contributions to these observables, we should compare
the experimental measurements of these observables with the corresponding SM predictions.
There are in total 25 normalized CP-conserving observables that can be extracted from
the fully differential decay rate given by eq. (2.19). Here, as an illustration, we only pick
up the nine most interesting ones and show in figure 3 their sensitivities to the different
NP scenarios.

From figure 3, we can see that all these nine observables can serve to distinguish
the different NP scenarios. Specifically, among all the six NP benchmark points given
by eqs. (3.1) and (3.2), the BP3 has the largest effect on the selected observables except
for

〈
T̃ TTL

〉
+ 1

2Ã
T
TL, which is found to be mainly affected by the BP2. Furthermore, the

observable
〈
T̃L⊥⊥

〉
can receive a comparable BP2 contribution with respect to that of BP3,

but is more sensitive to BP2 at low q2 region. On the other hand, the observables Z̃L⊥L
and Ã⊥⊥L can receive a large contribution from BP6 that is comparable to that of BP3, but
are more sensitive to BP6 at large q2 region. In addition, the observable Ã⊥⊥L is sensitive
to, except for the BP1, all the remaining five NP benchmark points. However, the BP1
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Observables

{(q2
−)j , (q2

+)j}[GeV2]
{3.16, 5.47} {5.47, 7.79} {7.79, 10.10}

Z̃U⊥L
j

0.00529(10) 0.03336(29) 0.04770(58)

ÃULL
j

0.00421(13) 0.02988(60) 0.04619(71)〈
T̃L⊥⊥

〉j
−0.0329(19) −0.2250(43) −0.3245(48)

Z̃L⊥⊥
j

0.0501(18) 0.1244(36) 0.0782(25)

Z̃L⊥L
j

−0.02596(51) −0.09282(84) −0.1013(12)〈
T̃⊥⊥⊥

〉j
+
〈
T̃⊥TT

〉j
−0.1752(66) −0.442(12) −0.2641(65)

Ã⊥⊥L
j

−0.02538(50) −0.08651(78) −0.0893(11)

Z̃⊥LL
j

0.01997(65) 0.0771(16) 0.0864(13)〈
T̃ TTL

〉j
+ 1

2Ã
T
TL

j
−0.0137(14) −0.0383(34) −0.0246(21)

Table 1. The SM predictions of the nine CP-conserving observables in three different q2 bins. The
uncertainties come from the Bc → J/ψ transition form factors [83].

can be well distinguished from the SM by the observable
〈
T̃ TTL

〉
+ 1

2Ã
T
TL. Therefore, this

CP-conserving observable can be used to search for the non-SMEFT realization of the SM
gauge group SU(2)L ×U(1)Y [92, 93].

Besides the q2 distributions presented in figures 2 and 3, it is also interesting to consider
the integrated values of these observables in different q2 intervals from an experimental
perspective. To this end, let us define

Oi
j = 1

Γ

∫ (q2
+)j

(q2
−)j

dq2 dΓ
dq2Oi, (3.5)

where Oi are the different normalized observables and {(q2
−)j , (q2

+)j} refer to the different
q2 intervals. As an illustration, we divide equally the full available q2 range, m2

τ ≤ q2 ≤
(mBc − mJ/ψ)2, into three bins, and present in table 1 the SM predictions of the nine
CP-conserving observables in these three different q2 bins. This information may serve as a
reference point for the future LHCb measurements.

3.5 Observables specific to the right-handed neutrinos

We also find that some combinations of the observables can only be attributed to the
right-handed neutrinos. To this end, let us define the following observables Rn:
dΓ
dq2R1 = dΓ

dq2

(
Z̃ULL + Z̃LLL

)
= −2

√
6N q2Re

[
A−R,‖A

−∗
R,⊥

]
,
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Figure 4. The observables Rn defined by eq. (3.6) as a function of q2, predicted both within the
SM and in the two NP benchmark points with right-handed neutrinos. The other captions are the
same as in figures 2 and 3.

dΓ
dq2R2 = dΓ

dq2

(
Z̃U⊥⊥ − Z̃ULL − Z̃L⊥⊥

)
=
√

6N
{

2m2
τRe

[
AR,tA+∗

R,0

]
+ q2Re

[
A−R,‖A

−∗
R,⊥

]}
,

dΓ
dq2R3 = dΓ

dq2

(1
8
〈
T̃ULL

〉
+ ÃULL + 3

8
〈
T̃LLL

〉)

= −
√

6
4 N

{
m2
τ

(∣∣∣A+
R,‖

∣∣∣2 +
∣∣∣A+

R,⊥

∣∣∣2)− 2q2
(∣∣∣A−R,‖∣∣∣2 +

∣∣∣A−R,⊥∣∣∣2)} ,
dΓ
dq2R4 = dΓ

dq2

(3
8
〈
T̃ULL

〉
+ 1

8
〈
T̃LLL

〉
+ ÃLLL

)

=
√

6
4 N

{
m2
τ

(∣∣∣A+
R,‖

∣∣∣2 +
∣∣∣A+

R,⊥

∣∣∣2)+ 2q2
(∣∣∣A−R,‖∣∣∣2 +

∣∣∣A−R,⊥∣∣∣2)} ,
dΓ
dq2R5 = dΓ

dq2

(1
2
〈
T̃U⊥⊥

〉
+ ÃU⊥⊥ −

3
8
〈
T̃ULL

〉
− 1

2
〈
T̃L⊥⊥

〉
− ÃL⊥⊥ + 3

8
〈
T̃LLL

〉)

=
√

6
4 Nm

2
τ

{
4 |AR,t|2 + 4

∣∣∣A+
R,0

∣∣∣2 − ∣∣∣A+
R,‖

∣∣∣2 − ∣∣∣A+
R,⊥

∣∣∣2} , (3.6)

where explicit expressions of the abbreviation N and the transversity amplitudes Ai can be
found in appendix A.3. It is interesting to note that any observation of these observables
will be a clear signal of NP with right-handed neutrinos. Notice that the observable R2
can only get a non-zero contribution from a scalar coupling CSAR through the interference
with the vector coupling CVAR or the tensor coupling CTRR, whereas the observable R5 can
be non-zero even with the pure CSAR NP scenarios. On the other hand, the remaining
observables R1,3,4 cannot get any contribution from these couplings.

The sensitivities of these observables to the NP benchmark points BP5 and BP6 are
shown in figure 4, from which we can see that these two benchmark points can be well
distinguished from each other through these observables.
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3.6 Integrated observables

Although the observables discussed above can be used to discern the different NP scenarios,
their extractions from the fully differential distribution given by eq. (2.19) may suffer from
low experimental statistics. A way out is then to consider possible statistically enhanced
distributions, which can be obtained by integrating eq. (2.19) over one or more of the
related kinematic variables. The resulting integrated observables can still be used to study
possible NP contributions, as discussed already in refs. [51, 109]. In this work, we only
discuss the distributions with only one visible kinematic variable left.

We start by integrating eq. (2.19) over the variables φd and θJ/ψ to get

d3Γ
dq2dEdd cos θd

/
dΓ
dq2 = 4

√
6

3 π

{(
NU −NL

〈
PLU

〉)
+
[
2 cos θτd

(
NUAFB −NLZLU

)
− 4
π

sin2 θτdN⊥
〈
P⊥U

〉]
P1 (cos θd)

+
[(

3 cos2 θτd − 1
) (
NUAQ −NLALU

)
− 3 cos θτd sin2 θτdN⊥Z⊥U

]
P2 (cos θd)

}
.

