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1 Introduction

In his Erice lectures [1], Coleman suggested an open problem. It was already known that
in 1+1 dimensional scalar theories, quantum states with solitons correspond to coherent
states [2], albeit with perturbative corrections [3, 4]. The coherent state construction works
in these theories essentially because their ultraviolet divergences can be removed by normal
ordering. Moving beyond this narrow class of theories on the other hand, the coherent state
constructon leads to various pathologies, for example, Coleman claims that the expectation
value of the Hamiltonian density is infinite. The open question, is how to construct the states
corresponding to solitons in this larger class of theories. Coleman writes, “A good place to
begin exploring would be a super-renormalizable theory in two spatial dimensions.”

In this paper, we follow Coleman’s suggestion. We try to construct solitons in a scalar
theory in 2+1 dimensions. We do not yet complete the problem, rather we push it as far as
we can before we run into the troublesome ultraviolet divergences. More precisely, we work
to linear order in perturbations about the soliton, corresponding to one loop in the original
formulation of the theory. We explicitly construct a perturbative expansion, and use it to
calculate the O(λ0) quantum correction to the tension of the domain wall present in this theory.
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The next step in this program requires a choice for the construction of the subleading
correction to the state. Then several consistency checks will be necessary. One must be sure
that the tadpole cancellation present in 1+1 dimensions is not ruined by the renormalization.
Also, one must check that a choice of counterterms which cancels the ultraviolet divergences
in the vacuum sector, automatically also does so in the soliton sector. The results of the
present paper are independent of this choice, and so we believe can serve as a springboard
for this next, critical step in Coleman’s program.

We begin in section 2 with a review of classical solitons. Our main construction appears
in section 3, where we apply canonical quantization. The soliton states are written as
a nonperturbative displacement operator, which creates the coherent states, acting on a
state. We show that this later state can be constructed and evolved in perturbation theory
using an operator called the soliton Hamiltonian, which we construct. This procedure is a
straightforward generalization of refs. [5, 6] to more dimensions. Unfortunately Derrick’s
theorem tells us that higher-dimensional scalar theories, as we have constructed, do not have
localized soliton solutions. In section 5 we apply to construction of the previous section to a
domain wall solution in the (2+1)-dimensional ϕ4 double well theory. The solution is just
the kink of the (1+1)-dimensional theory lifted up a dimension.

2 Classical solitons

Let us consider a theory in d + 1 dimensions consisting of a scalar field ϕ(x⃗) with conjugate
momentum π(x⃗) and governed by a Hamiltonian which in the Schrodinger picture is

H =∫ ddx⃗ : H :a, H = π2(x⃗) + ∇ϕ(x⃗) · ∇ϕ(x⃗)
2 + V (

√
λϕ(x⃗))
λ

. (2.1)

The normal ordering ::a is the usual plane-wave normal ordering, defined at the mass scale
corresponding to the mass m of the perturbative meson far from the soliton.

The corresponding classical theory, defined by ignoring the normal ordering and allowing
ϕ(x⃗, t) and π(x⃗, t) to depend on time, is characterized by the classical equation of motions

ϕ̈(x⃗, t) = ∇2ϕ(x⃗, t) − V (1)(
√

λϕ(x⃗, t))√
λ

(2.2)

where V (n) is the n-th derivative of V with respect to its argument
√

λϕ.
We will be interested in two solutions. First, consider a time-independent soliton

ϕ(x⃗, t) = f(x⃗). (2.3)

In this case, the classical equation of motion (2.2) is

∇2f(x⃗) = V (1)(
√

λf(x⃗))√
λ

. (2.4)

Second we are interested in small perturbations about this solution

ϕ(x⃗, t) = f(x⃗) + g(x⃗, t). (2.5)
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In this case, to linear order in g, the equation of motion is

V (2)(
√

λf(x⃗))g(x⃗, t) + g̈(x⃗, t) = ∇2g(x⃗, t). (2.6)

We will decompose g(x⃗, t) into components g(x⃗) with fixed frequencies, which can be
taken to be real for a stable soliton

g
k⃗
(x⃗, t) = g

k⃗
(x⃗)e−iωk t. (2.7)

For each component, labeled by the abstract index k⃗, the equation of motion becomes

V (2)(
√

λf(x⃗))g
k⃗
(x⃗) =

(
ω2

k⃗
+ ∇2

)
g

k⃗
(x⃗). (2.8)

We define the functions g
k⃗
(x⃗, t) to be the solutions of this equation. The index k⃗ will in general

run over discrete and also continuous values. The continuous values include a vector space Rd,
which is the reason for the vector symbol on the k⃗, defined up to signs by ω

k⃗
=
√

m2 + k⃗2.
In the case of the continuous values, we will normalize the gk(x⃗) via

∫ ddx⃗g
k⃗1

(x⃗)g
k⃗2

(x⃗) = (2π)dδd(k⃗1 + k⃗2), g∗
k⃗
(x⃗) = g−k⃗

(x⃗). (2.9)

In the case of discrete indices, g
k⃗
(x⃗) will be taken to be real and

∫ ddx⃗g
k⃗1

(x⃗)g
k⃗2

(x⃗) = δ
k⃗1 ,⃗k2

. (2.10)

More generally, some values of k⃗ inhabit lower dimensions submanifolds, and we will use the
obvious hybrids in which continuous directions are normalized with Dirac delta functions and
discrete labels of manifolds are normalized with Kronecker δ. Often we will use a shorthand in
which the normalization condition in (2.9) is written, but it is implied that if some component
of k⃗ is discrete, then the corresponding 2πδ should be replaced with a Kronecker δ.

