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In this paper we demonstrate that the different generalizations of the Schwarzians, supersymmetric or
purely bosonic, can be easily constructed by using the nonlinear realizations technique.
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I. INTRODUCTION

The Schwarzian derivative (1), or just the Schwarzian,
appears in apparently unrelated fields of mathematics:
from classical complex analysis to integrable systems
[1]. In contrast, in physics the Schwarzian appears
either in the transformation properties of the conformal
(supersymmetric) stress tensor [2,3] or arises as the low
energy limit of the Sachdev-Ye-Kitaev (SYK) model [4].
Schwarzian also appeared as a quantum correction in
Hamiltonians of some supersymmetric mechanic models
[5]. Therefore, it is not strange that the possible
generalizations of the Schwarzian are mainly related
to its supersymmetric extensions where the supersym-
metric Schwarzian naturally appears in the superconfor-
mal transformations of the supercurrent [3,6–8].
However, this generalization quickly stops at N ¼ 4
supersymmetry due to appearance of components with
negative conformal dimension in the current superfield
JðNÞ for N > 4. In addition, the recent construction of
the “flat space” version of the Schwarzian [9,10] raised
the question about the existence of the systematic way to
build the generalized (bosonic ones or possessing higher
N > 4 supersymmetries) Schwarzians.
The treatment of the supersymmetric Schwarzians as

the anomalous terms in the transformations of the
currents superfield JðN ÞðZÞ [3] leads to the conclusion
that the structure of the (super-)Schwarzians is completely
defined by the conformal symmetry and, therefore, it
should exist a different, probably purely algebraic, way
to define the (super-)Schwarzians. The main property of the
(super-)Schwarzians that defines their structure is their

invariance with respect to (super)conformal transforma-
tions. The suitable way to construct (super)conformal
invariants is the method of nonlinear realizations [11,12]
equipped with the inverse Higgs phenomenon [13].
However, the natural invariant objects in the nonlinear
realization approach are the Cartan forms, which contain
the differentials of the coordinates of the (super)space with
nontrivial transformation properties. Thus, an additional
question concerns the implementation of the inert (super)
coordinates in the nonlinear realization approach.
This method was first applied to the slð2Þ algebra in [14]

to obtain the standard Schwarzian and then extended to
different superconformal algebras in [15–18]. Later on, this
approach has been applied to the cases of nonrelativistic
Schwarzians and Carroll algebra [19]. It should be noted
that the constraints proposed in these papers look like the
results of an illuminating guess. Moreover, in some practi-
cally interesting cases the proposed constraints are too
strong to set the recovered supersymmetric Schwarzian
as a constant.
In two of our papers [20,21] the method proposed in [14]

was modified in two directions. First, we introduced the
“inert superspace” as the coordinates of the independent
“inert” coset elements. Second, the constraints were
imposed on the full Cartan forms by either nullifying them
or identifying with the “inert superspace” forms. This last
feature gives us the possibility to invoke into the game the
powerful method of the Maurer-Cartan equations to ana-
lyze the consequences of the constraints, which drastically
simplifies calculations.
In this paper, we apply the proposed approach to

construct some new generalized Schwarzians. After a short
review of the basic steps of our approach in Sec. II, we will
construct

(i) A “flat space” variant of the Schwarzian (Sec. III),
(ii) A bosonic variant of the Schwarzian with suð1; 2Þ

symmetry (Sec. IV), and
(iii) Schwarzians with N -extended supersymmetry

(Sec. V).
We conclude in the Sec. VI with some interesting but
unsolved at the moment questions and hypotheses.
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II. SKETCH OF THE IDEA

Before getting to the main results of our paper, let us
illustrate how the method of nonlinear realizations works
when applied to the Schwarzians in two simpler examples:
the standard bosonic Schwarzian (N ¼ 0 case) and one of
supersymmetric Schwarzians (N ¼ 2 case).

A. N = 0 case

The Schwarzian derivative ft; τg is defined by the
relation

ft; τg ¼ t
…

_t
−
3

2

�̈
t
_t

�
2

; _f ¼ ∂τf: ð1Þ

Its famous property is the invariance with respect to
SLð2; RÞ Möbius transformations, acting on t:

t0 ¼ atþ b
ctþ d

⇒ ft0; τg ¼ ft; τg: ð2Þ

Note that the “time” τ is invariant with respect to these
SLð2; RÞ transformations.
The action of the bosonic Schwarzian mechanics (see,

e.g., [4])

Sschw½t� ¼ −
1

2

Z
dτft; τg ð3Þ

leads to the following equation of motion

d
dτ

ft; τg ¼ 0 ⇒ ft; τg ¼ 2m2 ¼ const: ð4Þ

As SLð2; RÞ transformations of t are involved, it is
natural to look at this system from the nonlinear realization
viewpoint. Indeed, one can consider the slð2; RÞ algebra,
spanned by the Hermitian generators P, D, K

i½D;P� ¼ P; i½D;K� ¼ −K; i½K;P� ¼ 2D ð5Þ

and parametrize the group element in the following way:

g ¼ eitPeizKeiuD: ð6Þ

This parametrization is similar to one used in the con-
struction of the conformal mechanics [22], when P, D, and
K generate time translations, dilatations, and conformal
boosts, respectively. Then the Cartan forms, invariant with
respect to left multiplication g0 ¼ g0g, read

g−1dg ¼ iωPPþ iωDDþ iωKK ⇒ ωP ¼ e−udt;

