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1 Introduction

One of the main recent developments in the study of quantum gravity are replica worm-
holes: non-trivial gravitational solutions connecting the replicas in the quantum gravita-
tional replica-trick [1, 2]. These solutions give rise to a refinement of the gravitational von
Neumann entropy formula called the island conjecture [3–5]. In the context of evaporating
black holes, these solutions are dominant at large times, leading to the Page-curve of the
black hole radiation.

In this letter, we study a purely gravitational system on AdSd+1 with no evaporation
or dynamics. In the dual field theory on spatial Sd−1 × R we ask for the von Neumann
entropy SvN (A), A a region of Sd−1, of a typical high-energy pure state. Holographically
this quantity describes the spatial encoding of a typical d+ 1-dimensional AdS black hole
microstate in the dual boundary theory. For a typical state, we expect SvN (A) to follow
a Page curve in A (see figure 1). In fact, this is exactly the toy model used by Page

– 1 –



J
H
E
P
1
2
(
2
0
2
1
)
1
2
5

Figure 1. In 1 + 1 dimensions, we consider a theory on a circle with periodicity 2π. The graph
is a schematic picture for the von Neumann entropy on the interval A = [0, ϕ]. The thermal result
(in red) is calculated by first averaging the pure density matrix and then taking the von Neumann
entropy. The pure ‘Page-like’ result can be obtained by averaging over the pure von Neumann
entropies (in blue).

for black hole evaporation [6, 7]. By employing an ensemble average over microstates
we show how to get this curve using the standard holographic dictionary of Euclidean
gravity. We find a phenomenon similar to replica wormholes, but without conjecturing their
existence in the quantum gravity path integral. Instead, the non-trivial replica topologies
are imposed by the field theory calculation, from the purity of ensemble states. The result
is a generalization of the standard thermal RT formula [8] for the typical pure state, where
now the RT surface has a weaker homology constraint [9].

A closely related quantity is the thermal density matrix. Compared to an energetic
pure state, the von Neumann entropy of the thermal density matrix is a more controlled
quantity. One reason is that thermal entropies can be written in field theory as a Euclidean
path integral over some geometry. The holographic dictionary can then be used to map
these quantities to classical observables in the dual gravitational theory [10]. In this way, the
thermodynamic entropy Sth(β) was found by Gibbons and Hawking [11] to be proportional
to the dual black hole horizon area. Similarly, the thermal von Neumann entropy SvN (A)
is given by the RT formula in the background of a stationary AdS black hole [12–14].
However the von Neumann entropy of a generic high-energy microstate can’t be written
in such a simple path integral but typically requires O(1/GN ) operator insertions. While
being practically impossible to calculate exactly on the field theory side, it is unclear to
what extent semiclassical analysis applies to a specific black hole microstate.1

Instead of looking at a specific microstate, we propose an ensemble of pure states,
weighted by a Boltzmann-like factor parametrized by β. Taking the ensemble average over
the different microstate entropies “SvN (A)” allows us to write it as a path integral similar
to the thermal case, albeit over a singular geometry. The resulting averaged entropy claims
to capture the von Neumann entropy of a typical microstate with a given energy E ∼ 1/β.
The singularity of the integral is a result of the pure state being the same one on all
the different replicas in the Rényi entropy calculation. The singular behavior allows for

1For the RT result of non-generic black holes created by a collapse see [15]. For the RT result for (pure)
CFT B-states see [16, 17].

– 2 –



J
H
E
P
1
2
(
2
0
2
1
)
1
2
5

several equivalent geometrical interpretations of the field theory replica path integral. One
geometry resembles the thermal calculation, while a second geometry connects all replicas
together (see figure 4). The field theory path integrals over each of the geometries are equal
mathematically.

Writing the averaged entropy as a path integral, we can employ the holographic dic-
tionary to find its value. We propose that a holographic calculation can be made by taking
all the field-theory geometries as possible asymptotic boundaries for the gravitational path
integral. Each boundary geometry gives (in the large 1/GN saddle-point approximation)
a different saddle (see figure 5). Whenever dominant, the saddle with the standard ther-
mal boundary geometry gives the thermal RT result SvN (A) = Area(X1)

4GN . Here X1 is the
RT surface in the background of an AdS black hole [8]. Notably, the RT surface X1 is
homologous to the (asymptotic) entanglement region A. The second boundary geometry
has a corresponding gravitational saddle which smoothly connects the replicas non-trivially
(also) in the bulk. The resulted contribution of this saddle to the von Neumann entropy
(when dominant) can be written as SvN (A) = Area(X2)

4GN . X2 is another extremal surface of
the same background geometry as X1, but one homologous to the complement Ac. The
bulk entangling surface can be understood in this case as an ‘island’ covering the horizon.

The final result is a refinement of the RT formula for the case of typical pure states,
where we allow the RT surface X to be homologous to either A or its complement
Ac.2 At small A the thermal saddle dominates, giving an agreement of the typical pure
state entropy with the thermal entropy. This result is supported by expectations from
eigenstate-thermalization-hypothesis (ETH) calculations [18–20] and large central charge
expansions [21]. As a function of the entanglement region A, a Page-curve occurs as the
non-trivial saddle becomes dominant over the thermal saddle for large enough regions (fig-
ure 6). The non-trivial saddle thus ensures the ‘purity’ of the result SvN (A) = SvN (Ac).
Therefore, both in the field theory and in gravity, the non-trivial geometry of the replica
calculation is directly related to the purity of the state.

We start in section 2 by describing the ensemble of pure-states we will use to calculate
the averaged entropy. The calculation of the averaged pure state entropy is best understood
as a generalization of the thermal entropy calculation. We, therefore, begin in section 3
by briefly reviewing the von Neumann entropy calculation for the thermal density matrix.
We explain how in field theories the von Neumann entropy can be written as a replica
path integral, and (following [10]) how computing the path integral using the holographic
dictionary gives the RT formula. Finally, in section 4 we show how a similar calculation
can be made studying the von Neumann entropy averaged over the ensemble of pure states
defined in section 2. In particular, we show how for any field theory the averaged Rényi
entropy can be written as a path integral (4.5). Using the holographic dictionary we find
our proposed refinement of the RT formula for typical pure states (4.9).

2For non-typical pure states with a known geometric dual, it should possible to retain the homology
constraint. One example of that is the non-typical collapsed black hole state, where the homology constraint
can be kept due to the past geometry [15]. Another is a CFT ‘B-state’ in which non-trivial surfaces are
homologically allowed due to an end of the world brane [17].
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2 The ensemble of states

We will focus here on Euclidean two-dimensional field theories on S1
2π × R but everything

can be generalized to theories in a general dimension d on Sd−1×R. We denote the fields in
the theory collectively by φ(θ, τ). In the main text, we assume φ is a scalar. We believe the
calculations described can be extended, with suitable adjustments, to fermions and gauge
fields. Specifically, they are expected to be generalizable to known holographic CFTs such
as N = 4 SYM on S3 × R.

