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1 Introduction

Extra dimensions have been considered in physics for many different purposes since the
seminal work of Kaluza [1] and Klein [2]. In particular from the early ‘90s onward
models featuring large [3–5] and warped extra-dimensions [6, 7] have received consider-
able attention due to their potential to resolve outstanding questions of the Standard
Model such as the hierarchy problem. However, even without a concrete particle physics
model in mind, extra-dimensional models are interesting laboratories for the physics of
massive spin-2 fields, see for example section 10 of the review [8]. Most particle phe-
nomenology inspired investigations of extra-dimensional models are chiefly interested in
the role of the spin-2 fields as mediators between initial and final states consisting of
matter fields [9–11]. In contrast, studies motivated by a more theoretical interest in mas-
sive spin-2 fields have recently investigated the physics of KK-graviton scattering [12–15].
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However, the production of spin-2 particles from matter has not received as much at-
tention. This work aims to close this gap. On the one hand, we expect our results
to be relevant for phenomenological studies, for example for gravitationally interaction
dark matter in extra-dimensional theories [16–19]. On the other hand, such a study
is also of interest from a more theoretical perspective since matter fields are a neces-
sary ingredient in any realistic theory. In the following, we will focus on a concrete
model of warped extra-dimension with two branes originally put forward by Randall and
Sundrum [6].

Interactions between massive spin-2 fields and matter pose a subtle problem since
scattering amplitudes involving them are plagued by unitarity issues, see [8] and refer-
ences therein. The breakdown of the theory at high energies is already expected at the
Lagrangian level but studies of the scattering amplitudes of spin-2 fields show a rapid
growth in the high energy limit that indicates the break-down of perturbativity at scales
much lower than the fundamental scale of the theory. This issue has received attention
in the context of massive gravity [20–23] and the construction of theories that avoid this
behavior is still being investigated [12, 24]. In contrast, higher dimensional gravity is
expected to be well-behaved up to the fundamental cut-off of the theory and, therefore,
these issues should not arise in the associated 4D theories. Clearly, an individual KK-
graviton cannot avoid the conclusions obtained from considerations of general spin-2 fields
and, therefore, the other particles of the 4D theory have to be involved in the unitariza-
tion process that restores the fundamental scale of the underlying theory [21]. This is
reminiscent of the unitarity problem in massive vector boson scattering in the Standard
Model which is resolved by including the Higgs boson [25]. The details of the cancel-
lation mechanism depend on the geometry of the extra-dimension [21, 26] and are not
known in general. However, the unitarization of KK-graviton scattering in warped extra-
dimensions has recently been studied [15], see also [13, 14]. So far, only scattering of
KK-gravitons has been considered. However, a theory that describes a phenomenologically
viable Universe also contains matter fields. We take a look at this previously neglected
direction and investigate the origin and the resolution of unitarity issues in processes con-
necting matter and KK-gravitons. For simplicity, we consider only a toy matter Lagrangian
and include just a single fundamental scalar on the brane. We analyze the matrix ele-
ments of scalar annihilations into KK-gravitons and find that unitarity is restored up to
the fundamental scale once the full tower of KK-gravitons and the radion is included in
the computation. Our study largely follows the approach of [15] and we partially use
their notation.

The paper is organized as follows. In section 2 we briefly introduce warped extra-
dimensions and comment on the connection between gravity in higher dimensions and
the effective theory in 4D. Next, we analyze the matrix elements scalar annihilations
into final states consisting of KK-gravitons and radions. We pay close attention to the
high energy behavior and identify sum rules involving the three-KK-graviton (and KK-
graviton-radion) couplings required to restore perturbative unitarity up to the cut-off of
the full theory. These sum rules are shown to be fulfilled in the RS-model both analytically
and numerically in section 4. Finally, we present our conclusions in section 5
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2 The Randall-Sundrum model

We analyze a simplified version of the Randall-Sundrum model [6] with a toy matter sector
instead of the full Standard Model field content. To be concrete, our matter Lagrangian
consists of a single scalar with only gravitational interactions. This setup is sufficient to
make the point we are interested in and we expect that our key observations will carry
over to a more realistic construction with minor modifications. Our somewhat compressed
introduction of the Randall-Sundrum model follows [15]; for a more in-depth introduction
see for example [27–29].

2.1 The 5D theory

Before starting our discussion it is helpful to introduce some basic notation. We use capital
Latin and lower case Greek letters, e.g. M = 0, 1, 2, 3, 4 and µ = 0, 1, 2, 3, to indicate 5-
dimensional (5D) and 4-dimensional (4D)-indices, respectively. Thus, the coordinate of the
full 5D space-time is denoted xM = (xµ, y). The 5D space-time is compactified under an
S1/Z2 orbifold symmetry yielding a 5D bulk bounded by two 4-dimensional (4D) branes
located at y = 0 and y = πrc where y indicates the coordinate of the fifth dimension and
rc its size. This compactification symmetry leads to the identification (x, y) = (x,−y)
which allows to extend the coordinate range to y ∈ [−πrc, πrc]. It is often convenient to
work with dimensionless quantities instead of dimensional ones which can be achieved by
normalizing with respect to rc, e.g. ϕ = y/rc. Gravity permeates the bulk while matter
fields are taken to be localized on the branes.

The action of the theory is given by

S = Sbulk + SUV + SIR , (2.1)

with

Sbulk = 1
2M

3
5

∫
d4x

π∫
−π

dϕ
√
G(R− 2ΛB),

SUV =
∫
d4x

π∫
−π

dϕ
√
−gUV(−VUV + LUV)δ(ϕ),

SIR =
∫
d4x

π∫
−π

dϕ
√
−gIR(−VIR + LIR)δ(ϕ− π) , (2.2)

where G is the determinant of the 5D metric, R the Ricci scalar and M5 the 5D Planck
mass. ΛB denotes the vacuum energy of the bulk while VUV and VIR are the vacuum energy
terms on the brane. LIR and LUV are the Lagrange densities of fields that are localized to
the 4D branes while gIR/UV are the 4D metric on the respective branes. For simplicity we
will take LUV = 0 and

LIR = 1
2∂µφ∂

µφ− 1
2m

2φ2 (2.3)
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where φ is a scalar field without any interactions besides gravity. Neglecting the matter
part, Einstein’s equation is solved by the metric

GMN =
(
w(x, y)gµν 0

0 −v(x, y)2

)
. (2.4)

Choosing the vacuum energy contributions on the branes and in the bulk such that the
solution respects 4D Poincaré invariance allows to fix w(x, y) and v(x, y) and leads to an
invariant distance interval

ds2 = e−2k|y|ηµνdxµdxν − dy2 , (2.5)

where ηµν = Diag(+1,−1,−1,−1, ) is the flat metric in 4D and k denotes the warping
parameter defined as k ≡

√
−ΛB

6 . It should be noted that in order to ensure 4D Poincaré
invariance, the branes’ vacuum energies are constrained to be VUV = −VIR = 6M3

5k. By
performing the integral over the 5th dimension in eq. (2.2) we can re-express the theory in
terms of an effective Lagrangian in 4D. In the usual Randall-Sundrum model this allows
to alleviate the hierarchy problem of the SM since the vacuum expectation value (vev) of
the Higgs v defined in 5D is related to the one in 4D by the warping factor e−kπrc . For
convenience, we define the dimensionless parameter µ = krc to simplify the exponent of
the warp factor. For values of µ ≈ 12 the exponential factor allows for a TeV scale vev
even if all fundamental mass-dimensional parameters of the 5D theory are O(MPl), thus
resolving the hierarchy problem. As we will not consider the SM explicitly we do not have
a preference for a specific value of the warp factor but we will focus on the limit e−µπ � 1.