ωD ¼ du − 2zdt; ωK ¼ euðdzþ z2dtÞ: ð7Þ

The infinitesimal slð2; RÞ transformations

g0 ¼ eiðãPþb̃Dþc̃KÞ ⇒ δt ¼ ãþ b̃tþ c̃t2;

δu ¼ d
dt

δt; δz ¼ 1

2

d
dt

δu −
d
dt

δtz ð8Þ

are just the ones expected for t (2).
If one continues this way, treating t as time and u and z

as functions of t, imposing a covariant condition ωD ¼ 0
would result in the elimination of z as an independent
variable, z ¼ 1

2
du
dt . (This is a manifestation of the inverse

Higgs phenomenon [13].) Then one can obtain the action of
conformal mechanics as [22]

Scf ¼ −
Z

ðωK þm2ωPÞ

¼
Z

dt

�
1

4
eu
�
du
dt

�
2

−m2e−u
�

¼
Z

dt

��
dx
dt

�
2

−
m2

x2

�
; x ¼ eu=2: ð9Þ

Note that the equation of motion that follows from the
action (9)

−eu
�
1

2

d2

dt2
uþ 1

4

�
du
dt

�
2
�
þm2e−u ¼ 0 ð10Þ

can be rewritten as the constraint on the Cartan forms [22]

ωK −m2ωP ¼ 0: ð11Þ

Thus the Schwarzian mechanics are essentially the con-
formal mechanics rewritten in the new coordinates.
The Cartan forms in (7) are invariant with respect to

slð2; RÞ transformations (8), while the time variable t
transforms according to (2), (8). At this point one may
impose our main condition [14,15,20]

ωP ¼ e−udt ¼ dτ; ð12Þ
where τ is a new invariant “time,” which is completely inert
under slð2; RÞ transformations. Treating now t, u, z as the
functions of τ, one can express the Goldstone fields u and z
in terms of _t, ̈t

u¼ log _t; ωD¼du−2zeudτ¼0⇒ z¼1

2
e−u _u¼ ẗ

2_t2
: ð13Þ

Putting these relations into the remaining form ωK , one
immediately obtains that it is proportional to the
Schwarzian ft; τg:

ωK ¼ 1

2
dτ

�
ü −

1

2
_u2
�
¼ 1

2

�
t
…

_t
−
3

2

�̈
t
_t

�
2
�
dτ ¼ 1

2
dτft; τg:

ð14Þ
The Schwarzian action is, obviously, Sschw ¼ −

R
ωK .
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B. N = 2 case

This idea can be straightforwardly generalized to
the supersymmetric case. To obtain supersymmetric
Schwarzians, we should consider the proper superalgebra,
which differs from (5) by the presence of supercharges Qi,
superconformal charges Si, and, possibly, internal symmetry
generators Jij. Then one should introduce the superconfor-
mally inert superspace coordinates τ and θ using the relations

ωP ¼ △τ; ðωQÞi ¼ dθi; ð15Þ

where the forms △τ and dθi are invariant with respect
to standard superspace transformations δτ ∼ ϵθ, δθ ∼ ϵ.
After imposing the condition ωD ¼ 0 also, one realizes that
the remaining forms are composed of supersymmetric
Schwarzians and their derivatives. As one of the
simplest examples, let us consider N ¼ 2 Schwarzian
mechanics [15,20].
In the case of N ¼ 2 supersymmetry we start from

N ¼ 2 superconformal algebra suð1; 1j1Þ with the follow-
ing (anti)commutation relations

i½D;P� ¼ P; i½D;K� ¼ −K; i½K;P� ¼ 2D;

fQ; Q̄g ¼ 2P; fS; S̄g ¼ 2K; fQ; S̄g ¼ −2Dþ 2J; fQ̄; Sg ¼ −2D − 2J;

i½J;Q� ¼ 1

2
Q; i½J; Q̄� ¼ −

1

2
Q̄; i½J; S� ¼ 1

2
S; i½J; S̄� ¼ −

1

2
S̄;

i½D;Q� ¼ 1

2
Q; i½D; Q̄� ¼ 1

2
Q̄; i½D; S� ¼ −

1

2
S; i½D; S̄� ¼ −

1

2
S̄;

i½K;Q� ¼ −S; i½K; Q̄� ¼ −S̄; i½P; S� ¼ Q; i½P; S̄� ¼ Q̄: ð16Þ

We parametrize the SUð1; 1j1Þ group element in the following way:

g ¼ eitPeξQþξ̄ Q̄eψSþψ̄ S̄eizKeiuDeϕJ: ð17Þ

The Cartan forms

g−1dg ¼ iωPPþ ωQQþ ω̄QQ̄þ iωDDþ ωJJ þ ωSSþ ω̄SS̄þ iωKK ð18Þ

explicitly read

ωP ≡ e−u△t ¼ e−uðdtþ iðdξ̄ξþ dξξ̄ÞÞ;
ωQ ¼ e−

u
2
þiϕ

2ðdξþ ψ△tÞ; ω̄Q ¼ e−
u
2
−iϕ

2ðdξ̄þ ψ̄△tÞ;
ωD ¼ du − 2z△t − 2iðdξψ̄ þ dξ̄ψÞ;ωJ ¼ dϕ − 2ψψ̄△tþ 2ðdξ̄ψ − dξψ̄Þ;
ωS ¼ e

u
2
þiϕ

2ðdψ − iψψ̄dξþ zðdξþ ψ△tÞÞ;
ω̄S ¼ e

u
2
−iϕ

2ðdψ̄ þ iψψ̄dξ̄þ zðdξ̄þ ψ̄△tÞÞ;
ωK ¼ euðdzþ z2△t − iðψdψ̄ þ ψ̄dψÞ þ 2izðdξψ̄ þ dξ̄ψÞÞ: ð19Þ

Now we impose the following conditions on the forms ωP,
ωQ, ωD (19):

ωP ¼ △τ; ωQ ¼ dθ; ω̄Q ¼ dθ̄; ωD ¼ 0: ð20Þ

Here, △τ ¼ dτ þ iðdθθ̄ þ dθ̄θÞ. The forms △τ, dθ, dθ̄
are invariant with respect to N ¼ 2 supersymmetry
transformations

δτ ¼ iðϵθ̄ þ ϵ̄θÞ; δθ ¼ ϵ; δθ̄ ¼ ϵ̄: ð21Þ

Covariant derivatives with respect to τ, θ, θ̄ are

D¼ ∂

∂θ
− iθ̄

∂

∂τ
; D̄¼ ∂

∂θ̄
− iθ

∂

∂τ
; fD;D̄g ¼−2i∂τ: ð22Þ

The constraints on the Cartan forms (20), expanded in
projections △τ, dθ, dθ̄ with the help of (22), are

_tþ ið _̄ξξþ _ξ ξ̄Þ ¼ eu; z ¼ 1

2
e−u _u

_ξþ euψ ¼ 0; Dξ ¼ e
1
2
ðu−iϕÞ; D̄ξ ¼ 0;

_̄ξþ euψ̄ ¼ 0; D̄ ξ̄ ¼ e
1
2
ðuþiϕÞ; Dξ̄ ¼ 0: ð23Þ
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Using (23), we express all Cartan forms in the terms of
N ¼ 2 Schwarzian

SN¼2 ¼
D_ξ

Dξ
−
D _̄ξ

D̄ ξ̄
− 2i

_ξ _̄ξ

DξD̄ ξ̄
ð24Þ

as

ωJ ¼ iSN¼2△τ;

ωS ¼ −
1

2
SN¼2dθ −

i
2
D̄SN¼2△τ;

ω̄S ¼
1

2
SN¼2dθ̄ þ

i
2
DSN¼2△τ;

ωK ¼ −
1

2
dθDSN¼2 þ

1

2
dθ̄ D̄SN¼2

þ 1

4
△τði½D; D̄�SN¼2 − S2

N¼2
Þ: ð25Þ

Note that the same conclusion about the structure of the
forms can be achieved by the analysis of Maurer-Cartan
equations the forms of (18) satisfy. We will use such
equations in Sec. V to study a system with N super-
symmetries.
The constructed N ¼ 2 Schwarzian (24) is invariant

with respect to superconformal transformations that
explicitly read

g0 ¼ eϵQþϵ̄ Q̄eεSþε̄ S̄g ⇒

8>><
>>:

δt ¼ iðϵ̄ξþ ϵξ̄Þ − itðε̄ξþ εξ̄Þ
δξ ¼ ϵ − εtþ iεξξ̄

δξ̄ ¼ ϵ̄ − ε̄t − iε̄ξξ̄

:

ð26Þ

Thus one can construct the supersymmetric Schwarzian
action as

SN2schw ¼ −
i
2

Z
dτ dθ dθ̄ SN¼2

¼ −
1

2

Z
ωJ ∧ ωQ ∧ ω̄Q

¼ i
Z

ωP ∧ ωS ∧ ω̄Q

¼ −i
Z

ωP ∧ ωQ ∧ ω̄S: ð27Þ

It is matter of a quite lengthy calculation to check that the
equations of motion that follow from the action (27) can be
written as

d
dτ

SN¼2 ¼ 0 ⇒ SN¼2 ¼ const ¼ −2m: ð28Þ

Looking at the Cartan forms (25), one may note that
Eq. (28) reduces them to the forms on the subalgebra that
were formed by the following generators:

R ¼ Pþm2K − 2imJ; Γ ¼ Qþ imS;

Γ̄ ¼ Q̄ − imS̄; fΓ; Γ̄g ¼ 2R: ð29Þ

The reduction of the Cartan forms on the algebra suð1; 1j1Þ
to the forms on the subalgebra (29) is the key ingredient of
the covariant reduction used in [23] to construct N ¼ 2

superconformal mechanics. Thus, in the N ¼ 2 super-
symmetric case the Schwarzian mechanics is nothing but
the superconformal mechanics written in the superfields
ft; ξ; ξ̄g depending on the coordinates of the inert super-
space fτ; θ; θ̄g. Unfortunately, this relation does not work
beyond the N ¼ 2 case with m ≠ 0.