We start by defining our ensemble of pure states {|ψα〉}, α is the ensemble index. First,
we choose a set of commuting operators that we denote collectively O and its eigenbasis
|α〉 with O |α〉 = λα |α〉, which we assume to uniquely identify the state. Our ensemble of
pure states is the Euclidean evolution of this basis

|ψα〉 = e−
β
2H |α〉 , (2.1)

for all α.3 Over the following sections, our favorite choice for the operators O would be all
the field operators

{
φ̂(θ)

}
, which correspond to the field state basis |α〉 ≡ |φα〉 for every

field configuration φα(θ).4 For this choice of basis the ensemble states (sandwiched with a
field-state |φ0〉) can be written as a Euclidean path integral

〈φ0|ψα〉 =
∫
Dφ

∣∣∣∣φ(θ,0)=φ0(θ)

φ(θ,−β2 )=φα(θ)
e−S[φ] = . (2.2)

For any other basis a similar path integral can be written, only the identification (the green
circle) at τ = −β

2 would be δ(O − λα). The role of the Euclidean evolution is to select
on average states with energy E ∼ 1/β. One way to see it is to decompose the ensemble
states into energy eigenstates |α〉 =

∑
n cn |En〉. The energy of the state |ψα〉 is thus

〈ψα|H |ψα〉
〈ψα|ψα〉

=
∑
n |cn|2Ene−βEn∑
n |cn|2e−βEn

(2.3)

For generic operators O we expect the cn’s to be random, and each state |ψα〉 should re-
semble a typical state in the canonical ensemble. Note that the energy basis will completely
localize the cns and won’t give the necessary Boltzmann suppression. One can try to fix
it by using a microcanonical ensemble around a small energy window, but this option has
other issues we will discuss later (see footnote 9).

3The ensemble is very similar to that of [20, 22].
4Given a gauge field Aµ(θ, τ), similar basis can be formed. The basis include |α〉 = |(Aα)θ〉 for every

spatial gauge field (Aα)θ(θ), up to gauge transformations (Aα)θ(θ) ∼ (Aα)θ(θ) + ∂θf .
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For a given element of the ensemble, we can define the unnormalized density matrix
ρα = |ψα〉 〈ψα|. We separate the spatial circle into two regions: A = [0, ϕ] and its com-
plement Ac = [ϕ, 2π]. The reduced density matrix is ρα(ϕ) = 1

TrραTrAcρα, which can be
drawn as

TrAcρα = = . (2.4)

The green circles represent the α identification at τ = ±β
2 . The r.h.s. represents the same

calculation only in a shape of a torus S1
2π × S1

β . The horizontal circle is the spatial θ
direction with periodicity 2π. The vertical circle is the euclidean time direction τ with
length β. The cut is on the spatial interval [0, ϕ] and euclidean time τ = 0. The green
spatial circle covers all of τ = ±β

2 .
We want to calculate ensemble-averaged quantities, which we will denote with a bar

(. . .). Given a quantity Wα calculated on each ensemble state |ψα〉, the averaged quantity
can be written formally as W = 1∑

α
1
∑
αWα. For discrete bases, this sum has a well-

defined meaning. For continuous bases, like the field basis |φα〉, we need to specify a
measure on the formal sum, and the value of W will depend on that choice. A similar
question arises when one needs to define the trace at a given basis, where formally Tr(. . .) =∑
α 〈α| . . . |α〉. Up to an overall constant, we will use the same measure used for the trace.

In the case of the field basis |φα〉, this amounts to a path integral “
∑
α” =

∫
Dφ.

3 The thermal mixed state

3.1 QFT side

As a first step, we would like to find the entanglement-entropy of the averaged density
matrix SvN (ρ(ϕ)). We define the ensemble-averaged density matrix ρ̄ by the (normalized)
statistical mixture of all the individual ρα in the ensemble. The result is simply the thermal
density matrix

ρ ≡ 1
Z

∑
α

ρα = 1
Z

∑
α

e−
β
2H |α〉 〈α| e−

β
2H

= 1
Z
e−βH = ρthermal.

(3.1)

The normalization is Z =
∑
α 〈α| e−βH |α〉. Note that the result is independent of the basis

we chose (or the operators O).5 In terms of path integrals, we simply replaced the boundary
5One can imagine a different type of averaged density matrix, where the mixture is between the normal-

ized ρα: ρ′ = 1
N

∑
α

e
− β

2 H |α〉〈α|e− β
2 H

〈α|e−βH |α〉 (N is the formal normalization). We didn’t study this expression,
but we believe the holographic calculation to be equal to the thermal case.
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conditions by a geometrical identification as in the right-hand side of (2.4), but without the
green circle. Finally, we define the reduced averaged density matrix as ρ(ϕ) = TrAcρthermal.
In the rest of the section, we briefly explain how to find the entanglement-entropy for
ρ̄ = ρthermal in field theory and using holography. Although these results are well known
in the literature they will help us motivate the calculation of the next section, for the pure
typical state.

For every density matrix ρ, its von Neumann or entanglement entropy SvN (ρ) can be
written using the Rényi entropy Sn(ρ):

SvN (ρ) ≡ −Tr(ρ log ρ) = lim
n→1

Sn(ρ), (3.2)

Sn(ρ) ≡ 1
1− n logTrρn. (3.3)

Using (3.1), we can write TrAρ(ϕ)n = Zn
Zn1

. Here Z1 is the partition-function on M1 =
S1

2π × S1
β , and Zn is the partition-function over the n-sheeted torus we callMn. To define

it, start with n copies of the torus (M1)n =
(
S1

2π × S1
β

)n
and denote the intervals of the

i’th replica A(i)
± = [0, ϕ]× {0±}, i = 1, . . . , n. Mn is defined by cutting these intervals and

gluing them back by Ai+ = Ai+1
− for i = 1, . . . , n − 1, and An+ = A1

−. We can draw the
result by

Zn = . (3.4)

Explicitly in terms of path integrals we can write

Sn (ρ(ϕ)) = 1
1− n log

∫
Mn

Dφ e−S[φ]∫
(M1)n Dφ e

−S[φ] . (3.5)

The behavior of the thermal von Neumann entropy SvN (ρ(ϕ)) is known at several
regimes. For low temperatures β � 1 the ensemble localize to the ground-state, and the
result on S1 is universal (up to a cutoff-dependent additive constant) [14, 23, 24]

SvN (ρ(ϕ)) = c

3 log
(2
a

sin
(
ϕ

2

))
, (3.6)

a being the UV cutoff. We are interested instead in the high-temperature limit β � 1. At
least for β � ϕ� 1 one can use the universal finite temperature limit on the line [14, 24]

SvN (ρ(ϕ)) ≈ c

6
ϕ

β
. (3.7)

On general grounds, we expect the thermal entropy SvN (ρ(ϕ)) to increase with ϕ (at least
for small enough ϕ), and to reach the thermodynamic entropy of the theory Sth(β) at
ϕ = 2π. Note that unlike the individual ρα(ϕ), ρ is not pure, and so we don’t expect
SvN (ρ(ϕ)) 6= SvN (ρ(2π − ϕ)) (see figure 1).
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We would like to stress a trivial point. At the denominator of (3.5) for example, we
took the path integral over M1 = S1

2π × S1
β . The reason is that the normalization of the

thermal density matrix is the trace Z1 = Tre−βH . Using the path integral formalism, the
trace can be written as a path integral on S1

2π ×
[
− β

2 ,
β
2

]
with periodic identification

Z1 =
∫
S1

2π×[−β2 ,β2 ]
Dφ

∣∣∣∣
φ(θ,−β2 )=φ(θ,β2 )

e−S[φ]. (3.8)

Note that this is not directly the same as the path integral on the torus. In (3.8) only the
field is identified at the two ends, whereas for the torus we assume only smooth configu-
rations of the field. More concretely, in (3.8) a derivative discontinuity at τ = ±β

2 cost
no action, unlike on the torus. The reason the two computations do agree is that smooth
configurations on the torus can approximate functions with discontinuous derivative arbi-
trarily close to τ = ±β

2 . We checked these claims explicitly for the free scalar and n = 2 in
appendix B. These comments also apply to the numerator of (3.5), where the path integral
is over the n-sheeted torus Mn. Although we discuss the field basis, similar statements
should hold for other bases as well.