3 Quantum solitons

3.1 Soliton Hamiltonian

Define the displacement operator

Df = exp
[
−i ∫ ddx⃗f(x⃗)π(x⃗)

]
(3.1)

and the soliton Hamiltonian

H ′ = D†
f HDf . (3.2)

Explicitly, the soliton Hamiltonian is

H ′[ϕ(x⃗), π(x⃗)] = H[ϕ(x⃗) + f(x⃗), π(x⃗)]. (3.3)

One can check that this identity holds despite the normal ordering. We will expand H ′

in powers of the coupling
√

λ

H ′ =
∞∑

j=0
H ′

j (3.4)
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where H ′
j is a functional of the fields times of a coefficient of order λj/2−1. It is defined

to consist of terms which, when normal ordered using ::a, are n-linear in ϕ(x) and π(x).
One easily finds

H ′
0 = Q0, H ′

1 = 0 (3.5)

where Q0 is the energy of the classical solution ϕ(x⃗, t) = f(x⃗).
The most important step in perturbation theory is order O(λ0), as any failure to

diagonalize the Hamiltonian exactly at this order will not be suppressed at small λ. The
contribution to the Hamiltonian at this order is

H ′
2 = A + B + C, A = 1

2 ∫ ddx⃗ : π2(x⃗) :a (3.6)

B = 1
2 ∫ ddx⃗ : (∇ϕ)2(x⃗) :a, C = 1

2 ∫ ddx⃗V (2)(
√

λf(x⃗)) : ϕ2(x⃗) :a .

3.2 Decompositions

We will consider two decompositions of the fields

ϕ(x⃗) =∫ ddp⃗

(2π)d
e−ix⃗·p⃗ϕp⃗ =⨋ ddk⃗

(2π)d
g

k⃗
(x⃗)ϕ

k⃗
(3.7)

π(x⃗) =∫ ddp⃗

(2π)d
e−ix⃗·p⃗πp⃗ =⨋ ddk⃗

(2π)d
g

k⃗
(x⃗)π

k⃗
.

To avoid a proliferation of hats and tildes, we use the same notation for ϕp⃗ and ϕ
k⃗

although
they represent distinct bases of the space of operators, they will be distinguished only by
the letter used for the index. The ⨋ symbol is an integration over continuous indices
k⃗, dividing by 2π for each dimension, plus a sum over discrete indices. In general, the
space of k⃗ has components of various dimensions and these are each integrated over and
the integrals are summed.

The completeness relations (2.9) allow these decompositions to be inverted. The canonical
commutation relations

[ϕ(x⃗1), π(x⃗2)] = iδd(x⃗1 − x⃗2) (3.8)

then lead to the usual commutation relations in the plane wave and normal mode bases

[ϕp⃗1 , πp⃗2 ] = i(2π)dδd(p⃗1 + p⃗2), [ϕ
k⃗1

, π
k⃗2

] = i(2π)dδd(k⃗1 + k⃗2) (3.9)

where again it is implicit that in the case of lower dimensional submanifolds in the k⃗ space,
the transverse 2πδ should be replaced with Kronecker deltas.

3.3 Harmonic oscillators

Using the k⃗ decompositions in eq. (3.7) one finds

A = 1
2 ⨋ dk1 ⨋ dk2 ∫ ddx⃗g

k⃗1
(x)g

k⃗2
(x) : π

k⃗1
π

k⃗2
:a= 1

2 ⨋ dk : π
k⃗
π−k⃗

:a (3.10)
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where we have used the completeness relation (2.9). Similarly, integrating by parts and
dropping a rapidly oscillating boundary term

B = −1
2 ⨋ dk1 ⨋ dk2 ∫ ddx⃗g

k⃗1
(x)∇2g

k⃗2
(x) : ϕ

k⃗1
ϕ

k⃗2
:a (3.11)

while the defining equation (2.8) leads to

C = 1
2 ⨋ dk1 ⨋ dk2 ∫ ddx⃗g

k⃗1
(x)

(
∇2 + ω2

k⃗2

)
g

k⃗2
(x) : ϕ

k⃗1
ϕ

k⃗2
:a . (3.12)

