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Abstract

The work contains a detailed study of the scaling limit of a certain critical, integrable inhomogeneous 
six-vertex model subject to twisted boundary conditions. It is based on a numerical analysis of the Bethe 
ansatz equations as well as the powerful analytic technique of the ODE/IQFT correspondence. The results 
indicate that the critical behaviour of the lattice system is described by the gauged SL(2) WZW model 
with certain boundary and reality conditions imposed on the fields. Our proposal revises and extends the 
conjectured relation between the lattice system and the Euclidean black hole non-linear sigma model that 
was made in the 2011 paper of Ikhlef, Jacobsen and Saleur.
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1. Introduction

The seminal work of Polyakov on the O(n) models [1] opened an era in the study of quantum 
Non-Linear Sigma Models (NLSM) in 1 + 1 dimensions. Among their most prominent phys-
ical applications is the description of the universality class of phase transitions in disordered 
electronic systems [2–4]. Taking inspiration from the AdS/CFT correspondence [5,6], an inter-
esting proposal was made in ref. [7] for the NLSM that would describe the transition between the 
plateaus in the quantum Hall effect in a 2D disordered electron gas. One of the basic principles 
for identifying the target space background, in the author’s own words, was the following

“In trying to solve the statistical physics problem at hand, we have to be very discriminating 
about which functional integral to accept as well-defined and which to not. In concrete terms, 
we are looking for a field theory defined over Euclidean two-space, and with a target space of 
Euclidean signature. This constraint eliminates candidate theories with an action functional 
that is bounded neither from below nor from above. Among these are the above supergroups, 
the natural supergeometry of which is non-Riemann, or of indefinite signature. (The natural 
geometry is forced on us by symmetry considerations.)”

The requirement of Euclidean signature for the target space, which is closely related to the 
unitarity of the model, is well motivated from the technical point of view. However, the original 
heuristic treatment of the problem relied on a fermionic version of the replica trick, leading to 
the Pruisken model – a G/H NLSM where G = U(2n) is gauged by H = U(n) × U(n) with 
n = 0 [3]. In light of this the above requirement may seem as too severe.

As was explained in [7] the Pruisken model shares the same infra-red behaviour as a certain 
one dimensional spin chain, whose degrees of freedom take values in an alternating sequence 
of modules V and V ∗ for the super Lie algebra gl(2, 2). This super spin chain turns out not 
to be integrable in the Yang-Baxter sense, and there has been little progress towards its solution. 
Nevertheless, interest was prompted into studying integrable critical “alternating” spin chains [8–
15]. Perhaps the most remarkable output of this study was the conjecture formulated in ref. [11].

The proposal of Ikhlef, Jacobsen and Saleur concerns a critical spin chain, belonging to the 
integrability class of a Z2 invariant inhomogeneous six-vertex model, which is a special case of 
the lattice system introduced by Baxter in 1971 [17]. They present highly non-trivial arguments, 
including numerical evidence, that the infra-red behaviour of the spin chain is governed by the 
so-called Euclidean black hole NLSM [18–27]. However their proposal raises an immediate 
question. For a spin chain of finite length, the energy spectrum is complex so that there does not 
exist any positive definite inner product w.r.t. which the spin chain Hamiltonian is Hermitian. On 
the other hand the Euclidean black hole NLSM is a unitary CFT [20,28]. Of course one could 
argue that unitarity is restored in the scaling limit of the non-unitary lattice model. The same 
3
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argument can be employed to explain why the infra-red fixed point of the non-unitary Pruisken 
model is controlled by an NLSM with a Riemannian target space manifold. However, if one were 
not to simply brush aside this issue, it could be taken as a signal that the conjecture from ref. [11]
is not quite correct. An interesting alternative would be that the scaling behaviour of the spin 
chain is still described by a NLSM, but with a non-Riemannian target space. This would open 
a way of assigning a meaning to a quantum NLSM whose target space metric has a Lorentzian 
type signature. Apart from Condensed Matter Physics applications, that would be of interest for 
understanding the physics of black holes [20,21]. This work was motivated by such an exciting 
possibility.

Our study essentially employs the Yang-Baxter integrable structures of the lattice system. 
Due to the heavy amount of technical details involved, we moved the part of the work that 
considers the formal algebraic aspects of the general inhomogeneous Baxter model to a separate 
publication [29]. Some formulae from that paper, which are directly relevant to the Z2 invariant 
inhomogeneous six-vertex model are collected, for the reader’s convenience, in the Preliminaries 
section of this work.

The key tool in our analysis of the scaling limit is the ODE/IQFT correspondence. The first 
part of the paper serves to illustrate the technique for the critical homogeneous six-vertex model. 
No original results are contained therein. It gives us an opportunity to explain the ODE/IQFT 
approach [30–36] and to set-up the notation. Moreover, following the recent paper [37], we 
discuss the Hermitian structures consistent with the integrable one for the homogeneous six-
vertex model. Then the link is explained between these Hermitian structures and those that they 
induce in the scaling limit. Our elaboration of this example would be important for the conceptual 
understanding of the non-unitarity issue for the Z2 invariant inhomogeneous six-vertex model.