(3.7)

Since the spin of the J/ψ meson has already been summed over in this distribution, we
can use the relations

∑
i T̃

i′
ii =

√
6P i′U and

∑
i T̃

U
ii =

√
6 to regain the τ vector polarizations.

This allows us to define the following observables:

dΓ
dq2AFB =

(∫ 1

0
−
∫ 0

−1

)
d cos θτ

d2Γ
dq2d cos θτ

,

dΓ
dq2AQ =5

2

∫ 1

−1
d cos θτP 0

2 (cos θτ ) d2Γ
dq2d cos θτ

,

dΓ
dq2

〈
P i
′
U

〉
=
∫ 1

−1
d cos θτ

d2Γ
dq2d cos θτ

P i
′
U ,

dΓ
dq2Z

i′
U =

(∫ 1

0
−
∫ 0

−1

)
d cos θτ

d2Γ
dq2d cos θτ

P i
′
U ,

dΓ
dq2A

L
U =5

2

∫ 1

−1
d cos θτP 0

2 (cos θτ ) d2Γ
dq2d cos θτ

PLU ,

(3.8)

which are consistent with that derived in refs. [49, 52], but given with different notations.
Then, the distributions dΓ/d cos θd and dΓ/dq2 can be easily derived after performing further
the integration of eq. (3.7) over the other kinematic variables with the ranges specified in
appendix B. On the other hand, to obtain the Ed distribution, one should firstly perform
the q2 integration for a given Ed. This requires to invert the limits of Ed presented in
appendix B, and the resulting ranges of q2 for the τ− → π−(ρ−)ντ channels are given by

Part I: m4
τ +m2

dq
2
u

2m2
τ

√
q2
u

≤ Ed ≤
m2
τ +m2

d

2mτ
,

m4
τ

m4
d

(Ed − |~pd|)2 ≤ q2 ≤ q2
u,

Part II: m2
τ +m2

d

2mτ
≤ Ed ≤

m2
d + q2

u

2
√
q2
u

, (Ed + |~pd|)2 ≤ q2 ≤ q2
u,

(3.9)
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with q2
u =

(
mBc −mJ/ψ

)2
being the upper limit of q2. Similarly, we can get the allowed

ranges of q2 for the τ− → `−ν̄`ντ channel as

Part I: md≤Ed≤
m4
τ+m2

dq
2
u

2m2
τ

√
q2
u

, m2
τ ≤ q2≤ q2

u, x−≤x≤x+,

Part II: m4
τ+m2

dq
2
u

2m2
τ

√
q2
u

≤Ed≤
m2
τ+m2

d

2mτ
, m2

τ ≤ q2≤ m
4
τ

m4
d

(Ed−|~pd|)2 , x−≤x≤x+,

Part III: m4
τ+m2

dq
2
u

2m2
τ

√
q2
u

≤Ed≤
m2
τ+m2

d

2mτ
,

m4
τ

m4
d

(Ed−|~pd|)2≤ q2≤ q2
u, x−≤x≤ 1+y2,

Part IV: m2
τ+m2

d

2mτ
≤Ed≤

m2
d+q2

u

2
√
q2
u

, (Ed+|~pd|)2≤ q2≤ q2
u, x−≤x≤ 1+y2.

(3.10)
We then study the distribution of the decay rate with respect to the azimuthal angle φd,
which can be written as

dΓ
dφd

=
∫
dq2

∫
dEd

4
3
dΓ
dq2

{√
6
(
NU −NL

〈
PLU

〉)
−
[ (

3 cos2 θτd − 1
) (
NU

(
ÃU⊥⊥ − ÃUTT

)
−NL

(
ÃL⊥⊥ − ÃLTT

))
− 8
π

cos θτd sin2 θτdN⊥
〈
T̃ T⊥T

〉 ]
cos 2φd

−
[ (

3 cos2 θτd − 1
) (
NU

〈
T̃U⊥T

〉
−NL

〈
T̃L⊥T

〉)
+ 6 cos θτd sin2 θτdN⊥Z̃⊥⊥T

]
sin 2φd

}
. (3.11)

Since φd is defined as the azimuthal angle between the decay planes of τ and J/ψ, this
distribution contains the spin information of both τ and J/ψ. As discussed already in
section 3.3, the coefficients of sin 2φd,

〈
T̃U⊥T

〉
,
〈
T̃L⊥T

〉
and Z̃⊥⊥T , are all referred to the

CP-violating observables, which can be non-zero only under the NP scenarios with weak
phases being different from the SM.

Finally, the differential distribution dΓ/d cos θJ/ψ is given by

dΓ
d cos θJ/ψ

=
∫
dq2
√

6
8
dΓ
dq2

[
2 cos2 θJ/ψ

〈
T̃ULL

〉
+ sin2 θJ/ψ

(〈
T̃U⊥⊥

〉
+
〈
T̃UTT

〉)]
, (3.12)

where the spin of the τ lepton has already been summed over. The J/ψ longitudinal
polarization fraction F J/ψL , which is the analogue of the usually discussed FD∗L [10, 110], is
given with our notations by

F
J/ψ
L

(
q2
)

= dΓλJ/ψ=0/dq2

dΓ/dq2 = 1√
6

(〈
T̃U⊥⊥

〉
+
〈
T̃UTT

〉
−
〈
T̃ULL

〉)
. (3.13)

Our numerical results of these integrated observables with only one visible kinematic
variable left are illustrated in figure 5. Since the integration over some kinematic variables
will sometimes result in a loss of information on the spin and spin-angular asymmetries,
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Figure 5. The single differential decay rates with only one kinematic variable left, predicted both
within the SM and in the two NP benchmark points, BP4 and BP6, where they contain only the left-
and the right-handed neutrinos respectively. The other captions are the same as in figures 2 and 3.

these observables are not as sensitive to the different NP scenarios as are the ones discussed
before. Therefore, we only show the sensitivities of these observables to the two different NP
benchmark points, BP4 and BP6, where they contain only the left- and the right-handed
neutrinos respectively. However, one should notice that, by accumulating events with all
allowed values of the kinematic variables but providing the distribution with respect to
only one variable, we can largely increase the statistics [109]. This makes these observables
much more promising to be measured with sufficiently high statistics in the future.

4 Sensitivity of the observables at LHCb

In this section, we examine what experimental precision can be achieved when extracting
the spin and spin-angular asymmetries from the fully differential distribution given by
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eq. (2.19). Since a detailed simulation of backgrounds and detector effects is beyond the
scope of this work, we shall only give the statistical uncertainty under an ideal experiment
with unlimited resolution in all the five kinematic variables q2, Ed, θd, φd and θJ/ψ.

