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We revisit a theory that proposes a dark charge, D, as a dequantization of the electric charge, Q.
We find that the general arguments of anomaly cancellation and fermion mass generation yield both D
and Q, nontrivially unified with the weak isospin Ti ði ¼ 1; 2; 3Þ in a novel gauge symmetry,
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN , where Y and N determine Q and D through the T3 operator,
i.e., Q ¼ T3 þ Y and D ¼ T3 þ N, respectively. A new observation is that fundamental particles possess a
dynamical dark charge, which governs both neutrino mass and dark matter, where the neutrino mass is
determined via a canonical seesaw, while the dark matter stability is ensured by electric and color charge
conservations. We examine the mass spectra of fermions, scalars, and gauge bosons, as well as their
interactions, taking into account the kinetic mixing effect of Uð1ÞY;N gauge fields. The new physics
phenomena at colliders are examined. The dark matter relic density and detection are discussed.

DOI: 10.1103/PhysRevD.105.075012

I. INTRODUCTION

Neutrino mass [1,2] and dark matter [3–5] are the two
important questions in science that cannot be explained
within the framework of the standard model. Indeed, the
experimental detection of neutrino oscillations has indicated
that neutrinos are massive and that flavor lepton numbers are
not preserved. In the standard model, neutrinos are massless,
and flavor lepton numbers are conserved, by contrast. The
neutrino oscillations are clear evidence that the standard
model must be extended. Which mechanism produces small
neutrino masses and flavor mixing? Further, the standard
model content does not contain any candidate for dark
matter, which makes up most of the mass of galaxies and
galaxy clusters. How is dark matter emerged and stabilized
over the cosmological timescales? This work looks for a
comprehensive theory which addresses such questions.
Various theories have been proposed in order to solve

both neutrino mass and dark matter, basically given in
terms of a seesaw [6–14] or/and radiative [15–19] mecha-
nism with the implement of an extra symmetry. Generally, a
violation of lepton number [20] would induce appropriate
Majorana neutrino masses via the mechanism, whereas the
extra symmetry, sometimes interpreted as a residual lepton-

number symmetry [21], is necessary to make a dark matter
candidate stable. Obviously, the lepton symmetry is anoma-
lous, preventing the model’s prediction at high energy,
while otherwise the extra symmetry, such as a Z2 or matter
parity in supersymmetry [22], is ad hoc included, since it is
not automatically conserved by the theory. Recent attempts
in Refs. [23–40] make use of an anomaly-free Abelian
gauge symmetry, namely, B − L [41–43], Li − Lj [44–46],
or a variant of the weak hypercharge [47,48]. As a result,
the model is well defined at high energy, and the gauge
symmetry breaking leads to appropriate neutrino masses.
However, the inclusion of dark matter and achieving its
stability are still arbitrary. It is therefore desirable to find an
underlying principle that determines both neutrino mass
generation and dark matter physics.
The electric charge (Q) of fundamental particles in the

nature always comes in discrete amounts, given as integer
multiples of a unit, called charge quantization. However,
our traditional theories, such as the electrodynamics and the
standard model, do not predict this quantization of electric
charge. The former theory may imply the charge quantiza-
tion, if there exists a magnetic monopole as proposed
by Dirac long ago [49], but the monopole has not been
discovered yet. The latter theory may address the charge
quantization if anomaly-free hidden symmetries such as
Li − Lj and B − L are all explicitly violated, since other-
wise they make the hypercharge (Y), thus the electric
charge, free, in such a way that Y → Y þ xijðLi − LjÞ þ
yðB − LÞ is always allowed, called a dequantization effect
[50,51]. This work does not solve the question of the charge
quantization. By contrast, we argue that the dequantization
effect of the electric charge of the standard model might
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come from the presence of a dark charge, called D, which
interestingly relates to the neutrino mass and dark matter.
The form of the dark charge can be extracted directly as a
dequantization of the electric charge, characterized by a δ
parameter, to be achieved in this work. In contrast to the
mentioned Abelian gauge charges, the dark charge neither
commutes nor closes algebraically with the SUð2ÞL weak
isospin, Ti (i ¼ 1; 2; 3), similarly to the electric charge. Let
us note that in Refs. [52,53] such solutions of the dark
charge were applied for further investigations, without
derivation and interpretation.
In deriving the dark charge, the theoretical argument is

that the generic hypercharge must be constrained by gauge
anomaly cancellation for the model’s consistency and gauge-
invariant Yukawa Lagrangian for fermion mass generation.
As mentioned, the charge quantization in the standard model
disappears due to the presence of any anomaly-free hidden
symmetry, such as Li − Lj, for i; j ¼ e, μ, τ, orB − L, if one
includes three right-handed neutrinos, νR’s. We will inves-
tigate the latter by imposing νR’s with YðνRÞ ¼ δ. Solving
the conditions of anomaly cancellation and the constraints
from Yukawa interactions, we derive a dark charge, D,
besides the electric charge, to be a natural consequence of the
charge dequantization. The condition of algebraic closure
betweenD and Ti demands a novel extension of the standard
model gauge symmetry to SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗
Uð1ÞN , where N determines the dark charge, D ¼ T3 þ N,
in the same manner in which the hypercharge does so for the
electric charge, Q ¼ T3 þ Y. There is an infinite number of
solutions of dark charge symmetries according to distinct
values of δ, in which the electric charge is a special case for
δ ¼ 0. Correspondingly, the gauge completion leads to a
model with an infinite number of extra Uð1ÞN factors.
Above, we consider the minimal solution for dark charge,
where a unique value for δ ≠ 0 defines a nontrivial dark
charge, while δ ¼ 0 sets the electric charge. In this case, the
dark charge D, thus N, is still arbitrary, but we examine the
one according to δ ¼ 1, primarily assumed in Ref. [52].
Conversely, unlike the electric charge, the dark charge

anomaly cancellation requires the presence of three right-
handed neutrinos, since the usual left-handed neutrinos have
a nonzero dark charge. Then, the dark charge breaking yields
realistic neutrino masses through a canonical seesaw.
Additionally, because of the noncommutative nature, the
dark charge is broken down to a residual discrete symmetry
that divides the standard model fields into several classes,
determined by the corresponding values of residual trans-
formations. A new observation of this work is that, although
dark fields transform similarly to the usual fields under the
residual symmetry, the lightest dark field is stabilized
because of the electric and color charge conservations.
This is because the lightest dark field is electrically and
color neutral, opposite to the charged leptons and quarks.
This supplies a dark matter candidate. This feature was also
investigated in Ref. [53] when we considered the scenarios

ofmulticomponent darkmatter. Since the dark fields interact
with the normal fields viaUð1ÞN , the dark dynamics also sets
the dark matter observables, besides preventing the dark
matter from decay and the role for neutrinomass generation.
Wewill examine the phenomenology of the model in detail.
The crucial roles of the dark charge over the electric charge
responsible for the new physics are discussed. The new
physics effects will be probed through the electroweak
precision test, particle colliders, and dark matter detections.
The rest of this work is organized as follows. In Sec. II,

we reexamine the question of charge quantization when
including νaR, interpreting the dark charge and necessary
features of the new model. In Secs. III, IV, and V, we
investigate the mass spectra of the fermion, scalar, and
gauge boson, respectively. In Sec. VI, we compute neces-
sary interactions of the model. The new physics phenomena
and constraints are presented in Secs. VII, VIII, and IX
corresponding to the electroweak precision test, particle
colliders, and dark matter searches, respectively. We con-
clude this work in Sec. X.

II. GENERAL CONSIDERATION
OF THE DARK CHARGE

A partial solution of the dark charge was implemented in
Ref. [52]. In this section, we derive a generic solution in
which the dark charge manifestly arises as a dequantization
of the electric charge based upon the general grounds. With
this result, we achieve the scheme of single-component
dark matter, whereas further implication of the dark charge
for multicomponent dark matter is interpreted in Ref. [53].
The electroweak theory is based upon the gauge sym-

metry, SUð2ÞL ⊗ Uð1ÞY . Since the electric charge is
additive and conserved, it must be embedded in neutral
electroweak charges, such as Q ¼ αT3 þ βY. The coeffi-
cient β can be normalized to 1 because of a scaling
symmetry, gY → βgY and Y → Y=β, where gY is the
Uð1ÞY coupling, which leaves the theory invariant. The
coefficient α has a dimension of electric charge; and, the
the W boson has a value of electric charge, �α. Since the
normalization of Q has not been determined, we use
freedom in assigning the scale of electric charge by fixing
the W charge to be unit, i.e., α ¼ 1. Thus, the electric
charge in the standard model always takes the form

Q ¼ T3 þ Y: ð1Þ

The electric charge is not quantized, because of the form
Q ¼ T3 þ Y. Although T3 is discrete due to the non-
Abelian nature of the SUð2ÞL algebra, the Abelian Uð1ÞY
algebra is trivial, ½Y; Y� ¼ 0, which makes Y arbitrary, in
agreement with Refs. [54–58]. Notice that Y is often chosen
to describe the observed charges, while it does not explain
them. Further, Y can be constrained by Yukawa Lagrangian
and anomaly cancellation, but the standard model might
still contain an anomaly-free hidden symmetry, such as
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Li − Lj, for i; j ¼ e, μ, τ, or B − L, if one includes three
right-handed neutrino singlets νR’s, which subsequently
shifts the hypercharge to a generic form, Y → Y þ
xijðLi − LjÞ þ yðB − LÞ, as mentioned. In the following,
we consider the latter with νR’s and interpret the physics
insight.
Generally, the fermions transform under the electroweak

group as

laL¼
�
νaL

eaL

�
∼ð2;YlaÞ; νaR∼ð1;YνaÞ; eaR∼ð1;YeaÞ;

ð2Þ

qaL¼
�
uaL
daL

�
∼ð2;YqaÞ; uaR∼ð1;YuaÞ; daR∼ð1;YdaÞ;

ð3Þ
where we label a ¼ 1; 2; 3 to be a generation index. The
values in parentheses denote quantum numbers based
on ðSUð2ÞL; Uð1ÞYÞ symmetries, respectively. The right-
handed neutrinos νaR are introduced, besides the standard
model fields, as mentioned.
The electroweak symmetry breaking and particle mass

generation are derived by the Higgs doublet,

ϕ ¼
�
ϕ1

ϕ2

�
∼ ð2; YϕÞ; ð4Þ

with a nonzero vacuum expectation value (vev), i.e.,
hϕi ≠ 0. The conservation of electric charge demands that
Q must annihilate the weak vacuum, i.e., Qhϕi ¼ 0, which
leads to Yϕ ¼ �1=2. The electric charge of ϕ is either
ϕ ¼ ðϕþ

1 ;ϕ
0
2ÞT according to Yϕ ¼ 1=2 or ϕ ¼ ðϕ0

1;ϕ
−
2 ÞT

according to Yϕ ¼ −1=2. Since these solutions yield
equivalently physical results, we take ϕ ¼ ðϕþ

1 ;ϕ
0
2ÞT ∼

ð2; 1=2Þ with Yϕ ¼ 1=2 into account.
Further, at classical level, the Yukawa Lagrangian,

L ⊃ heabl̄aLϕebR þ hνabl̄aLϕ̃νbR þ hdabq̄aLϕdbR

þ huabq̄aLϕ̃ubR þ H.c:; ð5Þ
must be imposed in order for fermion mass generation and
necessary flavor mixings, where we denote ϕ̃≡ iσ2ϕ�. By
the gauge invariance, this Lagrangian gives rise to the
hypercharge constraints, such as

Yq1 ¼ Yq2 ¼ Yq3 ≡ Yq; Yl1 ¼ Yl2 ¼ Yl3 ≡ Yl; ð6Þ

Yd1 ¼ Yd2 ¼ Yd3 ≡ Yd; Yu1 ¼ Yu2 ¼ Yu3 ≡ Yu; ð7Þ

Ye1 ¼ Ye2 ¼ Ye3 ≡ Ye; Yν1 ¼ Yν2 ¼ Yν3 ≡ Yν; ð8Þ

Yl¼YϕþYe¼−YϕþYν; Yq¼YϕþYd¼−YϕþYu: ð9Þ

With these conditions at hand, at quantum level, there is
only a nontrivial anomaly to be ½SUð2ÞL�2Uð1ÞY . This
anomaly vanishes, if

3Yq þ Yl ¼ 0: ð10Þ

With the aid of Yϕ ¼ 1=2, the above equations imply

Ye¼δ−1; Yu¼2=3−δ=3; Yd¼−1=3−δ=3; ð11Þ

Yl ¼ −1=2þ δ; Yq ¼ 1=6 − δ=3; ð12Þ

which depend on a parameter, δ≡ Yν. This yields the
electric charge of particles,

QðνÞ ¼ δ; QðeÞ ¼ δ − 1; QðuÞ ¼ 2=3 − δ=3;

QðdÞ ¼ −1=3 − δ=3; ð13Þ

which are not quantized as depending on the δ parameter.1

Generally, we have an infinite number of the solutions of
hypercharge symmetries corresponding to distinct values
of δ, since this parameter is completely arbitrary. Two
remarks are given in order:
(1) True electric charge: δ ¼ 0.—In this case, all the

particles get a correct electric charge and hyper-
charge, as observed, in which νaR are a gauge singlet,
which can be omitted as in the minimal standard
model. The correct electric charge and hypercharge
are denoted as Q≡Qjδ¼0 and Y ≡ Yjδ¼0, without
confusion.

(2) Novel dark charge: δ ≠ 0.—In this case, all the
particles get an abnormal electric charge (called dark
charge) and hypercharge (called hyperdark charge), in
which νaR are nontrivial under dark charge, which
must be included for gravity anomaly cancellation.
The dark charge and hyperdark charge are denoted as
D ¼ Qjδ≠0 andN ¼ Yjδ≠0, respectively. This solution
differs from the normal one (i.e., the above solution)
by a δ ≠ 0 for which the dark charge is called a
dequantization of the electric charge by a δ .

Because the two solutions according to δ ¼ 0 and δ ≠ 0
are linearly independent, i.e., Y and N (thus Q and D) are
linearly independent, the full gauge symmetry of the theory
must take the form

SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN; ð14Þ

1If one suppresses νaR, the anomaly, ½gravity�2Uð1ÞY , is non-
trivial and vanishes, which vanishes if Yl ¼ −Yϕ ¼ −1=2. In this
case, the electric charge is quantized, recovered to the observed
charges. Alternatively, if one adds a mass term νRνR that explicitly
violates B − L, this leads to the quantization of electric charge
again, since δ ¼ 0 [50,59]. Obviously, we investigate the universal
case in which the neutrinos have right-handed counterparts with
B − L-conserving Dirac masses as of ordinary fermions.
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apart from the QCD group, SUð3ÞC. Additionally, Y and N
determine the electric charge and the dark charge,

Q ¼ T3 þ Y; D ¼ T3 þ N; ð15Þ
respectively. It is easily seen that N was identified in the
literature as a combination of xY þ yðB − LÞ, for which our
model takes x ¼ 1 and y ¼ −δ, since both Y; B − L are free
from anomaly (see, for instance, Refs. [48,60]). However,
the dark charge interpretation D and this specific combi-
nation to be a dequantization of the electric charge have not
been presented until this study and a partial solution in
Ref. [52]. We find the expected relation

D ¼ Q − δðB − LÞ: ð16Þ
When δ → 0, then D → Q, meaning that D has properties
essentially inherited fromQ as a derivation, whereas, since δ
is finite (i.e., not to infinity),D neither approachesB − L nor
regards a commutative nature as of B − L charge. Hence,D
is a mirror of Q, transformed by B − L. Combined with the
T3 operator as in (15), the gauge extension (14) reveals a
dark group Uð1ÞN to the corresponding mirror of Uð1ÞY . A
crucial result of our approach is thatD implies a dark matter
stability mechanism and that dark fields may be unified with
ordinary fields in weak isospin multiplets, since D is
noncommutative.2 Additionally, although dark fields and
normal fields transform nontrivially under the dark charge,
the lightest dark field is stable and cannot decay to normal
fields, providing a dark matter candidate. This way of dark
matter stability differs from that in the most extensions,
including Uð1ÞB−L, as shown below.
To make sure, in Appendix A, we investigate another

approach that comes to the same conclusion of the gauge
symmetry (14), as desirable. Additionally, all the anomalies
vanish, independent ofδ, as explicitlyverified inAppendixB.
In the following, unless otherwise stated, we shall take δ ¼ 1
for the case δ ≠ 0 into account, which manifestly determines
dark matter. Other value of δ that differs from 1 is viable as
studied in Ref. [53], which would be skipped.
Each particle (or field) possesses a pair of the character-

istic electric and dark charges ðQ;DÞ, as collected in
Table I. Notice that the left and right chiral fermions have
the same Q, D values; thus, their chirality projections
have been suppressed. The singlet scalar χ is necessarily

presented to break Uð1ÞN and generate appropriate right-
handed neutrino masses through the coupling νRνRχ, which
conserves the dark charge.3 The last five fields in the table
are the gauge fields associated with the gauge symmetry
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN , where the new
field Z0 is relevant to Uð1ÞN extension. The particle
representations under this gauge symmetry are listed in
Table II.
The scalars develop the vevs as

hχi ¼ 1ffiffiffi
2

p Λ; hϕi ¼ 1ffiffiffi
2

p
�
0

v

�
; ð17Þ

such that Λ ≫ v ¼ 246 GeV to keep a consistency with
the standard model. The scheme of gauge symmetry
breaking is

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN
↓Λ

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ PN

↓v

SUð3ÞC ⊗ Uð1ÞQ ⊗ PD

The χ vev, Λ, breaks only Uð1ÞN down to a residual
symmetry, called PN . Next, the weak vacuum, v, breaks
SUð2ÞL ⊗ Uð1ÞY ⊗ PN down to Uð1ÞQ ⊗ PD, where
Q ¼ T3 þ Y is as usual, while PD is a residual symmetry
of D ¼ T3 þ N, shown below.
To find the explicit form of the residual symmetry,

let X ¼ aiTi þ bY þ cN be the conserved charge after the
symmetry breaking. First, it must annihilate the weak
vacuum, i.e., Xhϕi ¼ 0, leading to a1 ¼ a2 ¼ 0 and
a3 ¼ bþ c. Thus, X¼bðT3þYÞþcðT3þNÞ¼bQþcD.
It is clear that Q and D are commuted, i.e., ½Q;D� ¼ 0,
and they separately conserve the weak vacuum, Qhϕi ¼
Dhϕi ¼ 0. Hence, the residual symmetry X is Abelian,
factorized into Uð1ÞX ¼ Uð1ÞQ ⊗ Uð1ÞD according to a
transformation, eiX ¼ eibQeicD. Since Q annihilates the χ
vacuum, Qhχi ¼ 0, Uð1ÞQ is a final residual symmetry,

TABLE I. Q and D charges and PD residual symmetry (k integer) of the model particles.