The gravitational field content of the Randall-Sundrum model is obtained through a
weak-field expansion of the metric around the vacuum solution, i.e.

GMN 7−→ GMN + κ hMN , (2.6)

where κ is an expansion parameter defined as κ = 2/M3/2
5 . The expansion generates scalar,

vector and tensor perturbations, corresponding to hµν , hµ4 and h44, respectively. In the
Randal-Sundrum model it is possible to choose the gauge such that the vector component
vanishes even though this does not hold for general higher dimensional models [30]. The
tensor perturbation correspond to a spin-2 field, i.e. a 5D-graviton, while the scalar per-
turbation, the radion, is related to the width of the 5th dimension. We utilize the Einstein
frame parameterization [31] which amounts to the following replacement in eq. (2.4)

w(x, y) = e−2(k|y|+û) , v(x, y) = 1 + 2û , (2.7)

where û contains the radion field. This ansatz eliminates the mixing between the radion
and the gravitons. We take gµν to be weakly perturbed around a flat background

gµν = ηµν + κĥµν , (2.8)

where ĥµν denotes a symmetric tensor field that includes the graviton. The metric is then
given by

GMN =
(
e−2(k|y|+û)(ηµν + κ ĥµν) 0

0 −(1 + 2û)2

)
. (2.9)
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Denoting the radion field r̂, we define û as

û(x, y) ≡ κ r̂(x)
2
√

6
e2k|y| , (2.10)

where the fact that the y dependence of r̂ can be removed by an appropriate choice of
coordinates [30] has been employed. By expanding the full Lagrangian of the theory in
powers of κ we obtain, order by order, a theory of interacting 5D graviton and radion fields
ĥµν and r̂. We expand the bulk Lagrangian to third power in the fields since this includes
the three-graviton interaction Lagrangian that is crucial for our studies. In addition, we
need the first two interactions between the scalar field φ and the gravitons and radions.
The key results of this expansion are summarized in appendix. A.

2.2 Effective theory in 4D

By integrating out the 5th dimension, this model can be reduced to an effective theory in
4D. To achieve this, we employ the Kaluza-Klein (KK) decomposition of the 5D fields

ĥµν(x, y) =
∞∑
n=0

1
√
rc
h(n)
µν (x) ψn(ϕ(y)) ,

r̂(x) = 1
√
rc
ψr r(x) ,

(2.11)

where ψn(ϕ) absorb the 5D-dependence of the fields and the unhatted h and r fields
carry the x dependence. As indicated above, ψr is independent of ϕ. The decomposi-
tion transforms the single 5D-graviton into a tower of 4D-gravitons. In order to get the
canonical massive Fierz-Pauli Lagrangian for the gravitons [32], the 5D-components of the
KK-decomposition must satisfy the following differential equation [33]

1
r2
c

d

dϕ

[
A(ϕ)4dψn

dϕ

]
= −m2

nA
2ψn , (2.12)

where we have introduced the shorthand A(ϕ) = e−µ|ϕ| and mn is the mass of the n-th
graviton. This equation is a particular case of the more general Sturm-Liouville equation.
It can be proved that mn ∈ R with mn < mn+1 and the solutions ψn(ϕ) are orthogonal
and normalized with respect to the scalar product

〈ψn, ψm〉 =
π∫
−π

dϕ A(ϕ)2 ψn(ϕ)ψm(ϕ) = δn,m . (2.13)

Consistency with a phenomenological acceptable 4D gravity requires the graviton with
n = 0 to correspond to the massless graviton of General Relativity and, hence, m0 = 0 and
ψ0 = constant. ψ0 and ψr are fixed by the normalization to

ψ0 =
√

µ

1− e−2µπ '
√
µ , ψr =

√
µ

e2πµ − 1 '
√
µ e−µπ . (2.14)
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The functions ψn>0(ϕ) and the masses can be determined by solving equation (2.12) with
the boundary conditions ∂ϕψn|ϕ=0,π = 0. In the limit e−µπ � 1 the solutions simplify and
can be approximated as

ψn(ϕ) ' e2µ|ϕ|

Nn
J2
(
γne

µ(|ϕ|−π)
)

and mn ' kγne−µπ , (2.15)

where Ji denoted the ith Bessel J-function while γn is the nth zero of J1(x). The normal-
ization factors Nn are given by

Nn ' −
eµπ
√
µ
J0(γn) . (2.16)

Performing the integration over the 5th dimension on the quadratic pieces of the pure
gravity Lagrangian yields the kinetic terms of a massless spin-2 field, i.e. the graviton of
general relativity, a massless spin-0 field, i.e. the radion, and an infinite number of spin-2
fields with Fierz-Pauli mass terms, i.e. a tower of massive KK-gravitons. Decomposing the
first order weak field expansion of the matter Lagrangian leads to following interaction
between matter and gravitons

L(1)
int = −1

2κTµν ĥ
µν(x, ϕ = π) = −1

2κTµν
( ∞∑
n=0

1
√
rc
hµνn (x)ψn(π)

)
. (2.17)

Requiring that the massless graviton matches the expectation from GR allows to fix
the relation between the (reduced) Planck mass in 4D, MPl, and the parameters of the
5D theory

1
2κ

1
√
rc
ψ0 = 1

MPl
or, equivalently, M2

Pl = M3
5
k

(
1− e−2µπ

)
, (2.18)

which simplifies to M3
5 ' kM2

Pl in the limit e−µπ � 1. Due to the different normalization,
the strength of the interaction of the other KK-fields hµνn>0 is controlled by a combined
scale Λ defined by Λ−1 = M

−3/2
5 ψn(π)/√rc which leads to Λ ' MPl e

−µπ in the large µ
limit. The radion contribution to the interaction Lagrangian is

L(1)
int,r = 1√

6Λ
rT , (2.19)

where T = ηµνTµν is the trace of the energy-momentum tensor of the matter field. In the
4D reduction of the higher powers of the expanded Lagrangian, interactions between all
combinations of massless graviton, massive KK-modes and the radion with matter appear.
The strength of these interactions is given by a generalized scale ΛNn0,nm,nr = Λnm+nrMn0

Pl
where n0 (nm) is the number of massless (massive) gravitons, nr the number of radions
and N = n0 + nm + nR.

In addition to the interactions between matter and the gravitons or radions we also
need the cubic interactions between these fields which are substantially more involved. In-
stead of considering a handful of simple interactions on the brane we now need to treat the
interactions between all constituents of the KK-tower. The strength of the interaction is
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∝ ankm
√

rcM
3/2
5

∝ bnkr

r
5/2
c M

3/2
5

∝ cnrr
√

rcM
3/2
5

Figure 1. Cubic interactions between gravitons and radions.

controlled by the overlap of the wave functions or their derivatives in the bulk. As it will
turn out to be helpful later, we first introduce a more general parameterization of the cou-
pling coefficients than strictly needed to define the interactions in 4D.1 The 5D Lagrangian
consists of contributions that possess either no or two 5D derivatives. The interaction
between 3-gravitons does not contain any derivatives and we can define a coefficient a pa-
rameterizing the wave-function overlap. In addition, we can also define a different class of
coefficients b that include two 5D derivatives.2 Labeling the fields from n1 to n3 the a’s
and b’s read

a~n :=
π∫
−π

dϕ A(ϕ)2 ψn1(ϕ)ψn2(ϕ)ψn3(ϕ) ,

b~n :=
π∫
−π

dϕ A(ϕ)4 ψ′n1(ϕ)ψ′n2(z)ψn3(ϕ) ,

(2.20)

where ~n = (n1, n2, n3) indicates the set of fields involved. As can be seen from the definition,
a-type coefficients are symmetric under permutation of all indices while b-type coefficients
are only symmetric under permutation of the first two fields.

