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We study by Monte Carlo methods the thermodynamics of a spin polarized gas of nonrelativistic
fermions in 1þ 1 dimensions. The main result of this work is that our action suffers no significant sign
problem for any spin polarization in the region relevant for dilute degenerate Fermi gases. This lack of
sign problem allows us to study attractive spin polarized fermions nonperturbatively at spin polarizations
not previously explored. For some parameters values we verify results previously obtained by methods
which include an uncontrolled step like complex Langevin and/or analytical continuation from
imaginary chemical potential. For others, larger values of the polarization, we deviate from these
previous results.
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I. INTRODUCTION

Strongly coupled dilute Fermi gases are rich systems
which stand at the crossroads of various fields of physics. In
the realm of nuclear physics, it is believed that the properties
of dilute Fermi gaseswith large scattering lengths are related
to the properties of neutron rich matter at the edge of a
neutron star [1]. In the context of core collapse supernovae,
the dynamic properties of dilute neutron gases must be
analyzed to understand the propagation of energy which
drives the explosion [2,3]. In the atomic physics community,
dilute fermi gases at unitarity have been studied to in the
context of theBEC-BCS crossover [4]. Spin polarizing these
gases adds a layer of richness to observable phenomena. For
instance, unequal density for the two spin states may either
lead to an instability of Cooper pairing [5] or the formation
of the exotic superconducting phase predicted by Larkin,
Ovchinnikov, Fulde, and Ferrell [6,7], characterized by
formation of Cooper pairs which spontaneously break
translation invariance. High magnetic fields in neutron stars
can destroy S-wave pairing in neutron matter through spin
polarization, which has observable consequences on
spectroscopic data gathered from rapidly rotating neutron
stars [8].

All these systems are strongly coupled and to investigate
their properties requires nonperturbative methods. One
general approach to analyzing strongly coupled systems
with controllable systematic uncertainties are ab initio
Monte Carlo calculations. This approach runs into diffi-
culties for spin imbalanced nonrelativistic systems due to
the sign problem which causes statistical uncertainties to
grow exponentially as the thermodynamic and zero temper-
ature limits are taken. The source of the sign problem in
fermionic systems are sign oscillations of the fermion
determinant.
A few suggestions for dealing with the sign problem in

spin polarized nonrelativistic systems have been put for-
ward in the past. One is to compute observables at
imaginary chemical potential, which renders the fermion
determinant positive definite, and to analytically continue
observables to real chemical potentials. The process of
analytic continuation is necessarily done with the help of an
ansatz however; this introduces an uncontrolled source of
error. Still, mean field results suggest that interesting
features of the phase diagram lie within the region where
extrapolation works [9]. For the one dimensional case, this
avenue has been tested numerically [10]. Another approach
is the Complex Langevin method where the configuration
space is augmented by complexifying the field variables
and a stochastic process is used to sample configurations in
this complex space [11,12]. Complex Langevin has also
been used to analyze nonrelativistic fermions with a mass
imbalance, which is a system that also suffers from the sign
problem [13]. The potential problem of complex Langevin
calculations is that it may converge to the wrong result and/
or lead to runaway solutions [14–16]. The incorrect
convergence of complex Langevin can be remedied in
some cases, such as in a random matrix model of QCD
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[17], however it remains difficult to ensure correct con-
vergence for generic theories. The problem of runaway
solutions was cleverly taken care, in the one-dimensional
nonrelativistic case, by modifying the action with an extra
term whose strength is taken to zero at the end [18,19]. It
would be important to verify and validate this method by
independent means. Finally, there is a formulation of this
problem in terms of bond variables that is sign problem free
for any spin polarization or mass imbalance in 1þ 1
dimensions [20].
In the present work we show that the sign problem is

very mild in the parameter region investigated using other
methods [10,11] and direct investigations of the polarized
systems can be performed. We study the simple case of
fermions interacting through an attractive s-wave interac-
tion in 1þ 1 dimensions, with an eye toward extending our
work to atomic and nuclear systems 2þ 1 and 3þ 1
dimensions. Preliminary analysis indicate that the sign
problem is also very mild in higher spatial dimensions
as well.
This paper is organized as follows: In Sec. II we discuss

the model and its lattice discretization. In Sec. III we
describe the details of our Monte Carlo simulations. In
Sec. IV we present the results of our simulations. Lastly, in
Sec. V we summarize our findings and discusses future
prospects.