Field ν e u d ϕþ
1 ϕ0

2 χ Gluon Wþ A Z Z0

Q 0 −1 2=3 −1=3 1 0 0 0 1 0 0 0
D 1 0 1=3 −2=3 1 0 −2 0 1 0 0 0
PD ¼ ð−1ÞkD ð−1Þk 1 ð−1Þk=3 ð−1Þ−2k=3 ð−1Þk 1 1 1 ð−1Þk 1 1 1

2Comparable to supersymmetry, the superparticle and particle
are combined in a supermultiplet.

3This coupling restricts the electric charge as quantized,
because the generated mass ∼hχiνRνR constrains YðνRÞ ¼ 0.
However, the dark charge is always arbitrary, defining DðχÞ ¼
−2δ ≠ 0 in the general case, and is broken by hχi. In other words,
the dark charge is not only a dequantization version of the electric
charge, but also it makes the electric charge quantized.
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known as the electromagnetic symmetry. Additionally,
Uð1ÞD is a residual symmetry of SUð2ÞL ⊗ Uð1ÞN since
D ¼ T3 þ N, which must conserve the χ vacuum, like PN .
Exactly, cD ¼ X − bQ must conserve the χ vacuum,
because both X and Q do. A transformation of Uð1ÞD
is eicD. The vacuum conservation condition demands
eicDhχi ¼ hχi. It follows that eicð−2Þ ¼ 1, or c ¼ kπ, for
the k integer. Hence, Uð1ÞD is reduced to a final residual
symmetry,

PD ¼ eicD ¼ ð−1ÞkD: ð18Þ

It is easily derived,

PN ¼ ð−1ÞkN; ð19Þ

since it is the residual symmetry of Uð1ÞN that conserves
the χ vacuum, similar to D.
The fundamental difference of the current model from the

model with SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞB−L sym-
metry structure is the proposal of a noncommutative dark
charge D, given in (16). Indeed, the group Uð1ÞY ⊗ Uð1ÞN
with N being a combination of Y and B − L is not the same
Uð1ÞY ⊗ Uð1ÞB−L in gauge behavior. The Abelian charge
N ¼ Y − δðB − LÞ ¼ Q − T3 − δðB − LÞ ¼ D − T3 nec-
essarily arises as a result of the algebraic closure of the
dark charge D with SUð2ÞL (cf. Appendix A). Additionally,
the local symmetry nature of D, thus N and their remnants
PN;D, results from T3 ¼ D − N, as T3 is gauged. In contrast,
starting from the usualUð1ÞB−L theory, gauging this group is
not required on theoretical grounds, which actually implies
a commutative dark parity like the matter parity or a Z2.
Even though Uð1ÞY ⊗ Uð1ÞN differs from Uð1ÞY ⊗
Uð1ÞB−L only by the normalization of the Uð1Þ charge,
as the group element is just a phase, this phase rotation by Y
is not conserved by the weak vacuum, which might lead to
distinct physics results for each case. As a matter of fact, a
commutative dark parity, analogous to PN , can be realized in
the Uð1ÞB−L theory, but a more fundamental dark parity PD
is not given, since PD only emerges when the weak vacuum
possesses a nontrivial hyperdark charge, which necessarily
matches N ¼ Y ¼ 1=2 for ϕ, as motivated by this work.
An important remark is that PD is shifted from PN by a

SUð2ÞL transformation, PD ¼ PT3
PN , determined by the

weak breaking, where PT3
¼ ð−1ÞkT3 contains a weak

isospin parity. PD does not commute with SUð2ÞL, a
consequence of the noncommutative dark charge, i.e.,
½D; T1 � iT2� ¼ ½T3; T1 � iT2� ¼ �ðT1 � iT2Þ ≠ 0. The
difference between PN and PD is that PN commutes with
the electroweak symmetry, which transforms every particle
in a gauge multiplet identically, whereas PD transforms
component particles that have distinct T3 values differently
in a gauge multiplet, thus it separates the components of the
weak isospin multiplet. If one extends a known multiplet or
introduces a new one, this gives rise to a potential
unification of ordinary matter and dark matter with differ-
ent isospins in the gauge multiplet, in comparison to
supersymmetry that does so for the particle and super-
particle with different spins in a supermultiplet, by contrast.
Additionally, unwanted vev directions of a multiplet that
have nontrivial PD are suppressed (e.g., see those in the
models extensively discussed in Ref. [52]). Hence, PD is
distinct from the usual Uð1Þ extensions, such as Uð1ÞB−L,
which have only commutative residual symmetry, like the
matter parity or PN in our setup. That said, the approach
with noncommutative dark charge would change the
current view of neutrino mass and dark matter; for instance,
the analysis in Ref. [52] yielded that the minimal dark
matter, the scotogenic setup, and even the inert Higgs
doublet model might be significantly revisited with imple-
ment of the dark parity PD.
The value of PD for all fields is collected in Table I. We

deduce that PD ¼ 1 for every field with the minimal
jkj ¼ 6, except for the identity with k ¼ 0. Hence, the
residual symmetry PD is automorphic to

Z6 ¼ f1; g; g2; g3; g4; g5g; ð20Þ

where g≡ ð−1ÞD and g6 ¼ 1. We factorize Z6 ≅ Z2 ⊗ Z3,
where Z2 ¼ f1; g3g is the normal subgroup of Z6, while
Z3 ¼ f½1�; ½g2�; ½g4�g is the factor group of Z6 by Z2. Each
of Z3 elements contains two elements of Z6, namely,
½x� ¼ fx; g3xg; hence, ½1� ¼ ½g3� ¼ f1; g3g, ½g2� ¼ ½g5� ¼
fg2; g5g, and ½g4� ¼ ½g� ¼ fg; g4g. Since ½g4�¼ ½g2�2¼½g2��
and ½g2�3 ¼ ½1�, the Z3 group is generated by a generator,

½g2� ¼ ½ω3D�; ð21Þ

where ω≡ ei2π=3 is the cube root of unity. Furthermore,
Z2 is generated by a generator, g3 ¼ ð−1Þ3D. Since the spin
parity h≡ ð−1Þ2s is always conserved by the Lorentz
symmetry, we conveniently multiply PD with the spin parity
group, PS¼f1;hg, to form PD⊗PS≅ ðZ2⊗PSÞ⊗Z3.
Since Z2 ⊗ PS possesses a normal subgroup, P ¼ f1; pg,
with

p≡ g3 × h ¼ ð−1Þ3Dþ2s; ð22Þ

TABLE II. SUð3ÞC, SUð2ÞL, Y, and N quantum numbers of the
model multiplets.

Multiplet lL qL νR eR uR dR ϕ χ

SUð3ÞC 1 3 1 1 3 3 1 1
SUð2ÞL 2 2 1 1 1 1 2 1
Y −1=2 1=6 0 −1 2=3 −1=3 1=2 0
N 1=2 −1=6 1 0 1=3 −2=3 1=2 −2
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we factorize PD ⊗ PS ≅ ½ðZ2 ⊗ PSÞ=P� ⊗ P ⊗ Z3. Note
that ðZ2 ⊗ PSÞ=P ¼ fP; fg3; hgg is conserved if p, thus P,
is conserved. We can consider the product,

P ⊗ Z3 ⊂ PD ⊗ PS; ð23Þ

to be the relevant residual symmetry, instead of PD.
The theory conserves both P and Z3 after the symmetry

breaking, where P has two irreducible representations, 1
and 10, according to p ¼ 1 and p ¼ −1, whereas Z3 has
three irreducible reps, 1, 10, and 100, according to
½g2� ¼ ½1� → 1, ½g2� ¼ ½ω� → ω, and ½g2� ¼ ½ω2� → ω2,
respectively. The reps of Z3 are a homomorphism from
Z6, independent of the signs, g3 ¼ �1, that identify Z6

elements in a coset. The reps of all fields under P, Z3 are
given in Table III, where one should notice that the
antiquarks transform as ð10Þ� ¼ 100 under Z3.

4

Under the residual symmetry PD, every dark field
introduced should have a dark charge D satisfying g6 ¼
ð−1Þ6D ¼ 1; hence, 3D is integer. We derive D ¼ ð3k�
1Þ=3 or D ¼ k, for the k integer. The solutions D ¼ ð3k�
1Þ=3 lead to dark fields that transform nontrivially under Z3

as ½g2� → ω or ω2. If the lightest of these dark fields is color
neutral, it cannot decay to quarks u, d due to the SUð3ÞC
conservation. (Note that only quarks transform nontrivially
under Z3.) Hence, it is stabilized, providing a dark matter
candidate. As shown in Ref. [53], such a candidate takes
part in multicomponent dark matter scenarios since it is also
possibly odd under P and its stability is only relevant to
QCD, which is out of the scope of this work of “dark charge
versus electric charge” and is omitted. The last solution
D ¼ k transforms trivially under Z3 since ½g2� → 1, but it
may be odd under P, responsible for dark matter. In the
following, we consider only the last solution D ¼ k and
note that in this case the theory automatically conserves Z3

due to SUð3ÞC symmetry; that is, Z3 acting only on quarks
is accidentally preserved by SUð3ÞC. Omitting the factor
group Z3, the residual symmetry is reduced to P, and we
can redefine

PD ¼ p ¼ ð−1Þ3ðT3þNÞþ2s; ð24Þ

called dark parity.5 The dark parity of particles is the p
value in Table III, and we see that the usual fields are
divided into two distinct classes, in which e, d, ϕþ

1 , andW
þ

are PD odd, whereas the rest are PD even.
According to the last solution above, the model can

contain a dark field with a dark charge D ¼ k, such that
PD ¼ ð−1Þkþ2s is odd. This yields two kinds of candidates:
a dark (vectorlike) fermion, labeled ξ, for even k and a dark
scalar, labeled η, for odd k. They transform under the gauge
symmetry SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN as

ξ ∼ ð1; 1; 0; 2rÞ; η ∼ ð1; 1; 0; 2r − 1Þ; ð25Þ

for r integer. Here, the dark charges are arranged such that
the dark fields couple to νR through a Yukawa coupling,
yξ̄LηνR, in order to make several dark matter scenarios
viable.6 We denote the lightest of ξ and η to beΨ. We prove
that Ψ can have any mass that does not decay to usual
fields. First, Ψ, e, d, ϕþ

1 , andW
þ are all odd. Next, each of

such fields has an electric or color charge, except for Ψ,
which is neutral. If Ψ decays, by assumption, the final state
has to be electrically and color neutral due to the charge
conservations. Since PD is conserved, the final state must
combine an odd number of odd fields ðe; d;ϕþ

1 ;W
þÞ. Since

Wþ and ϕþ
1 (eaten byWþ) decay to ðeþ; νÞ and ðdc; uÞ, the

final state contains only ðe; dÞ as potential old fields. The
decay process looks like

Ψ → xe− þ x̄eþ þ ydþ ȳdc þ zuþ z̄uc þ � � � ; ð26Þ

where the dots include other fields, if any, which are
electrically and color neutral and PD even. The laws of
charge conservations obey
(1) xþ x̄þ yþ ȳ ¼ 2kþ 1 (PD odd),
(2) −xþ x̄−y=3þ ȳ=3þ2z=3−2z̄=3¼0 (electrically

neutral),
(3) yþ z − ȳ − z̄ ¼ 3k0 (color neutral),

for k, k0 integer. Conditions 2 and 3 give −xþ x̄ − yþ
ȳþ 2k0 ¼ 0, which combined with 1 yields 2ðx̄þ ȳþk0Þ¼
2kþ1. This cannot occur, since an even number never
equals an odd number. Hence, PD, Uð1ÞQ, and SUð3ÞC
suppress Ψ decay, if Ψ is heavier than the usual odd fields
(e; d;ϕþ

1 ;W
þ). Ψ is dark matter, and its stability differs

from the most extensions; that is, the usual fields transform
nontrivially as the dark matter, under the dark parity, but the
dark matter stability is preserved by usual electric and color
charge conservations.

TABLE III. Field representations under the residual symmetry
P ⊗ Z3.

Field ν e u d ϕþ
1 ϕ0

2 χ Gluon Wþ A Z Z0

p ¼ ð−1Þ3Dþ2s 1 −1 1 −1 −1 1 1 1 −1 1 1 1
½g2� ¼ ½ω3D� 1 1 ω ω 1 1 1 1 1 1 1 1
P ¼ f1; pg 1 10 1 10 10 1 1 1 10 1 1 1

Z3 ¼ f½1�; ½g2�; ½g4�g 1 1 10 10 1 1 1 1 1 1 1 1

4Reps are always assigned to their group, which should not be
confused between reps of P and Z3.

5The dark parity is related to weak isospin, different from
those induced by B − L, 3 − 3 − 1 − 1, and left-right symmetries
[61–69].