For brevity, let us denote the 34 normalized observables as ~O with the corresponding
coefficient for each observable Oi designated as fOi(q2, ~ξ), where ~ξ refer to the rest four
kinematic variables Ed, θd, φd and θJ/ψ. Then, the decay distribution can be written as

d5Γ
dq2dEdd cos θddφdd cos θJ/ψ

/
dΓ
dq2 =

34∑
i=1

fOi(q2, ~ξ)Oi. (4.1)

Here we only consider the SM case, and thus the condition CXAB = 0 is implied in eq. (4.1).
Assuming that there were N(q2) sample events {~ξl} for a fixed q2 but with different ~ξ, the
true values of the observables ~O will maximize the likelihood function L

(
~O
∣∣∣{~ξl}) and are

then the solutions of the following equations:

∂

∂Oi
lnL

(
~O
∣∣∣{~ξl}) =

N(q2)∑
l=1

fOi(q2, ~ξl)∑34
j=1 fOj (q2, ~ξl)Oj

= 0. (4.2)

The covariance matrix is then given by

cov−1
(
~̂O

)
ij

= − ∂2

∂Oi∂Oj
lnL

(
~O
∣∣∣{~ξl}) ∣∣∣ ~O= ~̂O

, (4.3)

where ~̂O denote the true values of the observables ~O, which are taken to be the central
values predicted with the lattice QCD input for the Bc → J/ψ transition form factors [83].
In this work, for simplicity, we are not going to discuss the correlations among the different
observables, and estimate the experimental sensitivity of each observable individually. The
statistical uncertainty of an observable Oi can then be estimated as [47, 48, 111]

δOi = 1√
N(q2)SOi(q2)

, (4.4)

with the sensitivity SOi(q2) given by [47, 48, 111]

S2
Oi(q

2) =
〈(

fOi(q2, ~ξ)∑34
j=1 fOj (q2, ~ξ)Ôj

)2〉
=
∫
d4~ξ

f2
Oi

(q2, ~ξ)∑34
j=1 fOj (q2, ~ξ)Ôj

. (4.5)

Similarly, the statistical uncertainties of the binned observables defined by eq. (3.5) can be
estimated as

δOi
j = 1
√
N j SOi

j , (4.6)

with
(SOi

j)−2 = 1
Γ

∫ (q2
+)j

(q2
−)j

dq2 dΓ
dq2S

−2
Oi

(q2). (4.7)

Here N j is the number of events in the full sample for the q2 interval {(q2
−)j , (q2

+)j}, and
SOi

j the corresponding averaged sensitivity. In the following, we consider only the averaged

– 19 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
3

observables integrated over the full q2 range, which constitutes a single bin for the analysis,
and denote these averaged observables simply as Oi.

The expected number of events N for τ− → µ−ν̄µντ decay at LHCb is estimated as

N =
∑
i,j

L×σbb̄(η
i)×fc(pjT )B(B−c → J/ψµ−ν̄µ)×R(J/ψ)×Bτ×BJ/ψ×εµ(ηi, pjT )× ετ

εµ
, (4.8)

where L ≈ 300 fb−1 is the expected integrated luminosity of the LHCb experiment until
2035 [108], and σbb̄(ηi) is the bb̄ cross section as a function of the pseudo-rapidity bin
ηi, which sums up to be about 144µb in the covered η range [112].3 Product of the
hadronization factor fc(pjT ) and the branching fraction B(B−c → J/ψµ−ν̄µ), which is given
in different bins of the pseudo-rapidity η and the transverse momentum pT of the B−c meson,
together with the corresponding signal efficiency εµ(ηi, pjT ), can be found in ref. [113]. Notice
that fc(pjT ) depends only marginally on η and hence can be regarded as a single function of
pT . Then, we can use the measured R(J/ψ) and the ratio of the signal efficiencies ετ/εµ [9]
to connect the number of events between B−c → J/ψτ−ν̄τ and B−c → J/ψµ−ν̄µ decays.
Since the LHCb measurement [9] uses the decay channel τ− → µ−ν̄µντ to identify the τ
lepton, we can estimate the number of events for this channel to be about 2.7× 105. On the
other hand, there exists no LHCb measurement of these factors by using a single hadronic
τ decay channel yet, but the number of events for B → Dτν̄τ at Belle is roughly the same
for the three channels τ− → π−ντ , τ− → ρ−ντ and τ− → `−ν̄`ντ [114]. Therefore, as an
approximation, we shall assume that a similar circumstance is also applied to the LHCb
experiment and roughly set the number of events for τ− → π−(ρ−)ντ channels to be twice
as that of τ− → µ−ν̄µντ channel. In addition, we shall not consider the electronic channel
τ− → e−ν̄eντ due to the poor reconstruction efficiency at LHCb, which results from the
high bremsstrahlung rate for electrons [115].

In such an ideal circumstance, we take as an example the nine CP-conserving observ-
ables discussed in section 3.4, and illustrate in figure 6 the estimated relative statistical
uncertainties of these observables at LHCb. Furthermore, the relative statistical uncer-
tainties of the corresponding averaged observables are given in table 2. We can see that
τ− → π−ντ has the highest analyzing power among the three τ decay channels.

5 Conclusions

The observed R(D(∗)) anomalies may indicate possible NP in b→ cτ−ν̄τ transitions. In this
context, the B−c → J/ψτ−ν̄τ decay, which is also induced by the same quark-level transition,
provides an ideal and clean mode to search for these possible NP effects. However, since the
τ lepton is very short-lived and its decay products contain at least one undetected neutrino,
the τ three-momentum in the decay cannot be determined precisely. Therefore, in this
paper, we have proposed to extract the maximum information from the visible kinematic
distributions of the cascade decays B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ , ρ

−ντ , `
−ν̄`ντ )ν̄τ by

considering the polarizations of both τ and J/ψ at the same time. We found that there
are in total 34 normalized observables that can be extracted from the fully differential

3Here, as a good approximation, the bb̄ cross section measured in pp collisions at 13 TeV center-of-mass
energy is adopted.

– 20 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
3

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

τ− → π−ντ
τ− → ρ−ντ
τ− → µ−ν̄µντ

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 6. The relative statistical uncertainties of the nine CP-conserving observables at LHCb,
estimated for the three τ decay channels τ− → π−ντ , τ− → ρ−ντ and τ− → µ−ν̄µντ , which are
illustrated by the blue, orange and green curves, respectively.

decay rate given by eq. (2.19). Starting with the most general dimension-six effective
Hamiltonian including both the left- and right-handed neutrinos, we can express these
normalized observables in terms of 14 independent transversity amplitudes.

To illustrate the sensitivities of these observables to the different NP scenarios, we
have calculated their numerical results by considering six different NP benchmark points,
which include four scenarios with purely left-handed neutrinos and two ones with purely
right-handed neutrinos. We have also used the latest lattice results for the Bc → J/ψ

(axial-)vector and the lattice+NRQCD results for the tensor form factors. The observables
considered can be divided into two parts: the CP-conserving and the CP-violating ones. It
is found that the SM contributions to the CP-violating observables vanish to a very good
approximation. Therefore, any non-zero measurements of them would be a smoking-gun
signature of NP. Although the CP-conserving observables are non-zero within SM, they
can also serve to distinguish the different NP scenarios by comparing the experimental
measurements from the SM predictions. As an illustration, we have picked up nine of these
kinds of observables to show their potential role in distinguishing the different NP scenarios.
Finally, we found that some combinations of the observables, which are defined by Rn in
eq. (3.6), can only be attributed to the right-handed neutrinos.