Adding (3.11) and (3.12) and again using the completeness (2.9) one obtains

B+C = 1
2 ⨋ dk1 ⨋ dk2ω2

k⃗2
: ϕ

k⃗1
ϕ

k⃗2
:a∫ ddx⃗g

k⃗2
(x)g

k⃗1
(x) = 1

2 ⨋ dkω2
k⃗

: ϕ
k⃗
ϕ−k⃗

:a . (3.13)

Adding all of these contributions we find the soliton Hamiltonian at order O(λ0)

H ′
2 = 1

2 ⨋ dk
(
: π

k⃗
π−k⃗

:a +ω2
k⃗

: ϕ
k⃗
ϕ−k⃗

:a
)

. (3.14)

If it were not for the normal ordering, this would be a sum of harmonic oscillators, one at
each k⃗. The ground state at leading order in perturbation theory would be the ground state
of each harmonic oscillator, while the excited states would be created by the corresponding
creation operators B‡

k⃗
. There in general will be zero modes, for example if the Hamiltonian is

translation invariant or has some similar internal symmetry. For these, ω
k⃗

= 0 and so only
the corresponding π2

k⃗
term is present. This describes the quantum mechanics of a free particle

describing the position with respect to that symmetry, and one must impose that the ground
state is annihilated by each such π

k⃗
, while excited states correspond to exponentials in iϕ

k⃗
.

What is the effect of the normal ordering? Since these operators are linear, it can only
add a constant. We refer to this constant as Q1 when H ′

2 is ordered in the form B‡B. It is
the one-loop correction to the soliton mass [5, 6]. We will now compute it.

4 One-loop mass correction

4.1 Plane-wave decomposition

The normal ordering is defined in terms of the usual plane wave decomposition of the fields,
corresponding to the middle expressions in (3.7). Using this decomposition, one easily finds

A = 1
2 ∫

ddp⃗1
(2π)d

∫ ddp⃗2
(2π)d

∫ ddx⃗e−ix(p⃗1+p⃗2) : πp⃗1πp⃗2 :a= 1
2 ∫

ddp⃗

(2π)d
: πp⃗π−p⃗ :a . (4.1)

As the decompositions are both in complete bases, one may map from one to the other via

ϕ
k⃗

=∫ ddp⃗

(2π)d
g̃−k⃗

(p⃗)ϕp⃗, π
k⃗

=∫ ddp⃗

(2π)d
g̃−k⃗

(p⃗)πp⃗ (4.2)

where we have defined the Fourier transform

g̃
k⃗
(p⃗) =∫ ddx⃗g

k⃗
(x⃗)e−ip⃗·x⃗. (4.3)
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This allows us to rewrite B + C, given in eq. (3.13), in the plane-wave basis

B + C = 1
2 ⨋ dkω2

k⃗
∫ ddp⃗1

(2π)d
∫ ddp⃗2

(2π)d
g̃−k⃗

(p⃗1)g̃
k⃗
(p⃗2) : ϕp⃗1ϕp⃗2 :a . (4.4)

Now we use the standard Schrodinger picture decomposition into creation and annihilation
operators

ϕp⃗ = A‡
p⃗ +

A−p⃗

2ωp⃗
, πp⃗ = iωp⃗A‡

p⃗ −
iA−p⃗

2 , A‡
p⃗ =

A†
p⃗

2ωp⃗
. (4.5)

The normal ordering ::a is defined to be the operation that places all A‡ to the left of
all A. And so we may finally evaluate the normal ordering

A = 1
2 ∫

ddp⃗

(2π)d

[
−ω2

p⃗A‡
p⃗A‡

−p⃗ + ωp⃗A‡
p⃗Ap⃗ −

Ap⃗A−p⃗

4

]
(4.6)

B + C = 1
2 ⨋ dkω2

k⃗
∫ ddp⃗1

(2π)d
∫ ddp⃗2

(2π)d
g̃−k⃗

(p⃗1)g̃
k⃗
(p⃗2)

×
[
A‡

p⃗1
A‡

p⃗2
+

A‡
p⃗1

A−p⃗2

2ωp⃗2

+
A‡

p⃗2
A−p⃗1

2ωp⃗1

+
A−p⃗1A−p⃗2

4ωp⃗1ωp⃗2

]
.

4.2 Back to the normal mode basis

Now that the normal ordering symbol has disappeared, we can freely move between bases
with Bogoliubov transforms. We will now need to move back to the normal mode basis. We
will decompose the index k⃗ into zero modes, for which ω

k⃗
= 0, and nonzero modes, for which

it is taken to be positive. We will now consider nonzero modes. With a page of calculations,
following the example worked out in ref. [6], the argument below can be easily modified to the
case of zero modes, and one can derive that the final results below will hold for zero modes
just by setting ω

k⃗
= 0, although this substitution cannot be used at intermediate steps.