6In the case of weakly interacting massive particle dark matter,
this coupling is irrelevant and possibly suppressed; hence, the
dark charge relation might be relaxed. Additionally, when r ¼ 0,
we can introduce only the left chiral component ξL (i.e., omitting
ξR), since this field does not contribute to anomaly.
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The total Lagrangian is written as

L ¼ Lkinetic þ LYukawa − V: ð27Þ

The first part contains kinetic terms and gauge interactions,

Lkinetic ¼
X
F

F̄ iγμDμF þ
X
S

ðDμSÞ†ðDμSÞ −
1

4
GmμνG

μν
m

−
1

4
AiμνA

μν
i −

1

4
BμνBμν −

1

4
CμνCμν −

ϵ

2
BμνCμν;

ð28Þ

where F, S run over fermion and scalar multiplets,
respectively. The covariant derivative and field strength
tensors are defined as

Dμ¼∂μþ igstmGmμþ igTiAiμþ igYYBμþ igNNCμ; ð29Þ

Gmμν ¼ ∂μGmν − ∂νGmμ − gsfmpqGpμGqν; ð30Þ

Aiμν ¼ ∂μAiν − ∂νAiμ − gϵijkAjμAkν; ð31Þ

Bμν ¼ ∂μBν − ∂νBμ; Cμν ¼ ∂μCν − ∂νCμ; ð32Þ

where ðgs; g; gY; gNÞ, ðtm; Ti; Y; NÞ, and ðGm; Ai; B; CÞ are
coupling constants, generators, and gauge bosons accord-
ing to ðSUð3ÞC; SUð2ÞL; Uð1ÞY; Uð1ÞNÞ groups, respec-
tively. And, fmpq and ϵijk are the structure constants of
SUð3ÞC and SUð2ÞL, respectively.
Note that ϵ is a parameter that determines the kinetic

mixing between the two Uð1Þ gauge bosons, satisfying
jϵj < 1, in order for definitely positive kinetic energy.
Such kinetic terms can be transformed into the canonical
form, i.e.,

−
1

4
BμνBμν −

1

4
CμνCμν −

ϵ

2
BμνCμν ¼−

1

4
B̂μνB̂

μν −
1

4
ĈμνĈ

μν;

ð33Þ

by basis changing,

�
B̂

Ĉ

�
¼

�
1 ϵ

0
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
��

B

C

�
: ð34Þ

The Yukawa part consists of

LYukawa ¼ heabl̄aLϕebR þ hνabl̄aLϕ̃νbR þ hdabq̄aLϕdbR

þ huabq̄aLϕ̃ubR þ 1

2
fνabν̄

c
aRχνbR þ yaξ̄LηνaR

−mξξ̄LξR þ H:c:; ð35Þ

where c indicates the charge conjugation, i.e., νcR≡ðνRÞc¼
Cν̄TR¼ðνcÞL, as usual. The scalar potential takes the form

V ¼ μ21ϕ
†ϕþ μ22η

�ηþ μ23χ
�χ þ λ1ðϕ†ϕÞ2 þ λ2ðη�ηÞ2

þ λ3ðχ�χÞ2 þ λ4ðϕ†ϕÞðη�ηÞ þ λ5ðϕ†ϕÞðχ�χÞ
þ λ6ðη�ηÞðχ�χÞ: ð36Þ

Note that the couplings h, fν, y, and λ are dimensionless,
whereas mξ and μ’s have a mass dimension. Especially,
when r ¼ 0, the scalar potential might have extra triple
terms, μχ�η2 þ H:c:, but they do not affect the present
results, hence being neglected.

III. FERMION MASS

The spontaneous symmetry breaking will generate fer-
mion masses through the Yukawa Lagrangian. We first
consider the charged leptons and quarks, which get

½me�ab¼−heab
vffiffiffi
2

p ; ½mu�ab¼−huab
vffiffiffi
2

p ; ½md�ab¼−hdab
vffiffiffi
2

p :

ð37Þ

This provides appropriate masses for the particles after
diagonalization, similar to the case of the standard model.
Since the vev of the odd scalar η vanishes due to the

dark parity conservation, the dark fermion ξ does not mix
with right-handed neutrinos νaR, although they couple via
yaξ̄LηνaR. The field ξ is a physical field by itself, with an
arbitrary mass mξ.
The neutrinos νaL;R achieve a mass matrix after the two

stages of gauge symmetry breaking taking place, such as

L ⊃ −
1

2
ð ν̄cL ν̄R Þ

�
0 mD

mT
D mM

��
νL

νcR

�
þ H:c:; ð38Þ

where ½mD�ab ¼ −hν�ab
vffiffi
2

p is the Dirac mass matrix that

couples νaL to νbR, while ½mM�ab¼−fν�ab
Λffiffi
2

p is the Majorana

mass matrix that couples νaR and νbR by themselves.
With the aid of Λ ≫ v, the mass matrix of neutrinos in

(38) can be diagonalized by a transformation, approximated
up to ðv=ΛÞ order, to be

�
νL

νcR

�
≃
�

1 θ�

−θT 1

��
U 0

0 V�

��
ν0L
ν0cR

�
; ð39Þ

where the νL-νR mixing element, θ ¼ mDm−1
M ∼ v=Λ, is

small. The mass eigenvalues kept at ðv=ΛÞ order are
obtained as

diagðm1; m2; m3Þ ≃ −UTmDm−1
M mT

DU; ð40Þ

diagðM1;M2;M3Þ ≃ V†mMV�; ð41Þ

where the observed neutrino masses, mi ∼ v2=Λ, are
appropriately small, while the sterile neutrino masses,
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Mi ∼ Λ, are large, at the new physics scale, for i ¼ 1; 2; 3,
which label the corresponding physical eigenstates, ν0iL
and ν0iR. U is the Pontecorvo-Maki-Nakagawa-Sakata
matrix, connecting νaL ≃Uaiν

0
iL, given that the charged

leptons are flavor diagonal, whereas V relates
νaR ≃ Vaiν

0
iR. Further, we can take V ¼ 1 into account,

without loss of generality. For convenience, we will omit
the prime mark from the physical states, ν0iL→νiL and
ν0iR → νiR, without confusion.
The process of neutrino mass generation is similar to a

canonical seesaw, but implemented by a dark charge,
instead of the lepton number. This is presented by the
flavor diagram in Fig. 1, attached by the external fields
ϕ’s and χ, with the propagations of νaR. The observed
neutrino masses are induced when the dark charge as well
as the weak charge are broken by hχi and hϕi, respec-
tively. First, the large Majorana masses M are generated
by the interactions of νaR with χ as the middle part in
Fig. 1, when the dark charge is broken. In terms of these
physical states, the middle part is replaced by a Feynman
propagator of νiR. The observed neutrinos gain small
Majorana masses derived by mν ≃ −m2

D=M, when the
weak breaking is takeing place. It is clear that the full
gauge symmetry suppresses all neutrino mass types, but
the dark and weak breakings supply desirable neutrino
masses, through an improved Higgs mechanism. Last,
but not least, this canonical seesaw is naturally realized,
since νaR appear as fundamental constituents, required by
the dark charge symmetry. Additionally, the Majorana
masses of neutrinos emerge from a dark charge breaking,
not explicitly relevant to a lepton violation as in the
normal sense.

IV. SCALAR SECTOR

Because the electric charge and the dark parity are
conserved, only the scalar fields that are electrically neutral
and PD even can develop a vev, such as hϕi ¼ 1ffiffi

2
p ð0; vÞT ,

hχi ¼ 1ffiffi
2

p Λ, and hηi ¼ 0, aforementioned.

Moreover, necessary conditions for the scalar potential
(36) to be bounded from below as well as yielding a
desirable vacuum structure are

λ1;2;3>0; μ21;3<0; jμ1j≪ jμ3j; μ22>0: ð42Þ

To obtain the potential minimum and physical scalar
spectrum, we expand the scalar fields around their vevs as

ϕ ¼
� ϕþ

1

1ffiffi
2

p ðvþ S1 þ iA1Þ
�
; ð43Þ

χ ¼ 1ffiffiffi
2

p ðΛþ S2 þ iA2Þ; η ¼ 1ffiffiffi
2

p ðS3 þ iA3Þ; ð44Þ

where one should note that ϕ0
2 ¼ ðvþ S1 þ iA1Þ=

ffiffiffi
2

p
.

Substituting (43) and (44) into (36), the potential
minimum conditions are

Λ2 ¼ −2λ5μ21 þ 4λ1μ
2
3

λ25 − 4λ1λ3
; v2 ¼ −2λ5μ23 þ 4λ3μ

2
1

λ25 − 4λ1λ3
: ð45Þ

Using the minimum conditions (45), we obtain physical
PD-even scalar fields,

ϕ ¼
� Gþ

W
1ffiffi
2

p ðvþ cφH þ sφH0 þ iGZÞ
�
; ð46Þ

χ ¼ 1ffiffiffi
2

p ðΛ − sφH þ cφH0 þ iGZ0 Þ; ð47Þ

where GW ≡ ϕ1, GZ ≡ A1, and GZ0 ≡ A2 are the massless
Goldstone bosons associated with the W, Z, and Z0 gauge
bosons, respectively. H ¼ cφS1 − sφS2 is identical to the
standard model Higgs boson, while H0 ¼ sφS1 þ cφS2 is a
new Higgs boson relevant to the dark charge breaking. The
S1 − S2 mixing angle, φ, and theH,H0 masses are given by

t2φ ¼ λ5vΛ
λ3Λ2 − λ1v2

≃
λ5
λ3

v
Λ
; ð48Þ

m2
H ¼ λ1v2 þ λ3Λ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v2 − λ3Λ2Þ2 þ λ25v

2Λ2

q

≃
�
2λ1 −

λ25
2λ3

�
v2; ð49Þ

m2
H0 ¼ λ1v2 þ λ3Λ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v2 − λ3Λ2Þ2 þ λ25v

2Λ2

q

≃ 2λ3Λ2; ð50Þ

which imply that φ is small, mH is at the weak scale, and
mH0 is at the Λ scale.
Last, but not least, the PD-odd fields S3, A3 do not mix

with the PD-even scalars due to the dark parity

FIG. 1. Neutrino mass generation seesaw scheme implemented
by a dark charge breaking, where νL;R carry a unit of dark charge,
D ¼ 1, converted/conserved by the Higgs field ϕ’s, but then
broken by the new Higgs field χ by two units through a coupling
to νR’s.
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conservation. S3 and A3 are degenerate in mass, for
which they define a physical complex field, say,
η ¼ ðS3 þ iA3Þ=

ffiffiffi
2

p
, with the mass given by

m2
η ¼ μ22 þ

1

2
λ4v2 þ

1

2
λ6Λ2: ð51Þ

Depending on the scalar couplings λ4;6 and the mass
parameter μ2, the dark scalar η can have an arbitrary mass,
at Λ, v, or a lower scale.

V. GAUGE SECTOR

The gauge bosons acquire masses through their
interactions with the scalar fields, when the gauge sym-
metry breaking happens. The charged gauge boson W� ¼
ðA1 ∓ iA2Þ=

ffiffiffi
2

p
gets a mass, m2

W ¼ g2v2=4, which leads
to v ¼ 246 GeV.
The mass matrix of the neutral gauge bosons in the

canonical basis ðA3; B̂; ĈÞT , in which the last two are
defined in (34), is given by

M2 ¼ LT
ϵ

0
BB@

g2v2

4
− ggYv2

4
− ggNv2

4

− ggYv2

4

g2Yv
2

4
gYgNv2

4

− ggNv2

4
gYgNv2

4

g2Nv
2

4
þ 4g2NΛ2

1
CCALϵ: ð52Þ

Here, note that Lϵ is not an orthogonal matrix, relating
the canonical basis to the original basis, ðA3; B; CÞT ¼
LϵðA3; B̂; ĈÞT , such that

Lϵ ¼

0
BB@

1 0 0

0 1 − ϵffiffiffiffiffiffiffi
1−ϵ2

p

0 0 1ffiffiffiffiffiffiffi
1−ϵ2

p

1
CCA: ð53Þ

Since the usual Higgs field has a hyperdark charge, it
produces the mixing mass terms between ðA3; BÞ and C as
given in (52) due to the electroweak symmetry breaking.
Such mixing mass terms vanish in the usual Uð1ÞB−L
theory.
It is easily checked that the mass matrix (52) provides a

zero eigenvalue (i.e., the photon mass) with a correspond-
ing eigenstate (i.e., the photon field) to be

A ¼ sWA3 þ cWB̂; ð54Þ

where theWeinberg angle is defined by tW ¼ gY=g.
7 The Z0

boson is defined, orthogonal to the photon A, such as

Z0 ¼ cWA3 − sWB̂; ð55Þ

which is identical to that of the standard model. Hence, in
the new basis ðA; Z0; ĈÞT , the photon is decoupled, as a
physical field, whereas there remains a mixing between Z0

and Ĉ. By diagonalization, the last two yield physical
fields, Z ¼ cαZ0 − sαĈ and Z0 ¼ sαZ0 þ cαĈ, determined
through a mixing angle, α, evaluated by

t2α ≃ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p

8g2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g2Y

q
ðgN − ϵgYÞ

v2

Λ2
: ð56Þ

That said, the mass matrix (52) is fully diagonalized,

OTM2O ¼ diagð0; m2
Z;m

2
Z0 Þ; ð57Þ

by an orthogonal transformation,

O ¼

0
B@

sW cW 0

cW −sW 0

0 0 1

1
CA
0
B@

1 0 0

0 cα sα
0 −sα cα

1
CA; ð58Þ

which relates the physical states to the canonical states,
ðA3; B̂; ĈÞT ¼ OðA; Z; Z0ÞT . And the mass eigenvalues are
approximated as

m2
Z ≃

g2 þ g2Y
4

v2
�
1 −

ðgN − ϵgYÞ2
16g2N

v2

Λ2

�
; ð59Þ

m2
Z0 ≃

4g2NΛ2

1 − ϵ2

�
1þ ðgN − ϵgYÞ2

16g2N

v2

Λ2

�
: ð60Þ

Note that the Z-Z0 mixing, i.e., the α angle, comes from
the two sources, the kinetic mixing characterized by ϵ
and the symmetry breaking induced by v, Λ. Two such
contributions cancel out if ϵ ¼ gN=gY . This phenomenon
does not exist in the usual Uð1ÞB−L theory. Additionally,
the well-measured quantities, such as the Z couplings and
the ρ parameter, are modified by the difference gN − ϵgY ,
which occurs even in absence of the kinetic mixing. In the
usual Uð1ÞB−L theory, such modifications are proportional
to ϵ and thus disappear when the kinetic mixing is sup-
pressed, by contrast.
Note also that the physical states ðA; Z; Z0Þ are related

to the original states ðA3; B; CÞ, such as ðA3; B; CÞT ¼
LϵOðA; Z; Z0ÞT .

VI. INTERACTIONS

We investigate the interactions of electroweak and new
gauge bosons with fermions. Let us expand the relevant
Lagrangian,

7The interested reader can refer to Refs. [70–72] for diagonal-
izing a more-general neutral-gauge sector with/without a kinetic
mixing term.
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X
F

F̄ iγμDμF ¼
X
F

F̄ iγμ∂μF − gs
X
F

F̄ γμtmGmμF

þ LCC þ LNC; ð61Þ

where

LCC ¼ −g
X
FL

F̄Lγ
μðT1A1μ þ T2A2μÞFL; ð62Þ

LNC ¼ −g
X
FL

F̄Lγ
μðT3A3μ þ tWYFL

Bμ þ tNNFL
CμÞFL

− g
X
FR

F̄Rγ
μðtWYFR

Bμ þ tNNFR
CμÞFR; ð63Þ

where FL and FR run over the left-handed and right-handed
fermion multiplets of the model, respectively, and we
define tN ¼ gN=g.
From (62), we obtain the interactions of fermions with

charged gauge bosons,

LCC¼−
gffiffiffi
2

p ðēLγμUνLþ d̄LγμVCKMuLÞW−
μ þH:c:; ð64Þ

where we denote ν≡ ðν1; ν2; ν3ÞT , e≡ ðe; μ; τÞT , u≡
ðu; c; tÞT , and d≡ ðd; s; bÞT to be mass eigenstates, without
confusion.
Equation (63) gives rise to the interactions of fermions

with neutral gauge bosons,

LNC ¼ −eQðfÞf̄γμfAμ

−
g

2cW
fCZ

νL ν̄Lγ
μνL þ CZ

νR ν̄Rγ
μνR

þ f̄γμ½gZVðfÞ − gZAðfÞγ5�fgZμ

−
g

2cW
fCZ0

νL ν̄Lγ
μνL þ CZ0

νR ν̄Rγ
μνR

þ f̄γμ½gZ0
V ðfÞ − gZ

0
A ðfÞγ5�fgZ0

μ; ð65Þ

where f is summed over every fermion of the model, except
for neutrinos, and

CZ
νL ¼ cα −

cWtN þ ϵsWffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p sα; CZ
νR ¼ −

2cWtNffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p sα; ð66Þ

CZ0
νL ¼ sα þ

cWtN þ ϵsWffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p cα; CZ0
νR ¼ 2cWtNffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵ2
p cα: ð67Þ

The vector and axial-vector couplings of Z, Z0 to
the remaining fermions are listed in Tables IV and V,
respectively.
Generically, the couplings of Z with fermions deviate

from the standard model prediction due to the two sources,
the dark charge breaking and the kinetic mixing, as
mentioned. However, for the neutrino coupling, we find
CZ
νL ≃ 1þ v2=16Λ2 at the leading order, which comes only

from the dark charge breaking, not from the kinetic mixing.
This leading contribution disappears in the usual Uð1ÞB−L
theory, which starts from O½ðv2=Λ2Þϵ� by contrast. The
contribution causes a deviation from the standard model
prediction on invisible Z decay width to neutrinos by an
amount, ΔΓinv=Γinv ≃ v2=8Λ2 ≲ 0.005, where the last
number agrees with the electroweak measurement [73],
which gives Λ≳ 5v ≃ 1.23 TeV.
Similar to the standard model Z boson, the couplings of

the new Z0 boson to ordinary fermions violate parity at a
considerable level, since gZ