On the other hand, considering the low statistics of the fully differential distribution, we
have also studied the integrated observables with only one kinematic variable left. Due to
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τ− → π−ντ τ− → ρ−ντ τ− → µ−ν̄µντ theoretical

δZ̃U⊥L/
∣∣∣Z̃U⊥L∣∣∣ 0.030 0.044 0.071 0.008

δÃULL/
∣∣∣ÃULL∣∣∣ 0.043 0.063 0.095 0.016

δ
〈
T̃L⊥⊥

〉
/

∣∣∣∣〈T̃L⊥⊥〉∣∣∣∣ 0.003 0.010 0.013 0.017

δZ̃L⊥⊥/
∣∣∣Z̃L⊥⊥∣∣∣ 0.008 0.025 0.038 0.029

δZ̃L⊥L/
∣∣∣Z̃L⊥L∣∣∣ 0.014 0.056 0.073 0.007

δ

[
〈T̃⊥⊥⊥〉+〈T̃⊥TT 〉

]
∣∣∣〈T̃⊥⊥⊥〉+〈T̃⊥TT 〉∣∣∣ 0.006 0.016 0.019 0.027

δÃ⊥⊥L/
∣∣∣Ã⊥⊥L∣∣∣ 0.017 0.044 0.066 0.007

δZ̃⊥LL/
∣∣∣Z̃⊥LL∣∣∣ 0.025 0.061 0.092 0.017

δ

[
〈T̃TTL〉+ 1

2 Ã
T
TL

]
∣∣∣〈T̃TTL〉+ 1

2 Ã
T
TL

∣∣∣ 0.046 0.113 0.156 0.088

Table 2. The relative uncertainties of the averaged observables Oi. The first three columns refer
to the relative statistical uncertainties under an ideal experiment, estimated for the three τ decay
channels τ− → π−ντ , τ− → ρ−ντ and τ− → µ−ν̄µντ , respectively. The last column refers to the
relative theoretical uncertainties for the SM predictions, which come from the Bc → J/ψ transition
form factors [83].

the largely increased statistics, these observables are much more promising to be measured
in the future with certain precision. In addition, assuming an ideal circumstance, we have
estimated the statistical uncertainties of the nine CP-conserving observables at LHCb, and
found that, among the three τ decay channels, τ− → π−ντ is the most sensitive one to
measure the τ polarizations.

As a final comment, we would like to emphasize again that, in order to confirm the
presence of NP effects and to further distinguish the different NP scenarios, it is essential to
go beyond the purely total decay rate measurements. The high statistics required to extract
the whole energy and angular distributions may be achieved in the future high-luminosity
LHCb [108] and Belle II [116] experiments, and then provide a definite answer to the
currently observed R(D(∗)) anomalies.
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Figure 7. Definitions of the angles in the B−c → J/ψ(→ µ+µ−)τ−(→ π−ντ )ν̄τ decay. Here all four
successive decays are analyzed in the rest frames of the corresponding parent particles.

A Calculation of the spin density matrices

In this appendix, we detail the derivations of the three spin density matrices appearing in
eq. (2.3). Taking the hadronic decay τ− → π−ντ as an example, we illustrate in figure 7 the
frames of reference chosen in this appendix. Note that they are different from that adopted
in section 2.4, and we use the superscript “*” to characterize the angles in these specific
reference frames.

A.1 τ decay density matrix

The τ decay density matrix ρτ (s, s′) is calculated in the τ rest frame with the z-axis chosen
to be the direction of τ . We denote the solid angle of a particle p relative to the z-axis as
(θ∗p, φ∗p). With these notations, we can write the spinors of the decaying τ and its decay
product ντ , respectively, as [117, 118]

uτ

(1
2

)
=
√

2mτ (1, 0, 0, 0)T , uτ

(
−1

2

)
=
√

2mτ (0, 1, 0, 0)T ,

uντ

(1
2

)
=
√
|~pντ |

(
cos

θ∗ντ
2 , eiφ∗ντ sin

θ∗ντ
2 , cos

θ∗ντ
2 , eiφ∗ντ sin

θ∗ντ
2

)T
,

uντ

(
−1

2

)
=
√
|~pντ |

(
−e−iφ∗ντ sin

θ∗ντ
2 , cos

θ∗ντ
2 , e−iφ∗ντ sin

θ∗ντ
2 , − cos

θ∗ντ
2

)T
.

(A.1)

The helicity amplitudes for the τ− → π−ντ decay can be written as

Mλτ (τ− → π−ντ ) = i
√

2GFV ∗udfπpµπ ūντγµPLuτ (λτ ), (A.2)

where fπ is the pion decay constant. Similarly, for the τ− → ρ−ντ decay, we have

Mλρ
λτ

(τ− → ρ−ντ ) = i
√

2GFV ∗udfρmρε̃
µ∗
ρ (λρ) ūντγµPLuτ (λτ ), (A.3)
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where fρ and ε̃µρ (λρ) are the decay constant and polarization vectors of the ρ meson. With
our notations, we can write ε̃µρ (λρ) explicitly as [117, 118]

ε̃µρ(±1) = 1√
2

e±iφ∗ρ
(
0,∓ cos θ∗ρ cosφ∗ρ + i sinφ∗ρ,−i cosφ∗ρ ∓ cos θ∗ρ sinφ∗ρ,± sin θ∗ρ

)
,

ε̃µρ(0) =
(
|~pρ|
mρ

,
p0
ρ

mρ
sin θ∗ρ cosφ∗ρ,

p0
ρ

mρ
sin θ∗ρ sinφ∗ρ,

p0
ρ

mρ
cos θ∗ρ

)
.

(A.4)

The normalized τ decay density matrices for these two channels can be written as [86, 88]

ρτ (s, s′)
Tr [ρτ ] =

 1+ατ cos θ∗d
2

ατ sin θ∗d
2 eiφ∗d

ατ sin θ∗d
2 e−iφ∗d 1−ατ cos θ∗d

2

 , (A.5)

where d = {π, ρ} and ατ = {1, (m2
τ − 2m2

ρ)/(m2
τ + 2m2

ρ)} are the polarization asymmetries
for the two channels {τ− → π−ντ , τ

− → ρ−ντ}. We can then easily get the decay rates for
these two channels, which read respectively as

Γ(τ− → π−ντ ) = 1
2

1
2mτ

|~pπ|
4πmτ

Tr [ρτ ] = G2
F f

2
π |Vud|2

16πmτ

(
m2
τ −m2

π

)2
,

Γ(τ− → ρ−ντ ) = 1
2

1
2mτ

|~pρ|
4πmτ

Tr [ρτ ] =
G2
F f

2
ρ |Vud|2

16πm3
τ

(
m2
τ −m2

ρ

)2 (
m2
τ + 2m2

ρ

)
.

(A.6)

The helicity amplitudes for the leptonic decay τ− → `−ν̄`ντ are given by

Mλ`
λτ

(τ− → `−ν̄`ντ ) = i2
√

2GF ūντγµPLuτ (λτ ) ū`(λ`)γµPLvν̄` , (A.7)

from which we can then write the corresponding normalized decay density matrix as [86, 87]

ρτ (s, s′)
Tr [ρτ ] =

 1+cos θ∗ν̄`
2

sin θ∗ν̄`
2 eiφ

∗
ν̄`

sin θ∗ν̄`
2 e−iφ

∗
ν̄`

1−cos θ∗ν̄`
2

 , (A.8)

with the normalization given by

Tr [ρτ ] = 128G2
F (pτ · pν̄`) (p` · pντ ) . (A.9)

After performing the phase-space integration, we can get the corresponding decay rate as

Γ(τ− → `−ν̄`ντ ) = G2
Fm

5
τ

192π3

(
1− 8y2 + 8y6 − y8 − 24y4 ln y

)
, (A.10)

where y = m`/mτ .

