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ABSTRACT: The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise
to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-
2 fields are known to be connected with unitarity issues and easily lead to a breakdown of
the effective theory well below the naive scale of the interaction. However, the breakdown
of the effective 4D theory is expected to be controlled by the parameters of the 5D theory.
Working in a simplified Randall-Sundrum model we study the matrix elements for matter
annihilations into massive gravitons. We find that truncating the KK-tower leads to an
early breakdown of perturbative unitarity. However, by considering the full tower we obtain
a set of sum rules for the couplings between the different KK-fields that restore unitarity
up to the scale of the 5D theory. We prove analytically that these are fulfilled in the
model under consideration and present numerical tests of their convergence. This work
complements earlier studies that focused on graviton self-interactions and yields additional
sum rules that are required if matter fields are incorporated into warped extra-dimensions.
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1 Introduction

Extra dimensions have been considered in physics for many different purposes since the
seminal work of Kaluza [1] and Klein [2]. In particular from the early ‘90s onward
models featuring large [3-5] and warped extra-dimensions [6, 7] have received consider-
able attention due to their potential to resolve outstanding questions of the Standard
Model such as the hierarchy problem. However, even without a concrete particle physics
model in mind, extra-dimensional models are interesting laboratories for the physics of
massive spin-2 fields, see for example section 10 of the review [8]. Most particle phe-
nomenology inspired investigations of extra-dimensional models are chiefly interested in
the role of the spin-2 fields as mediators between initial and final states consisting of
matter fields [9-11]. In contrast, studies motivated by a more theoretical interest in mas-
sive spin-2 fields have recently investigated the physics of KK-graviton scattering [12-15].



However, the production of spin-2 particles from matter has not received as much at-
tention. This work aims to close this gap. On the one hand, we expect our results
to be relevant for phenomenological studies, for example for gravitationally interaction
dark matter in extra-dimensional theories [16-19]. On the other hand, such a study
is also of interest from a more theoretical perspective since matter fields are a neces-
sary ingredient in any realistic theory. In the following, we will focus on a concrete
model of warped extra-dimension with two branes originally put forward by Randall and
Sundrum [6].

Interactions between massive spin-2 fields and matter pose a subtle problem since
scattering amplitudes involving them are plagued by unitarity issues, see [8] and refer-
ences therein. The breakdown of the theory at high energies is already expected at the
Lagrangian level but studies of the scattering amplitudes of spin-2 fields show a rapid
growth in the high energy limit that indicates the break-down of perturbativity at scales
much lower than the fundamental scale of the theory. This issue has received attention
in the context of massive gravity [20-23] and the construction of theories that avoid this
behavior is still being investigated [12, 24]. In contrast, higher dimensional gravity is
expected to be well-behaved up to the fundamental cut-off of the theory and, therefore,
these issues should not arise in the associated 4D theories. Clearly, an individual KK-
graviton cannot avoid the conclusions obtained from considerations of general spin-2 fields
and, therefore, the other particles of the 4D theory have to be involved in the unitariza-
tion process that restores the fundamental scale of the underlying theory [21]. This is
reminiscent of the unitarity problem in massive vector boson scattering in the Standard
Model which is resolved by including the Higgs boson [25]. The details of the cancel-
lation mechanism depend on the geometry of the extra-dimension [21, 26] and are not
known in general. However, the unitarization of KK-graviton scattering in warped extra-
dimensions has recently been studied [15], see also [13, 14]. So far, only scattering of
KK-gravitons has been considered. However, a theory that describes a phenomenologically
viable Universe also contains matter fields. We take a look at this previously neglected
direction and investigate the origin and the resolution of unitarity issues in processes con-
necting matter and KK-gravitons. For simplicity, we consider only a toy matter Lagrangian
and include just a single fundamental scalar on the brane. We analyze the matrix ele-
ments of scalar annihilations into KK-gravitons and find that unitarity is restored up to
the fundamental scale once the full tower of KK-gravitons and the radion is included in
the computation. Our study largely follows the approach of [15] and we partially use
their notation.

The paper is organized as follows. In section 2 we briefly introduce warped extra-
dimensions and comment on the connection between gravity in higher dimensions and
the effective theory in 4D. Next, we analyze the matrix elements scalar annihilations
into final states consisting of KK-gravitons and radions. We pay close attention to the
high energy behavior and identify sum rules involving the three-KK-graviton (and KK-
graviton-radion) couplings required to restore perturbative unitarity up to the cut-off of
the full theory. These sum rules are shown to be fulfilled in the RS-model both analytically
and numerically in section 4. Finally, we present our conclusions in section 5



2 The Randall-Sundrum model

We analyze a simplified version of the Randall-Sundrum model [6] with a toy matter sector
instead of the full Standard Model field content. To be concrete, our matter Lagrangian
consists of a single scalar with only gravitational interactions. This setup is sufficient to
make the point we are interested in and we expect that our key observations will carry
over to a more realistic construction with minor modifications. Our somewhat compressed
introduction of the Randall-Sundrum model follows [15]; for a more in-depth introduction
see for example [27-29)].

2.1 The 5D theory

Before starting our discussion it is helpful to introduce some basic notation. We use capital
Latin and lower case Greek letters, e.g. M = 0,1,2,3,4 and p = 0,1,2,3, to indicate 5-
dimensional (5D) and 4-dimensional (4D)-indices, respectively. Thus, the coordinate of the
full 5D space-time is denoted 2™ = (x#,y). The 5D space-time is compactified under an
St /72 orbifold symmetry yielding a 5D bulk bounded by two 4-dimensional (4D) branes
located at y = 0 and y = 77, where y indicates the coordinate of the fifth dimension and
re its size. This compactification symmetry leads to the identification (z,y) = (x, —y)
which allows to extend the coordinate range to y € [—7re, mre]. It is often convenient to
work with dimensionless quantities instead of dimensional ones which can be achieved by
normalizing with respect to r., e.g. ¢ = y/r.. Gravity permeates the bulk while matter
fields are taken to be localized on the branes.
The action of the theory is given by

S = Spuk + Suv + SR, (2.1)

with

Sbulk = %Mé} / dz / doVG(R — 2Ap),
Suv = /d%/d@m(—VUv—ﬂ-ﬁUvﬁ(s@),

SR = /d4l’ / dov/—gr(—Vir + L1r)6(@ — 7), (2.2)

where G is the determinant of the 5D metric, R the Ricci scalar and My the 5D Planck
mass. Ap denotes the vacuum energy of the bulk while Viyyv and Vig are the vacuum energy
terms on the brane. £ig and Lyy are the Lagrange densities of fields that are localized to
the 4D branes while gig yy are the 4D metric on the respective branes. For simplicity we
will take Lyv = 0 and

L = 30606 — Jm*? (23)



where ¢ is a scalar field without any interactions besides gravity. Neglecting the matter
part, Einstein’s equation is solved by the metric

(T, Y)gp 0
G = . 24

uw ( 0 vl 24
Choosing the vacuum energy contributions on the branes and in the bulk such that the
solution respects 4D Poincaré invariance allows to fix w(z,y) and v(z,y) and leads to an
invariant distance interval

ds? = e_%ly'nu,,dx“d:p” —dy?, (2.5)

where 7, = Diag(+1,—1,—1,—1,) is the flat metric in 4D and k denotes the warping

parameter defined as k = 4/ %. It should be noted that in order to ensure 4D Poincaré
invariance, the branes’ vacuum energies are constrained to be Vyy = -V = 6M53k:. By
performing the integral over the 5th dimension in eq. (2.2) we can re-express the theory in
terms of an effective Lagrangian in 4D. In the usual Randall-Sundrum model this allows
to alleviate the hierarchy problem of the SM since the vacuum expectation value (vev) of
the Higgs v defined in 5D is related to the one in 4D by the warping factor e *™. For
convenience, we define the dimensionless parameter p = kr. to simplify the exponent of
the warp factor. For values of 1 =~ 12 the exponential factor allows for a TeV scale vev
even if all fundamental mass-dimensional parameters of the 5D theory are O(Mpy), thus
resolving the hierarchy problem. As we will not consider the SM explicitly we do not have
a preference for a specific value of the warp factor but we will focus on the limit e7#™ < 1.