0
A is always nonzero, even at the

effective limit v ≪ Λ and jϵj ≪ 1. This is due to the fact
that the left-handed and right-handed ordinary fermions
including neutrinos have different hyperdark charges,
as seen from Table II. In the usual Uð1ÞB−L model, the
interactions of the B − L gauge boson to ordinary fermions
are almost vectorlike, i.e., conserving parity, for jϵj ≪ 1.
This is an important feature for discriminating our model
and theUð1ÞB−L model in experiment. Particularly, unlike a
vectorlike B − L gauge boson, the Z0 boson in our model
contributes to atomic parity violation through the effective
Lagrangian,

LZ0
eff ⊃

GFffiffiffi
2

p ðēγμγ5eÞðC0
1uūγ

μuþ C0
1dd̄γ

μdÞ; ð68Þ

where GF=
ffiffiffi
2

p ¼ 1=2v2, C0
1u ≃ v2=96Λ2, and C0

1d ≃
−5v2=96Λ2. The parity violation for vector-coupled elec-
trons and axially coupled quarks due to Z0 also arises, but is
suppressed for a heavy atom because of its dependence on
spins rather than charges, similar to the Z boson effect;
thus, this kind of contribution is neglected. The weak
charge deviation from the standard model prediction

TABLE IV. Couplings of Z with fermions (f ≠ ν).

f gZVðfÞ gZAðfÞ
e, μ, τ 1−2c2W

2
cα −

cWtNþ3ϵsW
2
ffiffiffiffiffiffiffi
1−ϵ2

p sα − 1
2
cα −

cWtN−ϵsW
2
ffiffiffiffiffiffiffi
1−ϵ2

p sα
u, c, t − 1−4c2W

6
cα −

cWtN−5ϵsW
6
ffiffiffiffiffiffiffi
1−ϵ2

p sα
1
2
cα þ cWtN−ϵsW

2
ffiffiffiffiffiffiffi
1−ϵ2

p sα
d, s, b − 1þ2c2W

6
cα þ 5cWtN−ϵsW

6
ffiffiffiffiffiffiffi
1−ϵ2

p sα − 1
2
cα −

cWtN−ϵsW
2
ffiffiffiffiffiffiffi
1−ϵ2

p sα

ξ − 4rcWtNffiffiffiffiffiffiffi
1−ϵ2

p sα 0

TABLE V. Couplings of Z0 with fermions (f ≠ ν).

f gZ
0

V ðfÞ gZ
0

A ðfÞ
e, μ, τ 1−2c2W

2
sα þ cWtNþ3ϵsW

2
ffiffiffiffiffiffiffi
1−ϵ2

p cα − 1
2
sα þ cWtN−ϵsW

2
ffiffiffiffiffiffiffi
1−ϵ2

p cα
u, c, t − 1−4c2W

6
sα þ cWtN−5ϵsW

6
ffiffiffiffiffiffiffi
1−ϵ2

p cα
1
2
sα −

cWtN−ϵsW
2
ffiffiffiffiffiffiffi
1−ϵ2

p cα
d, s, b − 1þ2c2W

6
sα −

5cWtN−ϵsW
6
ffiffiffiffiffiffiffi
1−ϵ2

p cα − 1
2
sα þ cWtN−ϵsW

2
ffiffiffiffiffiffiffi
1−ϵ2

p cα

ξ 4rcWtNffiffiffiffiffiffiffi
1−ϵ2

p cα 0
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accounted for an atom consisting of Z protons and N
neutrons is obtained as

ΔQWðZ;NÞ ¼ −2½Zð2C0
1u þ C0

1dÞ þ NðC0
1u þ 2C0

1dÞ�

≃
Z þ 3N

16

v2

Λ2
≃ 18

v2

Λ2
; ð69Þ

where the last number is applied for Cesium with Z ¼ 55
and N ¼ 78. The current experiment and the standard
model prediction for Cs weak charge are supplied in
Ref. [73] which makes a bound ΔQWðCsÞ < 0.61, imply-
ing Λ > 5.43v ≃ 1.33 TeV.
The bounds of the Λ new physics scale from the invisible

Z decay and the Cesium parity violation obviously satisfy
the combined constraints studied below, which need not
necessarily be included to the final result.

VII. ELECTROWEAK PRECISION TEST

A. ρ parameter

Because the Z boson mixes with the new neutral gauge
boson Z0 through the kinetic mixing and the symmetry
breaking, the new physics contributions to the ρ parameter
start from the tree level, given by

Δρ ¼ m2
W

c2Wm
2
Z
− 1 ≃

ðtN − ϵtWÞ2
16t2N

v2

Λ2
: ð70Þ

From the global fit, the ρ parameter is bounded by
0.0002 < Δρ < 0.00058 [73], which leads to the following
lower bound:

Λ≳ 2.553 ×
jtN − ϵtW j

tN
TeV: ð71Þ

In the Uð1ÞB−L model, one has a bound for the relevant
new physics scale, likely Λ ≳ 2.553 × jϵjgY=gB−L TeV,
which is easily evaded for small jϵj, given that gY∼gB−L.
However, in the current model, even for jϵj ≪ 1, the new
physics scale is always limited by Λ≳ 2.553 TeV, by
contrast. This bound is quite bigger than those given by
the invisible Z decay and the Cs parity violation.

B. Total Z decay width

We will use the precision measurement of the total Z
decay width to impose the constraint on the free parameters
of the model. The total Z decay width is measured by
the experiment and predicted by the standard model,
respectively, by [73]

Γexp
Z ¼ 2.4952� 0.0023 GeV;

ΓSM
Z ¼ 2.4942� 0.0008 GeV: ð72Þ

First, we rewrite the Lagrangian describing the Z
couplings to the standard model fermions, such as

LNC ⊃ −
g

2cW
fν̄Lγμð1þ ΔνLÞνL þ f̄γμ½gZ0VðfÞð1þ ΔV;fÞ

− gZ0AðfÞð1þ ΔA;fÞγ5�fgZμ; ð73Þ
where gZ0VðfÞ ¼ T3ðfÞ − 2QðfÞs2W and gZ0AðfÞ ¼ T3ðfÞ are
the standard model predictions for the vector and axial-
vector couplings, respectively. ΔνL , ΔV;f, and ΔA;f are the
coupling shifts given as follows:

ΔνL ≃
t2N − ϵ2t2W
16t2N

v2

Λ2
; ð74Þ

ΔV;f≃
2½tNDðfÞ−ϵtWQðfÞ�−T3ðfÞðtN−ϵtWÞ

T3ðfÞ−2QðfÞs2W
tN−ϵtW
16t2N

v2

Λ2
;

ð75Þ

ΔA;f ≃ −
ðtN − ϵtWÞ2

16t2N

v2

Λ2
: ð76Þ

Using this Lagrangian, one can write the total Z decay
width predicted by the model,

ΓZ ¼ ΓSM
Z þ ΔΓZ; ð77Þ

where ΓSM
Z is the standard model value and the shift ΔΓZ is

given by

ΔΓZ ≃
mSM

Z

6π

�
g

2cW

�
2
�X

f

NCðfÞ½ðgZ0VðfÞÞ2ΔV;f

þ ðgZ0AðfÞÞ2ΔA;f� þ
3ΔνL

2

�

þ ΔmZ

12π

�
g

2cW

�
2
�X

f

NCðfÞ½ðgZ0VðfÞÞ2

þ ðgZ0AðfÞÞ2� þ
3

2

�
; ð78Þ

where mSM
Z is the standard model value of the Z gauge

boson mass, NCðfÞ is the color number of the fermion f,
the sum is taken over the standard model charged fermions,
and the mass shift of the gauge boson Z is given by

ΔmZ ≃ −
g

2cW

ðtN − ϵtWÞ2
32t2N

v3

Λ2
: ð79Þ

Note that if kinetically allowed the gauge boson Z can
decay into the dark matter candidate pairs ξ̄ξ and η�η but
these two-body decays are highly suppressed by v4=Λ4.
From the experimental and theoretical values of ΓZ as
aforementioned, we require jΔΓZj < 0.0041 GeV, which
leads to the following bound:

Λ≳ 1.14 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðtN − 1.62ϵÞðtN − 0.55ϵÞjp
tN

TeV: ð80Þ
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In the usual Uð1ÞB−L gauge theory, there is no mixing of
Z and Z0, except for a contribution caused by the kinetic
mixing. If ϵ is small enough, the total Z decay width
deviation is negligible; hence, there is no lower bound
applied for Λ in this case. However, in the current model,
we derive Λ ≳ 1.14 TeV for jϵj ≪ 1, which is due to the
dark charge breaking and quite comparable to the bounds
from the invisible Z decay and the Cs parity violation.

VIII. COLLIDER BOUNDS

A. LEPII constraint

The on-shell new gauge boson Z0 would not be produced
at the existing eþe− colliders if its mass were in the TeV
region or higher. But below the resonance, Z0 would
manifestly contribute to the viable observables that make
them deviate from the standard model predictions. Hence,
the new gauge boson Z0 can be indirectly searched at the
LEPII experiment through the processes eþe− → f̄f with
f ¼ e, μ, τ.
The processes under consideration that are induced by

the exchange of the new gauge boson Z0 can be described
by the effective Lagrangian

Leff ¼
1

1þ δef

�
g

2cWmZ0

�
2

ēγμ½gZ0
V ðeÞ − gZ

0
A ðeÞγ5�

× ef̄γμ½gZ0
V ðfÞ − gZ

0
A ðfÞγ5�f; ð81Þ

where δef ¼ 1ð0Þ for f ¼ e (f ≠ e).
By using the relevant data of the LEPII experiment [74],

we impose the constraint

4
ffiffiffi
π

p
cWmZ0

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gZ0

V ðeÞ�2 þ ½gZ0
A ðeÞ�2

q ≳ 24.6 TeV; ð82Þ

which leads to

Λ≳ 1.23 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtN þ ϵtWÞ2 þ 4ϵ2t2W

p
tN

TeV; ð83Þ

expanded up to ðv=ΛÞ2 corrections.
At the limit jαj ∼ ðv=ΛÞ2 ≪ 1 and jϵj ≪ 1, the new

gauge boson Z0 couples only to left-handed charged leptons
with hyperdark charge N ¼ 1=2, such that gZ

0
V ðeÞ≃

gZ
0

A ðeÞ ≃ 1
2
cWtN . Hence, it translates to a LEPII bound

Λ≳ 1.23 TeV, which also agrees with the limits given
above, except for the ρ parameter. However, since in the
Uð1ÞB−L gauge theory the relevant new gauge boson
couples to charged leptons by a charge jB − Lj ¼ 1 bigger
than the current case N ¼ 1=2, the B − L breaking scale is
two times bigger than our bound.

B. LHC dilepton constraint

Analogous to the LEPII, because the new gauge boson Z0
possesses the chiral gauge couplings to ordinary fermions
with strengths different from those in the usual Uð1ÞB−L
theory, the Z0 signal strength at the LHC—which translates
to a lower limit on the new physics scale for a negative
search result—would be dramatically changed, compared
to the conventional bounds in the Uð1ÞB−L theory.
Since the LHC is energetic enough to probe Z0 events on

shell as well as various Z0 couplings, in this search, we
appropriately take both the mixing effects coming from dark
charge breaking and kinetic mixing into account and include
the above constraints when turning on contribution of the
mixing parameters, for a comparison at the end.
The new gauge boson Z0 can be resonantly produced at

the LHC via the quark fusion q̄q → Z0, and it would
subsequently decay into the standard model fermions as
well as the exotic particles such as the dark matter
candidate ξðηÞ. The most significant decay channel of Z0
is given by Z0 → lþl− with l ¼ e, μ, which has well-
understood backgrounds and measures a Z0 that owns both
couplings to quarks and leptons.
The cross section for this process is approximately

computed in the case of the very narrow Z0 decay width as

σðpp → Z0 → lþl−Þ ≃ π

3

�
g

2cW

�
2X

q

Lqq̄ðm2
Z0 Þ

× f½gZ0
V ðqÞ�2 þ ½gZ0

A ðqÞ�2g

×
ΓðZ0 → lþl−Þ

ΓZ0
; ð84Þ

where the parton luminosity Lqq̄ is given by

Lqq̄ðm2
Z0 Þ ¼

Z
1

m2

Z0
s

dx
xs

�
fqðx;m2

Z0 Þfq̄
�
m2

Z0

xs
;m2

Z0

�

þ fq

�
m2

Z0

xs
;m2

Z0

�
fq̄ðx;m2

Z0 Þ
�
; ð85Þ

where
ffiffiffi
s

p
is the collider center-of-mass energy and

fqðq̄Þðx;m2
Z0 Þ is the parton distribution function of the

quark q (antiquark q̄), evaluated at the scale mZ0 .
Additionally, the total Z0 decay width reads

ΓZ0 ≃
mZ0

12π

�
g

2cW

�
2X

f

NCðfÞf½gZ0
V ðfÞ�2 þ ½gZ0

A ðfÞ�2g

þ mZ0

24π

�
gtNffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p
�

2X3
i¼1

�
1−

4M2
i

m2
Z0

�
3=2

θ

�
mZ0

2
−Mi

�

þ mZ0

48π

�
gð2r− 1ÞtNffiffiffiffiffiffiffiffiffiffiffiffi

1− ϵ2
p

�
2
�
1−

4m2
η

m2
Z0

�
3=2

θ

�
mZ0

2
−mη

�
;

ð86Þ
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where f refers to the standard model fermions and the dark
fermion ξ that is assumed to be radically lighter than Z0.
The θðxÞ is the step function, and Mi is the νiR mass.

In Fig. 2, we show the dilepton production cross section
σðpp → Z0 → lþl−Þ as a function of the new gauge boson
mass, mZ0 , for various values of tN and ϵ, with r ¼ 1,
M1 ¼ M2 ¼ M3 ¼ mZ0=3, and mη ¼ mZ0=4. In addition,
we include the upper limits on the cross section of this
process at 95% credibility level using 36.1 fb−1 of pp
colision at

ffiffiffi
s

p ¼ 13 TeV by the ATLAS experiment [75].
In the top panel, the lower bounds on the new gauge boson
mass are determined as mZ0 ¼ 2.1; 2.8; 3.5; and 3:7 TeV
according to tN ¼ 0.1; 0.3; 0.6; and 0.8, respectively, for
ϵ ¼ 0.1, whereas, in the bottom panel, the lower bounds are
mZ0 ¼3.9; 2.3; 3.4; and4.5TeV according to ϵ ¼ −0.5,
−0.1, 0.4, and 0.8, respectively, for tN ¼ 0.2.
It is noteworthy that the Z0 boson decays not only to the

leptons but also to the quarks, and thus the dijet signal can
provide a lower exclusion limit for the Z0 mass. However,
since the coupling strengths between Z0 and the charged
leptons are approximately equal to those of Z0 with the
quarks, and the current bound on dijet signals is less sensitive
than the dilepton one [76,77], the lower limit implied by the
dijet search is quite smaller than that obtained from the
dilepton, as explicitly shown in Fig. 3. Hence, in the present
model, the dijet bounds for the Z0 mass are not significant.
In Fig. 4, we combine the lower bounds, which are

obtained from the current LHC limits of the dilepton
production, the ρ parameter, the precision measurement
of the Z decay width, and the LEPII constraint, to find
the allowed parameter space in the tN–Λ and ϵ–Λ planes.
The top panel of this figure indicates that with ϵ ¼ 0.1 the
current LHC limits of the dilepton production impose
the most stringent bound on the new physics scale Λ for
the range of tN values under investigation. Similarly, the
bottom-left and -right panels suggest that with tN ¼ 0.2 the
current LHC limits of the dilepton production impose
the most stringent bound for the whole region of ϵ under
consideration.

FIG. 2. The cross section for the process pp → Z0 → lþl−
plotted as a function of the Z0 boson mass according to the
choices of ðtN; ϵÞ, where the top and bottom panels correspond
to ϵ ¼ 0.1 and tN ¼ 0.2, respectively. The solid and dashed
black curves refer to the observed and expected limits, while
the green and yellow bands refer to 1σ and 2σ expected limits,
respectively [75].