In addition, there are processes involving radion fields. In the two-graviton-radion
vertex, a second kind of b-coefficients appear since the relevant Lagrangian includes two
5D derivatives. One finds

bn1,n2,r :=
π∫
−π

dϕ A(ϕ)2 ψ′n1(ϕ)ψ′n2(z)ψr (2.21)

which is also symmetric in the first two indices. The two-radion graviton vertex is simpler.
We denote the coefficient cnrr and find that it is given by

cnrr :=
π∫
−π

dϕ A(ϕ)−2 ψn(ϕ)ψrψr (2.22)

Integrating out the 5D and considering all the powers of M5 and of rc deriving from the
Lagrangian expansion and the KK-decomposition, the strength of the cubic interactions in
the 4D theory are given by the vertices of figure 1. In the large µ-limit these expressions
simplify and we can split off the µ dependence, which combines with M5 to set the overall

1The a-b notation is inspired by [15], however, we prefer to normalize our coefficients differently.
2The b type integrals do not appear directly in the Lagrangian but they will turn out to the useful later.
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scale of the interactions. This simplifies the integrals over the fifth dimension, which
separate into numerical constants that do not depend on the parameters of the theory any
more, and into powers of ke−µπ ' mn/γn. In this case we get

aknm
√
rcM

3/2
5
−→

χknr
√
µeµπ

√
rcM

3/2
5

= χknm
Λ (2.23)

bknr

r
5/2
c M

3/2
5
−→ χ̃knrµ

5/2e−µπ

r
5/2
c M

3/2
5

= χ̃knr
Λ

(
k2e−2µπ

)
(2.24)

cnrr
√
rcM

3/2
5
−→

χnrr
√
µeµπ

√
rcM

3/2
5

= χnrr
Λ (2.25)

where the numerical coefficients are given by

χnkj ≡
−2

J0(γn)J0(γk)J0(γj)

1∫
0

du u3J2(γnu)J2(γku)J2(γju) ,

χ̃knm ≡ 2 γnγk
J0(γn)J0(γk)

1∫
0

du u3J1 (γnu) J1 (γku) ,

χnrr ≡
−2

J0(γn)

1∫
0

du u3J2(γnu) = − 2J3 (γn)
γnJ0 (γn) .

(2.26)

Comparing eq. (2.23), (2.24) and (2.25), it can be seen that the term with the bnkr coupling
does not have the same energy-dimension as the other two. This follows directly from the
presence of 5D-derivatives which give rise to this term and that are absent in the other
two. Consequently, in the 4D Lagrangian, the aknm and cnrr couplings are multiplied either
by masses of the gravitons or by their momenta while the term proportional to bknr just
contains combinations of the flat metric ηµν .

For completeness we also list the coefficient of the interaction between three radions
χrrr. In this case the integration over the fifth dimension is trivial and we find

χrrr ≡ 2
1∫

0

du u3 = 1
2 . (2.27)

The numerical couplings above can be generalized to a higher number of participating
interacting particles by inserting in the integrals a factor of u2 for every radion, and a
factor of −u2 J2(γju)

J0(γj) for every j-graviton. We report the Feynman rules for all relevant
interactions in the large µ limit in appendix. B.

3 Matrix elements for graviton production

In order to assess the validity of the theory we analyze the matrix elements of processes
that involve the KK-gravitons. We focus on two classes of interactions: 1) KK-graviton
production in φ annihilations (φφ → GnGm) and 2) mixed graviton-radion production

– 8 –
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Figure 2. Representative set of diagrams contributing to φφ→ GkGn annihilations.

(φφ → Gnr). The first class is most interesting from a theoretical point of view and will
allow us to identify new sum rules for the couplings of three gravitational fields while the
second class leads to an independent relation for the radion couplings.

3.1 Helicity matrix elements for φφ → GkGn

We are interested in the high energy limit of the φφ → GnGk matrix element. There are
four classes of diagrams that contribute. First, there is the emission of G via t- and u-
channel φ exchange and a contribution from the φφGnGk contact interaction. In addition,
there is an infinite set of diagrams with all possible graviton-modes in the s-channel and
one diagram from s-channel radion exchange. A representative set of diagrams is shown in
figure 2.

We work in the center of mass frame and take the initial state particle to travel
along the z-axis while the final state particle are emitted back to back in some arbitrary
direction. Using the helicity formalism for spin-2 fields, the spin-2 polarization tensor can
be decomposed as a combination of spin-1 polarization tensors [34]:

εµν0 = 1√
6
(
εµ±1ε

ν
∓1 + 2εµ0 εν0 + εµ∓1ε

ν
±1
)
,

εµν±1 = 1√
2
(
εµ±1ε

ν
0 + εµ0 ε

ν
±1
)
,

εµν±2 = εµ±1ε
ν
±1 .

(3.1)

An explicit form for the spin-1 polarization tensor of a massive particle moving in an ar-
bitrary direction, i.e. a particle with mass m and momentum ~p= |~p|(sin θ cosφ, sin θ sinφ,
cos θ), is given by

εµ±1 = 1√
2
e∓iγ (0;∓ cos θ cosφ+ i sinφ, cos θ sinφ− i cosφ,± sin θ) ,

εµ0 = E

m

√1− m2

E2 ; sin θ cosφ, sin θ sinφ, cos θ

 .

(3.2)

Since we only consider scalar particles in the initial state φ and γ can be chosen to be zero.

– 9 –
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In the following, we neglect mφ and focus on the high energy limit of the annihilations.
We expand the amplitudes in powers of the center of mass energy

√
s. Since we are dealing

with an effective theory and the interaction vertex comes with a suppression scale Λ, it is
clear that we have to find contributions to the matrix elements with M ∝ s. However,
looking at the polarization vectors of the longitudinal modes we observe an additional
growth for E � m. Thus we expect to find contributions that grow even faster with
s. Truncating the s-channel diagrams after the first graviton this is indeed the case and
we find contributions with M ∝ s3. This is a bit of a puzzle since this would imply a
breakdown of the theory well below the fundamental scale. However, there is no guarantee
that a truncated 4D theory will respect the properties of the 5D theory. Therefore, we
expect that the anomalous growth with higher powers of s cancels once the full theory, i.e.
the untruncated KK-tower, is included in the analysis.3

We now present the expanded matrix elements in the large s limit order by order in√
s. This allows us to identify sum rules for the couplings of the theory that ensure the

cancellation of contributions that grow faster than s. We will demonstrate explicitly that
these sum rules are fulfilled in the Randall-Sundrum model in section 4. Note that we show
only the final state helicities that are non zero at a given order. In general, we find that
the amplitudes related to 0-helicity states are the most relevant since they include two of
the longitudinal graviton modes that get enhanced in the high energy limit.