II. THE MODEL

We study the thermodynamics of a dilute system of
nonrelativistic spin-1=2 fermions interacting via a contact
interaction. The Hamiltonian of the system is

H ¼
Z

dx

� X
σ¼↑;↓

ψ†
σðxÞ

�
−
∇2

2

�
ψσðxÞ −Gn↑ðxÞn↓ðxÞ

�
;

ð2:1Þ

where σ runs over the fermion polarizations and nσðxÞ ¼
ψ†
σðxÞψσðxÞ is the fermion density. We use nonrelativistic

natural units ℏ ¼ M ¼ kB ¼ 1 with M being the mass of
the fermion. We take the interaction to be attractive so

G > 0. In one spatial dimension, the s-wave coupling is
cutoff independent since fermion-fermion loops are ultra-
violet finite.G is related to the binding energy of the unique
two-particle bound state by E ¼ −G2=4 (in the continuum,
infinite volume limit).
The grand canonical partition function for the system can

be written using the path integral formulation:

Z ¼ Tre−βðH−
P

σ
μσNσÞ ¼

Z
DψDψ†e−S½ψ ;ψ†�; ð2:2Þ

with Nσ ¼
R
dx nσðxÞ. In the path integral formulation the

integrand involves the Euclidean action

S ¼
Z

β

0

Z
dτdx

�X
σ

�
ψ†
σ∂τψσ − ψ†

σ
∇2

2
ψσ − μσψ

†
σψσ

�

− Gðψ†
↑ψ↑Þðψ†

↓ψ↓Þ
�
; ð2:3Þ

The chemical potentials are defined as μ↑ ¼ μþ h,
μ↓ ¼ μ − h. μ controls the density of particles while the
spin chemical potential h controls the spin polarization.
Note that in the path integral the fields ψ are Grassman
fields, but we use the same notation as the operator fields
appearing in the Hamiltonian to keep the notation simple.
For numerical simulations the quartic fermion term

associated with the contact interaction is transformed into
a quadratic term via a Hubbard-Stratonovich transforma-
tion [21]. The discretized action we start with is

S ¼ 1

ĝ

X
x;t

½coshðAx;tÞ − 1�

þ
X
σ;x;t

�
ψ̂†
σ;x;tψ̂σ;x;t − ψ̂†

σ;x;tþ1e
Ax;tþμ̂σ ψ̂ σ;x;t

þ γ̂

2
ðψ̂†

σ;xþ1;t − ψ̂†
σ;x;tÞðψ̂σ;xþ1;t − ψ̂σ;x;tÞ

�
ð2:4Þ

where Axt is a real, bosonic auxiliary field and μ̂σ ¼ μ̂� ĥ.
All hatted quantities denote lattice quantities. The discre-
tized action converges to the right continuum limit when

μΔt ¼ f1
f0
eμ̂ cosh ĥ − 1

hΔt ¼ f1
f0
eμ̂ sinh ĥ

GΔt
Δx ¼

�
f2
f0
− f2

1

f2
0

�
e2μ̂

Δt
Δx2 ¼ γ̂

; or inversely

γ̂ ¼ Δt=Δx2

ζ ¼ ðμΔtþ 1Þ2 − ðhΔtÞ2
ĥ ¼ arcsinhðhΔt= ffiffiffi

ζ
p Þ

f2
1

f0f2
¼ ζ

ζþGΔt=Δx ðsolve forĝÞ
μ̂ ¼ logð ffiffiffi

ζ
p

f0=f1Þ;

ð2:5Þ

where

fαðĝÞ≡
Z

∞

−∞
dA exp

�
−
coshA − 1

ĝ
þ αA

�
: ð2:6Þ
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The matching conditions above can be derived by integrating out the auxiliary fields using the relation