3.2 Gravity side

Holographically the calculation of the thermal entropy SvN (ρ(ϕ)) at high temperatures
corresponds to the study of RT surfaces in the background of an Euclidean AdS black
hole [8, 25, 26]. Below we follow [10, 12] and emphasize the main ingredients leading to
the RT formula.

The main observation of [10] is that both terms in the Rényi entropy (3.5) can be
translated by the AdS/CFT dictionary to concrete gravitational calculations

Sn (ρ(ϕ)) = 1
n− 1 (In(ϕ)− n I1) . (3.9)

Here I1 is the gravitational on-shell action of the solution with a boundary of a torusM1,
and In(ϕ) with a boundary of Mn. We stress again that the asymptotic topology of a
torus (and not a cylinder) was due to the smoothness assumption we were allowed to take.
We are interested in the β � 1 limit, where I1 corresponds to the Euclidean global BTZ
solution with temperature β. This solution topologically closes the asymptotic time circle
S1
β in the bulk. To find In(ϕ) we will look for bulk solutions that keep the Zn replica

symmetry. While each sheet ofMn is continued to the bulk, the replicated line A = [0, ϕ]
is continued inside to a replicated surface EnA, together forming a smooth geometry. The
authors of [10] showed how to analytically continue this solution in n and that as n → 1
the difference in (3.9) localize to the boundary of the replicated surface EA = limn→1 EnA.
Taking the limit carefully gives the RT formula SvN = Length(X)

4GN , where we denoted the
boundary of the bulk surface by X = ∂EA. The equation of motion for the metric constrain
X to be an extremal line (a geodesic). As X is the boundary of the replicated surface EA,
it is also constrained to be homologous to the boundary replicated line A. This is known
as the ‘homology constraint’ of RT surfaces [9, 27].

– 7 –
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Figure 2. The spatial slice of BTZ black hole. The outer circle is the τ = 0 boundary spatial slice.
The inner circle is τ = ±β2 that we identify. The middle dashed circle is the (Euclidean) black hole
horizon. The thick blue lines are two different boundary replicated lines A. The surface EA is the
extension of the replicated line inside the bulk. The blue line X is its boundary, and the would-be
extremal RT surface.

In our case, we need to find Euclidean BTZ space-like geodesic X that ends asymptot-
ically at ∂A and are homologous to A. For every ϕ and high enough temperatures β � 1
there is only one solution.6 The geodesics are drawn schematically in figure 2. Calculating
the length gives [27]

SvN (ρ(ϕ)) = c

3 log
(
β

πa
sinh

(
ϕ

2β

))
, (3.10)

a being a bulk UV regulator. At the limit β � ϕ we get back (3.7) as drawn schematically
in figure 1. The linear behavior is explained geometrically by the geodesic roughly ‘hug’
the black hole horizon for an arc of an angle ϕ. At ϕ = 2π the RT surface is the black
hole horizon itself, which leads to the Bekenstein-Hawking formula for the thermodynamic
entropy Sth(β) = ABH

4GN . In terms of the gravitational replica trick, the ϕ = 2π calculation
is exactly that of Gibbons and Hawking [11].

4 Typical pure state

4.1 QFT side

In the previous section we studied the von Neumann entropy of the averaged density matrix.
Here we would like instead to find the ensemble average of the von Neumann entropy

SvN (ρ(ϕ)) = −TrA (ρ(ϕ) log ρ(ϕ)). (4.1)

For brevity, we will denote this quantity (and its Rényi analogs) by SvN (ϕ). On cases where
the ensemble represents typical states (see above), SvN (ϕ) describes the von Neumann
entropy of a typical pure state with energy E ∼ 1/β. We will calculate the averaged
entropy as the limit of the averaged Rényi entropy SvN (ϕ) = limn→1 Sn(ϕ).

6For large enough ϕ ∼ 2π (or low enough temperatures) there’s a dominant disconnected solution with
the same homology class [8] (for the relation to the Araki-Lieb inequality see also [28, 29]).

– 8 –
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For an ensemble state |ψα〉, the Rényi entropy can be written as

Sn(ρα(ϕ)) = 1
1− n (logZαn − n logZα1 ) . (4.2)

where Zα1 = Trρα and Zαn = TrA (TrAcρα)n. Taking the average gives

Sn(ϕ) = 1
1− n

(
logZn − nlogZ1

)
(4.3)

≈ 1
1− n

(
logZn − logZn1

)
. (4.4)

In the second line we took a simplifying assumption, that the quantities self-average well
enough so we can take the average inside the log. This assumption is for brevity only.
In appendix A we show how to use a second replica trick to calculate (4.3) exactly. For
holographic theories the approximation is shown to be exact at leading (classical) order
in 1/N .7

Following our expression for the thermal case (3.5), we can now write (4.4) in terms
of a path integral

Sn(ϕ) ≈ 1
1− n log

∫
Mn

Dφ e−S[φ] δ
({
Oi
(
τ = ±β

2

)})
∫

(M1)n Dφ e
−S[φ] δ

({
Oi
(
τ = ±β

2

)}) . (4.5)

By δ({Oi}) =
∏n−1
i=1 δ(Oi−Oi+1) we mean a projector to states with the same O eigenvalues

on all the n copies. Apart from the identification at τ = ±β
2 , we got the same path

integrals as in the thermal case (3.5). Through the identification, the expression now
depends on the ensemble basis we chose (unlike the thermal case). Specifically in the local
field basis O = {φ̂(θ)} the delta-function take a simpler form, of identifying the field’s
value between all the replicas on τ = β

2 .
8 As the ensemble average is over pure states we

expect SvN (ϕ) = SvN (2π − ϕ). In fact this property is immediate from the topology of the
manifold on (4.5) (unlike the thermal topology of (3.5)).

The reader may worry that the identification between the replicas in (4.5) makes the
expression singular or even ill-defined. As the singularities are coming from a local theory
it is enough to consider the denominator integral in (4.5), which includes no replicated
cut. In appendix B we study its behavior for the free scalar. The singularities from the
identifications seem to be basis-dependent. These UV singularities can be regulated for
example by a cutoff or the zeta-function regularization. In terms of a UV cutoff, the path
integral can be regulated by the normal local counter-terms on the full manifold (as in the
thermal case), together with new local counter-terms on the n− 1 identified circles. Both
because of the basis-dependence and due to the geometries we will consider, it is not clear
what is the bulk interpretation of these divergences/counter-terms (see below).

7I thank Ohad Mamroud for emphasizing this point.
8For gauge theories (and orbifolds) a similar path integral can be written. Locally the identification has

the same form as the scalar. Globally one also need to integrate over the n different S1
β holonomies from

each interval.
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Trρnα =

Figure 3. The replica trick for pure ensemble state |ψα〉. The green dashed circle represent the
same boundary condition for all the replicas on the inner circle. The topology of the resulted
manifold ensures SvN (ρα(ϕ)) = SvN (ρα(ϕ)).

What is the expected behavior for SvN (ϕ)? For β � 1 the ensemble reduce to the
ground-state, and SvN (ϕ) takes the universal ground-state result (3.6). When the entan-
glement region is very small ϕ� 1, β we can use the twist operator OPE and recover the
ground-state result (3.6)

SvN (ϕ) ≈ c

3 log
(
ϕ

a

)
. (4.6)

We are interested in the high temperatures limit β � 1. In the strict limit β � a (the
lattice regulator) the ensemble states are exactly the field states |ψα〉 = |φα〉. Upon lattice
regularization, these states are products of lattice-points position states giving SvN (ϕ) = 0.
At intermediate temperatures a � β � ϕ we expect a thermal behavior (3.7). The
intuition is that we trace over a big reservoir of a high-temperature pure state.9 From the
symmetry around ϕ = π, we expect a Page-like behavior for high-enough temperatures
a � β � 1 (see figure 1). In the next section, we find SvN (ϕ) for holographic large-N
theories using semiclassical gravity. Based on either subsystem ETH [19] at β � 1 or large
central charge expansion [21] we expect the pure state semiclassical result to exactly match
the thermal holographic result (3.10) for ϕ < π. Below we will argue this is actually the
case using the holographic dictionary.