In the case of nonzero modes, we will make the decomposition into creation and an-
nihilation operators

ϕ
k⃗

= B‡
k⃗

+
B−k⃗

2ω
k⃗

, π
k⃗

= iω
k⃗
B‡

k⃗
−

iB−k⃗

2 , B‡
k⃗

=
B†

k⃗

2ω
k⃗

. (4.7)

In the case of discrete modes, it is understood that B−k⃗
is defined to be B

k⃗
as the corresponding

g
k⃗

were taken to be real. Define the state |0⟩0 by

B
k⃗
|0⟩0 = 0. (4.8)

We will also impose that it is annihilated by π
k⃗

for each zero mode k⃗, but that will not
be relevant now.

The one-loop correction to the soliton mass, Q1, is the eigenvalue of H ′
2

H ′
2|0⟩0 = Q1|0⟩0. (4.9)

Therefore we are only interested in those terms in H ′
2 which do not annihilate |0⟩0. We

have already seen in eq. (3.14) that any such term must be a scalar, and so there cannot
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be any B‡B‡ terms. This leaves terms of the form BB‡. We can simplify these using (4.8)
which implies the identity

B
k⃗1

B‡
k⃗2
|0⟩0 = [B

k⃗1
, B‡

k⃗2
]|0⟩0 = (2π)dδd(k⃗1 − k⃗2)|0⟩0. (4.10)

Our strategy will therefore be to calculate Q1 by isolating all B‡B|0⟩0 terms H ′
2|0⟩0

and applying the identity (4.10) to simplify them. We will obtain these terms by plugging
the Bogoliubov transform1

A‡
p⃗ = 1

2 ⨋ dk
g̃

k⃗
(−p⃗)
ωp⃗

[
(ωp⃗ + ω

k⃗
)B‡

k⃗
+ (ωp⃗ − ω

k⃗
)
B−k⃗

2ω
k⃗

]
(4.11)

A−p⃗

2ωp⃗
= 1

2 ⨋ dk
g̃

k⃗
(−p⃗)
ωp⃗

[
(ωp⃗ − ω

k⃗
)B‡

k⃗
+ (ωp⃗ + ω

k⃗
)
B−k⃗

2ω
k⃗

]

into eq. (4.6).
Only two combinations of ladder operators do not annihilate the kink ground state,

namely B‡B‡ and BB‡. The B‡B‡ terms in A and B + C are

A ⊃ −1
2 ⨋ dkω2

k⃗
B‡

k⃗
B‡

−k⃗
, B + C ⊃ 1

2 ⨋ dkω2
k⃗
B‡

k⃗
B‡

−k⃗
. (4.12)

Therefore H ′
2 = A + B + C contains no B‡B‡ terms, and only BB‡ terms remain.

Restricting our attention to terms proportional to BB‡, in the case of the π2 term,
one finds

A|0⟩0 = 1
8 ∫

ddp⃗

(2π)d
⨋ dk1 ⨋ dk2

g̃
k⃗1

(−p⃗)
ωp⃗

g̃
k⃗2

(p⃗)
ωp⃗

ω2
p⃗

2ω
k⃗1

[
−(ωp⃗+ω

k⃗2
)(ωp⃗−ω

k⃗1
)

+2(ωp⃗−ω
k⃗2

)(ωp⃗−ω
k⃗1

)−(ωp⃗−ω
k⃗2

)(ωp⃗+ω
k⃗1

)
]
B−k⃗1

B‡
k2
|0⟩0. (4.13)

The identity (4.10) then yields

A|0⟩0 = 1
4 ∫

ddp⃗

(2π)d
⨋ dkg̃

k⃗
(−p⃗)g̃−k⃗

(p⃗)(ω
k⃗
− ωp⃗)|0⟩0. (4.14)

Similarly

(B + C)|0⟩0 = 1
8 ⨋ dk ∫ ddp⃗1

(2π)d
∫ ddp⃗2

(2π)d
⨋ dk′ω2

k⃗
g̃−k⃗

(p⃗1)g̃
k⃗
(p⃗2)g̃

k⃗′(−p⃗1)g̃−k⃗′(−p⃗2)

×
[

2
ω

k⃗′
−

ωp⃗1 + ωp⃗2

ωp⃗1ωp⃗2

]
|0⟩0 = (D + E)|0⟩0 (4.15)

where D and E correspond to the first and second terms in the square bracket. In the case
of the term D, we perform the p⃗2 integral using the completeness relation, which yields a
(2π)dδd(k⃗ − k⃗′), which is used to perform the k′ integration. We thus find

D = 1
4 ⨋ dk ∫ ddp⃗

(2π)d
ω

k⃗
g̃−k⃗

(p⃗)g̃
k⃗
(−p⃗). (4.16)

1This is derived from eqs. (4.2), (4.5) and (4.7).
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At this point the p⃗ integral could be performed, yielding an infinite answer. This is to be
expected, only the sum of all terms in H ′

2 is finite and the integral should not be performed
until the sum is taken.