FIG. 3. The cross section (σ) times kinematic acceptance (A ≃ 0.4) times branching ratio (Br) into two quarks (up quarks according to
the left panel and down quarks according to the right panel) as a function of the Z0 boson mass (mZ0 ). The solid and dashed black curves
refer to the observed and expected limits, respectively [77], while the remaining curves are predicted by our model, in which the dashed
color curves fix ϵ ¼ 0.1, while the solid color curves fix tN ¼ 0.2.
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IX. DARK MATTER PHENOMENOLOGY

As shown in Sec. II, the dark matter candidate, i.e., the
lightest field of ξ and η, can take an arbitrary mass. This is
opposite to a previous study by one of us, which limits the
dark matter mass below the electron mass [52]. Hence, in
this work, we have compelling scenarios that explain the
dark matter abundance.
When the dark matter candidate is significantly coupled

to the normal matter in the thermal bath of the Universe, the
freeze-out mechanism works and determines not only the
dark matter relic density but also the dark matter nature to
be a weakly interacting massive particle (WIMP). If this
WIMP is sufficiently light, it may modify the synthesis of
the primordial light elements of the Universe; hence, this

scheme requires a dark matter mass to be bigger than the
big bang nucleosynthesis (BBN) and cosmic microwave
background (CMB) bounds, roundly equal to the electron
mass [78].
When the dark matter candidate is very weakly coupled

to the normal matter, its annihilation rate into normal matter
is always smaller than the Hubble rate and the dark matter
is not constrained by the BBN and CMB bounds. In this
case, we have two folds of dark matter production, given
upon the new physics scale. If the new physics scale is at
the TeV regime similar to the above WIMP case, a thermal
freeze-in mechanism works and implies the relic density
through the right-handed neutrino decay, νR → ξLη.
Alternatively, if the new physics scale is very large, the

FIG. 4. The black, blue, red, and purple curves correspond to the lower bounds obtained from the current LHC limits of the dilepton
production, the precision measurement of the Z decay width, the ρ parameter, and the LEPII constraint, respectively. The regions that are
below each of these curves are excluded; hence, the allowed parameter space is determined by the green regions. The top panel
corresponds to ϵ ¼ 0.1, while the bottom-left and -right panels correspond to tN ¼ 0.2.
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dark matter may be asymmetrically produced from the CP-
violation decay of the right-handed neutrino νR → ξLη,
through a mechanism similar to the leptogenesis for lepton
asymmetry generation.
Let us remind the reader that comparing the predicted

neutrino masses in (40) with the neutrino oscillation data
[73] yields Λ ∼ ½ðhνÞ2=fν� × 1014 GeV. Depending on the
Yukawa couplings, this leads to two regimes for the seesaw
scale Λ, that is, at TeV and grand unified theory scales,
respectively. Such new physics regimes are appropriate to
the mentioned mechanisms for dark matter generation. The
discussion delivered here updates and extends what done
in Ref. [52].

A. TeV seesaw scale: WIMP dark matter

The seesaw scale Λ is in the TeV regime, if ðhνÞ2=fν is
appropriately small; e.g., fν ∼ 1, and hν is similar to
charged lepton Yukawa couplings. In this case, the new
gauge boson Z0 may pick up a mass at TeV compatible to
the precision test and colliders, as given above.
Let us recall that, although the charged leptons and down

quarks are PD odd as the dark matter is, the dark matter

cannot decay to the usual particles because of the electric
and color charge conservation. In other words, the dark
matter can obtain a mass larger than the usual fields, and in
the early Universe, the dark matter can annihilate to these
lighter fields, which sets the dark matter abundance by the
standard thermal decoupling limit.
We will study two scenarios where the WIMP dark

matter is either a vectorlike fermion ξ by imposing
mξ < mη or a complex scalar η by assuming mη < mξ.

1. Dark matter as a fermion ξ

When the fermion ξ is lighter than the scalar η, ξ is
stabilized responsible for dark matter. Assume that ξ has a
nonzero dark charge, i.e., r ≠ 0. Processes for fermion
dark matter pair annihilation into the standard model
particles (leptons, quarks, Higgs, and gauge bosons) as
well as possible right-handed neutrinos proceed dominantly
through the contribution of the new gauge boson Z0 by the
s-channel exchange diagrams. It is straightforward to
determine the dark matter annihilation cross section times
relative velocity, given by

hσvreliξξc→all ≃
g4½gZ0

V ðξÞ�2m2
ξ

16πc4Wð4m2
ξ −m2

Z0 Þ2
�X

f

NCðfÞf½gZ0
V ðfÞ�2 þ ½gZ0

A ðfÞ�2g þ
g2Z0ZHc

2
W

4g2m2
Z

�

þ g4½gZ0
V ðξÞ�2ðCZ0

νRÞ2m2
ξ

32πc4Wð4m2
ξ −m2

Z0 Þ2
X3
i¼1

�
1 −

M2
i

4m2
ξ

��
1 −

M2
i

m2
ξ

�
1=2

θðmξ −MiÞ; ð87Þ

where f denotes the standard model fermions, the Z0ZH
coupling is given by gZ0ZH ≃ g2vðϵtW − tNÞ=2cW

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
,

and note that the Z0 coupling to νiR is flavor independent.
The relic abundance of the dark matter fermion is
Ωξh2 ≃ 0.1 pb=hσvreliξξc→all.
Take r ¼ 1, s2W ¼ 0.231, g ¼ 0.651,mZ ¼ 91.187 GeV,

and M1;2;3 ¼ mZ0=3, as above. Let Λ ¼ 14 TeV satisfy the
limits from Fig. 4, which requires ϵ ¼ 0.1, and 0.12 ≤
tN ≤ 0.8, or alternatively tN ¼ 0.2, and −0.8 ≤ ϵ ≤ 0.8. In
Fig. 5, top panel, we depict the relic density as a function of
mξ for the several choices of tN and ϵ that are viable from
the mentioned regimes of Fig. 4. Each density curve
contains a resonance where the density is radically reduced,
set by mξ ¼ mZ0=2. Additionally, we make contours of
Ωξh2 ¼ 0.12 as a function of mξ and tN for ϵ ¼ 0.1 in
Fig. 5, bottom-left panel, and as a function of mξ and ϵ for
tN ¼ 0.2 in Fig. 5, bottom-right panel. Notice that the gray
band denotes excluded parameter space according to the
dark matter relic density above 0.12 that is overpopulated,
while the pink band is excluded region by the LHC for
Λ ¼ 14 TeV that excludes tN < 0.12 or equivalently mξ ≈
mZ0=2 < 1.1 TeV as set by the resonance. From this figure,

we obtain the viable dark fermion mass region to be
1.1 TeV ≤ mξ ≤ 9.4 TeV for ϵ ¼ 0.1 and 0.12 ≤ tN ≤
0.8 and 1.7 TeV ≤ mξ ≤ 4 TeV for tN ¼ 0.2 and
−0.8 ≤ ϵ ≤ 0.8.
Besides providing a correct relic density, a viable dark

matter candidate should evade the present constraints from
detection experiments. The strongest limits come from
direct detections, which measure the spin-independent (SI)
scattering cross section of the dark matter on nucleons in
target nucleus. Additionally, the scattering of the dark
matter with nucleons can be described, at the microscopic
level, starting from effective interactions between the dark
matter and the standard model quarks. Here, such inter-
actions are dominantly contributed by t-channel exchange
diagrams of the new gauge boson Z0 to be

Leff
ξ−quark ¼ ðξ̄γμξÞ½q̄γμðαqPL þ βqPRÞq�; ð88Þ

where q ¼ u, d, and PL;R ¼ ð1 ∓ γ5Þ=2, and

αq ¼
g2

4c2Wm
2
Z0
gZ

0
V ðξÞ½gZ0

V ðqÞ þ gZ
0

A ðqÞ�; ð89Þ
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βq ¼
g2

4c2Wm
2
Z0
gZ

0
V ðξÞ½gZ0

V ðqÞ − gZ
0

A ðqÞ�: ð90Þ

Hence, we obtain the SI scattering cross section of ξ on a
nucleon, labeled as N ≡ p, n with corresponding mass
mN , such as [79]

σSIξ ¼ 4μ2ξN
πA2

½λpZ þ λnðA − ZÞ�2; ð91Þ

in which Z is the nucleus charge, A is the total number of
nucleons in the nucleus, μξN ¼ mξmN =ðmξ þmN Þ ≃mN

is the reduced mass of the dark matter-nucleon system, and

λp ¼ ½2ðαu þ βuÞ þ αd þ βd�=8;
λn ¼ ½αu þ βu þ 2ðαd þ βdÞ�=8 ð92Þ

denote the effective couplings of the dark matter with
protons and neutrons, respectively.
Take Λ ¼ 14 TeV (as above), A ¼ 131, and Z ¼ 54 for

the Xe nucleus, and mN ≃ 1 GeV. Assuming the correct
relic density for the dark fermion, in Fig. 6, we plot the SI

scattering cross section as a function of the dark fermion
mass according to the previously given regimes of ðϵ; tNÞ,
presented as blue and purple lines, respectively. In this
figure, we also include the XENON1T experimental

FIG. 6. The SI scattering cross section of the dark fermion on
a nucleon as a function of its mass, where the XENON1T upper
limit (black line), 1σ band (green), and 2σ band (yellow),
as well as the LHC (pink) and XENON1T (gray) excluded
regions, are shown.

FIG. 5. Fermion dark matter relic density plotted as a function of its mass for different choices of tN , ϵ (top panel), whereas in the
bottom panels, we contour the correct relic density according to several parameter pairs, where the bottom-left fixes ϵ ¼ 0.1, while the
bottom-right fixes tN ¼ 0.2.
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bounds, with upper limit (black line), as well as 1σ (green)
and 2σ (yellow) sensitivity bands [80,81]. Additionally, the
pink and gray bands are the excluded regions by the LHC
and the XENON1T, respectively. Note that the LHC
excluded region suppresses the SI cross section (blue line)
according to tN < 0.12, as expected. It is clear that the
viable dark fermion mass region obtained from the previous
part on the relic density also satisfies the current exclusion
limit of the XENON1T on direct detection.

2. Dark matter as a scalar η

We now consider a possibility that the complex scalar
singlet η is lighter than ξ responsible for dark matter. We
also assume that η is lighter than H0, Z0, and νR’s, for
simplicity. Hence, the dark matter candidate annihilates
only to the standard model particles through a contact
interaction (λ4) with usual Higgs fields as well as H0 and Z0
portals that set the relic density.8 Additionally, these
interactions/portals also determine the dark matter scatter-
ing with normal matter in direct detection. The contribu-
tions of Z0; H0 portals to the dark matter observables turn
out to be quite similar to the case of the fermion dark matter
with Z0 portal. Indeed, we find two distinct resonances in
the relic density according to mη ¼ 1

2
mH0 and mη ¼ 1

2
mZ0 ,

set by H0 and Z0 fields, respectively. However, only the Z0
portal governs the SI scattering cross section, similar to the
fermion dark matter case, since H0 does not interact with
quarks at the leading order. Hence, in what follows, we will
not consider the Z0 and H0 contributions.
The most relevant phenomena are associated with the λ4

coupling, such that

V ⊃
1

2
λ4η

�ηðH2 þ 2vHÞ; ð93Þ

which connects the scalar dark matter to the standard model
particles through the usual Higgs portal. This contribution
of λ4 (i.e., H) dominates over the mentioned portals, given
that λ4 ∼ 1 is radically bigger than the gauge couplings
g; gN as well as the λ6 coupling that couples η to the new
HiggsH0. That said, the dark matter annihilation is given by
the channel ηη� → HH, set by the contact interaction λ4,
which yields the cross section,

hσvreliηη�→HH ≃
7λ24

128πm2
η
: ð94Þ

The correct relic density, i.e., Ωηh2 ≃ 0.1 pb=
hσvreliηη�→HH ≃ 0.12, implies a condition for the dark
matter mass at the TeV regime,

mη ≃ jλ4j × 2.85 TeV ∼ 2.85 TeV: ð95Þ

To study the dark matter direct detection, we write the
effective Lagrangian that describes η-quark interactions
induced by t-channel H-exchange diagrams as

Leff
η-quark ¼

λ4mq

m2
H

η�ηq̄q; ð96Þ

where q denotes ordinary quarks. The SI scattering cross
section of η on a nucleon is [82]

σSIη ¼
�

λ4
2

ffiffiffi
π

p μηN
m2

H

mN

mη
CN

�
2

; ð97Þ

where μηN ¼ mηmN =ðmη þmN Þ ≃mN , and

CN ¼ 2

9
þ 1

A

X
q¼u;d;s

��
Z −

2

9
A

�
fpq þ ðA − ZÞfnq

�
; ð98Þ

in which fpðnÞq take the values [83]

fpðnÞu ≃ 0.0208ð0.0189Þ; fpðnÞd ≃ 0.0411ð0.0451Þ;
fpðnÞs ≃ 0.043ð0.043Þ: ð99Þ

We estimate

σSIη ≃ 1.115 × 10−45
�jλ4j × 2.85 TeV

mη

�
2

cm2: ð100Þ

Taking the result (95) for the correct abundance, the model
predicts σSIη ≃ 1.115 × 10−45 cm2, in good agreement with
the XENON1T experiment for a dark matter mass at TeV
regime, mη ∼ 2.85 TeV, since λ4 ∼ 1 [80,81].

B. TeV seesaw scale: Freeze-in dark matter

What happens if the dark fermion, ξ, has a vanished dark
charge, r ¼ 0? (Note that the dark scalar, η, always has a
nonzero dark charge, which does not play such a role
instead.) It is indeed a sterile particle, ξ ∼ ð1; 1; 0; 0Þ, not
interacting with the normal fields. It has only a coupling to
the second dark field, yξ̄LηνR. We further imposemξ < mη,
so the field ξ is stabilized. If y is very small, the dark matter
ξ is very weakly coupled to the thermal bath of the
Universe.9 Furthermore, it is noted that, since η and νR
are coupled to the Higgs and gauge portals via the
couplings λ4;6 and/or gN, the fields η; νR are always
in thermal equilibrium with the standard model plasma,

8Since theZ-Z0 mixing angle is suppressed, i.e.,α ∼ v2=Λ2 ≪ 1,
the contribution of Z is small, and thus omitted, similarly to the
fermion dark matter case.

9Opposite to the following asymmetric dark matter, there the
coupling strength between the dark fields and the normal fields is
highly suppressed by the heavy Uð1ÞN sector.
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as maintained by the forward/backward reactions SMþ
SM ↔

Z0;H0
νRνRðηη�Þ, in contrast to ξ.

Since ξ does not couple to the inflation field like the one
proposed below, it should have a vanished initial density.
Hence, ξ may be later produced by the decay νR → ξLη via
the freeze-in mechanism, given that mνR > mξ þmη [84].
We have assumed νR to be the lightest among the three
right-handed neutrinos, with the corresponding coupling y
to the dark fields. This way of dark matter genesis is
opposite to the WIMP scheme studied above.
When the cosmic temperature drops below the

right-handed neutrino mass, the freeze-in mechanism
supplies a relic density proportional to the decay rate
ΓðνR → ξLηÞ [84],

Ωξh2 ∼ 0.1

�
y

10−9

�
2
�
1 TeV
mνR

��
mξ

33.3 MeV

�
: ð101Þ

This yields a dark matter mass about mξ ∼ 33.3 MeV,
given that y ∼ 10−9 and the smallest right-handed neutrino
mass mνR ∼ 1 TeV. Of course, this dark matter mass
depends on the y coupling and the νR mass (cf. Ref. [52]
for an alternative interpretation).
The possibility of a feebly interacting massive particle, ξ,

is very special, only for r ¼ 0, a tiny y, and mξ < mη. For
the case mξ > mη by contrast, the field η becomes dark
matter, but generated by a freeze-out mechanism like the
previous section. Let us turn to a more generic case, in
which both η and ξ are very weakly coupled to the standard
model plasma.