III. FLAT SPACE ANALOG
OF THE SCHWARZIAN

As the first example of the generalized Schwarzian in
this section we will consider the use nonlinear realizations
to construct the so-called flat space analog of the
Schwarzian. The latter was discovered in [9] by study of
coadjoint orbits of product of Virasoro group with func-
tions on the circle. Later it was found [10] to play a role in
the holographic description of two-dimensional gravity in
flat space, just like the original Schwarzian, which is related
to the Sachdev-Ye-Kitaev model that provides a holo-
graphic dual to the Jackiw-Teitelboim gravity [24,25] in
anti–de Sitter space.
The Schwarzian appearing in [9,10] is connected to

the Maxwell algebra. The latter contains the Hermitian
generators of translation P, the analog of the dilatation-
central-charge generator Z, the analog of the conformal
boost K, and the generator of Uð1Þ rotations obeying the
following relations:

i½J; P� ¼ P; i½J; K� ¼ −K; i½K;P� ¼ 2Z: ð30Þ

If we parametrize the Maxwell group element g as

g ¼ eitðPþqJþm2KÞeizKeiuZeiϕJ; ð31Þ

then the Cartan forms

g−1dg ¼ iωPPþ iωZZ þ iωKK þ iωJJ ð32Þ

will read

ωP ¼ e−ϕdt; ωZ ¼ du − 2zdt;

ωK ¼ eϕðdz − qzdtþm2dtÞ; ωJ ¼ dϕ: ð33Þ
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The constraints

ωP ¼ dτ; ωZ ¼ 0 ð34Þ

result in the following relations:

_t ¼ eϕ; z ¼ _u
2_t
: ð35Þ

Finally,

ωK ¼ dτ _t

�
1

2

�
ü
_t
−

_u ̈t
_t2

�
þm2_t −

1

2
q _u

�
≡ dτSflat: ð36Þ

This is exactly the flat space analog of the Schwarzian
constructed in [9,10]

S ∼
Z

ωK:

It is possible that other related Schwarzian actions, such as
one combining standard and flat Schwarzians [26] or the
supersymmetric version of the flat action [27] can also be
obtained in algebraic way.

IV. SCHWARZIAN WITH suð1;2Þ SYMMETRY

In this section wewill consider the bosonic version of the
N ¼ 2 superconformal mechanics system with suð1; 2Þ
symmetry.
The suð1; 2Þ algebra includes the following generators:
(i) The generators P,D,K, forming slð2;RÞ subalgebra.
(ii) The generators Q; Q̄, and S; S̄: the bosonic analogs

of the supersymmetric and conformal supersym-
metry generators.

(iii) Uð1Þ generator U.
The generators P, D, K, and U are Hermitian, while the Q
and S generators obey the conjugation rules ðQÞ† ¼
Q̄; ðSÞ† ¼ S̄. The nonzero commutators read

i½P;K� ¼ −2D; i½P;D� ¼ −P; i½K;D� ¼ K;

i½P; S� ¼ −Q; i½P; S̄� ¼ −Q̄; i½K;Q� ¼ S; i½K; Q̄� ¼ S̄;

i½D;Q� ¼ 1

2
Q; i½D; Q̄� ¼ 1

2
Q̄; i½D; S� ¼ −

1

2
S; i½D; S̄� ¼ −

1

2
S̄;

½U;Q� ¼ Q; ½U; Q̄� ¼ −Q̄; ½U; S� ¼ S; ½U; S̄� ¼ −S̄;

½Q; Q̄� ¼ −γP; i½Q; S̄� ¼ −
3

2
γU − iγD; ½S; S̄� ¼ −γK; i½S; Q̄� ¼ 3

2
γU − iγD: ð37Þ

We parametrize the group element in a standard way as

g ¼ eitPeiðϕQþϕ̄ Q̄ÞeiðvSþv̄ S̄ÞeizKeiuDeiφU: ð38Þ
The Cartan forms read

ωP ¼ e−u
�
dtþ i

2
γðϕdϕ̄ − ϕ̄dϕÞ

�
≡ e−u△t;

ωD ¼ du − iγðv̄dϕ − vdϕ̄Þ − 2z△t;

ωK ¼ eu
�
dzþ

�
z2 þ γ2

4
v2v̄2

�
△t − iγzðvdϕ̄ − v̄dϕÞ þ i

2
γðvdv̄ − v̄dvÞ − γ2

2
vv̄ðvdϕ̄þ v̄dϕÞ

�

ωQ ¼ e−
u
2
−iφ½dϕ − v△t�; ω̄Q ¼ e−

u
2
−iφ½dϕ̄ − v̄△t�;