Order s3. At this order only the helicity zero final state contributes. We find

M(0, 0) = − is
3 (sin2(θ)

)
(∑m χnkm − 1)

24Λ2m2
km

2
n

+O(s2) (3.3)

As can be seen the O(s3) contribution vanishes only if

∞∑
m=1

χnkm = 1 . (3.4)

This is indeed the case in the Randall-Sundrum model and we will prove it analytically in
section 4.

Order s2. Here we find more final state helicities that contribute to the expanded matrix
element, see table 1. As can be seen all final states except the (0, 0)-helicity state vanish if
the sum rule inferred from the s3 contribution toM is fulfilled. The (0, 0)-helicity state is

3Recently, this was shown explicitly for the elastic scattering of gravitons, which exhibits an even worse
high energy behavior [15]. This is resolved by sum rules relating the 3-point interactions of the KK-gravitons
to the 4-point interactions. In contrast, our amplitudes do not depend on the 4-point interactions and our
relations only involve the three-KK-graviton coupling.
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λn λk Amplitude

-2 0 − is2 sin2(θ)(∑m
χnkm−1)

4
√

6Λ2m2
k

-1 -1 − is2 sin2(θ)(∑m
χnkm−1)

4Λ2mkmn

0 -2 − is2 sin2(θ)(∑m
χnkm−1)

4
√

6Λ2m2
n

0 0 see eq. (3.5)

0 +2 − is2 sin2(θ)(∑m
χnkm−1)

4
√

6Λ2m2
n

+1 +1 − is2 sin2(θ)(∑m
χnkm−1)

4Λ2mkmn

+2 0 − is2 sin2(θ)(∑m
χnkm−1)

4
√

6Λ2m2
k

Table 1. Contribution to the matrix element for the production of the k-th and n-th gravitons
with relative helicities λn and λk at O(s2).

more complicated and we find

M(0, 0) = − is2

144Λ2m2
km

2
n

[
(m2

k +m2
n)
(

3 cos(2θ)(4
∑
m

χnkm − 5) + (4
∑
m

χnkm − 9)
)

+ 4
∑
m

χnkm
(
m2
k −m2

n

)2
/m2

m + (3 cos(2θ) + 1)
∑
m

m2
mχnkm

+ 24 cos2(θ)m2
φ

(∑
m

χnkm − 1
)

+ 24k2e−2µπχ̃nkr

]
+O(s3/2) .

(3.5)

In contrast to the previous case, this expression also depends on χ̃nkr, i.e. the radion
contribution is crucial for the cancellation. The different angular dependence allows to
identify two separate sum-rules at this order. The part proportional to cos(2θ) vanishes
only if

∞∑
m=1

χnkm m2
m = m2

n +m2
k (3.6)

while the remaining part requires

∞∑
m=1

χnkm
m2
m

(m2
n −m2

k)2 − (m2
n +m2

k) + 6 k2e−2µπχ̃nkr = 0 . (3.7)

While these sum rules look more daunting than eq. (3.4), it can be shown that they hold
in the model under consideration.
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λn λk Amplitude

-2 -1 is3/2 sin(2θ)(∑m
χnkm−1)

4Λ2mk

-1 -2 is3/2 sin(2θ)(∑m
χnkm−1)

4Λ2mn

-1 0 − is3/2 sin(2θ)((m2
k+m2

n)(∑m
χnkm−2)+

∑
m
m2
mχnkm)

8
√

6Λ2m2
k
mn

0 -1 − is3/2 sin(2θ)((m2
k+m2

n)(∑m
χnkm−2)+

∑
m
m2
mχnkm)

8
√

6Λ2mkm2
n

0 +1 is3/2 sin(2θ)((m2
k+m2

n)(∑m
χnkm−2)+

∑
m
m2
mχnkm)

8
√

6Λ2mkm2
n

+1 0 is3/2 sin(2θ)((m2
k+m2

n)(∑m
χnkm−2)+

∑
m
m2
mχnkm)

8
√

6Λ2m2
k
mn

+1 +2 − is3/2 sin(2θ)(∑m
χnkm−1)

4Λ2mn

+2 +1 − is3/2 sin(2θ)(∑m
χnkm−1)

4Λ2mk

Table 2. Contribution to the amplitudes for the production of the n-th and k-th gravitons with
relative helicities λn and λk at O(s3/2).

Order s3/2. Finally, we find contributions to the matrix element that scale as s3/2 that
are summarized in table 2. Clearly, four of the eight non-zero entries in the table vanish
if the O(s3)-sum rule holds. The remaining contributions (containing a 0-mode), are all
proportional to

∝
(

(m2
k +m2

n)
(∑

m

χnkm − 2
)

+
∑
m

m2
mχnkm

)
. (3.8)

After imposing eq. (3.4) this just reduces to eq. (3.6). Therefore, all contributions at this
order vanish if the sum rules derived for the contributions at higher power in s hold.

3.2 Helicity matrix elements for φφ → Gnr

Now we turn towards the annihilation of DM-particles into a graviton and a radion. A
representative set of diagrams is shown in figure 3. As in the previous section, we expand
M in

√
s and report only contributions that grow faster than s. Since a radion is produced,

only one longitudinal graviton can be produced and the leading contribution to the matrix
element grows as O(s2). We find

M0 =
is2
(∑

m
k2e−2µπχ̃nmr

m2
m

+ χnrr − 1
)

24Λ2m2
n

+O(s) , (3.9)

which leads to our only sum rule from radion final states:∑
m

k2e−2µπ χ̃nmr
m2
m

= 1− χnrr . (3.10)

This condition relates the graviton-radion-radion coupling and the graviton-graviton-radion
coupling.
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Figure 3. φφ −→ rGn | Representative diagrams contributing at leading order.

4 Sum rules

After having identified the sum rules that ensure the cancellation of contributions that
grow faster than s, we now show that these hold in the Randall-Sundrum model. Before
starting in earnest, it is important to note that the sum rules for the χ-couplings can be
derived from relations that only involve χ̃ since their sums are related. In fact this even
goes beyond the large µ limit and one can already show this at the level of the a and b

coupling. Integration by parts of bnkm leads to

bnmk ≡
π∫
−π

dϕ A4∂ϕψn∂ϕψmψk
I.b.P.= −

π∫
−π

dϕ ψn∂ϕ
(
∂ϕψmA

4ψk
)

=

= −
π∫
−π

dϕψnψk∂ϕ
(
A4∂ϕψm

)
−

π∫
−π

dϕ A4∂ϕψk∂ϕψmψn = (mmrc)2ankm − bmkn .

(4.1)

The large µ limit we are interested in allows to separate the part that depends on µ from
the rest. This was already achieved with the use of χ, χ̃ that are related to a, b through

anmk = χnmk
√
µeµπ ,

bnmk = χ̃nmkµ
5/2e−µπ .

(4.2)

Thus, the relation in eq. (4.1) reduces to

γ2
kχnmk = χ̃knm + χ̃kmn . (4.3)

In the following we will first prove the sum rules analytically before investigating their
implications numerically.