C. Large seesaw scale: Asymmetric dark matter

When Λ is very large and λ4 is very small, the dark
fields ðξ; ηÞ are very weakly coupled to the standard
model sector (even for r ≠ 0). The dark matter may
possess any mass, not bounded by the BBN and CMB.
Assuming mξ < mη without loss of generality, this means
that ξ is stable, responsible for dark matter. The physics
happens as follows. The large field for Uð1ÞN breaking
inflates the early Universe, then decays to right-handed
neutrinos. These heavy neutrinos that couple to the
dark fields via complex couplings yaξ̄LηνaR CP-
asymmetrically decay to the dark fields, determining
the dark matter density, similar to the standard lepto-
genesis. Let us see this in the following.
Given that ðhνÞ2=fν ∼ 1, we obtain Λ ∼ 1014 GeV, the

scale of dark charge breaking. We first argue that this
scenario of dark charge can explain the cosmic inflation
driven by the dark charge breaking field, χ, comparable to
the one for B − L breaking [85–88].
The imaginary part of the χ field, GZ0 ¼ ffiffiffi

2
p

ℑðχÞ, is the
Goldstone boson absorbed/eaten by Z0 through a gauge
transformation, U ¼ e−iGZ0=Λ. What remains is the real part

of this field, Φ≡ ffiffiffi
2

p
ℜðχÞ ¼ ffiffiffi

2
p

Uχ ≃ ΛþH0, called the
inflaton. It is described by a potential,

VðΦÞ ¼ 1

2
μ23Φ2 þ 1

4
λ3Φ4: ð102Þ

This potential cannot explain the cosmic inflation [73].
Even if one includes Coleman-Weinberg contributions due
to the couplings of Φ to νR, Z0, ϕ, and η [89], the effective
potential merely mimics the tree-level potential for large
fieldΦ > Λ, whereas it predicts a too big number of e-folds
for small field Φ < Λ [87].
The inflation issue can be solved by imposing the Higgs

inflation scheme forΦ instead of the usual Higgs field [90].
For large field Φ > Λ, the inflaton potential is approxi-
mated to be VðΦÞ ≃ 1

4
λ3Φ4, which preserves a scale (or

conformal) symmetry. Including a nonminimal coupling of
Φ to gravity, called δ0, one has a Lagrangian,

L ⊃
1

2
ðm2

P þ δ0Φ2ÞRþ 1

2
∂μΦ∂μΦ − VðΦÞ; ð103Þ

where R is Ricci scalar, mP ¼ 2.4 × 1018 GeV is reduced
Planck mass, and 1 ≪ δ0 ≪ ðmP=ΛÞ2 for consistency.
Changing to the Einstein frame ĝμν ¼ Ω2gμν by a conformal
transformation Ω2 ¼ 1þ δ0Φ2=m2

P, the Lagrangian takes
the canonical form,

L̂ ¼ Ω−4L ⊃
1

2
m2

PR̂þ 1

2
∂μΦ̂∂μΦ̂ −UðΦ̂Þ; ð104Þ

with the normalized inflaton field, Φ̂ ¼ ffiffiffiffiffiffiffiffi
3=2

p
mP lnΩ2,

and the resultant potential,

UðΦ̂Þ≡ V=Ω4 ≃ ðλ3m4
P=4δ

02Þ½1 − exp ð−
ffiffiffiffiffiffiffiffi
2=3

p
Φ̂=mPÞ�2;

ð105Þ

which is flat for Φ̂ ≫ mP, as desirable.
Let Φ0 and Φe be the inflaton field values at the horizon

exit and inflation end, respectively. The slow-roll param-
eters ϵðΦÞ, ηðΦÞ, and ζðΦÞ; the curvature perturbation
Δ2

RðΦÞ; and the number of e-folds NðΦÞ can be directly
deduced from UðΦ̂Þ. The inflation ends at ϵðΦeÞ ≃ 1,
giving Φ2

e ≃ ð2= ffiffiffi
3

p
δ0Þm2

P. The standard cosmology [73]
yields both NðΦ0Þ ≃ 60, implyingΦ2

0 ≃ ð84.84=δ0Þm2
P, and

Δ2
RðΦ0Þ ¼ 2.215 × 10−9 at pivot scale k0 ¼ 0.05 Mpc−1,

supplying δ0=
ffiffiffiffiffi
λ3

p
≃ 5.04 × 104. We achieve the inflation

observables at the horizon exit, such as the spectral index
ns ≃ 0.967, the tensor-to-scalar ratio r ≃ 0.00296, and the
running index α ≃ −5.23 × 10−4, in agreement with the
experiments [91].
After the inflation, the right-handed neutrinos may

directly be created by the inflaton decay, Φ → νRνR, which
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reheats the Universe.10 Alternatively, the fields νR may be
created in the cosmic plasma through thermalizing other
states during the preheating or/and reheating stages. These
right-handed neutrinos presented in the early Universe then
decay to dark fields, νR → ξLη, through diagrams as
depicted in Fig. 7, which both violates CP symmetry
and drops out of thermal equilibrium when the Universe
cools down, explaining the abundance of the asymmetric
dark matter of the Universe. This process is similar to the
CP-violating decay of νR to normal matter, i.e., νR → lLϕ,
that explains the lepton asymmetry via leptogenesis [92].
Assume the right-handed neutrino masses to be hierar-

chical,M1 ≪ M2;3. The asymmetric dark matter generation
is proceeded through ν1R decay, determined by

ϵDM ¼ Γðν1R → ξηÞ − Γðν1R → ξ̄ η̄Þ
Γν1R

; ð106Þ

where Γν1R is the total width of ν1R, which must include
ν1R → lLϕ, too. From Fig. 7, it is straightforward to derive

ϵDM ¼
P

iℑ½y�i y1ðy�i y1 þ hν�aih
ν
a1Þ�M1=Mi

8πðy�1y1 þ 2hν�a1h
ν
a1Þ

: ð107Þ

Note that the two-to-two scatterings between normal fields
ðlϕÞ and dark fields ðξηÞ are suppressed because they are
mediated by superheavy particles νR, Z0, andH0. Hence, the
Boltzmann equation that describes the abundance yield of
dark matter asymmetry, YDM, is decoupled from that for
normal matter. The abundance yield takes the form

YDM ¼ ηDMϵDMY
eq
ν1Rð0Þ; ð108Þ

where Yeq
ν1Rð0Þ ¼ 135ζð3Þ=ð4π4g�Þ ≃ 4 × 10−3. And the

efficiency factor is given by the Boltzmann equation as

ηDM ≃
HðT ¼ M1Þ
Γðν1R → ξηÞ ≃

170M1

y�1y1mP
; ð109Þ

appropriate to the strong washout regime, ηDM ≪ 1, where
H ¼ 0.33

ffiffiffiffiffi
g�

p
T2=mP is the Hubble rate at the asymmetric

ν1R decay, T ¼ M1, with g� ¼ 106.75 counting the effec-
tive number of degrees of freedom.
The relic abundances of dark matter and normal matter

have been well measured, giving a relation ΩDM ≃ 5ΩB.
Hence, the dark matter mass obeys

mξ ≃ 5mpYBY−1
DM≃

1.6×10−8mpmPy�1y1ðy�1y1þ 2hν�a1h
ν
a1Þ

M2
1

P
iℑ½y�i y1ðy�i y1þhν�aih

ν
a1Þ�=Mi

;

ð110Þ

wheremp≃1GeV is the proton mass, and YB≃0.87×10−10

is the baryon-to-entropy ratio [73]. Expanding the inflation
potential, we obtain the inflaton massmΦ̂ ¼ ffiffiffiffiffiffiffiffiffi

λ3=3
p

mP=δ0≃
2.77 × 1013 GeV. Thus, one can take

M1 ≪ mΦ̂ ∼M2 ∼M3; ð111Þ

such that the inflaton suitably decays to ν1R, not to ν2;3R,
after the inflation end.11 Since ðhνÞ2 ∼ fν ∼M=Λ is radi-
cally smaller than 1, we assume ðhνÞ2 ≪ y2 ∼ 1, appropriate
to the strong washout regime, ηDM ≪ 1. Omitting the normal
field contributions by the ðhνÞ2 terms in (110), as well as
setting M2 ¼ M3 and y2;3 ¼ y1te−iκ where t, κ are real,
we have

FIG. 7. CP-violating decay of νR creating the asymmetry dark
matter of the Universe.

10At the scale of the dark charge breaking, Ω2 ¼ 1þ δ0Λ2=
m2

P ≃ 1 is close to the identity; hence, the fields in Einstein frame
coincide with those in the Jordan frame. The hat mark on fields
may be omitted.

11If M1 is close to mΦ̂, the Universe undergoes a period of
preheating, waiting for necessary inflaton oscillations before
decay, Φ̂ → ν1Rν1R. In this preheating, the nonperturbative decay
Φ̂ → Z0Z0 exists [93], whose products rapidly thermalize pro-
ducing a cosmic plasma with temperature much beyond the
conventional reheating temperature [94]. The right-handed neu-
trino can be created by this Z0 thermalization and thus populated
in the early Universe before the reheating, as mentioned.

DARK CHARGE VERSUS ELECTRIC CHARGE PHYS. REV. D 105, 075012 (2022)

075012-19



mξ ≃ 69

�
10−1mΦ̂
M1

�
2
�
M2;3

mΦ̂

��
1

t2 sin 2κ

�
MeV: ð112Þ

Assuming t ¼ jy2;3j=jy1j ∼ 1, κ ∼ π=4, and M1 ∼ 10−1mΦ̂,
we obtain the dark matter mass mξ ∼ 69 MeV. Note that η
should have a mass larger than that of the dark matter ξ.
Hence, the dark matter gains a correct abundance with a

mass mξ ∼ 69 MeV, given that νR’s couple to the dark
sector to be stronger than to the normal sector, i.e.,
jy2;3j ∼ jy1j > jhνj, and that the CP-violation phase is
maximal, Argðy1=y2;3Þ ¼ π=4. A similar process, known
as the leptogenesis, also generates a baryon asymmetry,

YB ≃ 1.3 × 10−3ηNMϵNM

∼ 4.4 × 10−10
X
j¼2;3

ℑðeiπ=4hν�ajhνa1Þ=ðhν�a1hνa1Þ; ð113Þ

in order of 10−10, comparable to the observation. Since ξ
communicates with normal matter only through the super-
heavy Z0 portal if ξ has a nonzero dark charge (otherwise, it
is sterile), ξ does not significantly interact with the detectors
in direct detection.
Last, but not least, the mass of the asymmetric dark

matter as well as that of the freeze-in dark matter in the
previous section are, as obtained, all beyond MeV scale.
Hence, there does not exist any sub-MeV dark field. This
implies that there are no new relativistic degree of freedoms
present during the BBN. Additionally, the dark matter
candidates in both the schemes are always stabilized for
which they neither decay nor modify the predicted number
density of the known matter components. That said, the
asymmetric and freeze-in dark matter schemes are con-
sistent with the cosmic observations, predicted by the
standard cosmology.

D. Necessity of this study of dark matter

Dark matter is known to be electrically and color neutral.
However, its stability closely related to these universal
charges was not interpreted, to our best knowledge. Our
basic idea is to propose a dark charge, mirror of electric
charge, thus defining a hyperdark charge through the T3

operator. The interest is able to couple the hyperdark charge
breaking field to right-handed neutrinos, raising it to the
rank of Majoron. The residual gauge symmetry works in
such a way that the electric and color charge conservations
are crucially to keep the dark matter stable. The dark sector
states defined by the dark parity reveal two singlets, the
fermion ξ and the scalar η, to be the simplest candidates for
dark matter. This interpretation of dark matter stability
leads to a novel gauge portal that communicates dark matter
to normal matter, besides yielding characteristic signatures
at the precision test and colliders.
Indeed, this construction is precisely to limit the types

of charges between Z0 and ordinary fermions (including

right-handed neutrinos as well) by anomaly cancellation,
given through the δ-charge relations, such as

NðlL;qL;νR; eR;uR;dRÞ
¼ −1=2þ δ;1=6− δ=3;δ;−1þ δ;2=3− δ=3;−1=3− δ=3;

ð114Þ

respectively. Hence, Z0 has effective chiral couplings
to normal matter, unlike a vectorlike B − L gauge field.
Besides governing the dark matter observables as pre-
sented, Z0 can be used for distinguishing our dark matter
model in experiment. First, the scattering of dark matter
with target nuclei or electrons in direct detection experi-
ment violates the parity conservation explicitly. Second, the
way that Z0 couples to the normal matter differently from
the usual theories could sign novel ratios of dark matter
annihilation in neutrino/positron/antiproton in indirection
detection experiment. For the WIMP scenarios that are
governed by the Z0 portal and received a dark matter mass
in tens of GeV, we obtain

hσviννc∶hσvie−eþ∶hσvibbc
¼ ðδ2− δþ 1=4Þ∶ð2δ2 −3δþ 5=4Þ∶ð2δ2=3þ δ=3þ 5=12Þ;

ð115Þ

where the annihilation in antiproton includes the contribu-
tion of bbc channel, whereas, when the dark matter mass is
beyond the weak scale, we deduce

hσviννc∶hσvie−eþ∶hσvittc
¼ðδ2−δþ1=4Þ∶ð2δ2−3δþ5=4Þ∶ð2δ2=3−5δ=3þ17=12Þ;

ð116Þ

where the annihilation in antiproton is accounted for ttc

channel. Such ratios that experiments could measure allow
for reconstructing the δ charge, a characteristic signature
that allows the discovery of this type of model. The model
under consideration with δ ¼ 1 yields the annihilation
ratios to be either 3∶3∶17 or 3∶3∶5 corresponding to the
hadronic channels to be either bbc or ttc, respectively.12

Above, we have assumed the right-handed neutrinos to be
heavier than the WIMPs. Also, we do not look into any
indirect detection experiment in detail, a task to be taken up
elsewhere. Surely, the WIMP annihilation cross-sections
that obey the correct relic density, i.e., hσvi ∼ 1 pb, would
easily evade such an indirection detection constraint for an
appropriate WIMP mass.

12For comparison, the annihilation ratios in neutrino/positron/
antiproton in the usual B − L theory are 3∶6∶2, respectively,
indistinguishable to up- and down-type quark channels.
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Last, but not least, since the dark matter stability is
closely related to the neutrino mass generation, the dark
matter candidates may interact with right-handed neutrino
portals, alternatively to the Z0 portal. It is interesting that the
leptogenesis works, appropriately producing both normal
and dark matter asymmetries, a feature not naturally
imposed in the usual B − L theory since ξ is completely
sterile and omitted. Additionally, in the other scheme, dark
matter can be produced via freeze-in decay of right-handed
neutrinos.

X. CONCLUSION

We have proven that a dynamical dark charge naturally
arises as a variant of the usual electric charge. The dark
dynamics interprets the right-handed neutrinos to be
fundamental fields which are both charged under the dark
charge and received large Majorana masses through the
dark charge breaking. This dark charge breaking implies
not only the electric charge quantization as fixed by the
mentioned Majorana masses, but also the observed, small
neutrino masses given in terms of a canonical seesaw when
the weak breaking proceeds. It is noteworthy that the dark
charge breaking also supplies a residual dark parity, such as
PD ≡ ð−1Þ3Dþ2s, providing a stable dark matter candidate.
This kind of dark matter stability symmetry differs from the
most studies: Although the charged leptons and down
quarks are odd under the dark parity as the dark matter is,
the dark matter is stabilized simply by the electric and color
charge conservations.
The new physics effect comes from theUð1ÞN sector that

determines the dark charge. We have examined the new
physics contributions to the ρ-parameter, the total Z decay
width, the LEPII and LHC dilepton searches. The results
indicate that the dark charge breaking scale Λ and the new
gauge boson Z0 mass are bounded at several TeVs.
Depending on the magnitude of the seesaw scale as well

as the coupling strength between the normal and dark
sectors, the novel scenarios for dark matter production may
be recognized. The large seesaw scale scheme for the dark
charge breaking generates appropriate asymmetric fermion
dark matter with a dark matter mass around 69 MeV, with
the suitable choice of parameters. This dark matter genesis
is analogous to the lepton asymmetry production from the
standard leptogenesis. Indeed, both kinds of the matter relic
arise from the lightest right-handed neutrino decay. By
contrast, the TeV seesaw scale scheme for the dark charge
breaking is appropriate to the production of the WIMP dark
matter. In the special case, the sterile fermion dark matter
may be alternatively produced from a freeze-in decay of the
right-handed neutrino. All such dark matter generation
schemes are manifestly governed by the Uð1ÞN gauge
symmetry, i.e., the dark dynamics.
Finally, multicomponent dark matter can be recognized

due to the existence of the many solutions of Uð1ÞN factors

or Z2-larger residual symmetries induced within each
Uð1ÞN , a task to be conducted elsewhere [53].
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APPENDIX A: CURRENT ALGEBRA APPROACH

Consider the SUð2ÞL symmetry of weak isospin, Ti
(i ¼ 1; 2; 3), in which the left-handed fermions transform
as isodoublets, lL ¼ ðνLeLÞT and qL ¼ ðuLdLÞT , whereas
the corresponding right-handed fermions are put in singlets,
where generation indices have been suppressed. The
vectorlike fermion introduced later for dark matter is not
counted, without loss of generality. Further, we assign the
electric charge and the dark charge to each fermion, such
as Qðν; e; u; dÞ ¼ 0;−1; 2=3;−1=3 and Dðν; e; u; dÞ ¼
δ; δ − 1; 2=3 − δ=3;−1=3 − δ=3, respectively. The latter
charge values can be extracted from (13).
The covariant derivative relevant to SUð2ÞL is

Dμ ¼ ∂μ þ igTiAiμ ¼ ∂μ þ ig½ðTþWþ
μ þ H:c:Þ þ T3A3μ�;

ðA1Þ

where T� ≡ ðT1 � iT2Þ=
ffiffiffi
2

p
and W� ≡ ðA1 ∓ iA2Þ=

ffiffiffi
2

p
.