Before turning to the gravity side, we need to describe the topology of the manifolds
in (4.5). We claim that several different smooth geometries exist, all giving the same path
integral (4.5). As our main example we take the field states basis. The basic topology one
gets from the canonical formulation is that of (Sd−1 times) n intervals

[
−β

2 ,
β
2

]n
with field

identifications between all their 2n boundaries (top left in figure 4). Specifically the field
derivative might jump when crossing τ = ±β

2 . For the thermal case n = 1, we argued above
that we can assume the smoothness of the fields turning the interval topology to a circle,
with equivalent results. Correspondingly, we can make different smoothness assumptions

9This property was termed ‘canonical typicality’ [18]. Importantly, the microcanonical ensemble would
differ from the canonical one for the Rényi entropies but will agree on the von Neumann entropy [21, 30]
(and also found holographically [31, 32]). It is therefore essential that our ensemble does not consist of
energy eigenstates.
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Figure 4. Top left: n cylinders with a replicated line. All the cylinder’s boundaries are identified
(dashed blue line). Bottom left: each cylinder is understood as a torus. τ = ±β2 is identified
between the n tori. Top right: stacking the n = 2 cylinders into a bigger torus with temporal
periodicity 2β. the circles at times τ = 0, β are identified. Bottom right: the same topology can be
drawn as n = 2 tori with another replicated circle at τ = ±β2 .

on the n intervals changing the topology, with the same results. One option is to assume
the smoothness of the fields when crossing at the same time interval, which results in the
topology of n tori (bottom left in figure 4). Between the n tori we still need to identify
the fields at τ = ±β

2 , which still allows a derivative jump when crossing to another torus.
A second option we will consider is to stack the intervals into one long circle of length
nβ. We then take the field to be smooth along it, which results in a topology of a single
long torus (top right in figure 4). Along the torus we still identify the spatial-slices of
τ = 0, β, . . . , (n − 1)β, but not their derivative. We can also think of this topology as n-
sheeted torus (with time circle of length β) with a replicated circle at τ = ±β

2 (bottom right
in figure 4). We conclude that the two smoothness assumptions give rise to two different
topologies. Specifically note that the first has n connected components (for ϕ = 0), while
the second is connected (see figure 4). The path integral on one will be equal to the second,
and both to the original cylinder geometry of (4.5).

One can make the same smoothness assumptions also for the numerator in (4.5), which
will add a replicated line along A = [0, ϕ] (and τ = 0) to the same geometries. In fact,
starting from one of the two geometries at some ϕ = ϕ0, and continuously deforming the
cut to ϕ = 2π − ϕ0 will result in the second geometry of ϕ = ϕ0. The two compact
topologies described are the only ones that respect the Zn replica symmetry. There are
more complicated topologies (correspond to other smoothness assumptions) that break the
symmetry, which we won’t describe here. Following the thermal n = 1 case, we argue all
the different topologies are equivalent in the path integral, and equivalent to the original
description where no smoothness assumptions were assumed.10 We stress that we don’t

10In principle, classical (field theory) saddles are allowed to be non-smooth at the identification, or smooth
only in several of the topologies.
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mean one needs to sum over all these topologies to get the right result in (4.5). We are
claiming that the path integrals are equal, and the path integral on either one of the
geometries (together with the remaining identifications) is already the right result. We
show it explicitly at n = 2 (two replicas) for the free theory in appendix B.

4.2 Gravity side

We now turn to calculate the averaged entropy SvN (ϕ) using holography. Following the
thermal calculation reviewed in section 3.2, we will do it by analytically continuing the
gravitational calculation of the averaged Rényi entropies (4.5). The first step is to write
the path integrals in (4.5) as gravitational path integrals. At the CFT we found several
equivalent compact topologies corresponding to different smoothness assumptions. To cal-
culate the dual gravitational path integral we will assume that the main contribution to
the path integral comes from smooth geometries that satisfy the boundary conditions. In
this way, we get different saddles from each boundary topology. But unlike the QFT side,
the saddles from each boundary topology won’t be equivalent to each other anymore and
will give different results. We conclude that on the gravity side one needs to sum over
saddles from all the allowed boundary topologies. As a sanity check, note that in this way
the ϕ 7→ 2π − ϕ symmetry of (4.5) is preserved also in the bulk (see below).

Let’s be more concrete. Every smoothness assumption on the QFT side leaves a
path integral over a smooth compact geometry together with extra identifications (the
dashed blue lines in figure 4). We are looking for smooth gravitational saddles with that
compact geometry as its asymptotic boundary. But we also need to map the remaining
identifications of the fields to the gravity side. The identification gives further boundary
conditions on the background SUGRA fields (or any other low energy bulk description)
solution. To see it, notice that since all the CFT fields are identified between the replicas
(at τ = β

2 ), so is the CFT stress tensor Tθ,θ(θ, τ = β
2 ). As a result, the boundary mode

of the bulk metric gθ,θ(θ, τ = β
2 , z = 0) is identified between the n replicas. We expect

similar boundary conditions for all the bulk’s low-energy SUGRA fields [33]. Note that this
is the boundary condition dual to the field-basis ensemble O = {φ(θ)}. Other boundary
conditions will depend on the bulk dual of the Oi in (4.5). We expect that for ‘local enough’
operators, we would have a similar picture.11 The bulk geometries we will consider below
all preserve the replica symmetry in the bulk (see appendix A). As a result, as long as we
are allowed to use the semiclassical approximation for (4.5), these saddles will satisfy the
necessary boundary conditions between the replicas. Although replica-breaking solutions
exist, far enough from ϕ = π the replica-symmetric solutions are the dominant ones (see
appendix A). The smoothness assumption thus sets the geometry and will give the entropy
at tree level. The extra (ensemble-dependent) bulk field identifications will only affect
the subleading 1-loop order. We will comment on that at the end of the section. In any
case, we conclude that to leading order in GN , our results are robust to the specifics of
the ensemble.

11Specifically, we don’t expect it to work for the microcanonical ensemble (see also footnote 9). As the
gluing in this case will include non-local boundary identifications, it is no longer clear smooth geometries
dominate the partition function.
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Figure 5. Here the inner circle (thick blue) τ = ±β2 is identified between all the replicas. On left
the same bulk replicated surface E1

A found for the thermal case figure 2. On the right a second
replicated surface E2

A of a different topology. This solution is allowed only due to the inner circle
identification.

Looking back at (4.5), there are two candidates for dominant bulk saddles at β�1 cor-
responding to the two replica-symmetric boundary topologies. The first boundary topology
is that of n separated tori. This is the same boundary condition for the metric as in the
thermal calculation (3.9). The solution includes an extension of the replicated line to a
bulk replicated surface E1

A, see figure 2. Whenever this saddle dominates, the averaged
entropy (after taking the n→ 1 limit) is just the thermal entropy (3.10).