4.1 Analytical prove

The relations we need for the cancellations are summarized in table 3. In the following
we will employ various properties of the Bessel functions, see for example [35, 36]. Note
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Sum rule 1:
∞∑
m=1

χnkm = 1

Sum rule 2:
∞∑
m=1

χnkm γ2
m = γ2

n + γ2
k

Sum rule 3:
∞∑
m=1

χnkm
γ2
m

(γ2
n − γ2

k)2 = (γ2
n + γ2

k)− 6χ̃nkr
k=n=⇒ χ̃nnr = 1

3γ
2
n

Sum rule 4:
∞∑
m=1

χ̃nmr
γ2
m

= 1− χnrr

Table 3. Sum rules needed for the cancellations..

that it is easier to prove the first sum rule if the second one has already been established.
Therefore, we will demonstrate that they hold in the order that makes the proves simpler
and not in the order in which they appear in the matrix element expansion.

Our starting point is the Fourier-Bessel expansion, see for example [37]. If a function
f(x) is continuous on [0, 1] such that f(1) = 0, the integral

1∫
0

dx x1/2f(x) (4.4)

exists and is absolutely convergent, and f(x) has limited total fluctuation, it can be ex-
panded in series in terms of any Bessel-function Jν :

f(x) =
∞∑
k=1

aν,kJν(γν,kx) , (4.5)

where γν,k is the k−th root of Jν and

aν,k = 2
Jν+1(γν,k)2

1∫
0

du uf(u)Jν(γν,ku) . (4.6)

Since we will work only with the roots of J1, we define γk as the k−th root of J1 and we
will set also ν = 1 such that

f(x) = 2
∞∑
k=1

J1(γkx)
J2(γk)2

1∫
0

du uf(u)J1(γku) . (4.7)

Let us recall that:

χ̃knm ≡ −2 γkγn
J0(γk)J0(γn)J0(γm)

1∫
0

du u3J1(γku)J1(γnu)J2(γmu) . (4.8)

A convenient choice of f(x) that satisfies f(1) = 0 is given by:

f(x) = γn
J0(γn)J0(γm)J1(γnx)J2(γmx)x2 . (4.9)
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Using the fact that J0(γn) = −J2(γn) and multiplying and dividing by γk, we have:

f(x) =
∞∑
k=1

J1(γkx)
γkJ2(γk)

χ̃knm . (4.10)

Differentiating both sides:

f ′(x) = 1
2
∑
k

χ̃knm

[
J0(γkx)− J2(γkx)

J2(γk)

]
x=1→ −

∑
k

χ̃knm . (4.11)

But on the other side:
f ′(x)|x=1 = −γ2

n . (4.12)

We then have a very helpful relation that will be useful soon:∑
k

χ̃knm = γ2
n . (4.13)

Combining this expression and eq. (4.3) directly leads to∑
k

χnmkγ
2
k = (γ2

n + γ2
m) (4.14)

thus proving sum rule 2. By making further use of eq. (4.3) we can derive other sum rules.
Permuting the indices we have two equations:

χ̃nmk = γ2
mχnkm − χ̃mkn , χ̃nkm = γ2

kχnkm − χ̃mkn . (4.15)

Using the symmetry properties of χ~n and χ̃~n:

χ̃nmk + χ̃mkn
γ2
m

= χ̃nkm + χ̃mkn
γ2
k

,

=⇒ χ̃mkn

(
1
γ2
m

− 1
γ2
k

)
= χ̃nkm

γ2
k

− χ̃nmk
γ2
m

,

=⇒
∞∑
n=1

χ̃mkn

(
1
γ2
m

− 1
γ2
k

)
=
∑
n

χ̃nkm
γ2
k

−
∑
n

χ̃nmk
γ2
m

Eq. (4.13)= 0 .

(4.16)

This implies that:
∞∑
k=1

χ̃nmk = 0 if n 6= m . (4.17)

At this point we have finally the last relation for the case n 6= m. Using again eq. (4.3)
we find

γ2
k

∑
n

χnkm =
∑
n

χ̃mkn +
∑
n

χ̃nkm = 0 + γ2
k , (4.18)

which proves sum rule 1 for n 6= m. For the case with n = m we need to work a little
harder. The starting point is eq. (4.10) combined with the definition of f(x) shown in
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eq. (4.9). Multiplying both sides by x2 and integrating from 0 to 1 we get rid of the extra
Bessel functions in the sum:

1∫
0

dx x2f(x) =
∑
k

χ̃knm
γ2
k

. (4.19)

In the special case n = m the integral can be performed analytically
1∫

0

dx x4J1(γnx)J2(γnx) = J2(γn)2

2γn
. (4.20)

Including the coefficients of f(x), it follows that∑
k

χ̃knn
γ2
k

= 1
2 . (4.21)

Using again equation (4.3) and setting n = m we get

γ2
kχnnk = 2χ̃knn =⇒

∑
k

χnnk = 2
∑
k

χ̃knn
γ2
k

= 1 , (4.22)

which proves sum rule 1 for m = n.
Next we tackle the relation involving χnrr. Let us recall the definition of the radion

coefficients:

χ̃knr ≡ 2 γkγn
J0(γn)J0(γm)

1∫
0

du u3J1(γku)J1(γnu) ,

χnrr ≡ −2 1
J0(γn)

1∫
0

du u3J2(γnu) = − 2
γn

J3(γn)
J0(γn) .

(4.23)

As before, the way to get the desired result is a good choice of f(x); in this case we use:

f(x) = x2J1(γnx)
J0(γnx)γn , (4.24)

from which follows
f(x) =

∑
k

J1(γkx)
γkJ0(γk)

χ̃knr . (4.25)

Multiplying both sides by x2 and integrating from 0 to 1 we find

∑
k

χ̃knr
γ2
k

= − γn
J0(γn)

1∫
0

dx x4J1(γnx) = −4J3(γn)− γnJ4(γn)
γnJ0(γn) . (4.26)

Using the properties of the Bessel functions, this last result can be written as:

− γn
J0(γn)

1∫
0

dx x4J1(γnx) = 1− χnrr . (4.27)
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Then the desired result follows ∑
k

χ̃knr
γ2
k

= 1− χnrr , (4.28)

which proves sum rule 4. Now we turn to sum rule 3, which will turn out to be the most
complicated one. With eq. (4.3) we get

γ2
nχnmk = χ̃nmk + χ̃nkm , γ2

mχnmk = χ̃mnk + χ̃mkn =⇒ (γ2
n − γ2

m)χnmk = χ̃nkm − χ̃kmn .
(4.29)

Multiplying both sides by (γ2
n − γ2

m), dividing by γ2
k and summing over k we get∑

k

χnmk
(γ2
n − γ2

m)2

γ2
k

= (γ2
n − γ2

m)
∑
k

χ̃knm − χ̃kmn
γ2
k

. (4.30)

To shorten the notation, let us define the following quantity:

fnm ≡
∑
k

χ̃knm
γ2
k

=⇒
∑
k

χnmk
(γ2
n − γ2

m)2

γ2
k

= (γ2
n − γ2

m)(fnm − fmn) . (4.31)

We proceed by using the result of eq. (4.19). One finds

fnm ≡
∑
k

χ̃knm
γ2
k

= Nγn
1∫

0

dx x4J1(γnx)J2(γmx) , (4.32)

where we have defined a normalization factor

N ≡ 1
J0(γn)J0(γm) (4.33)

to get more compact expressions. We can express this integral in terms of χ̃nmr, which is
the quantity we are interested in. To see this connection we need the following two relations.