A.2 J/ψ decay density matrix

The J/ψ decay density matrix ρJ/ψ(λ, λ′) is calculated in the J/ψ rest frame with the z-axis
chosen to be the direction of J/ψ. We denote the solid angles of the µ− lepton relative
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to the z-axis by (θJ/ψ, φ∗J/ψ). In this reference frame, the polarization vectors of the J/ψ
meson and the spinors of the massless µ− and µ+ leptons can be written as [51, 117, 118]

εµJ/ψ (0) = (0, 0, 0, 1) , εµJ/ψ (±1) = (0, ∓1, −i, 0) /
√

2, (A.11)

and

uµ−

(1
2

)
=
√
mJ/ψ

2

(
cos

θJ/ψ
2 , eiφ

∗
J/ψ sin

θJ/ψ
2 , cos

θJ/ψ
2 , eiφ

∗
J/ψ sin

θJ/ψ
2

)T
,

uµ−

(
−1

2

)
=
√
mJ/ψ

2

(
−e−iφ

∗
J/ψ sin

θJ/ψ
2 , cos

θJ/ψ
2 , e−iφ

∗
J/ψ sin

θJ/ψ
2 , − cos

θJ/ψ
2

)T
,

vµ+

(1
2

)
=
√
mJ/ψ

2

(
cos

θJ/ψ
2 , eiφ

∗
J/ψ sin

θJ/ψ
2 , − cos

θJ/ψ
2 , −eiφ

∗
J/ψ sin

θJ/ψ
2

)T
,

vµ+

(
−1

2

)
=
√
mJ/ψ

2

(
−e−iφ

∗
J/ψ sin

θJ/ψ
2 , cos

θJ/ψ
2 , −e−iφ

∗
J/ψ sin

θJ/ψ
2 , cos

θJ/ψ
2

)T
,

(A.12)
respectively. Here we have used the Jacob-Wick second particle convention [119], which
defines the helicity states of a particle moving in the negative z-direction.

As the J/ψ → µ+µ− decay is an electromagnetic process, we can write its helicity
amplitudes as

MλJ/ψ
λµ− ,λµ+

(
J/ψ→µ+µ−

)
=
−8iπαEMfJ/ψ

3mJ/ψ
εµJ/ψ

(
λJ/ψ

)
ūµ−

(
λµ−

)
γµvµ+

(
λµ+

)
, (A.13)

where fJ/ψ is the decay constant of the J/ψ meson, and αEM = e2/(4π) is the fine-structure
constant. The normalized J/ψ decay density matrix can then be written as

ρJ/ψ(λ, λ′)
Tr
[
ρJ/ψ

] =


1+cos2 θJ/ψ

4
cos θJ/ψ sin θJ/ψ

2
√

2 eiφ
∗
J/ψ

sin2 θJ/ψ
4 e2iφ∗

J/ψ

cos θJ/ψ sin θJ/ψ
2
√

2 e−iφ
∗
J/ψ

sin2 θJ/ψ
2 − cos θJ/ψ sin θJ/ψ

2
√

2 eiφ
∗
J/ψ

sin2 θJ/ψ
4 e−2iφ∗

J/ψ − cos θJ/ψ sin θJ/ψ
2
√

2 e−iφ
∗
J/ψ

1+cos2 θJ/ψ
4

 ,
(A.14)

and the total decay rate is given by

Γ(J/ψ → µ+µ−) = 1
3

1
2mJ/ψ

∣∣∣~pJ/ψ∣∣∣
4πmJ/ψ

Tr
[
ρJ/ψ

]
=

16πα2
EMf

2
J/ψ

27mJ/ψ
. (A.15)

A.3 B−c → J/ψτ−ν̄τ spin density matrix

In order to discuss the semitauonic B−c → J/ψτ−ν̄τ decay, we can divide it into the two
successive processes B−c → J/ψN∗− and N∗− → τ−ν̄τ , where N∗ is a virtual intermediate
state that refers to the W boson within the SM. They can be discussed most conveniently
in the Bc and N∗ rest frames respectively, with the z-axes both chosen to be the direction
of the J/ψ meson. In the Bc rest frame, the polarization vectors of J/ψ and N∗ can be
written as [117, 118]

ε̃µJ/ψ (0) =
(∣∣∣~pJ/ψ∣∣∣ , 0, 0, EJ/ψ

)
/mJ/ψ, ε̃µJ/ψ (±1) = (0, ∓1, −i, 0) /

√
2, (A.16)

– 25 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
3

and

ε̃µN∗ (t) = qµ/
√
q2, ε̃µN∗ (0) =

(
|~q| , 0, 0,−q0

)
/
√
q2, ε̃µN∗ (±1) = (0,±1,−i, 0)/

√
2,

(A.17)
respectively. Throughout this paper, all the polarization vectors with the symbol “ ˜ “ are
defined in a moving reference frame, while the ones without “ ˜ “ are given in the rest frame
of a vector particle; this explains our notations for the ρ, J/ψ and N∗ polarization vectors,
as given by eqs. (A.4), (A.11) ((A.16)) and (A.17) ((A.23)), respectively.

The helicity amplitudes for the hadronic part with different Lorentz structures are
defined, respectively, as [51]

H
{L,R}
λJ/ψ

=
〈
J/ψ(λJ/ψ)

∣∣∣(CSR{L,R} + CSL{L,R}

)
c̄b+

(
CSR{L,R} − C

S
L{L,R}

)
c̄γ5b

∣∣∣B−c 〉 ,
H
{L,R}
λJ/ψ ,λ

= ε̃µ∗N∗(λ)
〈
J/ψ(λJ/ψ)

∣∣∣ ({1, 0}+ CVL{L,R} + CVR{L,R}

)
c̄γµb

−
(
{1, 0}+ CVL{L,R} − C

V
R{L,R}

)
c̄γµγ5b

∣∣∣B−c 〉,
H
{L,R}
λJ/ψ ,λ,λ

′ = CT{LL,RR}ε̃
µ∗
N∗(λ)ε̃ν∗N∗(λ′)

〈
J/ψ(λJ/ψ) |c̄iσµν (1∓ γ5) b|B−c

〉
,

(A.18)
where the entry “1” refers to the SM contribution. For the parametrization of the hadronic
matrix elements in terms of the Bc → J/ψ transition form factors, we use the same
definitions as in our previous work [51]. For the scalar and pseudo-scalar operators, there
are only two non-zero hadronic helicity amplitudes,

H
{L,R}
0 = ASP{L,R},t, (A.19)

while for the vector and axial-vector operators, we have eight non-zero hadronic helicity
amplitudes,

H
{L,R}
0,t = AV A{L,R},t, H

{L,R}
0,0 = A{L,R},0,

H
{L,R}
1,1 =

(
A{L,R},⊥ +A{L,R},‖

)
/
√

2, H
{L,R}
−1,−1 =

(
A{L,R},⊥ −A{L,R},‖

)
/
√

2.
(A.20)

For the tensor operators, on the other hand, there are in total twenty-four non-zero hadronic
helicity amplitudes,

H
{L,R}
0,t,0 = ±H{L,R}0,−1,1 = −H{L,R}0,0,t = ∓H{L,R}0,1,−1 = AT{L,R},0,

H
{L,R}
1,t,1 = ±H{L,R}1,0,1 = −H{L,R}1,1,t = ∓H{L,R}1,1,0 =

(
AT{L,R},‖ +AT{L,R},⊥

)
/
√

2,

H
{L,R}
−1,−1,t = ±H{L,R}−1,0,−1 = −H{L,R}−1,t,−1 = ∓H{L,R}−1,−1,0 =

(
AT{L,R},‖ −A

T
{L,R},⊥

)
/
√

2.