The second boundary topology is that of one long torus, with n replica cuts along it.
Equivalently it can be described as n separated tori, connected by both the replicated line
A and another replicated circle at τ = β

2 . Now the gravitational solution In(ϕ) will include
a replicated surface E2

A which extend both replicated lines together. In other words its
asymptotic boundary is both A and the τ = ±β

2 circle. Following the same logic of [10], at
the limit n→ 1 the contribution of this saddle would be an RT line X2 which is homologous
to the sum of region A and the identification circle (see figure 5). Equivalently in terms of
the bulk spatial slice, the line is homologous to the complement Ac = [ϕ, 2π]. Therefore
whenever this saddle dominates, it contributes exactly thermal entropy of the complement
Ac. Taking only the dominant saddle at leading order12 gives together13

SvN (ϕ) = min
{
c

3 log
(
β

πa
sinh

(
ϕ

2β

))
,
c

3 log
(
β

πa
sinh

(2π − ϕ
2β

))}
. (4.7)

As the thermal result is monotonic in ϕ it is dominant only for ϕ < π. For ϕ > π the
second non-trivial topology dominates. In the high-temperature limit β � ϕ we have

SvN (ϕ) ≈ c

6β min{ϕ, 2π − ϕ}, (4.8)

as drawn schematically in figure 1. This is the holographic dual of the calculation made
by Page [6]. We can further draw this phase transition in terms of EA. As can be seen

12As we mention in footnote 6 both topologies allow another solution with a disconnected RT line covering
the horizon. For the second (non-trivial) boundary topology this is explicitly a replica island covering the
horizon. As these solutions are always sub-dominant we omit them in (4.7).

13For states similar to our (2.1), [34] found the same result using a large central charge expansion in
CFT2.
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Figure 6. The phase transition of the RT surface as a function of ϕ. The outer circle is the
boundary spatial slice τ = 0. The black solid circle is the BTZ black hole (it’s boundary is the
horizon). The upper row include the first ‘thermal’ RT surface (thin blue line) changes as a function
of ϕ. The middle column describe the phase transition at ϕ = π to the new solution on the bottom
row. Together the two solutions give a Page-like behavior for the holographic SvN (ϕ) (see figure 1).

in figure 6, before the phase transition EA covers only the exterior of the black hole, but
‘swallows’ the black hole after the transition. Finally, we note that at the low-temperature
phase the geometry is of thermal AdS. In this case there’s no phase transition and the
disconnected replica solution E1

A is always dominant, leading to the vacuum result (3.6).
In other words at this order in 1/GN the extra identification is obsolete.

We learn that the ‘purity’ of the boundary geometry (4.5) takes place in the bulk by
the fact that any solution for ϕ can be transformed to a solution of 2π − ϕ. This way
the gravitational path integral ensures the purity of the result SvN (ϕ) = SvN (2π − ϕ).
Consider now a general (compact) spatial manifold Md−1 and a general entanglement
region A ⊂ Md−1. Taking n → 1 for the generalization of (4.5) calls for a refinement of
the known RT formula for typical pure states of energy E ∼ 1/β:

SvN (A)β = Area(X∗)
4GN

+O(G0
N ). (4.9)

Just like in the RT formula, X∗ is a minimal co-dimension 2 manifold in the bulk solution
(with boundary Md−1 × S1

β) which asymptote to ∂A. For the typical state, we further
allow X∗ to be homologous to either A or its spatial complement Ac. In other words, for
typical pure states the ‘homology constraint’ should be relaxed.

Following [35], we can study the next order in 1/GN . To that end we consider the
1-loop contribution from bulk fields around the dominant gravitational saddle. Ignoring
the effect of the identification on the fields, the path integral prepare a thermofield dou-
ble state on the bulk global spatial slice, or a bulk thermal density matrix on the slice
that ends at the horizon. But as we discussed above the CFT identification on (4.5) is
dual to the identification of the field’s asymptotic value at τ = ±β

2 between the n bulk
replicas. Each asymptotic value prepares a state at τ =−β

2 . The bulk state at the slice
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τ=0 is then the bulk EFT evolution of this state by e−
β
2Hbulk . We learn that each CFT

ensemble corresponds to some bulk effective ensemble of ‘almost-thermal’ density matrices.
Following [35], we propose that the next order is14

SvN (A)β = Area(X∗)
4GN

+ Sbulk
vN (E∗A)β +O(G−1

N ). (4.10)

The ensemble average on the r.h.s. is in the bulk EFT using the bulk dual EFT ensemble.
Note that from the prescription for X∗, E∗A = E∗Ac which ensures also the purity of the
second term in (4.10).

We note that in the full string theory we will need to further identify all the heavier
vertex operators insertions between the identification circles. The exact identification will
depend on the exact string duals of the operators O. As we identify the full string state
between the asymptotic temporal circles, the string theory path integral also allows for new
types of non-dynamical strings. Close strings can stretch between (asymptotic) identified
circles of the same geometry. Strings can also end in one identified circle and then continue
on a circle of another disconnected geometry.15 These are not orbifolds or D-branes, but
a complete identification of spacetime (asymptotic) points. This identification might be
related to the localized singularities we find in the QFT calculation of (4.5) and described
in appendix B. Further research is needed to determine the consistency of string theories
with such identifications, and we won’t explore them further here.16

5 Discussion

Following the idea of ‘entanglement wedge reconstruction’ [36], we can interpret the phase
transition of SvN (ϕ) in terms of bulk reconstruction from the CFT. As a function of ϕ
the entanglement wedge, the domain of dependence of E∗A, include the black-hole interior
starting from ϕ > π (figure 6). We learn that it requires operators from half the boundary
area to locally describe the black hole interior (to the extent such a description is possible).
Note that this is possible only for a pure state and not for the thermal density matrix.
There are different ideas for explicit boundary-to-interior mappings [1, 37]. It would be
interesting to see if such mappings are possible in the state ensemble context (or they are
too state-dependent to survive the average).

The analysis above was agnostic to the correct quantum-gravitational description of
the black hole interior. It would be interesting however to find a way to connect this work
to older discussions about typical black-hole microstates in holography [38–40], as well as
the new discussions in the context of evaporation [1–3].

The HRT prescription extends the RT formula for general density matrices including
arbitrary time dependence [41, 42]. Recently the idea of replica wormholes was similarly
generalized to real-time gravitational path integrals [43–45]. Using these methods, it would

14To write the second term we actually need the original exact expression (4.3).
15These strings are dual to the gauge-invariant holonomies measured along a line between two identified

points.
16I thank Ofer Aharony for stressing these issues.
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be interesting to find a Lorentzian version of our analysis, perhaps to study the averaged
effect of infalling matter into a typical black hole microstate.

Finally, we can take our assumption about the leading gravitational saddles to Zn as
a property of holographic CFTs. In the CFT language at large N it gives the equality
between the Zn path integral and a sum of CFT path integrals over different partitions of
the replicas (without any further identifications). This equality was recently found directly
in the CFT (in a slightly different context) by assuming ergodicity properties [46–49]. It
would be illuminating to study further the state-averaged gravitational path integral as a
probe of the dual CFT statistical properties [50].
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A Double replica trick

The averaged Rényi entropy is given by (4.3) Sn(ϕ) = 1
1−n

(
logZn − nlogZ1

)
. In order to

calculate the first term, we can use a second replica trick

logZn = lim
m→1

1
1−m logZmn . (A.1)

Zmn is a path integral over m copies of the n-sheeted torusMn, with all the n ·m τ = ±β
2

circles identified.
What is the dominant bulk saddle of Zmn ? Above we assumed form = 1 the dominating

solution is invariant under the replica symmetry Zn. We argue more generally that for any
m, the dominant bulk saddle is m times a replica-symmetric solution that fillsMn. These
are the solutions invariant under the full Sm × Zn symmetry of Zmn . Notice that these
solutions still respect the identification boundary conditions between the m copies as it is
symmetric under permutations Sm.