One: γ2
mfnm + γ2

nfmn = 3χ̃nmr. For this we exploit the following property of the Bessel
functions:

J2(αx) = 1
α

(1
x
J1(αx)− ∂x(J1(αx))

)
, ∀α ∈ C . (4.34)

Then, it follows that:

fnm = γnN
1∫

0

dx x4J1(γnx)J2(γmx)

Eq. (4.34)= γnN
1∫

0

dx x4J1(γnx) 1
γm

(1
x
J1(γmx)− ∂x(J1(γmx))

)

= 1
2γ2

m

χ̃nmr −
γn
γm
N

1∫
0

dx x4J1(γnx)∂x(J1(γmx))

I.b.P.= 1
2γ2

m

χ̃nmr + γn
γm
N

1∫
0

dx ∂x(x4J1(γnx))J1(γmx) =

I.b.P.+Eq. (4.34)= 3 χ̃nmr
γ2
m

− 1
γ2
m

fmn ,

(4.35)

which proves the statement above.
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Two: fnm + fmn = 1. This is simpler and it relies on the following relation:

x2J1(αx) = ∂x

( 1
α
x2J2(αx)

)
, ∀α ∈ C . (4.36)

It follows that:

fnm = γnN
1∫

0

dx x4J1(γnx)J2(γmx) Eq. (4.36)= N
1∫

0

dx x2∂x
(
x2J2(γnx)

)
J2(γmx) =

I.b.P.= 1−N
1∫

0

dx x2J2(γnx)∂x
(
x2J2(γmx)

)
Eq. (4.36)= 1− fmn

(4.37)

and hence
fnm + fmn = 1 . (4.38)

Using the previous two relations it follows that:

fnm − fmn
Eq. (4.38)= −1 + 2fnm . (4.39)

Combining relation one from above and equation (4.38):

fnm = γ2
n − 3χ̃nmr
γ2
n − γ2

m

. (4.40)

Then the final result follows:
∑
k

χnmk
(γ2
n − γ2

m)2

γ2
k

= (γ2
n − γ2

m)
∑
k

χ̃knm − χ̃kmn
γ2
k

= (γ2
n − γ2

m)(fnm − fmn) =

= (γ2
n + γ2

m)− 6χ̃nmr ,
(4.41)

which proves sum rule 3. Thus we have demonstrated that the sum rules required to cancel
the contributions that grow faster than s are fulfilled in the Randall-Sundrum model in
the large µ limit.

A few comments about the limitations of our analysis are in order. First, we only
considered the large µ limit. In principle, we expect the cancellation to work even without
this restriction. However, a possible generalization to this case comes with a number of
complications. The zero-mode of the graviton, which does not contribute in the limit
we considered, can no longer be neglected. This can be accommodated with minimal
changes if we switch the discussion from χ and χ̃ to a and b. However, we cannot employ
the limiting form of the wave-functions and masses. Therefore, relations that directly
rely on the properties of the wave-functions and their Fourier-Bessel expansion need to
be generalized. Second, it is also worth pointing out that the radion is massless in our
analysis. A massless scalar that with a coupling stronger than gravity would spoil General
Relativity. Therefore, this is not acceptable if the model is supposed to incorporate the
world we live in. The problem can be solved by a radion mass. This can be achieved
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(a) (b) (c)

Figure 4. Numerical values of the relevant coefficients for a representative set of gravitons.

by a mechanism that stabilizes the radius of the extra-dimension; a concrete example is
the Goldberger-Wise mechanism [38]. It relies on a new bulk scalar that mixes with the
radion and, as a consequence, the single massless radion gets replaces by a KK-tower of
massive scalar fields [31]. An analysis of the impact of the Golberger-Wise mechanism on
the unitarization of the matrix elements goes beyond the scope of this work. However,
we expect that the basic conclusions will remain the same. To test this assumption we
have added a radion mass mr by hand and find that the sum rules remain unaffected
for mr �

√
s.

4.2 Numerical study

We have shown that the sum rules are fulfilled analytically but the question of how fast
they converge remains. In particular if one is interested in a quantitative study outside
of the high energy limit it is often not feasible to impose the sum rules directly on the
matrix element and one might want to work with a truncated KK-tower. Therefore, it is of
great interest to investigate how many gravitons need to be summed to get a meaningful
numerical result.

Let us start by looking at the coefficients χnkm, χ̃nkr and χnrr. We show their values
for a few representative combinations of gravitons in figure 4. Looking at the χn1,n2,m

(left panel) we observe that they are relatively small with the largest in the ballpark of
0.20 − 0.25. The distribution is bi-modal with peaks around m = |n1 ± n2| and falls of
quite fast when this is not fulfilled. This is an important observation that allows us to
optimize the number of gravitons we need to include in order to get a good approximation
of the results. The situation is somewhat similar in the case of χ̃nkr. Here, the couplings
are largest when n = k and fall off quite fast away from this. We observe a growth of χ̃nnr
with n which is expected since we found analytically that χ̃nnr ∝ γ2

n. However, this growth
has no implication for sum rule 4 since only the combination χ̃nmr/γ

2
m enters. The third

type of coefficients is less interesting than the others. As can be seen in the third panel,
χnrr decreases rather fast as n increases and has no notable features.
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Figure 5. Illustration of the first (left) and second (right) sum rule for a truncated KK-tower as
a function of the number of included gravitons N. For each sum rule we show three representative
choices of the graviton final state as indicated by the inset in the panels. We show two prescriptions
for the order in which gravitons are added. The solid lines show a standard truncation where all
gravitons up to the Nth are added while the dashed line corresponds to in improved prescription
where the gravitons are added by the size of χknm.

Now we turn to study the sum rules in the case of a truncated KK-tower. In figure 5
and figure 6 we show the difference of the sum rule from zero as a function of the num-
ber of gravitons in the sum for some representative benchmarks. For light gravitons the
convergence is relatively fast and considering the first ten massive KK-modes leads to a
reduction of the numerical coefficient by a factor ≤ 10−3 for both the first and the second
sum rule. However, if we consider heavier gravitons the situation is a bit different. Since
the χn1n2m coefficients peak at around m = |n1 ± n2| adding light graviton does not im-
prove the cancellation significantly until N & n1 + n2. This can be partially ameliorated
if we do not add the gravitons by mass but by largest χ factor. This trick works best for
sum rules 1 and 2 and speeds up the cancellation for moderate values of N while the large
N behavior is essentially identical. However, even in this case the precision to which the
sum rules are fulfilled lags behind the one achieved for the light spin-2 fields. In the case of
sum rule 3, it does not help much and can even inhibit the cancellation or certain choices
of N as can be seen in figure 6. For two identical gravitons in the final state sum rule 3
reduces to an analytical expression for χnnr. As it does not depend on the third graviton
any more the sum is trivial and the level of precision and any deviation from zero is just
related to the numerical precision of the evaluation of χnnr. Therefore, we do not show it
in the figure.

The level of precision to which the high energy growth has to cancel in a numerical
study will depend on the computation and the desired precision. However, it appears that
just adding one or two gravitons is not enough for most applications. Even for the pair
production of the lightest graviton the first five modes need to be considered if a suppression
of the unphysical contributions by a factor of ≈ 10−3 is desired.
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Figure 6. Illustration of the third (left) and forth (right) sum rule for a truncated KK-tower as a
function of the number of included gravitons N. For the third sum rule we show two ways of adding
the gravitons as in figure 5.