(A.21)

Here the non-zero hadronic helicity amplitudes are all expressed in terms of the transversity
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amplitudes, with the latter given explicitly as

ASP{L,R},t = −
(
CSR{L,R} − C

S
L{L,R}

)
A0(q2)

√
Q+Q−

mb +mc
,

AV A{L,R},t = −
(
{1, 0}+ CVL{L,R} − C

V
R{L,R}

)
A0(q2)

√
Q+Q−√
q2 ,

A{L,R},0 = −
(
{1, 0}+ CVL{L,R} − C

V
R{L,R}

) mBc +mJ/ψ

2mJ/ψ

√
q2

[
A1(q2)(m2

Bc −m
2
J/ψ − q

2)

−A2(q2) Q+Q−
(mBc +mJ/ψ)2

]
,

A{L,R},⊥ = −
(
{1, 0}+ CVL{L,R} − C

V
R{L,R}

)√
2A1(q2)(mBc +mJ/ψ),

A{L,R},‖ =
(
{1, 0}+ CVL{L,R} + CVR{L,R}

)√
2V (q2)

√
Q+Q−

mBc +mJ/ψ
,

AT{L,R},0 = ±CT{LL,RR}
1

2mJ/ψ

[
T2(q2)(m2

Bc + 3m2
J/ψ − q

2)− T3(q2) Q+Q−
m2
Bc
−m2

J/ψ

]
,

AT{L,R},⊥ = ±CT{LL,RR}
√

2T2(q2)
m2
Bc
−m2

J/ψ√
q2 ,

AT{L,R},‖ = CT{LL,RR}
√

2T1(q2)
√
Q+Q−√
q2 , (A.22)

where mb and mc are the current quark masses evaluated at the scale µ = mb, and
Q± ≡ (mBc ±mJ/ψ)2 − q2, with q2 being the dilepton invariant mass squared.

The process N∗− → τ−ν̄τ is most conveniently described in the N∗ rest frame. In
this reference frame, the polarization vectors of the intermediate N∗ boson are now given
by [117, 118]

εµN∗ (t) = (1, 0, 0, 0) , εµN∗ (0) = (0, 0, 0, −1) , εµN∗ (±1) = (0, ±1, −i, 0) /
√

2. (A.23)

Denoting the polar angle of the τ lepton relative to the z-axis by θτ , we can write the
spinors of τ and ν̄τ explicitly as [117, 118]

uτ

(1
2

)
=
(
β+ cos θτ2 , β+ sin θτ2 , β− cos θτ2 , β− sin θτ2

)T
,

uτ

(
−1

2

)
=
(
−β+ sin θτ2 , β+ cos θτ2 , β− sin θτ2 , −β− cos θτ2

)T
,

vν̄τ

(1
2

)
=
√
|~pτ |

(
cos θτ2 , sin θτ2 , − cos θτ2 , − sin θτ2

)T
,

vν̄τ

(
−1

2

)
=
√
|~pτ |

(
− sin θτ2 , cos θτ2 , − sin θτ2 , cos θτ2

)T
, (A.24)
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where, as in eq. (A.12), we have also used the Jacob-Wick second particle convention [119],
and β± =

√
Eτ ±mτ with Eτ = (q2 +m2

τ )/(2
√
q2). The helicity amplitudes for the leptonic

part with different Lorentz structures are defined, respectively, as [51]

L
{L,R}
λτ

≡
〈
τ−(λτ )ν̄

∣∣∣τ̄P{L,R}ν∣∣∣ 0〉 ,
L
{L,R}
λτ ,λ

≡ εµN∗ (λ)
〈
τ−(λτ )ν̄

∣∣∣τ̄ γµP{L,R}ν∣∣∣ 0〉 ,
L
{L,R}
λτ ,λ,λ′

≡ −iεµN∗ (λ) ενN∗
(
λ′
) 〈
τ−(λτ )ν̄

∣∣∣τ̄σµνP{L,R}ν∣∣∣ 0〉 .
(A.25)

Combining the helicity amplitudes for both the hardronic and leptonic parts, we can
obtain the spin density matrix ρBc(s, s′, λ, λ′) introduced in eq. (2.3), and then work out
the explicit forms of the parameters defined in eq. (2.5). However, as mentioned already in
section 2.3, the parity-conserving J/ψ → µ+µ− decay cannot be used to extract the vector
polarizations of J/ψ, we list therefore the remaining parameters redefined in eq. (2.12) as

T̃
{U,L}
ii = 1

2
〈
T̃
{U,L}
ii

〉
+ Z̃

{U,L}
ii P 0

1 (cos θτ ) + Ã
{U,L}
ii P 0

2 (cos θτ ) ,

T̃
{U,L}
{⊥L,TL} = − 2

π

〈
T̃
{U,L}
{⊥L,TL}

〉
P 1

1 (cos θτ )− 1
2 Z̃
{U,L}
{⊥L,TL}P

1
2 (cos θτ ) ,

T̃
{U,L}
⊥T = 1

4
〈
T̃
{U,L}
⊥T

〉
P 2

2 (cos θτ ) ,

T̃
{⊥,T}
{⊥L,TL} = 1

2
〈
T̃
{⊥,T}
{⊥L,TL}

〉
+ Z̃

{⊥,T}
{⊥L,TL}P

0
1 (cos θτ ) + Ã

{⊥,T}
{⊥L,TL}P

0
2 (cos θτ ) ,

T̃
{⊥,T}
{ii,⊥T} = − 2

π

〈
T̃
{⊥,T}
{ii,⊥T}

〉
P 1

1 (cos θτ )− 1
2 Z̃
{⊥,T}
{ii,⊥T}P

1
2 (cos θτ ) ,

(A.26)

where Pml (cos θτ ) are the associated Legendre functions. Meanwhile, the integration over
the unmeasurable kinematic variables will also cause a loss of some information. Thus, we
list only the observables that can be extracted from the five-fold differential distribution of
eq. (2.19). Explicitly, we have

dΓ
dq2 = 2N

3

{[
m2
τ

(∣∣∣A+
L,0

∣∣∣2+
∣∣∣A+

L,‖

∣∣∣2+
∣∣∣A+

L,⊥

∣∣∣2+3 |AL,t|2
)

+2q2
(∣∣∣A−L,0∣∣∣2+

∣∣∣A−L,‖∣∣∣2+
∣∣∣A−L,⊥∣∣∣2)]+(L→R)

}
,

dΓ
dq2

〈
T̃U⊥⊥

〉
= N
√

6

{[
2m2

τ

(∣∣∣A+
L,0

∣∣∣2+
∣∣∣A+

L,‖

∣∣∣2+3 |AL,t|2
)

+q2
(

4
∣∣∣A−L,0∣∣∣2+

∣∣∣A−L,‖∣∣∣2+3
∣∣∣A−L,⊥∣∣∣2)]+(L→R)

}
,

dΓ
dq2 Z̃

U
⊥⊥= 3N

√
6

{
2m2

τ

(
Re
[
AL,tA+∗

L,0

]
+(L→R)

)
+q2

(
Re
[
A−L,‖A

−∗
L,⊥

]
−(L→R)