Start at ϕ = 0, where Zmn has an Sm·n permutation symmetry. On general grounds
the free energy on Sd−1×S1

β for β � 1 is I(β) ≡ − logZ(β) = − ad
GNβd−1 for some constant

ad [51]. The solutions at β � 1 correspond to different partitions of the n ·m intervals into
tori. The fully disconnected solution include n ·m seperated tori with temporal length β
each, and the free energy n ·m · I(β) = −n ·m · ad

GNβd−1 . The fully connected solution is a
torus with temporal length n ·m · β, and free-energy I(nmβ) = −(n ·m)1−d · ad

GNβd−1 . Any
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other partition {ni} with
∑
i ni = n ·m has free energy

∑
i I(niβ) =

(∑
i n

1−d
i

)
· ad
GNβd−1 .

Therefore at ϕ = 0 the dominant solution is the fully disconnected one. At small enough
ϕ� 1 we expect the dominant saddle to be a deformation of the fully disconnected saddle,
which extends the replica cuts to the bulk (and thus connecting each of the m copies).
Without loss of generality we can take the minimal deformation on each of the separated
m copies. Inside each copy it is also reasonable to assume the solution respect the replica
symmetry (as topologically it is already satisfied). For the case m = 1 this is exactly the
‘thermal saddle’ we considered above. Using the symmetry ϕ 7→ 2π − ϕ we also know the
dominant solution at 2π−ϕ� 1 is m copies of the ‘fully connected saddle’ (in terms of the
thermal circle identification). A priori other saddles might dominate in the intermediate
region between 0 and 2π. In practice, as they break the Sm × Zn symmetry we expect
them to contribute only around ϕ = π.

Taking only the dominant solution gives Zmn = Zn
m. Pluging inside (A.1) brings

logZn = logZn, as we approximated in (4.4). The same analysis shows that the variance
in SvN (ϕ) is non-perturbative in GN . We note that if the bulk theory field content breaks
the replica-symmetry, the breaking is perturbative in GN .

B Details about the identification

The goal of this section is to study the path integral on N identified cylinders, called ZN1
on (4.5). We will do the calculation for the free boson and study its divergences. We will
also explicitly show it is equal to the path integral over the other two geometries described
in figure 4. We first practice on the harmonic oscillator, where we show the equivalence
first for N = 1 (the thermal case) and then for general N . We then follow to the free
2d boson.

Regularization. For all the calculations below we use the zeta-function regularization.
Specifically we will be needed to regularize expressions like

∏∞
n=1 an

α. To that end we define

As =
∞∑
n=1

(anα)s

= asζ (−αs) .
(B.1)

Using the zeta-function regularization
∞∑
n=1

log
(
an2

)
= ∂sAs |s=0

= −αζ ′ (0) + ζ (0) log (a)

= log

√(2π)α

a

 ,
(B.2)

or

“
∞∏
n=1

anα” =

√
(2π)α

a
. (B.3)
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B.1 Harmonic oscillator

We start by studying the Euclidean harmonic oscillator on S1
β

S [x] =
∫ β

0
dτ

(1
2mẋ

2 + 1
2mω

2x2
)
. (B.4)

Our main goal is to study the one-dimensional version of (4.4) ZN1 in the position basis,
or simply the path integral over N identified intervals. By the end of this section, we will
show explicitly for N = 2, that the euclidean path integral on the two identified intervals
is equal to a path integral over two other geometries. The first is two identified circles,
and the second is one doubly-long circle identified in the middle (see figure 7). We start by
studying the thermal N = 1, where we show explicitly that the path integral on a single
identified interval is equal to the path integral over a circle. We will use all these results
for the free scalar in the next section.

B.1.1 Thermal partition function

We start with the computation of the thermal partition function using the path integral
formalism. Following the Hilbert-space definition, we need to find:

Z (β) = Tr
(
e−βH

)
=
∫ ∞
−∞

dx 〈x| e−βH |x〉
(B.5)

The Euclidean propagation 〈x| e−βH |x〉 can be written in the path integral formalism as

〈x| e−βH |x〉 =
∫
Dx (τ) |x(β)=x

x(0)=x e
−S[x]. (B.6)

We see that Z(β) is strictly equal to the path integral over the identified interval [0, β].
We start by finding the Euclidean propagator 〈x| e−βH |x〉. The classical solution (ẍ =

ω2x) satisfying the boundary conditions is xcl (τ)=x
(

cosh (ωτ)+(1− cosh (ωβ)) sinh(ωτ)
sinh(ωβ)

)
.

Changing variables in (B.6) by the shift y (τ) = x (τ)− xcl (τ) gives

〈x| e−βH |x〉 = e−S[xcl]
∫
Dy (τ) |y(β)=0

y(0)=0 e
−S[y]

= e−S[xcl] 〈0| e−βH |0〉
(B.7)

We diagonalize S [y] by decomposing y(τ) into the orthonormal basis

y (τ) =
∞∑
n=1

anyn (τ) ,

yn (τ) =
√

2
β

sin
(
πn

β
τ

)
.

(B.8)
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Note that although y (β) = y (0) = 0, its derivatives might jump between the two ends.
Specifically for odd n y′n (0) 6= y′n (β). Performing the integrals gives

〈0| e−βH |0〉 =
∞∏
n=1

∫
dan exp

(
−m2

((
πn

β

)2
+ ω2

)
a2
n

)

=
( ∞∏
n=1

mπn2

2β2

)− 1
2
√

ωβ

sinh (ωβ) .

(B.9)

Using the zeta-function regularization (B.3)
∏∞
n=1

mπn2

2β2 = 2πβ√
mπ

2
and

〈0| e−βH |0〉 =
(
π

2m

) 1
4
·
√

mω

2π sinh (ωβ) .
(B.10)

We will ignore the
(
π

2m
) 1

4 and take:

〈0| e−βH |0〉 =
√

mω

2π sinh (ωβ) (B.11)

Going back to (B.7), we find the on-shell action Scl = mω
(

cosh(ωβ)−1
sinh(ωβ)

)
x2, which gives the

final propagator

〈x| e−βH |x〉 =
√

mω

2π sinh (ωβ) exp
(
−mω

(cosh (ωβ)− 1
sinh (ωβ)

)
x2
)

(B.12)

To find the partition-function (B.5) we integrate over x, to get

Z (β) =
∫
dx 〈x| e−βH |x〉

= 1
2 sinh

(
ωβ
2

) . (B.13)

This result is the canonically normalized one, as we can see in the energy basis:

Z (β) = e−
ωβ
2

1
1− e−ωβ =

∞∑
n=0

e−ωβ(n+ 1
2 ). (B.14)

On the other hand, we can write the partition function (B.5) formally as the path
integral

Z(β) =
∫
Dx (τ) |x(0)=x(β) e

−S[x] (B.15)

Instead of the previous calculation, we would like to understand this expression as the
path integral over the smooth manifold of circle S1

β . In practice, we decompose x(τ) in the
Fourier basis (the fluctuations of the constant mode x the n = 0 mode):

x (τ) = 1√
β
b0 +

∞∑
n=1

(
bn

√
1

2β exp
(
i
2πn
β
τ

)
+ c.c.

)
(B.16)
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Note that unlike the previous decomposition (B.8), this basis is smooth at τ = 0, β, and
so naively might give different results. In this case the action is

S [x] = m

2 ω
2b20 +

∞∑
n=1

b∗nbn
m

2

((2πn
β

)2
+ ω2

)
. (B.17)

Computing the Gaussian integral gives the partition function

Z (β) =
( ∞∏
n=0

∫
dbn

)
exp (−S)

=
√

π
m
2 ω

2

∞∏
n=1

π

m
2

((
2πn
β

)2
+ ω2

)
=
√

2π
mω2 ·

∞∏
n=1

1
2πm
β2 n2 ·

ωβ
2

sinh
(
ωβ
2

) .
(B.18)

The second term can be calculated using zeta function regularization (B.3) to give∏∞
n=1

2πm
β2 n

2 = 2π√
2πm
β2

, and

Z (β) =
√

2π
mω2 ·

1
2π

√
2πm
β2 ·

ωβ
2

sinh
(
ωβ
2

) (B.19)

= 1
2 sinh

(
ωβ
2

) .
As expected, this is the same result found using the discontinuous basis (B.13).