The gravitational field content of the Randall-Sundrum model is obtained through a
weak-field expansion of the metric around the vacuum solution, i.e.

Gun +— Gun+EKhunN, (2.6)

where k is an expansion parameter defined as k = 2/M, g /2 The expansion generates scalar,
vector and tensor perturbations, corresponding to h,,, hus and hyg, respectively. In the
Randal-Sundrum model it is possible to choose the gauge such that the vector component
vanishes even though this does not hold for general higher dimensional models [30]. The
tensor perturbation correspond to a spin-2 field, i.e. a 5D-graviton, while the scalar per-
turbation, the radion, is related to the width of the 5th dimension. We utilize the Einstein
frame parameterization [31] which amounts to the following replacement in eq. (2.4)

w(z,y) = e 2EWFD gz y) =14 20 (2.7)

where 4 contains the radion field. This ansatz eliminates the mixing between the radion
and the gravitons. We take g, to be weakly perturbed around a flat background

Juv = Nuv + "fil;w ) (2.8)

where BW denotes a symmetric tensor field that includes the graviton. The metric is then
given by
—2(k 0 7
e 2D (0, + K By) 0 ) (2.9)

GMN:( 0 —(1 + 2a)?



Denoting the radion field #, we define 4 as

K 7(z) e2klyl

26 , (2.10)

(z,y) =
where the fact that the y dependence of # can be removed by an appropriate choice of
coordinates [30] has been employed. By expanding the full Lagrangian of the theory in
powers of k we obtain, order by order, a theory of interacting 5D graviton and radion fields
fLW and 7. We expand the bulk Lagrangian to third power in the fields since this includes
the three-graviton interaction Lagrangian that is crucial for our studies. In addition, we
need the first two interactions between the scalar field ¢ and the gravitons and radions.
The key results of this expansion are summarized in appendix. A.

2.2 Effective theory in 4D

By integrating out the 5th dimension, this model can be reduced to an effective theory in
4D. To achieve this, we employ the Kaluza-Klein (KK) decomposition of the 5D fields

o0

Ty (2, y) = > —=h{) (@) Yale(v)),
n—l \F H (2.11)

\f

where 1), (¢) absorb the 5D-dependence of the fields and the unhatted h and r fields
carry the z dependence. As indicated above, 1, is independent of ¢. The decomposi-

Pz) = r(z),

tion transforms the single 5D-graviton into a tower of 4D-gravitons. In order to get the
canonical massive Fierz-Pauli Lagrangian for the gravitons [32], the 5D-components of the
KK-decomposition must satisfy the following differential equation [33]

1 d di,
2 dp {A(@Llj:p} = —my A%y, (2.12)

where we have introduced the shorthand A(p) = e #¥l and m,, is the mass of the n-th
graviton. This equation is a particular case of the more general Sturm-Liouville equation.
It can be proved that m, € R with m,, < m,; and the solutions 1, (¢) are orthogonal
and normalized with respect to the scalar product

<wn7wm /dgo wn( )T/Jm(sf’) = 5n,m . (2‘13)

Consistency with a phenomenological acceptable 4D gravity requires the graviton with
n = 0 to correspond to the massless graviton of General Relativity and, hence, mg = 0 and
1o = constant. ¥y and 1, are fixed by the normalization to

H M -
Vo =\ T e =V wr=m2\/ﬁe‘”- (2.14)



The functions 1,,~0(¢) and the masses can be determined by solving equation (2.12) with
the boundary conditions 0,9y |,—0, = 0. In the limit e™#™ < 1 the solutions simplify and
can be approximated as

e2ulel

(@) =~ N Jo (’yne“““"_”)) and  my ~ ky,e 7, (2.15)

where J; denoted the ith Bessel J-function while +, is the nth zero of Jj(z). The normal-
ization factors IV,, are given by

eHm
Performing the integration over the 5th dimension on the quadratic pieces of the pure
gravity Lagrangian yields the kinetic terms of a massless spin-2 field, i.e. the graviton of
general relativity, a massless spin-0 field, i.e. the radion, and an infinite number of spin-2
fields with Fierz-Pauli mass terms, i.e. a tower of massive KK-gravitons. Decomposing the
first order weak field expansion of the matter Lagrangian leads to following interaction
between matter and gravitons

1 A 1 =1
LY — T R (2,0 = 1) = — =T B (2)n(n) | 2.17
= =g T 0 = ) = T ( 3 b @) (217)
Requiring that the massless graviton matches the expectation from GR allows to fix
the relation between the (reduced) Planck mass in 4D, Mpj, and the parameters of the
5D theory

1 1 " 1
1 _
2" Jre 0 Mp

which simplifies to M3 ~ kM3, in the limit e™#™ < 1. Due to the different normalization,
the strength of the interaction of the other KK-fields h/Z is controlled by a combined
scale A defined by A=! = Mgg/an(ﬂ)/\/ﬁ which leads to A ~ Mpje ™ in the large u
limit. The radion contribution to the interaction Lagrangian is

M3
or, equivalently, M3 = 75 (1 - 6_2‘”) , (2.18)

1
W — 7, (2.19)

L
int,r \/EA

where T' = n#*T},,, is the trace of the energy-momentum tensor of the matter field. In the

4D reduction of the higher powers of the expanded Lagrangian, interactions between all
combinations of massless graviton, massive KK-modes and the radion with matter appear.
The strength of these interactions is given by a generalized scale AnN07nm7nr = A"t MO
where ng (n,,) is the number of massless (massive) gravitons, n, the number of radions
and N = ng + n,, + np.

In addition to the interactions between matter and the gravitons or radions we also
need the cubic interactions between these fields which are substantially more involved. In-
stead of considering a handful of simple interactions on the brane we now need to treat the

interactions between all constituents of the KK-tower. The strength of the interaction is
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Figure 1. Cubic interactions between gravitons and radions.

controlled by the overlap of the wave functions or their derivatives in the bulk. As it will
turn out to be helpful later, we first introduce a more general parameterization of the cou-
pling coefficients than strictly needed to define the interactions in 4D.! The 5D Lagrangian
consists of contributions that possess either no or two 5D derivatives. The interaction
between 3-gravitons does not contain any derivatives and we can define a coefficient a pa-
rameterizing the wave-function overlap. In addition, we can also define a different class of
coefficients b that include two 5D derivatives.? Labeling the fields from n; to ng the a’s
and b’s read

ap = /dso A(0)? Yy (0)Uny (©)hns ()
(2.20)

=l
St
Il
—
Q.
©

A()" ¥, (900, (2)¥ns (9)

where 77 = (n1, 12, n3) indicates the set of fields involved. As can be seen from the definition,
a-type coefficients are symmetric under permutation of all indices while b-type coeflicients
are only symmetric under permutation of the first two fields.