The term E may be evaluated by performing the k⃗′ integral, which yields a (2π)dδd(p⃗1−p⃗2),
which in turn is used to perform the p⃗2 integral. One finds

E = −1
4 ⨋ dk ∫ ddp⃗

(2π)d
g̃−k⃗

(p⃗)g̃
k⃗
(−p⃗)

ω2
k⃗

ωp⃗
. (4.17)

Adding the scalars D and E to the eigenvalue of A, one finds our main result for the one-loop
mass correction

Q1 = −1
4 ⨋ dk ∫ ddp⃗

(2π)d
g̃−k⃗

(p⃗)g̃
k⃗
(−p⃗)

(ω
k⃗
− ωp⃗)2

ωp⃗
. (4.18)

This generalizes the famous formula from ref. [5] to solitons in arbitrary dimensions.
One can now write the leading order soliton Hamiltonian as

H ′
2 = Q1 + π2

0
2 + ⨋ dkω

k⃗
B‡

k⃗
B

k⃗
(4.19)

where π0 is π
k⃗

in the case in which ω
k⃗

= 0. If there are multiple such values of k⃗, corresponding
to zero modes of various classically broken symmetries, then the corresponding π0 terms
should be summed.

4.3 Limitations

Our master formula (4.18) appears very general. We have not even assumed that the theory
is renormalizable. However some caution is in order. First of all, one needs to check that
the expression for Q1 is convergent. As we describe below, this is not the case for infinitely
extended solitons, but that is not a problem as one instead is interested in densities or
tensions in such cases. There may also be ultraviolet divergences if, for example, g̃−k⃗

(p⃗) does
not fall faster than p⃗(3−d)/2 when k⃗ − p⃗ is held fixed.

Another problem is that Derrick’s theorem tells us that there are no localized solitons
in the scalar theories that we have considered beyond the 1+1 dimensional case, which
was handled already in ref. [5]. In practice this exercise has been useful for settings which
are somewhat different. First, one may stabilize the solutions with additional fields, such
as gauge fields. In this case the one-loop correction Q1 will arise, but one must add the
corrections arising from the gauge fields. We intend to study such theories in future work.
Second, one may consider time-dependent solutions such as oscillons and Q-balls. We have
recently shown that the generalization to such cases is feasible. Finally, one may consider
extended solutions. For these Q1 will be infinite, but the mass per volume will be finite,
and can be calculated via a straightforward generalization of the argument above. This
case will be considered in the next section.

The more serious problem is mass renormalization. We have used the bare mass in the
normal ordered Hamiltonian to construct Df and so H ′. In a theory that requires mass
renormalization, this bare mass is infinite. As a result, the factors of ω in (4.18) are all
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infinite and the argument makes no sense. Of course, we are working at order O(λ0) and
such divergences appear at order O(λ), so formally in the sense of an asymptotic expansion
this is not a problem. Whether it nonetheless leads to physical results in such theories is
unclear. We will investigate this problem in future work, in which we will explore higher
order corrections with the necessary counterterms introduced, following ref. [7]. We will need
to determine, in particular, how Df is to be renormalized. This is in fact the open problem
posed by Coleman in ref. [1]. Our hope is that the correct handling of the renormalization
of Df will imply that eliminating divergences in the vacuum sector eliminates them in the
soliton secctor, and that (4.18) proves to be the correct one-loop mass correction in all
renormalizable theories, as the naive asymptotic expansion suggests.

For now, we note that there are a few theories that are not finite yet do not require
mass normalization, to which the above treatment may be applied immediately. We will
provide an example in the following section.

We note that at one loop, spectral methods are also available to calculate mass correc-
tions [8] and even form factors [9]. However, these do not generalize in any obvious way
to higher loops, whereas in future work we intend to demonstrate that our approach can
be extended to higher-loop corrections.

5 Example: ϕ4 domain wall

Needless to say, Q1 is divergent for a soliton that extends along an infinite direction. In
this case one should calculate not the infinite mass correction, but rather the correction to
the tension. Let us first see this divergence in the case of the ϕ4 double-well model in 2 + 1
dimensions. Renormalizability tells us that more generally one may consider a potential
which is at most sextic in ϕ(x⃗), and the generalization to this case will be obvious.

5.1 The classical domain wall

Let the spatial directions be x and y. Consider the potential

V (
√

λϕ) = λϕ2

4
(√

λϕ −
√

2m
)2

(5.1)

and the classical solution

f(x, y) = m√
2λ

(
1 + tanh

(
mx

2

))
. (5.2)

The solution is identical to that of the kink in 1+1 dimensions, but now it is infinitely
extended in the y direction and we will call it a domain wall [10].