5 Conclusions

Extra-dimensional theories have received considerable interest in recent years. They pro-
vide attractive models for physics beyond the Standard Model that can help address un-
solved problems of high energy physics such as the hierarchy problem, dark matter, or
the structure of the SM Yukawa couplings. Higher dimensional theories are interesting for
other reasons as well. They allow for intriguing modifications of gravity and give rise to
massive spin-2 fields. Despite many years of study, massive gravity is still a topic of current
research and far from being completely understood. Extra-dimensions provide test cases
for more general theories and can help out in our understanding of massive spin-2 fields.

We choose a particular realization of warped extra-dimensions for our study. To be
concrete, we focused on a simplified version of the well-known Randall-Sundrum model with
a toy matter sector consisting of a scalar with gravitational interactions. The structure
of the matrix elements for KK-graviton production from pairs of scalars in the initial
state are very intricate and we find that individual contributions grow as fast as s3 in the
high energy limit. Taken at face value, this points towards a breakdown of perturbative
unitarity well below the fundamental scale of high dimensional gravity. However, a closer
study reveals that the theory enforces correlations between the graviton (or radion) self-
interactions which conspire to cancel terms that grow faster than s. These correlations can
be interpreted as sum rules for the coefficients of the interactions between gravitational
fields. We proved analytically that they hold in the large µ limit of the Randall-Sundrum
model. Thus the validity of the theory is restored once the full KK-tower is included in the
calculations. Similar results have been obtained in studies of KK-graviton scattering both in
warped extra-dimensions and other geometries [15, 26]. These works found sum rules that
relate the coefficients of the gravitation three-point interaction to the four point vertices.
We find a separate set of sum rules that connect the graviton and radion interactions to
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the coupling with matter fields thus complementing earlier work. This is interesting from a
purely theoretical perspective since it adds a second set of conditions for a realistic theory.
In addition, our results are also relevant to phenomenological studies. For example, we
expect effects in the production of gravitationally interacting dark matter that we intend
to study in a forthcoming publication.
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A Lagrangian expansion

We present the results of the weak-field expansion of the metric

ds2 = A(z)2
(
e−2û(ηµν + κ ĥµν)dxµdxν − (1 + 2û)2dz2

)
, (A.1)

where the coordinate z is related to y through

dz = A(y)−1dy ,
∂

∂z
= A(y) ∂

∂y
(A.2)

and where we have defined κ ≡ 2
M

3/2
5

and û as

û(x, y) ≡ κ r̂(x)
2
√

6
e2k|y| . (A.3)

We also adopt the notation ∂µ ≡,µ and ∂z ≡ ′. In this coordinate, eq. (2.12) reads
d

dz

[
A(z)3dψn

dz

]
= A2(3A′ψ′n +Aψ′′n) = −m2

nA
3ψn . (A.4)

For completeness, we first report the volume elements of the bulk
√
G=A5

[
1+κ

(1
2 ĥ−

r̂√
6A2

)
+κ2

(
− r̂ĥ

2
√

6A2−
1
4 ĥ

λµĥµλ+ 1
8 ĥ

2
)

+ (A.5)

+κ3
(
r̂ĥλµĥµλ

4
√

6A2 −
ĥ2r̂

8
√

6A2 + 1
6 ĥ

λµĥνλĥ
ν
µ−

1
8 ĥĥ

µν ĥνµ+ 1
48 ĥ

3+ r̂3

9
√

6A6

)]
+O(κ4) ,

where ĥ ≡ ηµν ĥµν , and of the branes:

√
−gUV/IR =A4

1+κ

1
2 ĥ−

√
2
3 r̂

A2

+κ2
(
− r̂ĥ√

6A2−
1
4 ĥ

λµĥµλ+ 1
8 ĥ

2+ r̂2

3A4

)
+ (A.6)

+κ3

 r̂ĥλµĥµλ
2
√

6A2 −
r̂ĥ2

4
√

6A2 + r̂2ĥ

6A4 + 1
6 ĥ

λµĥνλĥ
ν
µ−

1
8 ĥĥ

µν ĥνµ+ 1
48 ĥ

3−

√
2
3 r̂

3

9A6

+

+O(κ4) .
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In the following we use a rescaled expansion parameter κ̃ ≡ 1
2κ. We are going to present

the expansion of LIR to O(κ̃2) and of the RS-action up to O(κ̃3).

A.1 LIR-expansion

The IR-Lagrangian is given by

LIR =
√
−gIR

[1
2g

µν
IR∂µφ∂νφ−

1
2m

2
φφ

2
]

(A.7)

We can expand the brane metric gIR and obtain the expansion

LIR = L(0)
IR + κ̃L(1)

IR + κ̃2L(2)
IR +O(κ̃3) (A.8)

First order. The Lagrangian at first order is given by

L(1)
IR = L(1)

IR (ĥ) + L(1)
IR (r̂) , (A.9)

with

L(1)
IR (ĥ) = 1

2
[
−m2

φĥφ
2 + φ,µ(ĥφ,µ − 2ĥµνφ,ν)

]
,

L(1)
IR (r̂) = 1√

6
r̂(2m2

φφ
2 − φ,µφ,µ) .

(A.10)

Second order. At second order the expanded IR-Lagrangian is given by

L(2)
IR = L(2)

IR (ĥ2) + L(2)
IR (ĥr̂) + L(2)

IR (r̂2) , (A.11)

with

L(2)
IR (ĥ2) = 1

4
[
m2
φφ

2(2ĥµν ĥνµ−ĥ2)+φ,µ(−2ĥνλĥλνφ,µ+ĥ2φ,µ+8ĥµλĥλνφ,ν−4ĥµν ĥφ,ν)
]
,

L(2)
IR (ĥr̂) = 1√

6
r̂(2m2

φĥφ
2+φ,µ(−ĥφ,µ+2ĥµνφ,ν)) ,

L(2)
IR (r̂2) = 1

6 r̂
2(−4m2

φφ
2+φ,µφ,µ) . (A.12)

A.2 Bulk-expansion

We expand the bulk Lagrangian as

L ⊂ L2 + κ̃ L3 +O(κ̃2) , (A.13)

where L already includes the prefactors of the action and the determinant of the metric,
i.e. L = 1

2
√
GM3

5R, such that

SRS =
∫
d4x

zIR∫
−zIR

dz
(
L −
√
GM3

5 ΛB
)
. (A.14)

To make the discussion more clear and ordered, the Lagrangian will be separated in two
parts depending on whether they contain 5D-derivatives or not; these will be denoted LA
and LB, respectively. Also some other terms are generated in the expansion; these are
responsible for the vacuum energies cancellations and we do not report them here. We
separate each piece further depending on how many ĥ and r̂ fields they include.
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Second order: L2 = L2(ĥ2) + L2(ĥr̂) + L2(r̂2).

• L2(ĥ2):

LA2 (ĥ2) = 1
2A

3
[
ĥ�ĥ− ĥµν�ĥµν − 2ĥĥµν,µν + 2ĥµν ĥρν,ρµ

]
,

LB2 (ĥ2) = −1
2A

2
[
ĥ
(
3ĥ′A′ +Aĥ′′

)
− ĥµν

(
3ĥ′µνA′ +Aĥ′′µν

)]
.

(A.15)

• L2(ĥr̂):

LA2 (ĥr̂) = 0 ,
LB2 (ĥr̂) = 0 .