In addition, there are processes involving radion fields. In the two-graviton-radion
vertex, a second kind of b-coefficients appear since the relevant Lagrangian includes two
5D derivatives. One finds

busmar = [ dp Al)? ¥, ()0, ()0 (221)

which is also symmetric in the first two indices. The two-radion graviton vertex is simpler.
We denote the coefficient ¢, and find that it is given by

™

Cnry = /d(P A(SO)_Q %(VDW?«% (2'22)

—Tr

Integrating out the 5D and considering all the powers of My and of r. deriving from the
Lagrangian expansion and the KK-decomposition, the strength of the cubic interactions in
the 4D theory are given by the vertices of figure 1. In the large p-limit these expressions
simplify and we can split off the ;1 dependence, which combines with M5 to set the overall

!The a-b notation is inspired by [15], however, we prefer to normalize our coeflicients differently.
2The b type integrals do not appear directly in the Lagrangian but they will turn out to the useful later.



scale of the interactions. This simplifies the integrals over the fifth dimension, which
separate into numerical constants that do not depend on the parameters of the theory any
more, and into powers of ke ™ ~ m,, /~,. In this case we get

s
VTeMs VTeMs A
bknr )ka‘us/Qeﬁwr anr 2 -2
— = ke kT (2.24)
r§/2M§’/2 T§/2M53/2 A ( )
s
Cnrr3/2 anr\/ﬁge/2 _ Xnrr (2‘25)
VTeMs T Mg A
where the numerical coefficients are given by
= / ORI AT ACHORACHY
Xnkj = U U J2(nU)J2(VEU)J2(V5U) ,
7 Jolm)Jo (k) Jo(v;) !
~ TnVk
i, = 27 du w3 Jy (yau) J , 2.26
Xk 7 (%)Jo - / u u®Jy () Ji (vku) (2.26)
2J3 (n)
Xnrr = mMU) = ————~ -
( ) Yndo (7n)

Comparing eq. (2.23), (2.24) and (2.25), it can be seen that the term with the bz, coupling
does not have the same energy-dimension as the other two. This follows directly from the
presence of 5D-derivatives which give rise to this term and that are absent in the other
two. Consequently, in the 4D Lagrangian, the agy,, and ¢y, couplings are multiplied either
by masses of the gravitons or by their momenta while the term proportional to by, just
contains combinations of the flat metric 7,,.

For completeness we also list the coefficient of the interaction between three radions
Xrrr- In this case the integration over the fifth dimension is trivial and we find

1
Xrrr = 2/du ud = 3 (2.27)
0

The numerical couplings above can be generalized to a higher number of participating
interacting particles by inserting in the integrals a factor of u? for every radion, and a
factor of —u? Jjo((%])) for every j-graviton. We report the Feynman rules for all relevant

interactions in the large p limit in appendix. B.

3 Matrix elements for graviton production

In order to assess the validity of the theory we analyze the matrix elements of processes
that involve the KK-gravitons. We focus on two classes of interactions: 1) KK-graviton
production in ¢ annihilations (¢¢ — G, G,,) and 2) mixed graviton-radion production
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Figure 2. Representative set of diagrams contributing to ¢¢ — GG, annihilations.

(¢ — Gnr). The first class is most interesting from a theoretical point of view and will
allow us to identify new sum rules for the couplings of three gravitational fields while the
second class leads to an independent relation for the radion couplings.

3.1 Helicity matrix elements for ¢¢p - GG,

We are interested in the high energy limit of the ¢¢p — G, G matrix element. There are
four classes of diagrams that contribute. First, there is the emission of G via t- and u-
channel ¢ exchange and a contribution from the ¢¢G,, G contact interaction. In addition,
there is an infinite set of diagrams with all possible graviton-modes in the s-channel and
one diagram from s-channel radion exchange. A representative set of diagrams is shown in
figure 2.

We work in the center of mass frame and take the initial state particle to travel
along the z-axis while the final state particle are emitted back to back in some arbitrary
direction. Using the helicity formalism for spin-2 fields, the spin-2 polarization tensor can
be decomposed as a combination of spin-1 polarization tensors [34]:

1
uo_ [T n v T
“© =7 (elprefy + 2eneq + ehgely)

1
pyo Y - M v (31)
€l = — (el ,eq + €€ ,
S} (€iyeq + ehety)

ehiy = € €y -

An explicit form for the spin-1 polarization tensor of a massive particle moving in an ar-
bitrary direction, i.e. a particle with mass m and momentum 7= |p](sin 6 cos ¢, sin 0 sin ¢,
cos @), is given by

1 .
ey = ﬁeg” (0; F cos O cos ¢ + i sin ¢, cos O sin ¢ — i cos ¢, £sinf) |
E m?2

= — 1 — —5;sin 6 cos ¢, sin f sin ¢, cos 6
m E

(3.2)
€

Since we only consider scalar particles in the initial state ¢ and « can be chosen to be zero.



In the following, we neglect m, and focus on the high energy limit of the annihilations.
We expand the amplitudes in powers of the center of mass energy /s. Since we are dealing
with an effective theory and the interaction vertex comes with a suppression scale A, it is
clear that we have to find contributions to the matrix elements with M o s. However,
looking at the polarization vectors of the longitudinal modes we observe an additional
growth for £ > m. Thus we expect to find contributions that grow even faster with
s. Truncating the s-channel diagrams after the first graviton this is indeed the case and

3. This is a bit of a puzzle since this would imply a

we find contributions with M « s
breakdown of the theory well below the fundamental scale. However, there is no guarantee
that a truncated 4D theory will respect the properties of the 5D theory. Therefore, we
expect that the anomalous growth with higher powers of s cancels once the full theory, i.e.

the untruncated KK-tower, is included in the analysis.?

We now present the expanded matrix elements in the large s limit order by order in
V/s. This allows us to identify sum rules for the couplings of the theory that ensure the
cancellation of contributions that grow faster than s. We will demonstrate explicitly that
these sum rules are fulfilled in the Randall-Sundrum model in section 4. Note that we show
only the final state helicities that are non zero at a given order. In general, we find that
the amplitudes related to 0-helicity states are the most relevant since they include two of
the longitudinal graviton modes that get enhanced in the high energy limit.

Order s2. At this order only the helicity zero final state contributes. We find

is® (sin®(6)) (X Xk — 1)

_ 2
M(0,0) = QAN 22 + O(s7) (3.3)
As can be seen the O(s?) contribution vanishes only if
> Xokm =1. (3.4)
m=1

This is indeed the case in the Randall-Sundrum model and we will prove it analytically in
section 4.

Order s2. Here we find more final state helicities that contribute to the expanded matrix
element, see table 1. As can be seen all final states except the (0, 0)-helicity state vanish if
the sum rule inferred from the s3 contribution to M is fulfilled. The (0, 0)-helicity state is

3Recently, this was shown explicitly for the elastic scattering of gravitons, which exhibits an even worse
high energy behavior [15]. This is resolved by sum rules relating the 3-point interactions of the KK-gravitons
to the 4-point interactions. In contrast, our amplitudes do not depend on the 4-point interactions and our
relations only involve the three-KK-graviton coupling.

~10 -



A Ak Amplitude

is2 sin? (Z Xnkm )
-2 0 - 4/6A2m
1 1 is2 sin2(9) (Zm Xnkm_1>
- - - 4A2mkmn

is? sin? (Z7n Xnkm — )
0 -2 4v/6A2m2
0 0 see eq. (3.5)

zs sin? (Z Xnkm_1>
0 +2 4\[A2m2

'LS Sln (Z Xnkm — )
+1 +1 4N2mpma,

is? sin?(0) (Zm Xnkm_l)
2 0 | Pl

Table 1. Contribution to the matrix element for the production of the k-th and n-th gravitons
with relative helicities A, and )\ at O(s?).

more complicated and we find

is?
M(0,0) = _W [(mi +m?2) <3 cos(20)(4z Xnkm — D) + (42 Xnkm — 9))

2
+4 Z Xnkm (m% - m121) /mzn + (3 COS<29) + 1) Z m?ankm
m m

+ 24 cos®(0)m <Z Xnkm — 1> + 24k2 €T ke
m

+ (’)(83/2) )
(3.5)

In contrast to the previous case, this expression also depends on YXnx., i.e. the radion
contribution is crucial for the cancellation. The different angular dependence allows to
identify two separate sum-rules at this order. The part proportional to cos(26) vanishes
only if

while the remaining part requires

o0

Z Xk (2 — m3)2 — (m2 +m3) + 6 k2™ X = 0. (3.7)

While these sum rules look more daunting than eq. (3.4), it can be shown that they hold
in the model under consideration.