ωS ¼ e
u
2
−iφ

�
dv −

�
zþ i

2
γvv̄

�
ðdϕ − v△tÞ − iγv2dϕ̄

�
;

ω̄S ¼ e
u
2
þiφ

�
dv̄ −

�
z −

i
2
γvv̄

�
ðdϕ̄ − v̄△tÞ þ iγv̄2dϕ

�
;

ωU ¼ dφ −
3

2
γðvdϕ̄þ v̄dϕ − vv̄△tÞ: ð39Þ

The constraints we are going to impose are of three different types:
(i) The constraints that introduce the inert “time” τ: ωP ¼ dτ.
(ii) The constraints realizing the inverse Higgs phenomenon [13]: ωD ¼ ωQ ¼ ω̄Q ¼ 0.
(iii) The dynamical constraints that produce the equations of motion: ωK ¼ ωS ¼ ω̄S ¼ 0.
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The results of two first constraints are

_tþ i
2
γðϕ _̄ϕ − ϕ̄ _ϕÞ ¼ eu; v ¼ e−u _ϕ;

v̄ ¼ e−u _̄ϕ; z ¼ 1

2
e−u _u: ð40Þ

The dynamical constraints give the following equations
of motion:

ϕ̈ ¼ _u _ϕþie−uγ _ϕ2 _̄ϕ; ̈ϕ̄ ¼ _u _̄ϕ−ie−uγ _ϕ _̄ϕ
2
;

ü ¼ 1

2
ð _u2 − e−2uγ2 _ϕ2 _̄ϕ

2Þ: ð41Þ

To get the Schwarzian-like system one has to pass from the
variable u to the “old” time t (40). The result

t
… þ iγ

2
ð _ϕ ̈ϕ̄− _̄ϕ ϕ̈þϕϕ̄

…

− ϕ̄ ϕ
…
Þ

_tþ iγ
2
ðϕ _̄ϕ − ϕ̄ _ϕÞ

−
3

2

ð̈tþ iγ
2
ðϕ ̈ϕ̄ − ϕ̄ ϕ̈ÞÞ2

ð_tþ iγ
2
ðϕ _̄ϕ − ϕ̄ _ϕÞÞ2

¼ −
1

2

γ2 _ϕ2 _̄ϕ
2

ð_tþ iγ
2
ðϕ _̄ϕ − ϕ̄ _ϕÞÞ2

ð42Þ

is somewhat complicated, but it evidently generalizes the
equation of motion of the standard Schwarzian mechanics

t
…

_t
−
3

2

�̈
t
_t

�
2

¼ 2m2: ð43Þ

V. SCHWARZIANS WITH HIGHER (N > 4)
SUPERSYMMETRY

It has been well known for a long time that the super-
symmetric Schwarzians appear in the transformations of
the current superfield JðNÞðZÞ under N -extended super-
conformal algebra [3]. In fact, such an appearance of the
supersymmetric Schwarzians can be considered as their
definition. However, N extended superconformal theories
have the natural upper bound N ¼ 4, since for N > 4 the

current superfield JðNÞðZÞ has components with negative
conformal dimension. In the series of the previous
papers [20,21] and related but using a slightly different
approach [15,16], all such N ¼ 4 super-Schwarzians were
reproduced. As expected, they coincide with the
Schwarzians from the seminal paper by K. Schoutens [3].
However, the approach developed in [15,16,20,21], and

which we advocated here, does not possess the upper
bound on the number of supersymmetries. So, it is natural
to try to construct some analogs of the Schwarzian with
higher N > 4 supersymmetry. Alas, our first attempts in
this direction were failures. The analysis of the super-
algebras ospð4⋆j4Þ, and suð1; 1jN =2 > 2Þ leads to the
conclusion that, as a result of standard constraints imposed
on the differential forms

ωP¼△τ; ðωQÞα¼dθα; ðω̄QÞα¼dθ̄α; ωD¼0; ð44Þ

all others, in contrast to the already studied cases with
N ≤ 4, are put to zero leaving no room for the Schwarzians
in the standard sense. Instead, in such an approach we
obtain a set of higher-order differential equations on the
fields involved, which can be treated as describing some
dynamical (and quite possibly integrable) system. Though
discussion of these dynamical systems is beyond the scope
of this paper, let us note that there exists at least one
possibility when the standard constraints are not strong
enough to put the Schwarzian to zero for N ≥ 4. It is
given by the series of ospðN j2Þ superalgebras, which we
discuss in detail.