B.1.2 Replica average

We turn to the more general case of ZN1 (from (4.4)). In one dimension and in the position
space basis, this is the path integral on N intervals with all their 2N ends identified to the
same value x:

ZN1 =
∫
dx 〈x| e−βH |x〉N . (B.20)

Using the expression for the propagation (B.12) we find

ZN1 =
∫
dx

(
mω

2π sinh (ωβ)

)N
2

exp
(
−N ·mω

(cosh (ωβ)− 1
sinh (ωβ)

)
x2
)

= 1√
N

(
mω

2π sinh (ωβ)

)N−1
2 1

2 sinh
(
ωβ
2

) . (B.21)

In the rest of this section, we focus on the N = 2 case. Following the thermal calcu-
lation, the path integral (B.20) can be equivalently calculated over two other topologies,
which corresponds to two different smoothness assumptions at the crossing (see figure 7).
We show below that the path integrals on both topologies coincide with (B.21).
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Figure 7. The three equivalent path integrals. Top left: two intervals of size β with all their ends
identified (in blue). Bottom left: two circles of length β, with the point τ = 0 identified between
them. Right: one circle of length 2β, with the points τ = 0, β further identified.

Two circles. The first topology takes place by gluing each of the two intervals into two
circles. We denote the particle on each of the circles by x(1)(τ) and x(2)(τ). On each circle
we assume the particles are smooth, and share between them the value on τ = 0:

Z2
1 =

∫
Dx(1) (τ)Dx(2) (τ) e−S[x]δ

(
x(1) (0)− x(2) (0)

)
. (B.22)

Decomposing the particles into real temporal modes

x(1) (τ) = 1√
β
a

(1)
0 +

∞∑
n=1

(
a(1)
n

√
2
β

cos
(2πn

β
τ

)
+ b(1)

n

√
2
β

sin
(2πn

β
τ

))

x(2) (τ) = 1√
β
a

(2)
0 +

∞∑
n=1

(
a(2)
n

√
2
β

cos
(2πn

β
τ

)
+ b(2)

n

√
2
β

sin
(2πn

β
τ

)) (B.23)

we have

Z2
1 =

2∏
i=1

∞∏
n=0

∫
da(i)

n db
(i)
n exp (−S) δ

(
x(1) (0)− x(2) (0)

)
, (B.24)

with the action

S =
2∑
i=1

m

2 ω
2
(
a

(i)
0

)2
+
∞∑
n=1

((
a(i)
n

)2
+
(
b(i)n

)2
)
m

2

((2πn
β

)2
+ ω2

)
. (B.25)

In terms of the modes, the delta function constraint is

1√
β
a

(1)
0 +

√
2
β

∞∑
n=1

a(1)
n = 1√

β
a

(2)
0 +

√
2
β

∞∑
n=1

a(2)
n (B.26)

Note that the b(i)n s decouple and contribute (using (B.19))

Zsin
2 =

∞∏
n=1

π

m
2

((
2πn
β

)2
+ ω2

) =
√
m

2π
ω

2 sinh
(
ωβ
2

) . (B.27)
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As for the a(i)
n s, we can change basis to a±n = 1√

2

(
a

(1)
n ± a(2)

n

)
. Integrating over a−0

using the delta-function (B.26) gives an action

S =
∞∑
n=0

(
a+
n

)2 m

2

((2πn
β

)2
+ ω2

)

+
∞∑
n=1

(
a−n
)2 m

2

((2πn
β

)2
+ ω2

)
+mω2

( ∞∑
n=1

a−n

)2

. (B.28)

The a+
n s decouple as well, and contribute

Z+
2 =

∞∏
n=1

√√√√√ π

m
2

((
2πn
β

)2
+ ω2

) =

 1
ω

√
2π
m

1
2 sinh

(
ωβ
2

)
 1

2

. (B.29)

In order to carry the Gaussian integral over the a−n s, we need the determinant of the
quadratic form (B.28). Consider first the matrix M (µ)n,m = λnδn,m + µ. Its determinant
satisfy

detM (µ)
detM (0) = 1 + µ

∞∑
n=0

λ−1
n . (B.30)

Comparing to the remaining a−n action (B.28) we find λn = m
2

((
2πn
β

)2
+ ω2

)
and µ =

mω2. The resulted integral over a−n is

Z−2 =

√√√√√√√
 ∞∏
n=1

π

m
2

((
2πn
β

)2
+ ω2

)
 ·

1 +mω2

 ∞∑
n=1

1
m
2

((
2πn
β

)2
+ ω2

)


−1

=
√√√√√m

2π
1

β cosh
(
ωβ
2

) .
(B.31)

In the second line we used the identity
∑∞
n=1

1
(πna )2+1

= 1
2 (a coth(a)− 1). Together

with (B.27) and (B.29) we find (we also need to multiply by
√
β/2 from the delta function

for a(2)
0 (B.26)):

Z2
1 =

√
β

2 · Z
sin
2 · Z+

2 · Z
−
2

= 1√
2

1
2 sinh

(
ωβ
2

) ·√ 1
2π

mω

sinh (ωβ)

(B.32)

This is exactly (B.21) for N = 2.
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One big circle. The second topology we can consider for Z2
1 is built by connecting

the two intervals together into one circle of size 2β, x(0) = x(2β), with a delta-function
identification x(0) = x(β):

Z2
1 =

∫
Dx (τ) e−S[x]δ (x (0)− x (β)) . (B.33)

Decomposing x(τ) in the modes of the 2β circle

x (τ) = 1√
2β
a0 +

∞∑
n=1

(
an

√
1
β

cos
(
πn

β
τ

)
+ bn

√
1
β

sin
(
πn

β
τ

))
(B.34)

gives the integral

Z2
1 =

∞∏
n=0

∫
dandbn exp (−S) δ (x (0)− x (β)) , (B.35)

with the action

S = m

2 ω
2a2

0 +
∞∑
n=1

(
a2
n + b2n

) m
2

((
πn

β

)2
+ ω2

)
. (B.36)

The delta function gives the constraint

2
√

1
β

∞∑
n=0

a2n+1 = 0. (B.37)

Both the bns and the even a2n modes decouple from the constraint and contribute

Zb2 =
∞∏
n=0

√√√√√ π

m
2

((
πn
β

)2
+ ω2

) =
(

1
ω

√
2π
m

1
2 sinh (ωβ)

) 1
2

,

Zeven
2 =

∞∏
n=1

√√√√√ π

m
2

((
2πn
β

)2
+ ω2

) =

√m

2π
ω

2 sinh
(
ωβ
2

)
 1

2

.

(B.38)

To deal with the odd ans we denote cn = a2n+1. Integrating over c0 using the delta-
function (B.37) gives c0 = −

∑∞
n=1 cn. We get following quadratic action for the remaining

cn n = 1, 2, . . .:

S =
∞∑
n=1

c2
n

m

2

((
π(2n+ 1)

β

)2
+ ω2

)
+

∞∑
n,m=1

cncm
m

2

((
π

β

)2
+ ω2

)
. (B.39)

The quadratic form here is exactly of the type (B.30), this time with λn =
m
2

((
π(2n+1)

β

)2
+ ω2

)
and µ = m

2

((
π
β

)2
+ ω2

)
. Therefore

Zodd
2 =

√√√√√√√
∞∏
n=1

π

m
2

((
π(2n+1)

β

)2
+ ω2

) ·
1 +

∞∑
n=1

(
π
β

)2
+ ω2(

π(2n+1)
β

)2
+ ω2


−1

=
√√√√mω

πβ

1
sinh

(
ωβ
2

)
(B.40)
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Together (B.38), (B.40) and the factor of
√
β

2 from (B.37) gives

Z2 =
√
β

2 · Z
b
2 · Zeven

2 · Zodd
2

= 1√
2

1
2 sinh

(
ωβ
2

) ·√ 1
2π

mω

sinh (ωβ)

(B.41)

Again, this is exactly equal to the canonical result (B.21).