- 11 -



A Ak Amplitude
9 1 is3/2 sin(2€)(zm Xnkmfl)
- - 4A2%2my,
9 is3/2 sin(20) (Zm Xnkm_l)
-1 - 4A2m,,
_1 0 /2 Sil’l(29 ( mk+m (Z Xnkm )+Zm mannkm)
8vV6A2m
O _1 B ’i83/2 sin(29 ( mk-i—m (E Xnkm_2)+z %Xﬂkm)
8v/6A2mpm2
0 +1 is3/2 s1n(20)((mi+m%)(zm Xnkm*Q)‘i’Zm m%ankm)
8v6A2mm2
+1 0 i83/2 sm(20)((mi +m%)(zm Xnkm_2)+zm mannkm)
8\/6A2mimn
is3/2 sin(29)(zm Xnkm*l)
+1 +2 - 4A2’mn
is3/2 sin(20)(zm Xnkm_l)
+2 +1 - 4A2mk

Table 2. Contribution to the amplitudes for the production of the n-th and k-th gravitons with
relative helicities A, and A at O(s%/2).

Order s3/2. Finally, we find contributions to the matrix element that scale as s3/2 that
are summarized in table 2. Clearly, four of the eight non-zero entries in the table vanish
if the O(s%)-sum rule holds. The remaining contributions (containing a 0-mode), are all
proportional to

x ( mk + m (Z Xnkm — 2> + Zm%nxnkm> . (3.8)

After imposing eq. (3.4) this just reduces to eq. (3.6). Therefore, all contributions at this
order vanish if the sum rules derived for the contributions at higher power in s hold.

3.2 Helicity matrix elements for ¢¢p — G,r

Now we turn towards the annihilation of DM-particles into a graviton and a radion. A
representative set of diagrams is shown in figure 3. As in the previous section, we expand
M in /s and report only contributions that grow faster than s. Since a radion is produced,
only one longitudinal graviton can be produced and the leading contribution to the matrix
element grows as O(s?). We find

(Zm nf:anmr + anr o
0~ 24A%m2

1)
+ O(s), (3.9)
which leads to our only sum rule from radion final states:

S kP mAN g (3.10)
m
m m

This condition relates the graviton-radion-radion coupling and the graviton-graviton-radion
coupling.
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Figure 3. ¢¢ — rG,, | Representative diagrams contributing at leading order.

4 Sum rules

After having identified the sum rules that ensure the cancellation of contributions that
grow faster than s, we now show that these hold in the Randall-Sundrum model. Before
starting in earnest, it is important to note that the sum rules for the y-couplings can be
derived from relations that only involve ¥ since their sums are related. In fact this even
goes beyond the large p limit and one can already show this at the level of the a and b
coupling. Integration by parts of b, leads to

bnmk = /d(P A4a¢¢n8¢wmwk I.b:.P. - / d90 wnago (8<p7/)mA4wk) =

= - / d@wn¢ka¢ <A484p¢m) - /dQO A4a,0'(/)kaap¢m¢n = (mmrc)2ankm — bnkn -
. ) (4.1)

The large p limit we are interested in allows to separate the part that depends on p from
the rest. This was already achieved with the use of x, x that are related to a, b through

Apmk = Xnmlc\//jemT )

_ _ (4.2)
brmk = Xnmk:,u5/26 wr
Thus, the relation in eq. (4.1) reduces to
2 s -
YieXnmk = Xknm T Xkmn - (4.3)

In the following we will first prove the sum rules analytically before investigating their
implications numerically.

4.1 Analytical prove

The relations we need for the cancellations are summarized in table 3. In the following
we will employ various properties of the Bessel functions, see for example [35, 36]. Note
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o0
Sum rule 1: > Xnkm =1
m=1

o0
Sum rule 2: Y. Xnkm ’772n = ’Yr2L + '71%
m=1
(o)
, . k= ~

Sum rule 3: Zl Xz%(%% - 71%)2 = (’772;, + 71%) — 6Xnkr = Xnnr = %7721

o

[o@) ~

Sum rule 4: > Xt =1 — Xor

m=1 TYm

Table 3. Sum rules needed for the cancellations..

that it is easier to prove the first sum rule if the second one has already been established.
Therefore, we will demonstrate that they hold in the order that makes the proves simpler
and not in the order in which they appear in the matrix element expansion.

Our starting point is the Fourier-Bessel expansion, see for example [37]. If a function
f(z) is continuous on [0, 1] such that f(1) = 0, the integral

1
/dx 22 f(2) (4.4)
0

exists and is absolutely convergent, and f(z) has limited total fluctuation, it can be ex-
panded in series in terms of any Bessel-function J,,:

f(z) = i vy (Vo k) (4.5)

k=1

where 7, is the k—th root of J, and

1
2
ayj = Ju+1(7u,k)20/du uf(u)Jy (v pu) (4.6)

Since we will work only with the roots of Ji, we define ;. as the k—th root of J; and we
will set also v = 1 such that

0o 1
flay =23 ) [ duupnina (@)
k=1 3

Let us recall that:

1
X = - Rl u ud U U Uu) . .
b = 25 s 0/ du w Ty (1) Js (3u0) T () (48)

A convenient choice of f(x) that satisfies f(1) = 0 is given by:

== # T €T IL‘2 . .
(@) = G () T ) (19)
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Using the fact that Jo(v,) = —J2(7,) and multiplying and dividing by 7, we have:

_ o i)

Differentiating both sides:

, 1 . Jo(vgx) — J2(ykx) ] 2= N
f (JU) = izk:kam |: 0(’7]@’ J)Q(’Yk;(r)/k ):| ! —zk:anm . (411)

But on the other side:
f(@)|a=1 = =71 - (4.12)

We then have a very helpful relation that will be useful soon:
> Xknm =7 - (4.13)
k

Combining this expression and eq. (4.3) directly leads to

Z Xnmk’}/l% = (’YEL + ’ern,) (414)
k

thus proving sum rule 2. By making further use of eq. (4.3) we can derive other sum rules.
Permuting the indices we have two equations:

)ank = ’Yg@Xnkm - )zmkn ) Xnkm = ’YI%Xnkm - )kan . (415)
Using the symmetry properties of xz and x7:

Xnmk T Xmkn _ Xnkm + Xmkn

V2, a V2 ’
AN AR o V2, (4.16)
> ~ 1 1 )anm Xnmk Eq. (4.13)
- kam(g_g):Z 2 _Z 2 - 0.
n=1 m Vi n Yie n Im
This implies that:

o
> Xmk =0 if n#Em. (4.17)
k=1

At this point we have finally the last relation for the case n # m. Using again eq. (4.3)
we find

n n n

which proves sum rule 1 for n # m. For the case with n = m we need to work a little
harder. The starting point is eq. (4.10) combined with the definition of f(z) shown in
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eq. (4.9). Multiplying both sides by z? and integrating from 0 to 1 we get rid of the extra
Bessel functions in the sum:

/ do o2 f(z) = 3 X (4.19)
0 Rk
In the special case n = m the integral can be performed analytically
1 Jam)?
/da: 2 Ty (Ynx) Jo (ynz) = 22%1 . (4.20)
Tn
0
Including the coefficients of f(x), it follows that
Xknn 1
==. (4.21)
%.: oo 2
Using again equation (4.3) and setting n = m we get
7]%Xnnk: = 2>~Cknn — Z Xnnk = 2 Z Xknn =1 ) (422)

3
% Tk

which proves sum rule 1 for m = n.
Next we tackle the relation involving x.,-. Let us recall the definition of the radion

coeflicients:
1
- _ VEVn 3
anr:Q—/duu J1(yeu) J1 ()
Tolm) oy | 4 OO T
1 . 2 o) (4.23)
3(Tn
Xnrr = —27/du ud Jo(ypu) = —— :
Jo(m) J 2 Y Jo(¥n)

As before, the way to get the desired result is a good choice of f(x); in this case we use:

2 J1 ('Vnm)
@)= Tolymz) ™ (4.24)
from which follows ()
_ 1\VkT) -

Multiplying both sides by x? and integrating from 0 to 1 we find

1
)anr Yn 4 4J3(’7n) - 'Ynt]4(’7n)
E = — d J1(px) = — . 4.26
k 7]% JO(Vn) 0/ o 1(7 x) ’YnJO(Vn) ( )

Using the properties of the Bessel functions, this last result can be written as:

Yn
Jo (’Yn)

1
/dw ac4J1(’ynx) =1—xnrr - (4.27)
0
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Then the desired result follows

Xk
S e (4.28)
vk

which proves sum rule 4. Now we turn to sum rule 3, which will turn out to be the most

complicated one. With eq. (4.3) we get

’YZXnmk = )ank + )anm ) V%Xnmk = ank: + kan — (7721 - %%)Xnmk = )anm - )Zk:mn .