A. Superalgebra ospðN j2Þ
The bosonic part of the superalgebra ospðN j2Þ contains

among the subgroups slð2Þ × soðN Þ with the generators
ðP;D;KÞ and Jij¼−Jji;i;j¼1;2;…;N , respectively [28].
The fermionic part of this algebra includes 2 ·N fermionic
generatorsQi, Si forming the vectors with respect to soðN Þ
algebra and doublet with respect to slð2Þ subalgebra. The
commutation relations have a rather compact form:

½D;P� ¼ −iP; ½D;K� ¼ iK; ½P;K� ¼ 2iD;

½D;Qi� ¼ −
i
2
Qi; ½D; Si� ¼

i
2
Si; ½K;Qi� ¼ iSi; ½P; Si� ¼ −iQi;

fQi;Qjg ¼ 2δijP; fSi; Sjg ¼ 2δijK; fQi; Sjg ¼ −2δijDþ Jij;

½Jij; Jkl� ¼ iðδikJjl − δjkJil − δilJjk þ δjlJikÞ;
½Jij; Qk� ¼ iðδikQj − δjkQiÞ; ½Jij; Sk� ¼ iðδikSj − δjkSiÞ: ð45Þ
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The group element can be defined as

g ¼ eitPeξiQieψ iSieizKeiuDeλijJij : ð46Þ

Here, the superfields t, ξi, u, z, ψ i, λij depend on the
coordinates of N -extended superspace τ, θi. Defining the
Cartan forms as

Ω ¼ g−1dg ¼ iωPPþ iωKK þ iωDDþ ðωQÞiQi

þ ðωSÞiSi þ iðωJÞijJij; ð47Þ

one may impose the standard constraints of our
approach [20,21]:

ωP ¼ △τ≡ dτþ idθiθi; ðωQÞi ¼ dθi; ωD ¼ 0: ð48Þ

Here, τ and θi are the coordinates of the “inert” superspace.
The covariant (with respect to the flat N -extended super-
symmetry, generated by Qi and P) differentials△τ and dθi
can be used to define the covariant derivatives as

dA ¼ △τDτAþ dθiDiA; ð49Þ

with

Dτ¼∂τ; Di¼
∂

∂θi
− iθi∂τ⇒fDi;Djg¼−2iδij∂τ: ð50Þ

B. Maurer-Cartan equations

One may explicitly calculate the forms (47) and analyze
the consequences of the constraints (48). However, in
practice this way is a rather cumbersome and involved.
The simplification comes from the evident statement that
our constraints include the Cartan forms themselves, and,
therefore, it makes sense to use the Maurer-Cartan equa-
tions to analyze their consequences.
If the Cartan form Ω is defined as in (47), then by

construction it obeys the Maurer-Cartan equation1

d2Ω1 − d1Ω2 ¼ ½Ω1;Ω2�; Ω1 ¼ Ωðd1Þ; Ω2 ¼ Ωðd2Þ:
ð51Þ

This equation can be expanded into following set
of equations:

iðd2ω1P − d1ω2PÞ ¼ −iðω1Pω2D − ω1Dω2PÞ − 2ðω1QÞiðω2QÞi;
iðd2ω1K − d1ω2KÞ ¼ iðω1Kω2D − ω1Dω2KÞ − 2ðω1SÞiðω2SÞi;
iðd2ω1D − d1ω2DÞ ¼ −2iðω1Pω2K − ω1Kω2PÞ þ 2ðω1QÞiðω2SÞi − 2ðω2QÞiðω1SÞi;

iðd2ðω1JÞij − d1ðω2JÞijÞ ¼ 2iðω1JÞikðω2JÞkj − 2iðω2JÞikðω1JÞkj − ðω1QÞ½iðω2SÞj� þ ðω2QÞ½iðω1SÞj�;

d2ðω1QÞi − d1ðω2QÞi ¼ ω1Pðω2SÞi − ω2Pðω1SÞi þ
1

2
ðω1Dðω2QÞi − ω2Dðω1QÞiÞ þ 2ðω1JÞikðω2QÞk − 2ðω2JÞikðω1QÞk;

d2ðω1SÞi − d1ðω2SÞi ¼ −ω1Kðω2QÞi þ ω2Kðω1QÞi −
1

2
ðω1Dðω2SÞi − ω2Dðω1SÞiÞ þ 2ðω1JÞikðω2SÞk − 2ðω2JÞikðω1SÞk:

ð52Þ

To analyze the consequences of these constraints let us represent other forms in most general way as

ðωSÞi ¼ △τΨi þ dθjAij; ðωJÞij ¼ △τXij þ idθkΣkij; ωK ¼ △τCþ idθiΞi: ð53Þ

Substituting constraints (48) and the anzatz for other forms (53) into Eq. (52), one finds that the dωP equation is satisfied
identically, and the dωQ equation implies that

Aij þ 2Xij ¼ 0; Σkil þ Σlik ¼ 0: ð54Þ

As by definition Σkij ¼ −Σkji, the second equation implies that Σkij is completely antisymmetric. The second dωJ equation
reads

iDkXij þ _Σkij ¼ −2XinΣknj þ 2XjnΣkni þ
1

2
ðδikΨj − δjkΨiÞ;

−2δklXij − δikXjl þ δjkXil − δilXjk þ δjlXik ¼ DkΣlij þDlΣkij − 2iΣkinΣljn − 2iΣlinΣkjn: ð55Þ

1Here, d1 and d2 are mutually commuting differentials, dτ is the commuting bosonic object, while dθ is the anticommuting fermionic
one.
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The dωD equation implies that

2Ξk − 2Ψk ¼ 0; Aij þ Aji ¼ 0: ð56Þ

The second equation is satisfied due to Aij ¼ −2Xij ¼
−2X½ij�. The dωS equation reads