B.2 Free theory on a circle

In this section, we consider the two-dimensional field theory of a single free scalar φ(x) of
mass m, on a circle of size L, x ∼ x+ L. The Euclidean action is

S [φ] =
∫ L

0
dx

∫ β

0
dτ

1
2
(
∂iφ∂

iφ+m2φ2
)
. (B.42)

We start by studying the conventional thermal partition function. We show explicitly that
it can be calculated either as the path integral on the identified cylinder, or as the path
integral on the torus. We then turn to the field theory calculation of ZN1 and discuss its
divergences.

B.2.1 Thermal partition-function

Using the path integral formalism, the thermal partition function can be written as a path
integral over the cylinder S1

L × [0, β], with the two ends identified

Z (β) = Tr
(
e−βH

)
=
∫
Dφ̃ (x)

〈
φ̃
∣∣∣ e−βH ∣∣∣φ̃〉

=
∫
Dφ̃ (x)

∫
Dφ (x, τ) |φ(x,β)=φ̃

φ(x,0)=φ̃ e
−S

(B.43)

As a first step, we decompose φ (x, τ) into spatial modes

φ (x, τ) =
∞∑
n=0

φn (τ)
√

1
2Le

i 2πn
L
x + c.c.

φ̃ (x) =
∞∑
n=0

φ̃n

√
1

2Le
i 2πn
L
x + c.c.

(B.44)

We can write the path integral as

Z (β) =
∫
dφ̃0

∫
Dφ0 |φ0(β)=φ̃0

φ0(0)=φ̃0

∞∏
n=1

∫
dφ̃ndφ̃

∗
n

∫
DφnDφ

∗
n |

φn(β)=φ̃n
φn(0)=φ̃n

exp (−S [φ]) ,
(B.45)

with the action

S [φ] =
∞∑
n=0

∫ β

0
dτ

1
2

(
φ̇∗nφ̇n +

((2πn
L

)2
+m2

)
φ∗nφn

)
. (B.46)
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Each mode φn(τ) is a complex harmonic oscillator with ω2
n =

(
2πn
L

)2
+m2 (besides n = 0

which is real with ω0 = m). The path integral on each mode is over an identified interval.
In the previous section, we found that this path integral is also equal to the one over the
circle. Composing back the spatial modes, we learn (B.43) is equal to the free-theory path
integral over the torus S1

L × S1
β ! We can find its value using (B.13)

Z (β) = 1
2 sinh

(
βm
2

) ∞∏
n=1

1(
2 sinh

(
β
2

√(
2πn
L

)2
+m2

))2

= e−βẼ0

1− e−βm


∞∏
n=1

1

1− exp
(
−β
√(

2πn
L

)2
+m2

)


2

,

(B.47)

With Ẽ0 being the regularization of the zero-point energy E0 = m
2 +

∑∞
n=1

√(
2πn
L

)2
+m2.

For m = 0 (and ignoring the zero mode), we can use the standard
∑∞
n=1 n = − 1

12 to get
the known result

Z (β) =

e π12
β
L

∞∏
n=1

1
1− exp

(
−2πβ

L n
)
2

= 1
η2
(
i βL

) . (B.48)

For the sake of the next section, we can also find Z(β) differently. Already in (B.43) we can
first evaluate

〈
φ̃
∣∣∣ e−βH ∣∣∣φ̃〉. By decomposing φ̃ into modes and regularizing the zero-point

energy in the same way we get, using (B.12),

〈
φ̃
∣∣∣ e−βH ∣∣∣φ̃〉 = e−βẼ0

√
m

π(1− e−2βm) exp

−2m
sinh2

(
βm
2

)
sinh (βm) φ̃

2
0


×
∞∏
n=1

ωn
π(1− e−2βωn) exp

−4ωn
sinh2

(
βωn

2

)
sinh (βωn) φ̃

∗
nφ̃n

 .
(B.49)

This expression was renormalized only using cylinder local counter-terms. In particular,
integrating over Dφ̃ will give back the final thermal partition-function (B.47). It agrees
with our expectation that the latter can be regularized using only local counter-terms on
the torus.

B.2.2 Replica average

We generalized the discussion to the free-theory calculation of ZN1 in the field basis ((4.4))

ZN1 =
∫
Dφ̃ (x)

(∫
Dφ (x, τ) |φ(x,β)=φ̃

φ(x,0)=φ̃ exp (−S)
)N

=
∫
Dφ̃ (x)

(〈
φ̃
∣∣∣ e−βH ∣∣∣φ̃〉)N . (B.50)
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Using (B.49) and integrating the φ̃ modes gives

ZN1 =
∫
Dφ̃ (x)

(〈
φ̃
∣∣∣ e−βH ∣∣∣φ̃〉)N

= e−NβẼ0

1− e−βm
1√
N

(
m

π(1− e−2βm)

)N−1
2

·
∞∏
n=1

1
N

(
ωn

π (1− e−2βωn)

)N−1
· 1

(1− e−βωn)2 .

(B.51)

Remember that (B.49) was already regulated using local counter-terms on the cylinder,
which gave finite thermal partition function on (B.47). Still, for every N > 1 we have a
divergence due to

∏∞
n=1

ωN−1
n

NπN−1 .
More generally, for free theories on Sd−1

R × S1 the product would be on the sphere’s
Laplacian eigenvalues

∏∞
n=0

√
λN−1
n

NπN−1 . Using a momentum cutoff Λ and a dimensionless
path integral measure [52] gives a free-energy contribution of (N − 1)1

2
∑ΛR
n=0 dn log(λn/Λ)

which behave at large Λ as ∼ (N − 1)(RΛ)d−1. Thus this divergence can be canceled by a
local (note the β independence) counter-term on the N−1 spheres we identified. We expect
that also in weak coupling, two kinds of counter terms are necessary: the local counter-
terms on the N cylinders used also for the thermal N = 1 calculation, and counter-terms
localized to the N − 1 identified circles to account for the divergences of the identification.

We go back to the two-dimensional case and renormalized the divergence using zeta-
function-regularization (B.3),

∏∞
n=1

1
N(L/2)N−1n

N−1 =
√
N (πL)N−1 we have

ZN1 = e−NβẼ0

(
mL

1− e−2βm

)N−1 1
1− e−βm ·

∞∏
n=1


√

1 +
(
mL
2πn

)2

1− e−2βωn


N−1

1
(1− e−βωn)2

(B.52)

At m = 0 (and removing the zero mode) we can simplify the expression using∏∞
n=1

1
1−e−an = 1

e
a
24 η( a

2π i)

ZN1 =
√
N

2π sinh
(
mL
2

)
m η2

(
i2β
L

)


N−1
2

1
η2
(
i βL

) . (B.53)

As a comparison note that in the energy basis

ZN1 =
∑
n

〈n| exp(−βH) |n〉N = Z(βN) = η−2
(
i
βN

L

)
(B.54)

Importantly 〈n| exp(−βH) |n〉 has only ground state divergence e−Ẽ0β and did not seem to
require the localized counter-terms we introduced above. We learn that the divergences of
the identification are basis-dependent.

Open Access. This article is distributed under the terms of the Creative Commons
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