(4.29)
Multiplying both sides by (y2 — ~2,), dividing by 7,% and summing over k we get
2 212 - -
Tn — 7 Xknm — Xk
> o Il = (72 57 Do X (4.30
k Tk k Vi
To shorten the notation, let us define the following quantity:
S 2 212
Xk Tn — 7
Jam = Z gm — ZXnmk(nigm) = (’yrzL - rygn)(fnm - fmn) . (431)
ko Vk k Vi
We proceed by using the result of eq. (4.19). One finds
1
fom =3 X’jy’;m — Ny / dz 2 T3 (yn) o (YmT) (4.32)
Pk ’
where we have defined a normalization factor
1
= — 4.33
T o) (439)

to get more compact expressions. We can express this integral in terms of X, which is
the quantity we are interested in. To see this connection we need the following two relations.

One: 2, fum + V2 fun = 3Xnmr- For this we exploit the following property of the Bessel

functions:
Jo(az) = é (;Jl(azn) - @(Jﬂoz:n))) . YaeC. (4.34)

Then, it follows that:

1
Fam = Y / dz 2y (4 2) Ja (Y1)
0

1
Eq. S'M) fyn,/\//dx .%'4J1(’yn$) ’_yl (ijl <7ml') — 8:5(J1('Ym37))>
0

Tm
1

_ 1 (4.35)
292,

1
o 3—”N / dz 24Ty ()9 (1 (V)
m 0

1
ep 1 n
= WXnmr + ’ZN/dx Op (2 J1 () J1 (Ymz) =
m m 0

Lb.P+Eq. (4.34) 3>anr 1 s
S R

which proves the statement above.
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Two:  fum + fmn = 1. This is simpler and it relies on the following relation:
1
221 (ax) = O, (axZJQ(aw)) , VaeC. (4.36)

It follows that:

1 1
fram = 'yn/\//dx 247 (V) J2(Ymx) Bg. (4.36) ./\f/dx 220, (a:QJg(’yna:)) J2(Ymx) =
0 0

1
L N/d:c 22 Ty () Oy (a:2Jg(’yma:)) Eq. (4:36) 1— fin
0
(4.37)
and hence
Using the previous two relations it follows that:
fnm - fmn b ;4.38) -1 + 2fnm . (439)
Combining relation one from above and equation (4.38):
FY’?L — 3Xnmr
fom = "5—5— . (4.40)
Tn — Tm
Then the final result follows:
/Ym kan
ZXnmk i = Z = (7721 - %2n)(fnm — fmn) =
M & (4.41)

= (Vn + ’Ym) - 6Xnm7‘ )

which proves sum rule 3. Thus we have demonstrated that the sum rules required to cancel
the contributions that grow faster than s are fulfilled in the Randall-Sundrum model in
the large p limit.

A few comments about the limitations of our analysis are in order. First, we only
considered the large p limit. In principle, we expect the cancellation to work even without
this restriction. However, a possible generalization to this case comes with a number of
complications. The zero-mode of the graviton, which does not contribute in the limit
we considered, can no longer be neglected. This can be accommodated with minimal
changes if we switch the discussion from y and y to a and b. However, we cannot employ
the limiting form of the wave-functions and masses. Therefore, relations that directly
rely on the properties of the wave-functions and their Fourier-Bessel expansion need to
be generalized. Second, it is also worth pointing out that the radion is massless in our
analysis. A massless scalar that with a coupling stronger than gravity would spoil General
Relativity. Therefore, this is not acceptable if the model is supposed to incorporate the
world we live in. The problem can be solved by a radion mass. This can be achieved
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Figure 4. Numerical values of the relevant coefficients for a representative set of gravitons.

by a mechanism that stabilizes the radius of the extra-dimension; a concrete example is
the Goldberger-Wise mechanism [38]. It relies on a new bulk scalar that mixes with the
radion and, as a consequence, the single massless radion gets replaces by a KK-tower of
massive scalar fields [31]. An analysis of the impact of the Golberger-Wise mechanism on
the unitarization of the matrix elements goes beyond the scope of this work. However,
we expect that the basic conclusions will remain the same. To test this assumption we
have added a radion mass m, by hand and find that the sum rules remain unaffected
for m, < /s.

4.2 Numerical study

We have shown that the sum rules are fulfilled analytically but the question of how fast
they converge remains. In particular if one is interested in a quantitative study outside
of the high energy limit it is often not feasible to impose the sum rules directly on the
matrix element and one might want to work with a truncated KK-tower. Therefore, it is of
great interest to investigate how many gravitons need to be summed to get a meaningful
numerical result.

Let us start by looking at the coefficients Xpnrm, Xnkr and Xpr-. We show their values
for a few representative combinations of gravitons in figure 4. Looking at the Xn, n.m
(left panel) we observe that they are relatively small with the largest in the ballpark of
0.20 — 0.25. The distribution is bi-modal with peaks around m = |n; &+ ns| and falls of
quite fast when this is not fulfilled. This is an important observation that allows us to
optimize the number of gravitons we need to include in order to get a good approximation
of the results. The situation is somewhat similar in the case of X,x-. Here, the couplings
are largest when n = k and fall off quite fast away from this. We observe a growth of X,n:
with n which is expected since we found analytically that ¥, o v2. However, this growth
has no implication for sum rule 4 since only the combination Ypm,/72, enters. The third
type of coefficients is less interesting than the others. As can be seen in the third panel,
Xnrr decreases rather fast as n increases and has no notable features.
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Figure 5. Illustration of the first (left) and second (right) sum rule for a truncated KK-tower as
a function of the number of included gravitons N. For each sum rule we show three representative
choices of the graviton final state as indicated by the inset in the panels. We show two prescriptions
for the order in which gravitons are added. The solid lines show a standard truncation where all
gravitons up to the Nth are added while the dashed line corresponds to in improved prescription
where the gravitons are added by the size of Xgnm-

Now we turn to study the sum rules in the case of a truncated KK-tower. In figure 5
and figure 6 we show the difference of the sum rule from zero as a function of the num-
ber of gravitons in the sum for some representative benchmarks. For light gravitons the
convergence is relatively fast and considering the first ten massive KK-modes leads to a
reduction of the numerical coefficient by a factor < 1072 for both the first and the second
sum rule. However, if we consider heavier gravitons the situation is a bit different. Since
the Xpn,nym coefficients peak at around m = |n; £ ns| adding light graviton does not im-
prove the cancellation significantly until N 2 nq + no. This can be partially ameliorated
if we do not add the gravitons by mass but by largest x factor. This trick works best for
sum rules 1 and 2 and speeds up the cancellation for moderate values of N while the large
N behavior is essentially identical. However, even in this case the precision to which the
sum rules are fulfilled lags behind the one achieved for the light spin-2 fields. In the case of
sum rule 3, it does not help much and can even inhibit the cancellation or certain choices
of N as can be seen in figure 6. For two identical gravitons in the final state sum rule 3
reduces to an analytical expression for Xy... As it does not depend on the third graviton
any more the sum is trivial and the level of precision and any deviation from zero is just
related to the numerical precision of the evaluation of x,.,. Therefore, we do not show it
in the figure.