The classical domain wall tension is [11, 12]

ρ0 = m3

3λ
. (5.3)

This is the same formula as the mass Q0 of the ϕ4 kink in 1+1 dimensions. However, one
should recall that in 2 + 1 dimensions λ has dimensions of mass whereas in 1 + 1 dimensions
it has dimensions of mass2.
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5.2 Normal modes

The normal modes g
k⃗
(x, y) can be factorized

gkxky (x, y) = gkx(x)e−ikyy (5.4)

where the normal modes in the x direction are those of the ϕ4 kink, described by the exact
solutions of the Poschl-Teller potential

gk(x) = e−ikx

ωk

√
m2 + 4k2

[
2k2 − m2 + (3/2)m2sech2(mx/2) − 3imktanh(mx/2)

]
gS(x) =

√
3m

2 tanh(mx/2)sech(mx/2), gB(x) = −
√

3m

8 sech2(mx/2). (5.5)

Here the indices B and S represent the zero mode and shape mode of the kink in 1+1
dimensions. The corresponding frequencies of the gkxky (x, y) are

ωBky = |ky|, ωSky =

√
3m2

4 + k2
y, ωkxky =

√
m2 + k2

x + k2
y. (5.6)

There is a single zero mode, corresponding to the case ky = 0 of gBky .
Unlike the 1+1 dimensional case, there is no mass gap, as ky can be arbitrarily small

but positive leading to an arbitrarily small ωBky. These correspond to long wavelength
vibrations of the domain wall x coordinate. At every step it is essential to check that they
do not lead to infrared divergences.

As in previous sections, we use the abstract vector notation k⃗ to represent pairs (kx, ky)
of continuum modes as well as pairs (B, ky) and (S, ky).

The Fourier transform is

g̃kxky (px, py) =∫ dx ∫ dygkx(x)e−i(pxx+(py+ky)y) = 2πδ(py + ky)g̃kx(px). (5.7)

This can be easily substituted into our master formula for the one-loop mass correction (4.18).
The mass correction is quadratic in g̃, yielding two factors of δ(py + ky). The first may be
used to perform the ky or py integration. The second, leaves an infinity. This, of course, is
the expected answer for the mass correction to a domain wall of infinite length.

5.3 The one-loop tension

Can one modify the derivation to obtain the one-loop correction not to the mass, but rather
the tension? Recall that in a local quantum field theory, the x⃗ integration in the Hamiltonian
should be performed last. Therefore, ideally, one could write the Hamiltonian as an integral
∫ dy, perform the entire derivation to arrive at the density as a function of y and declare
that the answer is the tension. Unfortunately, this method of handling the infrared divergence
from the infinite y integration is not compatible with our normal ordering, which is defined
in terms of momenta and not positions.

The normal ordering was implemented in eq. (4.6). And so any modification must be
made after that point in the derivation. The divergent Dirac δ in g̃ entered our derivation
through the Bogoliubov transformation in eq. (4.11), which in turn obtained g̃ from the field
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transformation (4.2). This was derived by inverting decompositions (3.7). The inversion
required an integral of the field over all y coordinates. This integral is not defined in the
present case, leading to the above infrared divergence. Moreover, as a result of the locality of
the theory, this integral should be performed after the momentum integrals. We are justified
in reordering the integrals only when they satisfy the usual Fubini’s Theorem conditions,
which is not the case here.

Therefore, each g̃
k⃗
(p⃗) should in general be expanded following the derivation of eq. (5.7) as

g̃kxky (px, py) =∫ dx ∫ dygkx(x)e−i(pxx+(py+ky)y) = g̃kx(px) ∫ dye−i(py+ky)y. (5.8)

Clearly, this oscillates rapidly when ky ̸= −py and so the ky integration will have support at
−py and we may safely use one of the Dirac δ functions to perform the ky integral.

Therefore we conclude that (4.18) becomes

Q1 = −1
4 ⨋ 2k ∫ d2p⃗

(2π)2 g̃−kx(px)2πδ(ky − py)g̃kx(−px) ∫ dye−i(−py+ky)y (ω
k⃗
− ωp⃗)2

ωp⃗

=∫ dy

[
−1

4 ⨋
dkx

2π
∫ d2p⃗

(2π)2 g̃−kx(px)g̃kx(−px)
(ωkxpy − ωpxpy )2

ωpxpy

]
. (5.9)

Identifying the term in square brackets with the one-loop correction to the domain wall
tension ρ1(y) one obtains

Q1 =∫ dyρ1(y), ρ1(y) = −1
4 ⨋

dkx

2π
∫ d2p⃗

(2π)2 g̃−kx(px)g̃kx(−px)
(ωkxpy − ωpxpy )2

ωpxpy

.

(5.10)
This formula is valid for 2+1 dimensional scalar models with quartic or sextic potentials.
We remind the reader that

ωpxpy =
√

m2 + p2
x + p2

y (5.11)

while ωkxpy is given in eq. (5.6). Clearly ρ1(y) is independent of y, due to the flatness
of the wall.