DkΨi − _Aik ¼ −δikCþ 2XijAjk − 2iΣkijΨj;

DlAik þDkAil þ 2iδklΨi

¼ iðδilΞk þ δikΞlÞ − 2iΣkijAjl − 2iΣlijAjk: ð57Þ

Finally, the dωK equation reads

iDkCþ _Ξk ¼ 2ΨiAik;

−2δklC −DkΞl −DlΞk ¼ −2AkmAlm: ð58Þ
Taking into account simple equations (54), (56), one may
note that the second equation (57) is a direct consequence
of the first in (55), and the second equation (58) follows
from the first ones in (57) and (54). Therefore, the really
independent variables are Σijk ¼ Σ½ijk�, Xij ¼ X½ij�, Ψi,
and C. They satisfy the following set of equations:

− 2δklXij − δikXjl þ δjkXil − δilXjk þ δjlXik

¼ DkΣlij þDlΣkij − 2iΣkinΣljn − 2iΣlinΣkjn; ð59Þ

iDkXijþ _Σkij¼−2XinΣknjþ2XjnΣkniþ
1

2
ðδikΨj−δjkΨiÞ;

ð60Þ

DkΨi þ 2 _Xik ¼ −δikC − 4XijXjk − 2iΣkijΨj; ð61Þ

iDkCþ _Ψk ¼ −4ΨiXik: ð62Þ

The first of these equations (59) defines Xij in terms of Σijk
and its derivative. Using this solution and Eq. (59) again,
one can find DkXij and substitute it to the next Eq. (60).
This reduces (60) to terms with δij symbols, which allow
us to find Ψk. Continuing down this road, one can simplify
(61) to find C and check that the last one (62) becomes just
an identity. Therefore, all the superfields Xij, Ψi, C can be
expressed in terms of Σijk satisfying (59). It is remarkable
that this can be done for an arbitrary number of super-
symmetries N . The solution explicitly reads

Xij ¼
1

2 −N
ðDmΣmij − 2iΣimnΣjmnÞ;

Ψi ¼ −
2i

N − 1
ðDlXil þ 2iXmnΣimnÞ;

C ¼ −
1

N
ðDjΨj − 4XmnXmnÞ: ð63Þ

Thus, all the Cartan forms can be expressed in terms
of a unique object: superfield Σijk. This superfield Σijk,

being fully antisymmetric over permutations of the indices,
appeared as the dθ projection of the form ðωJÞij. Due to
these properties, one can call this superfield Σijk as the
supersymmetric N -extended Schwarzian. It satisfies the
nonlinear constraint given by Eq. (59), where Xij is
expressed in terms of Σijk by (63).

C. Explicit form of the supersymmetric
N -extended Schwarzian

From the previous subsection, we see that the super-
symmetricN -extended Schwarzian Σijk we are looking for
appears as a dθ projection of the form ðωJÞij. Thus, the
final task is to express Σijk in terms of the parameters
of the group element (46), depending, in virtue of our
constraints (48), on the coordinates of the flat inert
superspace τ; θi.
The Cartan forms Ω ¼ g−1dg, explicitly calculated for

the group element (46), read

ωP ¼ e−u△t ¼ e−uðdtþ idξjξjÞ;
ðωQÞi ¼ e−u=2ðdξj þ△tψ jÞMji;

ωD ¼ du − 2idξkψk − 2z△t;

ðωSÞi ¼ eu=2ðdψ j þ idξkψkψ j þ zðdξj þ△tψ jÞÞMji;

ωK ¼ euðdzþ z2△tþ idψ jψ j þ 2izdξjψ jÞ;

ðωJÞkl ¼
1

2
ðM−1ÞkmdMml þ

i
2
ðM−1ÞkmðM−1Þnle−uðdξmψn

− dξnψm þ△tψmψnÞ: ð64Þ

Here, the soðN Þ matrix Mij is defined as

Mij¼ðe2λÞij
¼ δijþ2λijþ

4λikλkj
2!

þ8λikλklλlj
3!

þ…;ðM−1Þij¼Mji:

ð65Þ

The constraints (48) imply

_tþ i_ξkξk ¼ eu; Ditþ iDiξkξk ¼ 0;

Dmξk ¼ eu=2ðM−1Þmk; ψ i ¼ −e−u _ξi;

z ¼ 1

2
e−u _u; Diu ¼ 2iDiξjψ j: ð66Þ

Some of these relations define some of the Goldstone
fields in terms of derivatives of others, and some are not
independent. For example, acting by Dj on the second
relation and symmetrizing with respect to i, j one can obtain

DiðDjtþ iDjξkξkÞ þDjðDitþ iDiξkξkÞ ¼ 0

⇒ ð_tþ i_ξkξkÞδij ¼ DiξkDjξk: ð67Þ
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Therefore, Diξk has structure implied by the third equation of (66). From this, it can also be derived that