Z
∞

−∞
dA exp

�
−
coshA − 1

ĝ

�
exp½−ψ̂†eAþμψ̂ �

¼
Z

∞

−∞
dA exp

�
−
coshA − 1

ĝ

��
1 − ψ̂†eAþμψ̂ þ 1

2
ðψ̂†eAþμψ̂Þ2

�

¼ f0 − f1ψ̂†eμψ̂ þ 1

2
f2ðψ̂†eμψ̂Þ2 ¼ f0 exp

�
f1
f0

ψ̂†eμψ̂ þ
�
f2
f0

−
f21
f20

�
1

2
ðψ̂†eμψ̂Þ2

�
; ð2:7Þ

and then take the continuum limit Δt, Δx → 0. The continuum time and space limits can be taken separately. If we take the
continuum time limit first we get the partition function for a discretized fermionic system with on-site interactions, an
attractive version of the Hubbard model, with Hamiltonian

Hdisc ¼
X
x

�X
σ

�
1

2Δx2
ðψ̂†

σ;xþ1 − ψ̂†
σ;xÞðψ̂σ;xþ1 − ψ̂σ;xÞ − μσn̂σ;x

�
−

G
Δx

n̂↑;xn̂↓;x

�
: ð2:8Þ

Note that above ψ̂’s are operators normalized to satisfy the
canonical commutation relations fψ̂†

σ;x; ψ̂σ0;x0 g ¼ δσσ0δxx0 .
The discretized partition function converges linearly, as
OðΔtÞ, to the time continuum limit. We will show this
explicitly and discuss how to improve the Δt → 0 con-
vergence later. When taking the spatial continuum limit, the
discretized Hamiltonian above contain errors of order Δx2.
In any case, the convergence rate does not change if we
replace the matching conditions above with their first order
approximation in the Δt → 0 limit:

γ̂ ¼ Δt
Δx2

; ĥ ¼ hΔt;

μ̂ ¼ μΔt −
GΔt
2Δx

; and ĝ ¼ GΔt
Δx

: ð2:9Þ

We will use these matching conditions for our simulations.

III. NUMERICAL METHOD

The fermionic part of the action is quadratic in the fields
and we can compute analytically the integral over the
fermionic variables. The partition function resulting is then

Z ¼
Z Y

x;t

dAx;te−SgðAÞ detDðAÞ; ð3:1Þ

where SgðAÞ ¼
P

x;tðcoshAx;t − 1Þ=ĝ and DðAÞ is the
fermionic matrix appearing in Eq. (2.4). The matrix is block
diagonal in spin space, that isDσxt;σ0x0t0 ¼ δσσ0 ðDσÞxt;x0t0 with

ðDσÞxt;x0t0 ¼ Bxx0δtt0 − eμ̂σCxx0 ðAtÞδt;t0þ1;

Bxx0 ¼ ð1þ γ̂Þδxx0 −
γ̂

2
ðδx;x0þ1 þ δx;x0−1Þ;

CðAtÞxx0 ¼ δx;x0eAxt : ð3:2Þ

Above, At indicates the slice of the lattice field A at
time t. Note that the dependence on spin appears only
as a factor multiplying the temporal hopping matrix C.
Since the determinant is diagonal in spin space we have
detDðAÞ ¼ detD↑ðAÞ detD↓ðAÞ. When ĥ ¼ 0 then μ↑ ¼
μ↓ and detDðAÞ ¼ detD↑ðAÞ2 > 0, a positive quantity
since Dσ’s are real matrices. For the spin polarized case,
ĥ ≠ 0, the determinant is no longer always positive raising
the possibility of a sign problem. The sampling will then be
done using the positive probability distribution

ppqðAÞ ¼
1

Z
e−SgðAÞj detDðAÞj: ð3:3Þ

The sign of the determinant is then included in the measured
observable

hOi ¼ hOsignDipq
hsignDipq

: ð3:4Þ

Above h·ipq indicates averages with respect to the phase
quenched probability distribution ppqðAÞ. An important
observation in this paper is that for all simulations described
here we did not encounter a negative determinant. This is
not to say that there are no A configurations that lead to
negative determinants, but that for the parameter region used
in this study the probability of such configurations is
extremely small.
By for the most expensive step of the calculation is the

computation of the fermion determinant, so we have
optimized its computation. The fermion matrix, when the
entries corresponding to a time slice are grouped together,
has the following structure
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Dσ ¼

2
666664

B 0 … eμ̂σCðANt−1Þ
−eμ̂σCðA0Þ B … 0

..