5.4 Numerical one-loop tension correction

In this subsection we will numerically evaluate our expression (5.10) for the tension ρ1 in the
case of the ϕ4 double-well model. In this case kx needs to be integrated over all real values,
corresponding to continuum modes, plus it should be summed over the discrete zero mode
and shape mode. The relevant Fourier transformations have been computed in ref. [6]

g̃B(p) = −
√

6πp

m3/2 csch
(

πp

m

)
, g̃S(p) = −2i

√
3πp

m3/2 sech
(

πp

m

)
(5.12)

g̃k(p) = 2k2 − m2

ωk

√
m2 + 4k2

2πδ(p + k) + 6πp

ωk

√
m2 + 4k2

csch
(

π(p + k)
m

)
.
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We will decompose the tension into contributions from distinct normal modes kx

ρ1 = ρ1B + ρ1S+ ∫ dkx

2π
ρ1kx (5.13)

ρ1B = −1
4 ∫

d2p⃗

(2π)2 g̃B(px)g̃B(−px)

(
|py| −

√
m2 + p2

x + p2
y

)2

√
m2 + p2

x + p2
y

ρ1S = −1
4 ∫

d2p⃗

(2π)2 g̃S(px)g̃S(−px)

(√
3m2

4 + p2
y −

√
m2 + p2

x + p2
y

)2

√
m2 + p2

x + p2
y

ρ1kx = −1
4 ∫

d2p⃗

(2π)2 g̃−kx(px)g̃kx(−px)

(√
m2 + k2

x + p2
y −

√
m2 + p2

x + p2
y

)2

√
m2 + p2

x + p2
y

.

The py integrations may be performed analytically using the identity

∫ dpy

2π

(√
a + p2

y −
√

m2 + p2
x + p2

y

)2

√
m2 + p2

x + p2
y

=
m2 + p2

x + a
(
ln
(

a
m2+p2

x

)
− 1

)
2π

. (5.14)

In the case of the zero mode, which will turn out to be the dominant contribution, a = 0
and one easily evaluates all integrals analytically

ρ1B = − 1
8π
∫ dpx

2π

(
m2 + p2

x

)
g̃B(px)g̃B(−px) (5.15)

= − 3π

4m3 ∫
dpx

2π

(
m2 + p2

x

)
p2

xcsch2
(

πpx

m

)
= − 3

20π
m2.

In the case of the shape mode, a = 3m2/4 and so

ρ1S = − 1
8π
∫ dpx

2π

(
m2 + p2

x + 3m2

4

[
ln
(

m2

m2 + p2
x

)
+ ln

(3
4

)
− 1

])
g̃S(px)g̃S(−px)

= − 3π

2m3 ∫
dpx

2π

(
m2 + p2

x + 3m2

4

[
ln
(

m2

m2 + p2
x

)
+ ln

(3
4

)
− 1

])
p2

xsech2
(

πpx

m

)

= − 27
160π

m2 + 9π

8m
∫ dpx

2π
p2

x ln
(

4e(m2 + p2
x)

3m2

)
sech2

(
πpx

m

)
. (5.16)

In the case of the continuum modes, our identity (5.14) becomes

∫ dpy

2π

(√
m2 + k2

x + p2
y −

√
m2 + p2

x + p2
y

)2

√
m2 + p2

x + p2
y

=
p2

x − k2
x − (m2 + k2

x)ln
(

m2+p2
x

m2+k2
x

)
2π

. (5.17)
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Figure 1. The contribution ρ1kx
to the one loop tension arising from each continuum normal mode

kx. The global minima are obtained at kx/m ≈ ±0.87 with ρ1kx ≈ −0.03.

This leaves

ρ1kx = − 1
8π
∫ dpx

2π
g̃−kx(px)g̃kx(−px)

[
p2

x − k2
x − (m2 + k2

x)ln
(

m2 + p2
x

m2 + k2
x

)]
.

= − 9π

2(m2 + k2
x)(m2 + 4k2

x) ∫
dpx

2π
p2

xcsch2
(

π(kx + px)
m

)
×
[
p2

x − k2
x − (m2 + k2

x)ln
(

m2 + p2
x

m2 + k2
x

)]
(5.18)

which is plotted in figure 1.
Naively this looks logarithmically divergent. At large kx, the csch in g̃kx(px) has support

at px = −kx + C where C is fixed in this limit. Then the argument of the logarithm in
ρ1kx becomes

p2
x

k2
x

= 1 − 2C

kx
(5.19)

whose logarithm contributes a −2C to the term in square brackets, canceling the term from
p2

x − k2
x. Therefore the term in square brackets remains finite in the ultraviolet, while the

g̃2 prefactor scales as 1/k2. As the px integration has fixed support in the support of the

csch term, the scaling is that of ∫ dk1/k2 which is convergent. Thus we have not yet
encountered the ultraviolet divergence in the Hamiltonian density predicted in ref. [1], it
will need to wait for the next order.

We note that, as in the case of the kink, the Dirac δ term in g̃k does not contribute,
as it is multiplied by a double zero in the squared frequency difference. Each factor of the
Dirac δ vanishes when folded in to the corresponding zero.