Thus, the gauge interaction of fermion multiplets, com-
monly labeled as F’s, takes the form

L ⊃
X
F

F̄ iγμDμF

⊃
X
F

½ð−gF̄Lγ
μTþFLWþ

μ þ H:c:Þ − gF̄Lγ
μT3FLA3μ�:

ðA2Þ
This leads to weak currents in the Lagrangian, L ⊃
−gJμþWþ

μ þ H:c: − gJμ3A3μ, such that

Jμ� ¼
X
F

F̄Lγ
μT�FL; Jμ3 ¼

X
F

F̄Lγ
μT3FL: ðA3Þ

The weak currents give rise to the corresponding weak
charges,

TþðtÞ≡
Z

d3xJ0þ¼ 1ffiffiffi
2

p
Z

d3xðν†LeLþu†LdLÞ;

T3ðtÞ≡
Z

d3xJ03¼
1

2

Z
d3xðν†LνL−e†LeLþu†LuL−d†LdLÞ;

ðA4Þ
and T−ðtÞ ¼ ½TþðtÞ�†. Using the canonical anticommuta-
tion relation, ffðx⃗; tÞ; f†ðy⃗; tÞg ¼ δð3Þðx⃗ − y⃗Þ, the weak
charges obey the SUð2ÞL algebra, as expected,
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½TþðtÞ; T−ðtÞ� ¼ T3ðtÞ; ½T3ðtÞ; T�ðtÞ� ¼ �T�ðtÞ: ðA5Þ

The QðtÞ and DðtÞ charges are given by

QðtÞ¼
Z

d3xF†QF

¼
Z

d3x

�
−e†LeLþ

2

3
u†LuL−

1

3
d†LdLþðRRÞ

�
; ðA6Þ

DðtÞ ¼
Z

d3xF†DF

¼
Z

d3x

�
δν†LνL þ ðδ − 1Þe†LeL þ 2 − δ

3
u†LuL

−
1þ δ

3
d†LdL þ ðRRÞ

�
: ðA7Þ

QðtÞ and DðtÞ are not proportional to T3ðtÞ, because they
have the right currents. Hence, Q, D, and the weak isospin
do not form a closed algebra, under which we base our
theory. Further, we derive

½QðtÞ;T�ðtÞ�¼�T�ðtÞ; ½DðtÞ;T�ðtÞ�¼�T�ðtÞ; ðA8Þ

implying that Q and D do not commute with the weak
isospin.
We obtain

QðtÞ − T3ðtÞ ¼
Z

d3x

�
−
1

2
l†LlL þ 1

6
q†LqL − e†ReR

þ 2

3
u†RuR −

1

3
d†RdR

�

≡
Z

d3xF†YF; ðA9Þ

DðtÞ− T3ðtÞ ¼
Z

d3x

��
δ−

1

2

�
l†LlL þ

�
1

6
−
δ

3

�
q†LqL

þ ðδ− 1Þe†ReR þ
2− δ

3
u†RuR −

1þ δ

3
d†RdR

�

≡
Z

d3xF†NF; ðA10Þ

which yield two new Abelian charges, Y and N, with their
values for multiplets coinciding with those in the main text,
respectively.
It is easily to check that YðtÞ ¼ R

d3xF†YF and NðtÞ ¼R
d3xF†NF commute with the weak isospin and are

linearly independent. Hence, we conclude that the manifest
gauge symmetry must be

SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN; ðA11Þ

apart from the color group. Additionally, Y and N
define the electric charge and the dark charge given,
respectively, by

Q − T3 ¼ Y; D − T3 ¼ N: ðA12Þ

Let us stress that the SUð2ÞL weak isospin theory
contains in it two conserved and noncommutative charges,
Q and D, and that the requirement of algebraic closure
between them yields the SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN gauge
model, describing the electroweak and dark interactions.
Interestingly, the weak and dark interactions are unified in
the same manner in which the electroweak theory does so
for the weak and electromagnetic interactions.

APPENDIX B: ANOMALY CHECKING

For convenience in reading, let us recall the full gauge
symmetry,

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN; ðB1Þ

and collect the Uð1ÞY;N quantum numbers in Table VI.
All the anomalies are canceled within each generation,

independent of δ, because of

½SUð3ÞC�2Uð1ÞY∼
X
quarks

ðYfL −YfRÞ¼3ð2Yq−Yu−YdÞ

¼3½2ð1=6Þ−ð2=3Þ−ð−1=3Þ�¼0; ðB2Þ

½SUð3ÞC�2Uð1ÞN
∼

X
quarks

ðNfL − NfRÞ ¼ 3ð2Nq − Nu − NdÞ

¼ 3½2ð1=6 − δ=3Þ − ð2=3 − δ=3Þ − ð−1=3 − δ=3Þ� ¼ 0;

ðB3Þ

½SUð2ÞL�2Uð1ÞY ∼
X

doublets

YfL ¼Ylþ3Yq

¼ð−1=2Þþ3ð1=6Þ¼0; ðB4Þ

½SUð2ÞL�2Uð1ÞN∼
X

doublets

NfL ¼Nlþ3Nq

¼ð−1=2þδÞþ3ð1=6−δ=3Þ¼0; ðB5Þ

TABLE VI. Y, N quantum numbers of fermion multiplets in the
generic case.

Multiplet lL qL νR eR uR dR ξ

Y − 1
2

1
6

0 −1 2
3

− 1
3

0
N δ − 1

2
1
6
− δ

3
δ δ − 1 2

3
− δ

3
− 1

3
− δ

3
2r
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½Gravity�2Uð1ÞY ∼
X

fermions

ðYfL − YfRÞ

¼ 2Yl þ 2 × 3Yq þ YξL − Yν − Ye − 3Yu − 3Yd − YξR

¼ 2ð−1=2Þ þ 6ð1=6Þ þ 0 − 0 − ð−1Þ − 3ð2=3Þ − 3ð−1=3Þ − 0 ¼ 0; ðB6Þ

½Gravity�2Uð1ÞN ∼
X

fermions

ðNfL − NfRÞ

¼ 2Nl þ 2 × 3Nq þ NξL − Nν − Ne − 3Nu − 3Nd − NξR

¼ 2ð−1=2þ δÞ þ 6ð1=6 − δ=3Þ þ 2r − δ − ðδ − 1Þ − 3ð2=3 − δ=3Þ − 3ð−1=3 − δ=3Þ − 2r ¼ 0; ðB7Þ

½Uð1ÞY �2Uð1ÞN ¼
X

fermions

ðY2
fL
NfL − Y2

fR
NfRÞ

¼ 2Y2
l Nl þ 2 × 3Y2

qNq þ Y2
ξL
NξL − Y2

νNν − Y2
eNe − 3Y2

uNu − 3Y2
dNd − Y2

ξR
NξR

¼ 2ð−1=2Þ2ð−1=2þ δÞ þ 6ð1=6Þ2ð1=6 − δ=3Þ þ 02 × 2r − 02 × δ

− ð−1Þ2ðδ − 1Þ − 3ð2=3Þ2ð2=3 − δ=3Þ − 3ð−1=3Þ2ð−1=3 − δ=3Þ − 02 × 2r ¼ 0; ðB8Þ

Uð1ÞY ½Uð1ÞN �2 ¼
X

fermions

ðYfLN
2
fL

− YfRN
2
fR
Þ

¼ 2YlN2
l þ 2 × 3YqN2

q þ YξLN
2
ξL
− YνN2

ν − YeN2
e − 3YuN2

u − 3YdN2
d − YξRN

2
ξR

¼ 2ð−1=2Þð−1=2þ δÞ2 þ 6ð1=6Þð1=6 − δ=3Þ2 þ 0 × ð2rÞ2 − 0 × δ2

− ð−1Þðδ − 1Þ2 − 3ð2=3Þð2=3 − δ=3Þ2 − 3ð−1=3Þð−1=3 − δ=3Þ2 − 0 × ð2rÞ2 ¼ 0; ðB9Þ

½Uð1ÞY �3 ¼
X

fermions

ðY3
fL

− Y3
fR
Þ

¼ 2Y3
l þ 2 × 3Y3

q þ Y3
ξL
− Y3

ν − Y3
e − 3Y3

u − 3Y3
d − Y3

ξR

¼ 2ð−1=2Þ3 þ 6ð1=6Þ3 þ 03 − 03 − ð−1Þ3 − 3ð2=3Þ3 − 3ð−1=3Þ3 − 03 ¼ 0; ðB10Þ

½Uð1ÞN �3¼
X

fermions

ðN3
fL
−N3

fR
Þ

¼2N3
l þ2×3N3

qþN3
ξL
−N3

ν−N3
e−3N3

u−3N3
d−N3

ξR

¼2ð−1=2þδÞ3þ6ð1=6−δ=3Þ3þð2rÞ3−δ3−ðδ−1Þ3−3ð2=3−δ=3Þ3−3ð−1=3−δ=3Þ3−ð2rÞ3¼0: ðB11Þ
Notice that the dark fermion ξ is vectorlike, not contributing to any anomaly, which need not necessarily be counted from
the outset.
Additionally, as mentioned in the body text, if the model contains a variety of dark charges, say,

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞN1
⊗ Uð1ÞN2

⊗ � � � ⊗ Uð1ÞNp
; ðB12Þ

the anomalies of all types as computed above are still canceled. For the remaining anomalies, it is sufficient to verify

½Uð1ÞN �2Uð1ÞN0 ¼
X

fermions

ðN2
fL
N0

fL
− N2

fR
N0

fR
Þ

¼ 2N2
l N

0
l þ 2 × 3N2

qN0
q − N2

νN0
ν − N2

eN0
e − 3N2

uN0
u − 3N2

dN
0
d

¼ 2ðδ − 1=2Þ2ðδ0 − 1=2Þ þ 6ð1=6 − δ=3Þ2ð1=6 − δ0=3Þ − δ2 × δ0 − ðδ − 1Þ2ðδ0 − 1Þ
− 3ð2=3 − δ=3Þ2ð2=3 − δ0=3Þ − 3ð−1=3 − δ=3Þ2ð−1=3 − δ0=3Þ ¼ 0; ðB13Þ

where the distinct values δ and δ0 define the hyperdark charges N and N0, respectively. Hence, the model of multidark
charges is viable, attracting attention.

DARK CHARGE VERSUS ELECTRIC CHARGE PHYS. REV. D 105, 075012 (2022)

075012-23



[1] T. Kajita, Nobel lecture: Discovery of atmospheric neutrino
oscillations, Rev. Mod. Phys. 88, 030501 (2016).

[2] A. B. McDonald, Nobel lecture: The Sudbury neutrino
observatory: Observation of flavor change for solar neu-
trinos, Rev. Mod. Phys. 88, 030502 (2016).

[3] Planck Collaboration, Planck 2015 results. XIII. Cosmo-
logical parameters, Astron. Astrophys. 594, A13 (2016).

[4] G. Jungman, M. Kamionkowski, and K. Griest, Super-
symmetric dark matter, Phys. Rep. 267, 195 (1996).

[5] G. Bertone, D. Hooper, and J. Silk, Particle dark matter:
Evidence, candidates and constraints, Phys. Rep. 405, 279
(2005).

[6] P. Minkowski, μ → eγ at a rate of one out of 109 muon
decays?, Phys. Lett. 67B, 421 (1977).

[7] M. Gell-Mann, P. Ramond, and R. Slansky, Complex
spinors and unified theories, Conf. Proc. C790927, 315
(1979).

[8] T. Yanagida, Horizontal gauge symmetry and masses of
neutrinos, Conf. Proc. C7902131, 95 (1979).

[9] S. L. Glashow, The future of elementary particle physics,
NATO Sci. Ser. B 61, 687 (1980).

[10] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and
Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44,
912 (1980).

[11] R. N. Mohapatra and G. Senjanovic, Neutrino masses and
mixings in gauge models with spontaneous parity violation,
Phys. Rev. D 23, 165 (1981).

[12] G. Lazarides, Q. Shafi, and C. Wetterich, Proton lifetime
and fermion masses in an SO(10) model, Nucl. Phys. B181,
287 (1981).

[13] J. Schechter and J. W. F. Valle, Neutrino masses in SUð2Þ ×
Uð1Þ theories, Phys. Rev. D 22, 2227 (1980).

[14] J. Schechter and J. W. F. Valle, Neutrino decay and sponta-
neous violation of lepton number, Phys. Rev. D 25, 774
(1982).

[15] A. Zee, A theory of lepton number violation, neutrino
Majorana mass, and oscillation, Phys. Lett. 93B, 389
(1980).

[16] A. Zee, Quantum numbers of Majorana neutrino masses,
Nucl. Phys. B264, 99 (1986).

[17] K. Babu, Model of “calculable” Majorana neutrino masses,
Phys. Lett. B 203, 132 (1988).

[18] L. M. Krauss, S. Nasri, and M. Trodden, A model for
neutrino masses and dark matter, Phys. Rev. D 67, 085002
(2003).

[19] E. Ma, Verifiable radiative seesaw mechanism of neutrino
mass and dark matter, Phys. Rev. D 73, 077301 (2006).

[20] S. Weinberg, Baryon and Lepton Nonconserving Processes,
Phys. Rev. Lett. 43, 1566 (1979).

[21] E. Ma, Derivation of Dark Matter Parity from Lepton Parity,
Phys. Rev. Lett. 115, 011801 (2015).

[22] S. P. Martin, A supersymmetry primer, Adv. Ser. Dir. High
Energy Phys. 18, 1 (1998).

[23] N. Okada and O. Seto, Higgs portal dark matter in the
minimal gauged Uð1ÞB−L model, Phys. Rev. D 82, 023507
(2010).

[24] J. C. Montero and B. L. Sanchez-Vega, Neutrino masses and
the scalar sector of a B − L extension of the standard model,
Phys. Rev. D 84, 053006 (2011).

[25] N. Okada and Y. Orikasa, Dark matter in the classically
conformal B − L model, Phys. Rev. D 85, 115006 (2012).

[26] T. Basak and T. Mondal, Constraining minimal Uð1ÞB−L
model from dark matter observations, Phys. Rev. D 89,
063527 (2014).

[27] B. L. Snchez-Vega, J. C. Montero, and E. R. Schmitz,
Complex scalar DM in a B − L model, Phys. Rev. D 90,
055022 (2014).

[28] N. Okada and S. Okada, Z0-portal right-handed neutrino
dark matter in the minimal Uð1ÞX extended Standard Model,
Phys. Rev. D 95, 035025 (2017).

[29] W. Rodejohann and C. E. Yaguna, Scalar dart matter in the
B − L model, J. Cosmol. Astropart. Phys. 12 (2015) 032.

[30] N. Okada and O. Seto, Inelastic extra Uð1Þ charged scalar
dark matter, Phys. Rev. D 101, 023522 (2020).

[31] N. Okada, D. Raut, and Q. Shafi, SMART Uð1ÞX− standard
model with axion, right handed neutrinos, two Higgs
doublets and Uð1ÞX gauge symmetry, Eur. Phys. J. C 80,
1056 (2020).

[32] A. Dasgupta, S. K. Kang, and O. Popov, Radiative Dirac
neutrino mass, neutrinoless quadruple beta decay, and dark
matter in B − L extension of the standard model, Phys. Rev.
D 100, 075030 (2019).

[33] A. Biswas, D. Borah, and D. Nanda, Type III seesaw for
neutrino masses in Uð1ÞB−L model with multi-component
dark matter, J. High Energy Phys. 12 (2019) 109.

[34] J. Gehrlein and M. Pierre, A testable hidden-sector model
for Dark Matter and neutrino masses, J. High Energy Phys.
02 (2020) 068.

[35] C. Han, M. López-Ibáñez, B. Peng, and J. M. Yang, Dirac
dark matter in Uð1ÞB−L with the Stueckelberg mechanism,
Nucl. Phys. B959, 115154 (2020).

[36] D. Choudhury, K. Deka, T. Mandal, and S. Sadhukhan,
Neutrino and Z0 phenomenology in an anomaly-free Uð1Þ
extension: Role of higher-dimensional operators, J. High
Energy Phys. 06 (2020) 111.