(A.16)

• L2(r̂2):

LA2 (r̂2) = 1
2A r̂,λr̂,λ ,

LB2 (r̂2) = 0 .
(A.17)

Third order: L3 = L3(ĥ3) + L3(ĥ2r̂) + L3(ĥr̂2) + L3(r̂3).

• L3(ĥ3):

LA3 (ĥ3) =A3
[

1
2 ĥµν ĥρσĥ

ρσ,µν− 1
2 ĥĥµν ĥ

,µν−2ĥµν ĥ,µĥρν ,ρ−ĥµν ĥνρĥ,µσσρ+ĥµν ĥρσ,µĥνρ,σ

− 1
4 ĥĥ

µν�ĥµν+ 3
4 ĥµν ĥ

µν,ρĥ,ρ+ 1
2 ĥµν ĥ

νρ�ĥµρ−
1
2 ĥµν ĥρσ

,ρĥµν,σ+ 1
2 ĥĥνρ,µĥ

µρ,ν

−ĥĥµν,µĥνρ,ρ+ 1
8 ĥ

2�ĥ
]
,

LB3 (ĥ3) =A2
[
− 1

4 ĥ
2
(
3ĥ′A′+Aĥ′′

)
+ 3

4 ĥµν ĥ
µν
(
3ĥ′A′+Aĥ′′

)
+ 1

2 ĥ
µν ĥ

(
3ĥ′µνA′+Aĥ′′µν

)
−ĥµλĥνµ

(
3ĥ′νλA′+Aĥ′′νλ

)]
. (A.18)

• L3(ĥ2r̂):

LA3 (ĥ2r̂) = 0 ,

LB3 (ĥ2r̂) = A3
√

3
2
r̂

A2

[
ĥµν ′ĥ′µν − (ĥ′)2

]
.

(A.19)

• L3(ĥr̂2):

LA3 (ĥr̂2) = 1
A

[
ĥµν r̂r̂

,µν − 1
6 ĥµν

,µν r̂2 − 1
2 ĥr̂�r̂ −

1
12�ĥr̂

2
]
,

LB3 (ĥr̂2) = 0 .
(A.20)

• L3(r̂3):

LA3 (r̂3) = −
√

2
3
r̂ r̂,µr̂,µ
A3 ,

LB3 (r̂3) = 0 .
(A.21)
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B Feynman rules

List of the Feynman rules that are relevant for the considered processes. At the vertex all
momenta are taken to be directed inwards.

Propagators:

= i

k2 −m2
φ

, (B.1)

= i

k2 −m2
r

, (B.2)

= iPµναβn (k)
k2 −m2

n

, (B.3)

where

Pnµναβ(p) ≡
∑
s

εsµν(p)εsαβ(p)∗ = 1
2

(
GµαGνβ +GναGµβ −

2
3GµνGαβ

)
,

with Gµν ≡ ηµν −
pµpν
m2
n

.

(B.4)

B.1 Vertices

For convenience, we define the quantity:

Cµναβ ≡ ηµαηνβ + ηµβηνα − ηµνηαβ . (B.5)

With this:

Aµναβικ≡ηαιCβκµν+ηακCβιµν+ηαµCβνικ+ηανCβµικ−2ηµνCαβικ−ηαβ(ηινηκµ+ηιµηκν) ,

(B.6)
Bµναβικ[k]≡−Cικαβkµkν−2Cµναβkιkκ−2Cµνικkαkβ

+
(
−ηβκηµνkα−ηακηµνkβ+Cβκµνkα+Cακµνkβ

)
kι

+
(
−ηβιηµνkα−ηαιηµνkβ+Cβιµνkα+Cαιµνkβ

)
kκ

+
(
Cβµικkα+Cαµικkβ+Cαβκµkι+Cιµαβkκ

)
kν

+
(
Cβνικkα+Cανικkβ+Cαβκνkι+Cιναβkκ

)
kµ

−
(
Aµναβικ+2ηµνCαβικ+ηαβηικηµν

)
k2 , (B.7)
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Cµναβικ[k,p]≡
(
Cβκµνpι+Cβιµνpκ+Cβνικpµ+Cβµικpν−2Cικµνpβ−pκηβιηµν−pιηβκηµν

)
kα

+(Cακµνpι+Cαιµνpκ+Cανικpµ+Cαµικpν−2Cικµνpα−pκηαιηµν−pιηακηµν)kβ

+
(
Cαβκνpµ+Cαβκµpν+2Cµνβκpα+2Cακµνpβ−3Cαβµνpκ−ηαβηκνpµ

)
kι

+
(
Cαβινpµ+Cαβιµpν+2Cµνβιpα+2Cαιµνpβ−3Cαβµνpι−ηαβηινpµ

)
kκ

−ηαβ ((ηκµpν+ηµνpκ)kι+(ηιµpν+ηµνpι)kκ)

−2
(
−Cικβνpα−Cικανpβ−Cαβκνpι−Cιναβpκ+Cικαβpν

)
kµ

−2
(
−Cικβµpα−Cικαµpβ−Cαβκµpι−Cιµαβpκ+Cικαβpµ

)
kν

−(k ·p)
(
3Aµναβικ+7ηµνCαβικ+3ηµνηαβηικ+ηαβ (ηκµηιν+ηιµηκν)

)
. (B.8)

B.1.1 Vertices involving only RS particles

= i
χnmk
4Λ

[
Aµναβικm2

n +Aαβµνικm2
m +Aικµναβm2

k

+4
(
Bµναβικ[k1] + Bαβµνικ[k2] + Bικµναβ [k3]

)
+2
(
Cµναβικ[k1, k2] + Cµνικαβ [k1, k3] + Cαβικµν [k2, k3]

)]
.

(B.9)

=
i
√

3
2e
−πµµχ̃nkr

(
−2ηαβηµν + ηαµηβν + ηανηβµ

)
Λrc

. (B.10)

= iχnrr
3Λ

(
2(k2

1 + k2
2)ηµν + (k1 · k2) ηµν + kµ1 (kν2 − 2kν1 )

+kµ2 (kν1 − 2kν2 )) .
(B.11)

= −
i
√

2
3
(
k2

1 + k2
2 + k2

3
)
χrrr

Λ . (B.12)
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B.1.2 Vertices involving φ

=
i
(
Cµναβp1αp2β − ηµνm2

φ

)
Λ . (B.13)

=
i
√

2
3

(
p1 · p2 + 2m2

φ

)
Λ . (B.14)

= − i

Λ2

(
−m2

φC
µναβ + pα1

(
−ηµνpβ2 + pµ2η

βν + pν2η
βµ
)

+pβ1 (−ηµνpα2 + pµ2η
αν + pν2η

αµ) + pα2 p
µ
1η

βν + pβ2p
µ
1η

αν

−pµ1p
ν
2η
αβ + pα2 p

ν
1η
βµ + pβ2p

ν
1η
αµ − pµ2p

ν
1η
αβ

− (p1 · p2) ηανηβµ − (p1 · p2) ηαµηβν + (p1 · p2) ηαβηµν
)
.

(B.15)

= −
i
√

2
3

(
−ηµν

(
p1 · p2 + 2m2

φ

)
+ pµ1p

ν
2 + pµ2p

ν
1

)
Λ2 .

(B.16)

= −
2i
(
p1 · p2 + 4m2

φ

)
3Λ2 . (B.17)
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