Numerically we find

ρ1B = −0.0477465m2, ρ1S = −0.0072502m2, ∫ dkx

2π
ρ1kx = −0.03156m2. (5.20)
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In all ρ1 = −0.08656m2. Similarly to the case of the kink mass in 1+1 dimensions [6],
the largest contribution arises from the zero mode, followed by the continuum modes, and
last the shape mode. However, in the case of the domain wall, the contribution from the
continuum modes and zero mode differ by less than a factor of two, in contrast with the
factor of eight in the case of the kink.

This tension has been computed previously in refs. [13, 14] using spectral methods. Our
result agrees with that of ref. [13], obtained using spectral methods, considering that our
definitions of m and λ are twice the definitions there. It does not agree with that of ref. [14],
obtained using the zeta function regularization methods of ref. [15]. As noted in ref. [13],
this discrepancy arises because the bound modes have not been included in the zeta function
approach. This is potentially dangerous, as ref. [15] has enjoyed a resurgence in popularity
in the last decade as it has been applied repeatedly to false vacuum decay in an interesting
series of papers by the Munich [16] and Ljubljana [17] groups.

5.5 Excited states

The spectrum of excited states of the domain wall is now obvious. Begin with the ground
state |0⟩0 which is annihilated by all B operators, and the zero mode π

k⃗
with kx = ky = 0. At

order O(λ0) excited states are created by acting with B‡. Each B‡
k⃗

increases the energy by ω
k⃗
.

Unlike the case of the kink, some of these have degenerate energy while not being related
by any symmetry. For example, if ky ≥ m then B‡

Bky
|0⟩0, which describes physical vibrations

of the domain wall in the x direction, has the same energy as a continuum state with the
same frequency. However the former has more y-momentum, which is separately conserved,
and so this state does not unbind from the wall and escape into the bulk. The same argument
applies to states B‡

Sky
|0⟩0. It does not apply to multiple excitations of bound states, as in

some cases these have both degenerate energy and also degenerate momentum with bulk
states. However, they will mix only at order O(λ), and so their decay to bulk modes will be
slow. This is similar to the case of the doubly-excited shape mode of the kink [18].

6 Remarks

A word of caution is in order. As there is no mass gap, in general one expects various infrared
divergences. In particular, states of interest will generally have infinite numbers of excitations
of B‡

Bky
with small values of ky. While these do not appear to lead to any divergences in the

O(λ0) study presented here, infrared divergences may be expected at higher orders. Indeed,
the domain wall worldsheet theory is a 1+1 dimensional field theory with a massless scalar,
which leads to various infinite matrix elements [19]. These will need to be treated as they
arise in the computations of observables.

This is not to say that the state eliminated by all B operators is not a Hamiltonian
eigenstate, it is the ground state of the leading order soliton Hamiltonian H ′

2. However,
consider the following argument. Eq. (3.14) shows that each mode k is described by a
Harmonic oscillator with frequency squared equal to ω2, which, except in the ultrarelativistic
case, is of order O(m2) in the case of the kink. Now, consider an incoming meson. The
leading interaction H ′

3, in the presence of an incoming kink that is not ultrarelativistic, leads
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to another quadratic term in the field with coefficient of order O(
√

λm). In the semiclassical
approximation this is much smaller than O(m2) and so the amplitude for an interaction
is small and perturbation theory is valid.

What about the case of the domain wall? Now, eq. (3.14) tells us that the frequency
squared coefficient of ϕ2

Bky
is equal to k2

y. When |ky| is small enough, this is of the same
order as the O(

√
λm) interaction contribution. Therefore, the probability of the oscillator

at each such k⃗ being excited is of order unity. In general, one then expects infinitely many
excitations, taking the state out of the Fock space of finite meson-number excitations. Of
course this is the usual situation in the presence of massless particles [20, 21], in recent times,
at least in four or more dimensions, being attributed to a memory effect [22–24]. It is not
a pathology, but rather an interesting part of the physics to which we hope to turn in the
near future when we extend the present study to include interactions H ′

3.
Our next step will be to proceed to the next order, where a loop diagram leads to a

divergence in the meson propagator and a two-loop diagram leads to a divergence in the
tension of the domain wall, just the divergence noted by Coleman. In the vacuum sector,
these divergences are well-known [25, 26] and they can treated with standard counterterms.
We will need to formulate the appropriate renormalization conditions in the Schrodinger
picture, choose a displacement operator, and check that H ′

1 continues to vanish and also that
the ultraviolet divergences are removed in the soliton sector. The key step of course will be
finding a displacement operator with these two properties, if it exists.

If this step is successful, then one can proceed to calculate quantum corrections to
systems of phenomenological interest. The urgent need for such corrections in the case of
models of nuclei has recently been highlighted in refs. [27–29]. Recently, there has even been
progress in understanding quantum corrections to Q-balls [30]. A successful treatment of
ultraviolet divergences will also allow us to treat fermions, allowing us to study fermion-soliton
scattering [31–33]. Besides allowing for more dimensions and richer field content, once we
are able to tame ultraviolet divergences in the soliton sector, we may also approach models
with nontrivial kinetic terms, such as the modified dilaton, allowing an application to the
kinks in refs. [34–36].
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