[37] S. Mahapatra, N. Narendra, and N. Sahu, Verifiable type-II
seesaw and dark matter in a gauged Uð1ÞB−L model,
arXiv:2002.07000.

[38] J. Leite, A. Morales, J. W. Valle, and C. A. Vaquera-Araujo,
Scotogenic dark matter and Dirac neutrinos from unbroken
gauged B − L symmetry, Phys. Lett. B 807, 135537 (2020).

[39] N. Okada, S. Okada, and Q. Shafi, Light Z0 and dark matter
from Uð1ÞX gauge symmetry, Phys. Lett. B 810, 135845
(2020).

[40] H. Motz, H. Okada, Y. Asaoka, and K. Kohri, Cosmic-ray
signatures of dark matter from a flavor dependent gauge
symmetry model with neutrino mass mechanism, Phys. Rev.
D 102, 083019 (2020).

[41] A. Davidson, B − L as the fourth color within an SUð2ÞL ×
Uð1ÞR × Uð1Þ model, Phys. Rev. D 20, 776 (1979).

[42] R. N. Mohapatra and R. E. Marshak, Local B − L Sym-
metry of Electroweak Interactions, Majorana Neutrinos and
Neutron Oscillations, Phys. Rev. Lett. 44, 1316 (1980).

[43] R. E. Marshak and R. N. Mohapatra, Quark—lepton sym-
metry and B-L as the Uð1Þ generator of the electroweak
symmetry group, Phys. Lett. 91B, 222 (1980).

[44] R. Foot, New physics from electric charge quantization?,
Mod. Phys. Lett. A 06, 527 (1991).

VAN LOI, NAM, TAN, and VAN DONG PHYS. REV. D 105, 075012 (2022)

075012-24

https://doi.org/10.1103/RevModPhys.88.030501
https://doi.org/10.1103/RevModPhys.88.030502
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1007/978-1-4684-7197-7_15
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevD.23.165
https://doi.org/10.1016/0550-3213(81)90354-0
https://doi.org/10.1016/0550-3213(81)90354-0
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.25.774
https://doi.org/10.1103/PhysRevD.25.774
https://doi.org/10.1016/0370-2693(80)90349-4
https://doi.org/10.1016/0370-2693(80)90349-4
https://doi.org/10.1016/0550-3213(86)90475-X
https://doi.org/10.1016/0370-2693(88)91584-5
https://doi.org/10.1103/PhysRevD.67.085002
https://doi.org/10.1103/PhysRevD.67.085002
https://doi.org/10.1103/PhysRevD.73.077301
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.115.011801
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1103/PhysRevD.82.023507
https://doi.org/10.1103/PhysRevD.82.023507
https://doi.org/10.1103/PhysRevD.84.053006
https://doi.org/10.1103/PhysRevD.85.115006
https://doi.org/10.1103/PhysRevD.89.063527
https://doi.org/10.1103/PhysRevD.89.063527
https://doi.org/10.1103/PhysRevD.90.055022
https://doi.org/10.1103/PhysRevD.90.055022
https://doi.org/10.1103/PhysRevD.95.035025
https://doi.org/10.1088/1475-7516/2015/12/032
https://doi.org/10.1103/PhysRevD.101.023522
https://doi.org/10.1140/epjc/s10052-020-8343-6
https://doi.org/10.1140/epjc/s10052-020-8343-6
https://doi.org/10.1103/PhysRevD.100.075030
https://doi.org/10.1103/PhysRevD.100.075030
https://doi.org/10.1007/JHEP12(2019)109
https://doi.org/10.1007/JHEP02(2020)068
https://doi.org/10.1007/JHEP02(2020)068
https://doi.org/10.1016/j.nuclphysb.2020.115154
https://doi.org/10.1007/JHEP06(2020)111
https://doi.org/10.1007/JHEP06(2020)111
https://arXiv.org/abs/2002.07000
https://doi.org/10.1016/j.physletb.2020.135537
https://doi.org/10.1016/j.physletb.2020.135845
https://doi.org/10.1016/j.physletb.2020.135845
https://doi.org/10.1103/PhysRevD.102.083019
https://doi.org/10.1103/PhysRevD.102.083019
https://doi.org/10.1103/PhysRevD.20.776
https://doi.org/10.1103/PhysRevLett.44.1316
https://doi.org/10.1016/0370-2693(80)90436-0
https://doi.org/10.1142/S0217732391000543


[45] R. Foot, X. He, H. Lew, and R. Volkas, Model for a light
Z-prime boson, Phys. Rev. D 50, 4571 (1994).

[46] X.-G. He, G. C. Joshi, H. Lew, and R. Volkas, Simplest
Z-prime model, Phys. Rev. D 44, 2118 (1991).

[47] B. Holdom, Two Uð1Þ’s and ϵ charge shifts, Phys. Lett.
166B, 196 (1986).

[48] T. Appelquist, B. A. Dobrescu, and A. R. Hopper, Nonex-
otic neutral gauge bosons, Phys. Rev. D 68, 035012 (2003).

[49] P. A. M. Dirac, Quantised singularities in the electromag-
netic field, Proc. R. Soc. A 133, 60 (1931).

[50] K. S. Babu and R. N. Mohapatra, Quantization of electric
charge from anomaly constraints and a Majorana neutrino,
Phys. Rev. D 41, 271 (1990).

[51] R. Foot, G. C. Joshi, H. Lew, and R. R. Volkas, Charge
quantization in the standard model and some of its exten-
sions, Mod. Phys. Lett. A 05, 2721 (1990).

[52] P. Van Dong, Flipping principle for neutrino mass and dark
matter, Phys. Rev. D 102, 011701 (2020).

[53] D. Van Loi, N. M. Duc, and P. Van Dong, Dequantization of
electric charge: Probing scenarios of cosmological multi-
component dark matter, arXiv:2106.12278.

[54] F. Pisano, A simple solution for the flavor question, Mod.
Phys. Lett. A 11, 2639 (1996).

[55] A. Doff and F. Pisano, Charge quantization in the largest
leptoquark bilepton chiral electroweak scheme, Mod. Phys.
Lett. A 14, 1133 (1999).

[56] C. A. de Sousa Pires and O. P. Ravinez, Charge quantization
in a chiral bilepton gauge model, Phys. Rev. D 58, 035008
(1998).

[57] C. A. de Sousa Pires, Remark on the vectorlike nature of the
electromagnetism and the electric charge quantization,
Phys. Rev. D 60, 075013 (1999).

[58] P. V. Dong and H. N. Long, Electric charge quantization in
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX models, Int. J. Mod. Phys. A
21, 6677 (2006).

[59] K. Babu and R. Mohapatra, Is There a Connection Between
Quantization of Electric Charge and a Majorana Neutrino?,
Phys. Rev. Lett. 63, 938 (1989).

[60] S. Oda, N. Okada, and D.-s. Takahashi, Classically con-
formal Uð1Þ0 extended standard model and Higgs vacuum
stability, Phys. Rev. D 92, 015026 (2015).

[61] P. V. Dong, H. T. Hung, and T. D. Tham, 3-3-1-1 model for
dark matter, Phys. Rev. D 87, 115003 (2013).

[62] P. V. Dong, D. T. Huong, F. S. Queiroz, and N. T. Thuy,
Phenomenology of the 3-3-1-1 model, Phys. Rev. D 90,
075021 (2014).

[63] A. Alves, G. Arcadi, P. V. Dong, L. Duarte, F. S. Queiroz,
and J. W. F. Valle, Matter-parity as a residual gauge sym-
metry: Probing a theory of cosmological dark matter, Phys.
Lett. B 772, 825 (2017).

[64] P. V. Dong, Unifying the electroweak and B − L inter-
actions, Phys. Rev. D 92, 055026 (2015).

[65] P. V. Dong and D. T. Huong, Left-right model for dark
matter, Communications in Physics 28, 21 (2018).

[66] P. V. Dong, D. T. Huong, D. V. Loi, N. T. Nhuan, and
N. T. K. Ngan, Phenomenology of the SUð3ÞC ⊗
SUð2ÞL ⊗ SUð3ÞR ⊗ Uð1ÞX gauge model, Phys. Rev. D
95, 075034 (2017).

[67] P. V. Dong, D. T. Huong, F. S. Queiroz, J. W. F. Valle, and
C. A. Vaquera-Araujo, The dark side of flipped trinification,
J. High Energy Phys. 04 (2018) 143.

[68] D. T. Huong, P. V. Dong, N. T. Duy, N. T. Nhuan, and L. D.
Thien, Investigation of dark matter in the 3-2-3-1 model,
Phys. Rev. D 98, 055033 (2018).

[69] D. T. Huong, D. N. Dinh, L. D. Thien, and P. Van Dong,
Dark matter and flavor changing in the flipped 3-3-1 model,
J. High Energy Phys. 08 (2019) 051.

[70] P. V. Dong and D. T. Si, Kinetic mixing effect in the 3-3-1-1
model, Phys. Rev. D 93, 115003 (2016).

[71] P. V. Dong and H. N. Long, Uð1ÞQ invariance and
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX models with beta arbitrary,
Eur. Phys. J. C 42, 325 (2005).

[72] D. Van Loi, P. Van Dong, and L. X. Thuy, Kinetic mixing
effect in noncommutative B − L gauge theory, J. High
Energy Phys. 09 (2019) 054.

[73] Particle Data Group Collaboration, Review of particle
physics, Phys. Rev. D 98, 030001 (2018).

[74] ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collabo-
rations, Electroweak measurements in electron-positron
collisions at W-boson-pair energies at LEP, Phys. Rep.
532, 119 (2013).

[75] ATLAS Collaboration, Search for new high-mass phenom-
ena in the dilepton final state using 36 fb−1 of proton-proton
collision data at

ffiffiffi
s

p ¼ 13 TeV with the ATLAS detector,
J. High Energy Phys. 10 (2017) 182.

[76] ATLAS Collaboration, Search for new phenomena in dijet
events using 37 fb−1 of pp collision data collected at

ffiffiffi
s

p ¼
13 TeV with the ATLAS detector, Phys. Rev. D 96, 052004
(2017).

[77] ATLAS Collaboration, Search for new resonances in mass
distributions of jet pairs using 139 fb−1 of pp collisions atffiffiffi
s

p ¼ 13 TeV with the ATLAS detector, J. High Energy
Phys. 03 (2020) 145.

[78] N. Sabti, J. Alvey, M. Escudero, M. Fairbairn, and D. Blas,
Refined bounds on MeV-scale thermal dark sectors from
BBN and the CMB, J. Cosmol. Astropart. Phys. 01 (2020)
004.

[79] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov,
Dark matter direct detection rate in a generic model with
MicrOMEGAs2.2, Comput. Phys. Commun. 180, 747 (2009).

[80] XENON Collaboration, First Dark Matter Search Results
from the XENON1T Experiment, Phys. Rev. Lett. 119,
181301 (2017).

[81] XENON Collaboration, Dark Matter Search Results from a
One Ton-Year Exposure of XENON1T, Phys. Rev. Lett.
121, 111302 (2018).

[82] V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin depend-
ence of dark matter scattering, Phys. Rev. D 78, 056007
(2008).

[83] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G.
Meißner, High-Precision Determination of the Pion-
Nucleon σ Term from Roy-Steiner Equations, Phys. Rev.
Lett. 115, 092301 (2015).

[84] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West,
Freeze-in production of FIMP dark matter, J. High Energy
Phys. 03 (2010) 080.

DARK CHARGE VERSUS ELECTRIC CHARGE PHYS. REV. D 105, 075012 (2022)

075012-25

https://doi.org/10.1103/PhysRevD.50.4571
https://doi.org/10.1103/PhysRevD.44.2118
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1103/PhysRevD.68.035012
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1103/PhysRevD.41.271
https://doi.org/10.1142/S0217732390003176
https://doi.org/10.1103/PhysRevD.102.011701
https://arXiv.org/abs/2106.12278
https://doi.org/10.1142/S0217732396002630
https://doi.org/10.1142/S0217732396002630
https://doi.org/10.1142/S0217732399001218
https://doi.org/10.1142/S0217732399001218
https://doi.org/10.1103/PhysRevD.58.035008
https://doi.org/10.1103/PhysRevD.58.035008
https://doi.org/10.1103/PhysRevD.60.075013
https://doi.org/10.1142/S0217751X06035191
https://doi.org/10.1142/S0217751X06035191
https://doi.org/10.1103/PhysRevLett.63.938
https://doi.org/10.1103/PhysRevD.92.015026
https://doi.org/10.1103/PhysRevD.87.115003
https://doi.org/10.1103/PhysRevD.90.075021
https://doi.org/10.1103/PhysRevD.90.075021
https://doi.org/10.1016/j.physletb.2017.07.056
https://doi.org/10.1016/j.physletb.2017.07.056
https://doi.org/10.1103/PhysRevD.92.055026
https://doi.org/10.15625/0868-3166/28/1/11081
https://doi.org/10.1103/PhysRevD.95.075034
https://doi.org/10.1103/PhysRevD.95.075034
https://doi.org/10.1007/JHEP04(2018)143
https://doi.org/10.1103/PhysRevD.98.055033
https://doi.org/10.1007/JHEP08(2019)051
https://doi.org/10.1103/PhysRevD.93.115003
https://doi.org/10.1140/epjc/s2005-02314-x
https://doi.org/10.1007/JHEP09(2019)054
https://doi.org/10.1007/JHEP09(2019)054
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.physrep.2013.07.004
https://doi.org/10.1016/j.physrep.2013.07.004
https://doi.org/10.1007/JHEP10(2017)182
https://doi.org/10.1103/PhysRevD.96.052004
https://doi.org/10.1103/PhysRevD.96.052004
https://doi.org/10.1007/JHEP03(2020)145
https://doi.org/10.1007/JHEP03(2020)145
https://doi.org/10.1088/1475-7516/2020/01/004
https://doi.org/10.1088/1475-7516/2020/01/004
https://doi.org/10.1016/j.cpc.2008.11.019
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevD.78.056007
https://doi.org/10.1103/PhysRevD.78.056007
https://doi.org/10.1103/PhysRevLett.115.092301
https://doi.org/10.1103/PhysRevLett.115.092301
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1007/JHEP03(2010)080


[85] D. T. Huong, P. V. Dong, C. S. Kim, and N. T. Thuy,
Inflation and leptogenesis in the 3-3-1-1 model, Phys.
Rev. D 91, 055023 (2015).

[86] D. T. Huong and P. V. Dong, Neutrino masses and super-
heavy dark matter in the 3-3-1-1 model, Eur. Phys. J. C 77,
204 (2017).

[87] P. Van Dong, D. Huong, D. A. Camargo, F. S. Queiroz, and
J. W. Valle, Asymmetric dark matter, inflation and lepto-
genesis from B − L symmetry breaking, Phys. Rev. D 99,
055040 (2019).

[88] P. Van Dong and D. Van Loi, Asymmetric matter from B − L
symmetry breaking, Eur. Phys. J. C 80, 1137 (2020).

[89] S. R. Coleman and E. J. Weinberg, Radiative corrections as
the origin of spontaneous symmetry breaking, Phys. Rev. D
7, 1888 (1973).

[90] F. L. Bezrukov and M. Shaposhnikov, The Standard
Model Higgs boson as the inflaton, Phys. Lett. B 659,
703 (2008).

[91] Planck Collaboration, Planck 2015 results. XX.
Constraints on inflation, Astron. Astrophys. 594, A20
(2016).

[92] M. Fukugita and T. Yanagida, Baryogenesis without grand
unification, Phys. Lett. B 174, 45 (1986).

[93] L. Kofman, A. D. Linde, and A. A. Starobinsky,
Reheating After Inflation, Phys. Rev. Lett. 73, 3195
(1994).

[94] D. J. H. Chung, E. W. Kolb, and A. Riotto, Production of
massive particles during reheating, Phys. Rev. D 60, 063504
(1999).

VAN LOI, NAM, TAN, and VAN DONG PHYS. REV. D 105, 075012 (2022)

075012-26

https://doi.org/10.1103/PhysRevD.91.055023
https://doi.org/10.1103/PhysRevD.91.055023
https://doi.org/10.1140/epjc/s10052-017-4763-3
https://doi.org/10.1140/epjc/s10052-017-4763-3
https://doi.org/10.1103/PhysRevD.99.055040
https://doi.org/10.1103/PhysRevD.99.055040
https://doi.org/10.1140/epjc/s10052-020-08693-2
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevD.60.063504
https://doi.org/10.1103/PhysRevD.60.063504