. . .
. . .

. ..
.

0 … −eμ̂σCðANt−2Þ B

3
777775
:

ð3:5Þ

Using the sparsity of the temporal blocks, the calculation of
the determinant detDσ can be reduced to a smaller problem
usingSchur’s complementmethods, similar to the procedure
used for Wilson fermions in lattice QCD [22] (note that a
similar expression was derived earlier for the Hubbard
model using operator methods [23,24]). We have

detDσ ¼ detBNt detð1þ eNtμ̂σB−1CðANt−1Þ…B−1CðA0ÞÞ:
ð3:6Þ

The cost of calculating the fermion determinant is reduced
from a complexity of OððNtNxÞ3Þ to OðNtN3

xÞ. Further
simplifications appear because the matricesCðAÞ are diago-
nal, so their multiplications has only a cost linear in Nx and
because matrix B does not depend on the fields A and its
determinant and inverse are calculated only once. For
periodic boundary conditions the eigenvectors of B are
planewaves ðψkÞx ¼ expðikxÞwith k an integral multiple of
2π=Nx. The inverse is then

ðB−1Þxx0 ¼
1

Nx

X
k

1

λk
cos kðx − x0Þ; with

λk ¼ 1þ 2γ̂sin2ðkx=2Þ: ð3:7Þ
As it turns out the partition function in the reduced form

as it appears in Eq. (3.6) is very similar to the one for the
Hubbard model [24]: the fermionic contribution in given by
a similar product of matrices with a diagonal matrix
including the auxiliary field contribution and a nondiagonal
matrix, similar to B, that encodes spatial hopping. The main
difference is that the off-diagonal matrix is expðΔtKÞ,

where Kxx0 ∝ δx;x0þ1 þ δx;x0−1 is the spatial hopping matrix,
whereas for usB ∝ 1þ ΔtK. The Trotter time discretization
used for the Hubbard model has errors of the order OðΔt2Þ
[24,25], whereas our discretization has errors OðΔtÞ (this
can be seen by considering that the two discretizations differ
at order Δt2 for one step, but the full expression requires
β=Δt steps.) A simple way to improve our calculation is to
replace the B matrix above with the exponentiated expres-
sion. This amounts simply to replacing the eigenvalues in the
precalculation of the inverse of the B matrix with λk ¼
exp½2γ̂ sin2ðk=2Þ� rather than 1þ 2γ̂ sin2ðk=2Þ. In Fig. 1 we
show the continuum time limit using the two versions of the
Bmatrix, for two observables used in this study. We see that
they both converge to the same limit, but the exponentiated
version of the B matrix converges faster, as expected.
In a similar vein,we can improve the behavior of the space

continuum limit. Note that using the exponentiated form the
eigenvalues of the B matrix are λk ¼ exp½2γ̂ sin2ðk=2Þ� ¼
exp½ΔtÊðkÞ�with ÊðkÞ the lattice dispersion relations which
for small k approximate the continuum ones ÊðkÞ ≈ EðkÞ ¼
ðk=ΔxÞ2=2. A simple improvement is to replace the
dispersion relations in the eigenvalues with the continuum
form, that is use λk ¼ exp½γk2=2� with k ∈ f−bNx=2c;…;
−1; 0; 1;…; bNx=2cg in units of 2π=Nx. In the left panel of
Fig. 2 we show the continuum limit using the lattice and
continuum dispersion relations. We can see that both
converge to the same limit but the convergence is much
faster for the calculation using the continuum dispersion
relation. In the right panel of Fig. 2 we look at the
thermodynamic limit. For this calculation we use the
exponentiated form for the B matrix and the continuum
dispersion relations. We set Δt ¼ 0.025 and Δx ¼ 1.0
which produce values indistinguishable from the continuum
limit at the level of stochastic error bars. We see that for this
rather high density, the thermodynamic limit can be
achieved with L ≥ 20.
Our simulations were carried out using two sampling

methods: a straightforward Metropolis sampling and hybrid
molecular dynamics (HMC). In the Metropolis method we