)}
,

dΓ
dq2 Ã

U
⊥⊥= N

√
6

{[
m2
τ

(
2
∣∣∣A+

L,0

∣∣∣2−∣∣∣A+
L,‖

∣∣∣2)−q2
(

2
∣∣∣A−L,0∣∣∣2−∣∣∣A−L,‖∣∣∣2)]+(L→R)

}
,
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dΓ
dq2 Ã

U
TT = N

√
6

{[
m2
τ

(
2
∣∣∣A+

L,0

∣∣∣2−∣∣∣A+
L,⊥

∣∣∣2)−q2
(

2
∣∣∣A−L,0∣∣∣2−∣∣∣A−L,⊥∣∣∣2)]+(L→R)

}
,

dΓ
dq2

〈
T̃U⊥T

〉
= 2N
√

6

{(
m2
τ Im

[
A+
L,‖A

+∗
L,⊥

]
−q2Im

[
A−L,‖A

−∗
L,⊥

])
+((L→R))

}
,

dΓ
dq2

〈
T̃U⊥L

〉
=−π

√
3N
4

{
m2
τ

(
Re
[
AL,tA+∗

L,⊥

]
+(L→R)

)
−q2

(
Re
[
A−L,0A

−∗
L,‖

]
−(L→R)

)}
,

dΓ
dq2 Z̃

U
⊥L =− N√

3

{(
m2
τRe

[
A+
L,0A

+∗
L,⊥

]
−q2Re

[
A−L,0A

−∗
L,⊥

])
+(L→R)

}
,

dΓ
dq2

〈
T̃UTL

〉
=−π

√
3N
4

{
m2
τ

(
Im
[
AL,tA+∗

L,‖

]
+(L→R)

)
−q2

(
Im
[
A−L,0A

−∗
L,⊥

]
−(L→R)

)}
,

dΓ
dq2 Z̃

U
TL =− N√

3

{(
m2
τ Im

[
A+
L,0A

+∗
L,‖

]
−q2Im

[
A−L,0A

−∗
L,‖

])
+(L→R)

}
,

dΓ
dq2

〈
T̃ULL

〉
= 2N
√

6

{[
m2
τ

(∣∣∣A+
L,‖

∣∣∣2+
∣∣∣A+

L,⊥

∣∣∣2)+2q2
(∣∣∣A−L,‖∣∣∣2+

∣∣∣A−L,⊥∣∣∣2)]+(L→R)
}
,

dΓ
dq2 Z̃

U
LL =

√
6N q2

{
Re
[
A−L,‖A

−∗
L,⊥

]
−(L→R)

}
,

dΓ
dq2 Ã

U
LL =− N√

6

{[
m2
τ

(∣∣∣A+
L,‖

∣∣∣2+
∣∣∣A+

L,⊥

∣∣∣2)−q2
(∣∣∣A−L,‖∣∣∣2+

∣∣∣A−L,⊥∣∣∣2)]+(L→R)
}
,

dΓ
dq2

〈
T̃L⊥⊥

〉
= N
√

6

{[
2m2

τ

(∣∣∣A+
L,0

∣∣∣2+
∣∣∣A+

L,‖

∣∣∣2+3 |AL,t|2
)

−q2
(

4
∣∣∣A−L,0∣∣∣2+

∣∣∣A−L,‖∣∣∣2+3
∣∣∣A−L,⊥∣∣∣2)]−(L→R)

}
,

dΓ
dq2 Z̃

L
⊥⊥= 3N

√
6

{
2m2

τ

(
Re
[
AL,tA+∗

L,0

]
−(L→R)

)
−q2

(
Re
[
A−L,‖A

−∗
L,⊥

]
+(L→R)

)}
,

dΓ
dq2 Ã

L
⊥⊥= N

√
6

{[
m2
τ

(
2
∣∣∣A+

L,0

∣∣∣2−∣∣∣A+
L,‖

∣∣∣2)+q2
(

2
∣∣∣A−L,0∣∣∣2−∣∣∣A−L,‖∣∣∣2)]−(L→R)

}
,

dΓ
dq2 Ã

L
TT = N

√
6

{[
m2
τ

(
2
∣∣∣A+

L,0

∣∣∣2−∣∣∣A+
L,⊥

∣∣∣2)+q2
(

2
∣∣∣A−L,0∣∣∣2−∣∣∣A−L,⊥∣∣∣2)]−(L→R)

}
,

dΓ
dq2

〈
T̃L⊥T

〉
= 2N
√

6

{(
m2
τ Im

[
A+
L,‖A

+∗
L,⊥

]
+q2Im

[
A−L,‖A

−∗
L,⊥

])
−(L→R)

}
,

dΓ
dq2

〈
T̃L⊥L

〉
=−π

√
3N
4

{
m2
τ

(
Re
[
AL,tA+∗

L,⊥

]
−(L→R)

)
+q2

(
Re
[
A−L,0A

−∗
L,‖

]
+(L→R)

)}
,

dΓ
dq2 Z̃

L
⊥L =− N√

3

{(
m2
τRe

[
A+
L,0A

+∗
L,⊥

]
+q2Re

[
A−L,0A

−∗
L,⊥

])
−(L→R)

}
,
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dΓ
dq2

〈
T̃LTL

〉
=−π

√
3N
4

{
m2
τ

(
Im
[
AL,tA+∗

L,‖

]
−(L→R)

)
+q2

(
Im
[
A−L,0A

−∗
L,⊥

]
+(L→R)

)}
,

dΓ
dq2 Z̃

L
TL =− N√

3

{(
m2
τ Im

[
A+
L,0A

+∗
L,‖

]
+q2Im

[
A−L,0A

−∗
L,‖

])
−(L→R)

}
,

dΓ
dq2

〈
T̃LLL

〉
= 2N
√

6

{[
m2
τ

(∣∣∣A+
L,‖

∣∣∣2+
∣∣∣A+

L,⊥

∣∣∣2)−2q2
(∣∣∣A−L,‖∣∣∣2+

∣∣∣A−L,⊥∣∣∣2)]−(L→R)
}
,

dΓ
dq2 Z̃

L
LL =−

√
6N q2

{
Re
[
A−L,‖A

−∗
L,⊥

]
+(L→R)

}
,

dΓ
dq2 Ã

L
LL =− N√

6

{[
m2
τ

(∣∣∣A+
L,‖

∣∣∣2+
∣∣∣A+

L,⊥

∣∣∣2)+q2
(∣∣∣A−L,‖∣∣∣2+

∣∣∣A−L,⊥∣∣∣2)]−(L→R)
}
,

dΓ
dq2

(〈
T̃⊥⊥⊥

〉
+
〈
T̃⊥TT

〉)
=−π

√
6N
4 mτ

√
q2
{

4
(

Re
[
AL,tA−∗L,0

]
−(L→R)

)
−
(

Re
[
A+
L,‖A

−∗
L,⊥

]
+Re

[
A+
L,⊥A

−∗
L,‖

]
+(L→R)

)}
,

dΓ
dq2 Z̃

⊥
⊥⊥=−2N

√
6
mτ

√
q2
{(

2Re
[
A+
L,0A

−∗
L,0

]
−Re

[
A+
L,‖A

−∗
L,‖

])
−(L→R)

}
,

dΓ
dq2 Z̃

⊥
⊥T = N

√
6
mτ

√
q2
{(

Im
[
A+
L,‖A

−∗
L,⊥

]
−Im

[
A+
L,⊥A

−∗
L,‖

])
−(L→R)