The level of precision to which the high energy growth has to cancel in a numerical
study will depend on the computation and the desired precision. However, it appears that
just adding one or two gravitons is not enough for most applications. Even for the pair
production of the lightest graviton the first five modes need to be considered if a suppression
of the unphysical contributions by a factor of ~ 1073 is desired.
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Figure 6. Illustration of the third (left) and forth (right) sum rule for a truncated KK-tower as a
function of the number of included gravitons N. For the third sum rule we show two ways of adding
the gravitons as in figure 5.

5 Conclusions

Extra-dimensional theories have received considerable interest in recent years. They pro-
vide attractive models for physics beyond the Standard Model that can help address un-
solved problems of high energy physics such as the hierarchy problem, dark matter, or
the structure of the SM Yukawa couplings. Higher dimensional theories are interesting for
other reasons as well. They allow for intriguing modifications of gravity and give rise to
massive spin-2 fields. Despite many years of study, massive gravity is still a topic of current
research and far from being completely understood. Extra-dimensions provide test cases
for more general theories and can help out in our understanding of massive spin-2 fields.
We choose a particular realization of warped extra-dimensions for our study. To be
concrete, we focused on a simplified version of the well-known Randall-Sundrum model with
a toy matter sector consisting of a scalar with gravitational interactions. The structure
of the matrix elements for KK-graviton production from pairs of scalars in the initial
state are very intricate and we find that individual contributions grow as fast as s3 in the
high energy limit. Taken at face value, this points towards a breakdown of perturbative
unitarity well below the fundamental scale of high dimensional gravity. However, a closer
study reveals that the theory enforces correlations between the graviton (or radion) self-
interactions which conspire to cancel terms that grow faster than s. These correlations can
be interpreted as sum rules for the coefficients of the interactions between gravitational
fields. We proved analytically that they hold in the large u limit of the Randall-Sundrum
model. Thus the validity of the theory is restored once the full KK-tower is included in the
calculations. Similar results have been obtained in studies of KK-graviton scattering both in
warped extra-dimensions and other geometries [15, 26]. These works found sum rules that
relate the coefficients of the gravitation three-point interaction to the four point vertices.
We find a separate set of sum rules that connect the graviton and radion interactions to
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the coupling with matter fields thus complementing earlier work. This is interesting from a
purely theoretical perspective since it adds a second set of conditions for a realistic theory.
In addition, our results are also relevant to phenomenological studies. For example, we
expect effects in the production of gravitationally interacting dark matter that we intend
to study in a forthcoming publication.
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A Lagrangian expansion

We present the results of the weak-field expansion of the metric

ds® = A(z)? (e_%(nw, +K ﬁw)dx“dx” —(1+ 2@)2d22> , (A.1)
where the coordinate z is related to y through
0 0
dz = A(y)~'d — = A(y) = A2
d=AW)Tdy 5o =AWy (A.2)
and where we have defined k = %/2 and U as
M5
=k 7(z) e2klyl (A.3)

a(z,y) = WG

We also adopt the notation 9, =, and 9, = ’. In this coordinate, eq. (2.12) reads

a4 [A(z)?)dw"} _ A2BAY. + AW = —m2 A%, . (A4)
dz dz
For completeness, we first report the volume elements of the bulk
1, 7 /N PP A
VG=A4A%1 Zh_ 2 _ oY Lag A
G +/<c<2h fA2)+H ( SNGIE 4h hM+8h + (A.5)

AT, 724
+K ( th by 177 +0(xY),

4/6 A2 8fA2

where h = n“”h,w, and of the branes:

24 ~
1. /37 A 2
—guv/im =A" |14+ (zh_ Vi )*”2 (-T—hwh += h2+> - (A.6)

Whu h”—fhh b, "
\ Y Mﬁ>

A2 V6A2 4 3A4

AP A 472 72 2p3
3 Th hﬂ)\_ rh h‘ 1 Al AV_}'\AMV" i"3_ 3
T (2\/6,42 4/6A2 teai " by Ry T

+0O(kY) .
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In the following we use a rescaled expansion parameter & = %FJ. We are going to present
the expansion of Lig to O(&%) and of the RS-action up to O(&3).

A.1 Ljr-expansion

The IR-Lagrangian is given by

1, 1
Lir = V=0Ir | 591 Ou0ud — 3> (A7)

2 2
We can expand the brane metric gig and obtain the expansion
Lig = £ + &Ll + 7202 + 03 (A.8)
First order. The Lagrangian at first order is given by
£l = £ () + LR 7). (A.9)
with

~ 1 ~ ~ ~
L1 (h) = 5 [~m3he® + 6™ (ho 0 — 2hyud™)] .

(1) 1 2 42 (A.10)
Second order. At second order the expanded IR-Lagrangian is given by
2 2) 4 2) /% A 2)
Lir = L () + LI () + L7 (7). (A11)

~ 1 A . R . o o
£g{) (h‘2> - Z |:m35¢2(2hlwhuu_hQ)+¢7u(_2hu>\h)\u¢,u+h2¢7u+8hu)\h)\l,(;§’”_4hm/h¢,y)} ,

1 . ) .
LR h#) = =P @m3he™ + 6 (~h i +2hyud™)).

S 1
LI (7%) = G (—Am3 8 +6,0") . (A.12)

A.2 Bulk-expansion
We expand the bulk Lagrangian as

LCLy+FR L3+ OR?), (A.13)

where L already includes the prefactors of the action and the determinant of the metric,
ie L= %\/@MQR, such that

2IR

Sis = / diz / dz (£~ VGMEAR) . (A.14)
—ZIR

To make the discussion more clear and ordered, the Lagrangian will be separated in two

parts depending on whether they contain 5D-derivatives or not; these will be denoted £4

and LB, respectively. Also some other terms are generated in the expansion; these are

responsible for the vacuum energies cancellations and we do not report them here. We

separate each piece further depending on how many h and 7 fields they include.
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Second order: Ly = La(h?) + Lo(h#) + Lo(72).

. ﬁg(iLQ):
£A(h?) = A3 [hmh WDBW—2;}/%”,W+2BWBPW] ,
1 (A.15)
LH(R?) = =S A [h (8 A + AR") — I (3hy,, A + ARy, )|
o Lo(h#):
L3 () =0,
2 (A.16)
° LQ(?‘Q)Z
1
L3 (%) = — PP
2(77) = 57 777 (A.17)
L3(7)=0.
Third order: L3 = L3(h?) + L3(h%F) + L3(h#?) + L3(7?).
o« Ly(hP):
EA h3 = E Epoﬁpa’w_%hﬁwﬁ’w—2ﬁuuﬁ’“ﬁpy,p_}Aluvilupﬁ’lwap"']A"LW]A"LPU’MEVP’U
— SRR Oyt 2 By Py Ry BYPIRE , — E h e PR 4 Ry PPV
4 + 1w o T p— 3w ltpo o Mvp,p
Ry L h?gh]
LB = A2[ 2 (A + AR )+ 2y b0 (30 A+ AR )+ 310 R (30, A+ A, )
— AR <3B;AA’+AB ] (A.18)
o L3(h2%7)
L3 (hF)
I S (A.19)
£B(h2) = A[AQ (i, — (7]
o L3(hi?)
L4 (hi?) = - [h e~ Lz Lhaos Dhﬂ
Al 6 2 ’ (A.20)
LB (h?) =0.
o L3(73)
R
[:A ~3 — _\/> 2
3 (") 3 A3 (A.21)
L3 () =0
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B Feynman rules

List of the Feynman rules that are relevant for the considered processes.

momenta are taken to be directed inwards.