FIG. 1. Continuum time limit for the density (left) and spin (right) at βμ ¼ 2.0 and βh ¼ 2.0. The spatial lattice spacing is fixed to
Δx ¼ 1 and the number of sites to Nx ¼ 61. The extrapolation is done with a quadratic correction for the exponentiated form and with a
linear correction for the other case.
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generated new fields by proposing global random changes
in the auxiliary field A, with the shift at every point limited
by a step-size parameter adjusted to produce an acceptance
rate around 50%. The probability distribution used in the
accept/reject step is the one given in Eq. (3.3), with detD as
given by Eq. (3.6) but with the matrix B replaced with B̃
associated with the continuum dispersion relations

B̃xx0 ¼
1

Nx

X
k

λkcoskðx−x0Þ; with λk¼ exp½γk2=2�: ð3:8Þ

For the HMCwe have to evolve the field A and its conjugate
momentumπ according to the canonical equations ofmotion
induced by the Hamiltonian H ¼ P

xt π
2
xt=2þ SðAÞ. The

force term is derived from the integrand in Eq. (3.3)

_πxt¼−
∂S
∂Axt

¼−
1

ĝ
sinhAxtþ

X
σ

½1−ð1þeNtμ̂σUtðAÞÞ−1�x;x;

ð3:9Þ

where UtðAÞ ¼ B̃−1CðAtþNt−1Þ…B̃−1CðAtÞ. The HMC
sampling requires the determinant to be positive, but this
seems to be the case in all our simulations; we will discuss
this point below in more detail. We carried out simulations
for many different parameters using both Metropolis and
HMC sampling and the results agreed in all cases.
A point to note is that in the evaluation of matrix UtðAÞ

for large Nt, required for both Metropolis and HMC
sampling, the product matrix U exhibits numerical insta-
bilities. This problem is encountered in Hubbard model
simulations and it was found that the instability can be
overcome by using a factorization of the intermediate
results [24]: the product is split into subproducts of
matrices that can be computed directly intermixed with
factorizations. A similar instability appears when comput-
ing the force term for the HMC algorithm: A simple
optimization is to compute ½1þ expðNtμ̂σÞU0ðAÞ�−1 and
then evaluate the other time slices using the property

½1þ eNtμ̂σUtðAÞ�−1
¼ ½CðAt−1Þ−1B̃�−1½1þ eNtμ̂σUt−1ðAÞ�−1½CðAt−1Þ−1B̃�:

ð3:10Þ

The matrices CðAtÞ are diagonal and trivial to invert and the
B̃matrix and its inverse are precomputed. This iteration can
be used safely for a small number of time slices, but for
large Nt we need to recompute UtðAÞ from time to time.
In our runs we found that subproducts of up to 20 matrices
can be performed safely when using double precision
arithmetic.
One final issue to discuss for our numerical simulations

is the possibility of trapping in the positive determinant
region of the configuration space. This issue arises even
for nonpolarized simulations where detD ¼ ðdetD↑Þ2
and the determinant is positive. While the determinant
is positive, the individual spin determinant detD↑

changes sign and the positive and negative regions are
separated by borders where the determinant is zero. Since
both Metropolis and HMC sampling rely on small (or
smooth) changes in the configuration, the edges of the
same sign regions act as potential barriers and it is
possible that the simulation becomes trapped. This lack
of ergodicity was studied in the context of Hubbard
model for both Metropolis sampling [26] and HMC [27].
For polarized systems the same-sign regions of detD↑

and detD↓ are not identical: as the polarization increases
the borders between these regions are broadened and the
determinant detD has fluctuating signs. Since we do not
see any sign fluctuations and we have verified that our
simulations are not trapped, we believe that the proba-
bility distribution we sample has small (almost vanishing)
overlap with regions of opposite sign.
To develop confidence that our simulations are not

trapped, we changed the integration manifold, a method
inspired by our work on thimbles [28]. The basic idea is
that a generalization of the Cauchy theorem guarantees that
the path integral remains unchanged for rather large set of