Dieu ¼
1

N
DiðDmξnDmξnÞ ¼

2

N
DiDmξnDmξn ¼

2

N
ð−2iDiξn _ξn −DmDiξnDmξnÞ

¼ 2

N
ð−2iDiξn _ξn − iNDiξn _ξn −DieuÞ ⇒ Dieu ¼ −2iDiξm _ξm: ð68Þ

Taking into account all known kinematic equations, the dθ projection of the form ωJ reads

ðωJÞkl ¼ …þ dθp

�
1

2
ðM−1ÞknDpMnl −

i
2
ðDpξm _ξn −Dpξn _ξmÞe−uðM−1ÞkmðM−1Þln

�
≡…þ idθpΣpkl: ð69Þ

This expression can be further simplified leading to the
following supersymmetric Schwarzian:

Σijk ¼
i
2
e−uD½iDjξmDk�ξm ¼ iN

2

D½iDjξmDk�ξm
DpξqDpξq

: ð70Þ

The standard bosonic Schwarzian is hidden inside the
components of the third derivative of Σijk. Roughly speak-
ing, the bosonic part of the Schwarzian reads

2iDmDnDpΣmnp

N ðN − 1ÞðN − 2Þ

≈ −
1

2

�
t
…

_t
−
3

2

̈t2

_t2

�
þ 4

D½kΣlij�D½kΣlij�
N ðN − 1ÞðN − 2Þ

þ 3
N − 2

N ðN − 1Þ
_Mmn

_Mmn: ð71Þ

Note that D½kΣlij� is absent in Eq. (59) and starts from an
independent component.
As we are discussing arbitrarily high supersymmetries,

it is natural to ask whether the main constraint Ditþ
iDiξjξj ¼ 0 puts the system on shell. Explicit component
analysis of this constraint for some values of N indicates,
however, that it is essentially an algebraic one, defining
superfields t and ξi in terms of some unconstrained scalar
superfield.

D. Properties with respect to coordinate changes

The supersymmetric Schwarzian should possess a spe-
cial property with respect to coordinate changes, known
as the composition law. The coordinate changes are diffeo-
morphism transformations

θi → θ0i ¼ θ̃iðτ; θÞ; τ0 ¼ τ̃ðτ; θÞ; ð72Þ

constrained byDiτ̃ þ iDiθ̃jθ̃j ¼ 0, so that the derivative Di

transforms homogeneously, Di ¼ Diθ̃jD0
j. If the composi-

tion law holds for the Schwarzian, it should have the form

Σijk½ζðτ0; θ0Þ; τ; θ� ¼ Σijk½θ̃ðτ0; θ0Þ; τ; θ�
þM½ijk�mnpΣmnp½ζðτ0; θ0Þ; τ0; θ0� ð73Þ

with some matrix M½ijk�mnp. The Schwarzian reads

Σijk ¼
iN
2

D½iDjζmDk�ζm
DpζqDpζq

: ð74Þ

As for Diζj and Diθ̃j the relations DiζkDjζk ∼ δij and
Diθ̃kDjθ̃k ∼ δij hold, one can shortly obtain

DpζqDpζq ¼
Dkθ̃lDkθ̃l

N
D0

pζqD0
pζq: ð75Þ

Then, directly substituting Diζk ¼ Diθ̃jD0
jζk into (74), we

obtain

Σijk½ζðτ0; θ0Þ; τ; θ�
¼ Σijk½θ̃ðτ0; θ0Þ; τ; θ�

þ N

Drθ̃sDrθ̃s
Diθ̃mDjθ̃nDkθ̃pΣmnp½ζðτ0; θ0Þ; τ0; θ0�:

ð76Þ

Thus the Schwarzian transforms as in (73), as it should be.

VI. CONCLUSION

In this paperwe applied themethodof nonlinear realization
to some bosonic [Maxwell algebra and suð1; 2Þ one] and
supersymmetric ospðN j2Þ algebras. After introducing the
coordinates of the inert (super)spacetime and imposing the
proper constraints,

Cartan forms ¼ Cartan forms on the flat superspace;

we expressed all the Cartan forms of the initial (super)algebra
through a single object: a generalized Schwarzian. While
doing so, we were able to construct the Schwarzians with
N -extended supersymmetry.
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The obtained results have to be treated as the first steps
in the complete analysis of the Schwarzian systems.
Two immediate, but still unanswered questions, concern
the following:

(i) The existence of other N -extended systems for
N > 4, such as related to Fð4Þ superalgebra, and

(ii) The structure of the equations of motion in Schwar-
zian supersymmetric mechanics.

It is clear that there is no hope to have the superfield
actions for the theories with N -extended supersymmetry.
However, the question of the equations of motion for such a
system is not trivial. As we know, in the bosonic case the
equations of motion of the Schwarzian mechanics reduces
to the condition

Schwarzian ¼ const:

It is interesting to understand whether this property can be
extended to the supersymmetric case. Another interesting
continuation concerns the supersymmetric Maxwell group,
its analysis, and possible relation of the corresponding
Schwarzians with the flat-space analogs of the Sachdev-Ye-
Kitaev model.
Finally, there is a strong expectation that all models

constructed in a such manner have to be integrable. It
would be interesting to analyze the situation with integra-
bility, at least for the simplest models.
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