At the vertex all

Propagators:
_______________ 17
- : (B.1)
o (k) k2 —mg
©000000000000000000000 : (B2)
T2 20 :
r(k) R —my
Ppvos (k
MLy ®.3)
GLY (k) K% —my
where
1 2
,ul/a,B Z E,uu 5 GMQGVB + GVO&G/»Lﬁ 3GMVG045 )
o (B.4)
with G = 1, — 2 .
% I m2
B.1 Vertices
For convenience, we define the quantity:
C;waﬁ = NuaMvg + Mufva — MuNag - (B'5)
With this:
A,Lwaﬁm EnaLcBHulI —f—?]aHCBL‘MV-f—’I?a“CBVm _|_,’7azxcﬂ,um_2n,u,ucaﬁm_ naﬁ (nwnn,u +77L;Lnﬁu) ’
(B.6)
B;Waﬁm [k] =_ Cmoz,b’kuky o QCuua,BkLkn o QCuumkak,@
+ ( n,ﬁnnuuka o naﬁnuukﬁ +Cﬁn,ul/ko¢ + Comuuk,8> kt
+( ,u,uk;a_ aL yukﬁ_’_cﬁLuyka_’_CaLuzka) e
(Cﬁumk,a + Caumkﬁ _|_Ca6/iuk,b + Cbuaﬁk,fi> LY
(Cﬁumka Coa/mkﬁ + Coz,é’/ﬂ/kl, + Cwoa,é’k/i) kM
(A,uzzaﬁm+2nyucaﬁm+naﬁnmn,uu) k2 , (B?)
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Cuuaﬁm[k? PE (Cﬁlﬂuij OB sy OBy CBR s e B anﬁﬁan> R
(OOt QAN OV I ORI 20 PO — i — ply ) kP
(ot ph oty Oy 2 COY P 3OOy pit) f
- (Copwpp g Cotiyy oCmrBipe ocetm 3oty By p ) i
= (DY ) K (' p) k)
( Cm,@u a_ guary, IE] Caﬂnu ¢ Cwaﬂp +Cma5 ) Jan
—9 (_Cbﬁﬁupa _Cmaupﬁ _ Caﬁwpb _ Cbuaﬁpﬁ_,_cmaﬁpu) kY

_( )( A,uuaﬁm_’_77]uuca5m+3nuuna6nLn+na,@ (nn,un +nLMnnu)) ) (BS)
B.1.1 Vertices involving only RS particles

GB(k
m ( 2) Xnmk [A,u,uaﬁmm _|_Aozﬂp,umm _|_Am,ul/aﬂ 2
4A

+4 (Buuaﬁm[kl] + Ba,@uum[kQ] + Bmuua,@[kg])
+2 (Cuuaﬁm[kl’ kZ] + C;wmaﬁ[k;b kg] + Caﬁm,uu[kz’ ]{23])} )

Gy (k3)

GhY (k1)

(B.9)
G (ko)
_ i\/ge_”“uinkr (—277"‘5 e+t + 77‘“”775“) (B.10)
r(k») Are
GhY (k1)
°°° T‘(kz)
°°o Z'anr v v v v
" =i (206 + KB + (b - ko) ™ + K (Y — 2KY) B.11)
S G RREGY - 2)
°¢
°°° ’I”(k’l)
°°° ’I"(kg)
°°
o - /2 2 2 2
° W2 (ki+ks+k -
:OOOOOOOOOOOOOO:— \/;( ! A2 3)X . (B12)
°°° ?”(kg)
-]
°°° T(k’l)

o
o
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B.1.2 Vertices involving ¢

N P(p2)
\
\
\
SRAARARAAA
/
e
/
// ¢(P1)
/
/
\
\
N P(p2)
\
\
\
(k)
/
/ ¢(P1)
/
\\
\\\G?nﬁ(km)
d(p2) N
\
/7
d GhY (kn)
//
/7 d(p)
7/
Ve
\ o°
N\ o
\\ T(kr) °o°
\ o°
¢(p2) \\ °°°
\ o
/7
.’ G (kn)
//
/7 o(p)
7/
Ve
\\ o°
\\ T(kg) o°
\ o°
¢(p2) \\ °°°
\ o
s
// °°0 ’I"(k‘l)
// °°
/7 o(p1) °
Vs °,
Ve o

i CWQﬁPmPQ - WWWQ
- ( i ‘) . (B.13)

_ z\/% <p1 -/]\72 + 2m§)> ‘ (B.14)

’L. v v v 1%
= = a3 (=maemed et (<ol + i+ pin™)
i (=" pS P + oy + pSpin® + P
—ph s+ pS PPt 4 phpint — phptn®

= (p1 - p2) ™0™ = (p1 - p2) ™™ + (pr - p2) ).

(B.15)
B z\/g (—n“” (pl ‘P2t 2m§,) +piph + nglf)
=- 5 :
: (B.16)
_ 2 (pr- o +4m3) | B.17)

3A2

_97 —



Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

T. Kaluza, Zum Unitdtsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.
Phys.) 1921 (1921) 966 [arXiv:1803.08616] [INSPIRE].

O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity (in German and
English), Z. Phys. 37 (1926) 895 [INSPIRE].

I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377
[INSPIRE].

N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new
dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions,
Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].

L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys.
Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999)
4690 [hep-th/9906064] [INSPIRE].

K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671
[arXiv:1105.3735] [INSPIRE].

G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at
high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].

D. Hooper and S. Profumo, Dark Matter and Collider Phenomenology of Universal Extra
Dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [INSPIRE].

K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC Signals from Warped
Extra Dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].

J. Bonifacio, K. Hinterbichler and R.A. Rosen, Constraints on a gravitational Higgs
mechanism, Phys. Rev. D 100 (2019) 084017 [arXiv:1903.09643] [INSPIRE].

R. Sekhar Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Sum Rules
for Massive Spin-2 Kaluza-Klein Elastic Scattering Amplitudes, Phys. Rev. D 100 (2019)
115033 [arXiv:1910.06159] [INSPIRE].

R. Sekhar Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Scattering
amplitudes of massive spin-2 Kaluza-Klein states grow only as O(s), Phys. Rev. D 101
(2020) 055013 [arXiv:1906.11098] [INSPIRE].

R.S. Chivukula, D. Foren, K.A. Mohan, D. Sengupta and E.H. Simmons, Massive Spin-2
Scattering Amplitudes in Extra-Dimensional Theories, Phys. Rev. D 101 (2020) 075013
[arXiv:2002.12458] [INSPIRE].

H.M. Lee, M. Park and V. Sanz, Gravity-mediated (or Composite) Dark Matter, Eur. Phys.
J. C 74 (2014) 2715 [arXiv:1306.4107] [INSPIRE].

~ 98 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://arxiv.org/abs/1803.08616
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.08616
https://doi.org/10.1007/BF01397481
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2C37%2C895%22
https://doi.org/10.1016/0370-2693(90)90617-F
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB246%2C377%22
https://doi.org/10.1016/S0370-2693(98)00466-3
https://arxiv.org/abs/hep-ph/9803315
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9803315
https://doi.org/10.1103/PhysRevD.64.035002
https://arxiv.org/abs/hep-ph/0012100
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0012100
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9905221
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://arxiv.org/abs/hep-th/9906064
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906064
https://doi.org/10.1103/RevModPhys.84.671
https://arxiv.org/abs/1105.3735
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.3735
https://doi.org/10.1016/S0550-3213(99)00044-9
https://arxiv.org/abs/hep-ph/9811291
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9811291
https://doi.org/10.1016/j.physrep.2007.09.003
https://arxiv.org/abs/hep-ph/0701197
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0701197
https://doi.org/10.1103/PhysRevD.77.015003
https://arxiv.org/abs/hep-ph/0612015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0612015
https://doi.org/10.1103/PhysRevD.100.084017
https://arxiv.org/abs/1903.09643
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.09643
https://doi.org/10.1103/PhysRevD.100.115033
https://doi.org/10.1103/PhysRevD.100.115033
https://arxiv.org/abs/1910.06159
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.06159
https://doi.org/10.1103/PhysRevD.101.055013
https://doi.org/10.1103/PhysRevD.101.055013
https://arxiv.org/abs/1906.11098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11098
https://doi.org/10.1103/PhysRevD.101.075013
https://arxiv.org/abs/2002.12458
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.12458
https://doi.org/10.1140/epjc/s10052-014-2715-8
https://doi.org/10.1140/epjc/s10052-014-2715-8
https://arxiv.org/abs/1306.4107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.4107

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

T.D. Rueter, T.G. Rizzo and J.L. Hewett, Gravity-Mediated Dark Matter Annihilation in the
Randall-Sundrum Model, JHEP 10 (2017) 094 [arXiv:1706.07540] [INSPIRE].