FIG. 2. Left: Continuum limit in space for the density at βμ ¼ 2.0 and βh ¼ 2.0. The spatial lattice size is fixed to L ¼ 61. The
extrapolation is done with a quadratic correction for the continuum dispersion form and with a quadratic plus quartic correction for the
other case. Right: Thermodynamic limit for the density for βμ ¼ 2.0 and βh ¼ 2.0.
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deformations of the integration domain in the complex field
space. We consider here a shift of the integration domain in
the imaginary direction, which amounts to adding a
constant imaginary component to each field variable:
Axt → Axt þ iδ. While the integral remains the same, the
integrand becomes complex and exhibits phase fluctua-
tions. For small shifts, the fluctuations will be mild except
close to the regions where the determinant changes sign. As
we move away from the real integration domain, directions
avoiding zeros of the fermion determinant develop; this
circumvents trapping. To see that this direction emerges,
note that the fermion determinant is purely real for real
fields, and so the condition detDðAÞ ¼ 0 defines a co-
dimension 1 manifold. In other words, the real field space is
tiled into domains with fixed sign of the fermion determi-
nant. On the other hand for complex fields the fermion
determinant is complex, and so the condition detDðAÞ ¼ 0
defines a codimension 2 manifold. Therefore in complex
field space, the dimension of the set of the fermion zeros is
smaller and a direction around zeros of the determinant
emerge.
If the results are biased by trapping we should see a

change in the value of the observables as we vary the
imaginary shift δ away from zero. In Fig. 3 we plot the
density and the average phase as a function of δ for one
ensemble. The parameters used for this ensemble are
G ¼ 1=

ffiffiffi
8

p
, L ¼ 61 as for the other tests, but we move to

lower temperature β ¼ 8 and higher densities and polar-
izations βμ ¼ 4 and βh ¼ 4 as trapping is expected to appear
more readily at low temperature and high densities. The
lattice parameters are set toΔx ¼ 1 andΔt ¼ 1=20. We see
that the density remains unchanged as we vary δ while the
sign fluctuations become significant. The spin density is also
unaffected by the shift. We conclude that it is unlikely that
our simulations are trapped.

IV. RESULTS

The observables that we focus on here are the number
and spin density:

hni ¼ hn↑ þ n↓i ¼
1

βL

	
D−1 ∂D

∂μ̂



and

hsi ¼ hn↑ − n↓i ¼
1

βL

	
D−1 ∂D

∂ĥ


; ð4:1Þ

where the average is taken over Monte Carlo configura-
tions. For our simulations we set G ¼ 1=

ffiffiffi
8

p
and β ¼ 8.

The results presented are computed usingΔx ¼ 1 andΔt ¼
1=8 which are indistinguishable from the continuum results
at the level of the error bars (see Figs. 1 and 2). The volume
is set to L ¼ 61 which is close to the thermodynamic limit.
We set the parameters to these values to compare our results
with those from imaginary polarization studies [10] and
complex Langevin [18]. All of our results are computed
using 500 statistically independent measurements.
Our main result is presented in Fig. 4: for three values of