}
,

dΓ
dq2 Ã

⊥
⊥L =− N√

3
mτ

√
q2
{(

Re
[
A+
L,0A

−∗
L,⊥

]
+Re

[
A+
L,⊥A

−∗
L,0

])
−(L→R)

}
,

dΓ
dq2 Z̃

⊥
TT =−2N

√
6
mτ

√
q2
{(

2Re
[
A+
L,0A

−∗
L,0

]
−Re

[
A+
L,⊥A

−∗
L,⊥

])
−(L→R)

}
,

dΓ
dq2 Ã

⊥
TL =− N√

3
mτ

√
q2
{(

Im
[
A+
L,0A

−∗
L,‖

]
−Im

[
A+
L,‖A

−∗
L,0

])
−(L→R)

}
,

dΓ
dq2

〈
T̃⊥LL

〉
=π

√
6N
4 mτ

√
q2
{(

Re
[
A+
L,‖A

−∗
L,⊥

]
+Re

[
A+
L,⊥A

−∗
L,‖

])
+(L→R)

}
,

dΓ
dq2 Z̃

⊥
LL = 2N

√
6
mτ

√
q2
{(

Re
[
A+
L,‖A

−∗
L,‖

]
+Re

[
A+
L,⊥A

−∗
L,⊥

])
−(L→R)

}
,

dΓ
dq2

(〈
T̃T⊥L

〉
+1

2 Ã
T
⊥L

)
=
√

3N
2 mτ

√
q2
{

2
(

Im
[
AL,tA−∗L,‖

]
−(L→R)

)
+
[(

Im
[
A+
L,0A

−∗
L,⊥

]
−Im

[
A+
L,⊥A

−∗
L,0

])
+(L→R)

]}
,

dΓ
dq2

(〈
T̃TTL

〉
+1

2 Ã
T
TL

)
=−

√
3N
2 mτ

√
q2
{

2
(

Re
[
AL,tA−∗L,⊥

]
−(L→R)

)
+
[(

Re
[
A+
L,0A

−∗
L,‖

]
+Re

[
A+
L,‖A

−∗
L,0

])
+(L→R)

]}
.

(A.27)
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Here the abbreviation N is defined as

N ≡
G2
F |Vcb|

2
∣∣∣~pJ/ψ∣∣∣

128π3m2
Bc

(
1− m2

τ

q2

)2

BτBJ/ψ, (A.28)

with Bτ and BJ/ψ being the branching fractions of the decay channels of τ and J/ψ

respectively. Here the combinations of the transversity amplitudes are given by [101]

A+
{L,R},i = A{L,R},i + 4

√
q2

mτ
AT{L,R},i, A−{L,R},i = A{L,R},i + 4 mτ√

q2A
T
{L,R},i,

A{L,R},t =
√
q2

mτ
ASP{L,R},t +AV A{L,R},t

(A.29)

B Phase-space integrations

In this appendix, we detail the phase-space integrations in eq. (2.3). Firstly, for a generic
two-body phase-space integration, we have

∫
dΠ2(p; k1, k2) =

∫
d3~k1

(2π)32E1

d3~k2
(2π)32E2

(2π)4δ(4)(p− k1 − k2) = λ1/2(p2, k2
1, k

2
2)

8πp2 , (B.1)

where the standard Källen function is defined by

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (B.2)

With the help of eq. (B.1), we can easily evaluate the integrations
∫
dΠ2(pBc ; pJ/ψ, q) and∫

dΠ2(pJ/ψ; pµ− , pµ+) in eq. (2.3).
For the phase-space integrations

∫
dΠ2(q; pτ , pν̄τ ) and

∫
dΠ2(3)(pτ ; pd(, pν̄`), pντ ), on the

other hand, it is convenient to perform the evaluation simultaneously in the τ ν̄τ centre-of-
mass frame. For the hadronic decays τ− → π−ντ and τ− → ρ−ντ , we have [44, 45, 51]∫

dΠ2(q;pτ ,pν̄τ )dΠ2(pτ ;pd,pντ ) = 1
(4π)4

∫
d |~pτ |√
q2 dcosθτddφτddEddcosθddφd

×δ
(
|~pτ |−

q2−m2
τ

2
√
q2

)
δ

(
cosθτd−

2EτEd−m2
τ−m2

d

2 |~pτ | |~pd|

)
,

(B.3)
where the kinematic variables q2 and Ed=π,ρ are restricted, respectively, within the ranges

m2
τ ≤ q2 ≤

(
mBc −mJ/ψ

)2
,

m4
τ +m2

dq
2

2m2
τ

√
q2 ≤ Ed ≤

m2
d + q2

2
√
q2 . (B.4)

For the leptonic decay τ− → `−ν̄`ντ , we can firstly integrate over the momenta of the two
neutrinos by using the formula specific for massless particles [52]

∫
d3~pντ
2 |~pντ |

∫
d3~pν̄`
2 |~pν̄` |

δ(4)(Q− pντ − pν̄`)p
α
ντ p

β
ν̄`

= πQ2

24

(
gαβ + 2Q

αQβ

Q2

)
θ
(
Q2
)
, (B.5)
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where Q = pτ − p` and θ
(
Q2) is the step function. We can then get

∫ Tr
[
ρBc(s, s′, λ, λ′)

(
ρτ (s, s′)⊗ ρJ/ψ(λ, λ′)

)T ]
mτΓ (τ → `ν̄`ντ ) Tr [ρBc ] Tr

[
ρJ/ψ

] dΠ3(pτ ; pd, pν̄` , pντ )

= 8
3πm3

τ

∫
d3~pd
2Ed

θ(1 + y2 − x)
1− 8y2 + 8y6 − y8 − 24y4 ln y

×
{
mτ

[
x (3− 2x)− y2 (4− 3x)

] [
1 +

√
3
2T

U
ij (~ni · p̂µ−)(~nj · p̂µ−)

]

+ 2
(
2x− 3y2 − 1

) [
P i
′
U (N i′ · pd) +

√
3
2T

i′
ij (N i′ · pd)(~ni · p̂µ−)(~nj · p̂µ−)

]}
,

(B.6)

and∫
dΠ2(q; pτ , pν̄τ )d

3~pd
2Ed

= m2
τ

(8π)2

∫
d |~pτ |√
q2 dxdφτddEdd cos θddφd δ

(
|~pτ | −

q2 −m2
τ

2
√
q2

)
. (B.7)

The available range of q2 in this channel is the same as in the other two channels, but
the angle θτd is now a free variable and varies from 0 to π. In terms of the parameter x
introduced in eq. (2.18), we have explicitly

x− ≤ x ≤ x+, x± = 2
m2
τ

(EτEd ± |~pτ | |~pd|) . (B.8)

Moreover, due to the simultaneous presence of two neutrinos in the leptonic τ decay, the
visible product ` can be at rest in the τ ν̄τ centre-of-mass frame. Taking account of the
extra constrain x ≤ 1 + y2 from the step function θ(1 + y2 − x), it is convenient to split the
region of integration in eq. (B.7) into the following two parts:

Part I: md ≤ Ed ≤
m4
τ +m2

dq
2

2m2
τ

√
q2 , x− ≤ x ≤ x+,

Part II: m4
τ +m2

dq
2

2m2
τ

√
q2 ≤ Ed ≤

m2
d + q2

2
√
q2 , x− ≤ x ≤ 1 + y2.

(B.9)
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