M.G. Folgado, A. Donini and N. Rius, Gravity-mediated Scalar Dark Matter in Warped
Eztra-Dimensions, JHEP 01 (2020) 161 [arXiv:1907.04340] [INSPIRE].

A. Carmona, J. Castellano Ruiz and M. Neubert, A warped scalar portal to fermionic dark
matter, FBur. Phys. J. C' 81 (2021) 58 [arXiv:2011.09492] [INSPIRE].

N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons
and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

M.D. Schwartz, Constructing gravitational dimensions, Phys. Rev. D 68 (2003) 024029
[hep-th/0303114] [INSPIRE].

C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82
(2010) 044020 [arXiv:1007.0443] [INSPIRE].

C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev.
Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

G. Gabadadze, D. Older and D. Pirtskhalava, Resolving the van Dam-Veltman-Zakharov and
strong coupling problems in massive gravity and bigravity, Phys. Rev. D 100 (2019) 124017
[arXiv:1907.13491] [iNSPIRE].

B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role
of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

J. Bonifacio and K. Hinterbichler, Unitarization from Geometry, JHEP 12 (2019) 165
[arXiv:1910.04767] [INSPIRE].

R. Rattazzi, Cargese lectures on extra-dimensions, in Cargese School of Particle Physics and
Cosmology: the Interface, (2003) [hep-ph/0607055] [INSPIRE].

G.D. Kribs, TASI 2004 lectures on the phenomenology of extra dimensions, in Theoretical
Advanced Study Institute in Elementary Particle Physics: Physics in D 2 4, (2006)
[hep-ph/0605325] [INSPIRE].

S. Raychaudhuri and K. Sridhar, Particle Physics of Brane Worlds and Extra Dimensions,
Cambridge Monographs on Mathematical Physics, Cambridge University Press, U.K. (2016)
DOIL.

P. Callin and F. Ravndal, Lagrangian formalism of gravity in the Randall-Sundrum model,
Phys. Rev. D 72 (2005) 064026 [hep-ph/0412109] [INSPIRE].

C. Cséki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys.
Rev. D 63 (2001) 065002 [hep-th/0008151] [1NSPIRE].

M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an
electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum Gauge
Hierarchy Model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [INSPIRE].

T. Gleisberg, F. Krauss, K.T. Matchev, A. Schalicke, S. Schumann and G. Soff, Helicity
formalism for spin-2 particles, JHEP 09 (2003) 001 [hep-ph/0306182] [INSPIRE].

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, ninth Dover printing, tenth gpo printing ed., Dover, New
York, U.S.A. (1964).

~ 99 —


https://doi.org/10.1007/JHEP10(2017)094
https://arxiv.org/abs/1706.07540
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.07540
https://doi.org/10.1007/JHEP01(2020)161
https://arxiv.org/abs/1907.04340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.04340
https://doi.org/10.1140/epjc/s10052-021-08851-0
https://arxiv.org/abs/2011.09492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.09492
https://doi.org/10.1016/S0003-4916(03)00068-X
https://arxiv.org/abs/hep-th/0210184
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0210184
https://doi.org/10.1103/PhysRevD.68.024029
https://arxiv.org/abs/hep-th/0303114
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0303114
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevD.82.044020
https://arxiv.org/abs/1007.0443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.0443
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://arxiv.org/abs/1011.1232
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1232
https://doi.org/10.1103/PhysRevD.100.124017
https://arxiv.org/abs/1907.13491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.13491
https://doi.org/10.1103/PhysRevD.16.1519
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD16%2C1519%22
https://doi.org/10.1007/JHEP12(2019)165
https://arxiv.org/abs/1910.04767
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.04767
https://arxiv.org/abs/hep-ph/0607055
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0607055
https://arxiv.org/abs/hep-ph/0605325
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0605325
https://doi.org/10.1017/CBO9781139045650
https://doi.org/10.1103/PhysRevD.72.064026
https://arxiv.org/abs/hep-ph/0412109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0412109
https://doi.org/10.1103/PhysRevD.63.065002
https://doi.org/10.1103/PhysRevD.63.065002
https://arxiv.org/abs/hep-th/0008151
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0008151
https://doi.org/10.1098/rspa.1939.0140
https://inspirehep.net/search?p=find+J%20%22Proc.Roy.Soc.Lond.%2CA173%2C211%22
https://doi.org/10.1103/PhysRevLett.84.2080
https://arxiv.org/abs/hep-ph/9909255
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9909255
https://doi.org/10.1088/1126-6708/2003/09/001
https://arxiv.org/abs/hep-ph/0306182
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0306182

[36]

Bessel Functions and Two-Dimensional Problems, https://math.libretexts.org/Bookshelves/
Differential _Equations/Book%3A_ Partial_Differential _Equations_ (Walet)/
10%3A_Bessel Functions and Two-Dimensional Problems.

I.N. Sneddon, On some infinite series involving the zeros of bessel functions of the first kind,
Proceedings of the Glasgow Mathematical Association, 4 (1960) 144.

W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83
(1999) 4922 [hep-ph/9907447] [INSPIRE].

zAct: Efficient tensor computer algebra for the Wolfram Language, http://www.xact.es/.

D. Brizuela, J.M. Martin-Garcia and G.A. Mena Marugén, zPert: Computer algebra for
metric perturbation theory, Gen. Rel. Grav. 41 (2009) 2415 [arXiv:0807.0824] INSPIRE].

N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys.
Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of
Feynman amplitudes, Comput. Phys. Commaun. 64 (1991) 345 [INSPIRE].

V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput.
Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements,
Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].

— 30 —


https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Partial_Differential_Equations_(Walet)/10%3A_Bessel_Functions_and_Two-Dimensional_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Partial_Differential_Equations_(Walet)/10%3A_Bessel_Functions_and_Two-Dimensional_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Partial_Differential_Equations_(Walet)/10%3A_Bessel_Functions_and_Two-Dimensional_Problems
https://doi.org/10.1103/PhysRevLett.83.4922
https://doi.org/10.1103/PhysRevLett.83.4922
https://arxiv.org/abs/hep-ph/9907447
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9907447
http://www.xact.es/
https://doi.org/10.1007/s10714-009-0773-2
https://arxiv.org/abs/0807.0824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.0824
https://doi.org/10.1016/j.cpc.2009.02.018
https://doi.org/10.1016/j.cpc.2009.02.018
https://arxiv.org/abs/0806.4194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.4194
https://doi.org/10.1016/0010-4655(91)90130-D
https://inspirehep.net/search?p=find+J%20%22Comput.Phys.Commun.%2C64%2C345%22
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01167
https://doi.org/10.1016/j.cpc.2020.107478
https://arxiv.org/abs/2001.04407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.04407

	Introduction
	The Randall-Sundrum model
	The 5D theory
	Effective theory in 4D

	Matrix elements for graviton production
	Helicity matrix elements for phi phi –> G(k) G(n)
	Helicity matrix elements for phi phi –> G(n) r

	Sum rules 
	Analytical prove
	Numerical study

	Conclusions
	Lagrangian expansion
	L(IR)-expansion
	Bulk-expansion

	Feynman rules 
	Vertices
	Vertices involving only RS particles
	Vertices involving phi