βμ at −2.0, 0.0, 2.0 we sweep the spin chemical potential
between 0 ≤ βh ≤ 4.5. In addition to our data, we also
include in Fig. 4 the result of analytically continuing the
results of calculations performed at imaginary chemical
potential, a study carried out in [10]. One finds at small
polarization reasonable agreement between our method and
analytic continuation, however at large polarization there is
clear disagreement. The imaginary polarization method is
expected to fail for large polarizations, when βh≳ π, but
we see large deviations for polarizations as small as βh≳ 2.
This may invalidate the expectations that interesting fea-
tures of the phase diagram lie in the region where analytical
continuation is reliable [9].
In Fig. 5 we compared our results with analytical

continuation and the complex Langevin methods [18].
We use a polarization of βh ¼ 2 and focus on the low
chemical potential region where there seems to be a tension
between the analytical continuation and the complex
Langevin results. In this region our results seem to agree
at low density with the imaginary-polarization method, but
as we increase the density the results seem to agree better
with complex Langevin results. Since we do not have error

FIG. 3. Results for the shifted integration contour Axt → Axt þ iδ as a function of δ. On the left we have the density and in the right
panel we plot the value of the phase average hcosðImSÞi. The horizontal line in the density plot corresponds to a common fit to all data
points.
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estimates for the other methods, we cannot make a sharp
statement.

V. CONCLUSIONS

We study using Monte Carlo methods the physics of a
finite density of fermions in one spatial dimensionwith non-
zero spin polarization; here a sign problem exists. We find
that the sign problem is extremely mild for a vast range of
parameters which correspond to densities small compared to
the lattice cutoff scale, which are the relevant parameters for
the continuum limit. This is in contrast to the parameter
values corresponding to densities close to half-filling (but
not exactly equal to it), relevant to the physics of the
Hubbard model, where a severe sign problem occurs. The
simulations in this work were carried out at G ¼ 1=

ffiffiffi
8

p
, but

we also find no negative determinants in simulations with
couplings as high as G ¼ 4=

ffiffiffi
8

p
and it’s possible that even

higher couplings have mild sign problems.
The range of density and spin studied in this work is

wide. For some parameter values we are able to compare

our results to previous calculations using the complex
Langevin or the imaginary chemical potential methods.
Detailed comparisons are not possible as the published
results lack proper error bars but the general lesson is that
out calculations are very close to the complex Langevin
results (lending credence to its convergence to the right
result) and agree with the imaginary chemical potential
results at small enough asymmetries. For larger asymme-
tries our results are very different from the imaginary
chemical potential results. This is hardly surprising given
the nature of the analytic continuation from imaginary to
real chemical potentials.
One potential problem with our calculations is the

possibility that the Monte Carlo chain is trapped in a
region of positive determinants. Besides producing the
wrong result this would give the false impression that the
sign problem is milder that it is in reality. Many pieces of
evidence were offered to argue against that. The first is that
calculations done with the hybrid Monte Carlo method
(more prone to trapping) agrees with the one done with the
Metropolis algorithm (which is not likely to be trapped).

FIG. 5. Our results for the density compared with results from analytical continuation from imaginary polarization [10] and complex
Langevin simulations [18]. The parameters for these simulations are G ¼ 1=

ffiffiffi
8

p
, β ¼ 8, and βh ¼ 2.0. The right panel indicates the

difference between our results and the other methods. The error-bars indicate the statistical uncertainties of our results since we did not
have information about the error bars on the results from the other approaches.

FIG. 4. Density (left) and spin (right) normalized by the nonpolarized density of the free Fermi gas n0ðβ; μÞ. The continuous lines
show the results obtained in [10] by an analytic continuation from imaginary spin chemical potential. This method is expected to work
well for βh ≤ π, the region indicated by solid lines, but it quickly becomes unreliable as we move to higher polarizations, as we can see
by comparing our results with the dotted lines.
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We also used ideas from our work on the “thimble”
approach to perform a calculation of the path integral
not over the real variables, but over a hyperplane slightly
shifted on the imaginary direction. Since now the deter-
minants are complex the regions with opposite signs of the
determinant are not separated by a repulsive barrier where
the determinant vanishes. We observed no difference in the
results. Finally, the agreement with other methods for
parameter values where these methods are more reliable
lend further confidence in our calculation.
It is unclear at this point whether similar methods can be

easily extended to higher dimensional systems. Work in
this direction is being pursued and results will appear
elsewhere.
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