Part II contains the main results of this paper. Using the ODE/IQFT correspondence we iden-
tify the algebra of extended conformal symmetry and describe the linear and Hermitian structures 
of the space of states occurring in the scaling limit of the Z2 invariant inhomogeneous six-vertex 
model. The final Part III is devoted to a discussion of the CFT underlying the critical behaviour 
of the lattice model. In particular, we put forward a modified version of the conjecture of Ikhlef, 
Jacobsen and Saleur. A list of the central results of this work is given in the Summary section.

2. Preliminaries

In this work we follow the conventions and use the results of [29], which discusses some 
general aspects of the inhomogeneous six vertex model. Here, for the convenience of the reader, 
we collect some basic formulae from that paper.

Let σA
m (A = ±, z) be the standard Pauli matrices acting on the m-th factor of the tensor 

product

VN =C2
N ⊗C2

N−1 ⊗ · · · ⊗C2
1 . (2.1)

Introduce the monodromy matrix

M(ζ )= q−
N
2 RN

(
qζ/ηN

)
RN−1

(
qζ/ηN−1

) · · ·R1
(
qζ/η1

)
, (2.2)

where the N complex numbers {ηJ }NJ=1 parameterize the inhomogeneities, while Rm stands for 
the 2 × 2 matrix

Rm(qζ )=
⎛⎝ q

1
2 (1+σz

m) + q
1
2 (1−σz

m) ζ −(q − q−1) q ζ σ−m
(q − q−1) σ+ q

1
2 (1−σz

m) + q
1
2 (1+σz

m) ζ

⎞⎠ , (2.3)
m

4
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whose entries act in the C2
m factor in the tensor product (2.1). We’ll be considering twisted 

boundary conditions parameterized by ω. Then the transfer matrix for the inhomogeneous six 
vertex model on the square lattice with N columns is given by the trace

T (ζ )= Tr
[
ωσz

M(ζ )
]
. (2.4)

The transfer matrix satisfies a number of operator valued relations. The latter involve the matrices 
A±(ζ ) which together with T (ζ ) form a commuting family

[A±(ζ ),A∓(ζ ′)] = [A±(ζ ),A±(ζ ′)] = [A±(ζ ),T (ζ ′)] = 0 . (2.5)

The construction of A±(ζ ) along with their properties may be found in sec. 3 of [29]. Here we 
just mention that

T (ζ )A±(ζ )= ω±1 q±Sz

f (q−1ζ )A±(q2ζ )+ω∓1 q∓Sz

f (q+1ζ )A±(q−2ζ ) , (2.6)

where f (ζ ) is given by

f (ζ )=
N∏

J=1

(1+ ζ/ηJ ) (2.7)

and Sz stands for the z projection of the total spin operator,

Sz = 1
2

∑
m

σz
m : [Sz, A±(ζ )] = [Sz, T (ζ )] = 0 . (2.8)

It follows from the definition (2.2) - (2.4) that the matrix elements of T (ζ ) are polynomials of 
order N in the variable ζ . Due to the mutual commutativity, [T (ζ ), T (ζ ′)] = 0, the eigenvectors 
of the transfer matrix do not depend on this variable and hence its eigenvalues are also N -th 
order polynomials in ζ . It turns out that the eigenvalues of A±(ζ ), which will be denoted as 
A±(ζ ) below, are polynomials of order N/2 ∓Sz, respectively, where Sz denotes the eigenvalue 
of Sz. Let {ζm}Mm=1 with M =N/2 − Sz be the set of roots of A+(ζ ). For generic values of the 
parameters, none of the ζm are equal to zero, and it will be convenient to choose the normalization 
convention for A+ such that

A+(ζ )=
M∏

m=1

(1− ζ/ζm) , M = 1
2 N − Sz . (2.9)

Applying both sides of the relation (2.6) to a common eigenvector and setting ζ = ζm, yields the 
system of algebraic equations [17,38]

N∏
J=1

ηJ + q ζm

q ηJ + ζm
=−ω2

M∏
j=1

q−1 ζj − q+1 ζm

q+1 ζj − q−1 ζm
(m= 1,2, . . . ,M) (2.10)

for the set of zeroes of A+(ζ ). Having a solution of the above equations, the eigenvalue of the 
transfer matrix is given by

T (N)(ζ )= ω+1 q+Sz

( N∏
J=1

(
1+ q−1 ζ/ηJ

)) M∏
j=1

ζj − q+2 ζ

ζj − ζ

+ ω−1 q−Sz

( N∏(
1+ q+1 ζ/ηJ

)) M∏ ζj − q−2 ζ

ζj − ζ
. (2.11)
J=1 j=1

5
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Of course, there are similar formulae involving the roots of A−(ζ ). However, we will mainly 
focus on A+(ζ ) for the following reason. It will be assumed that the inhomogeneities satisfy the 
constraints

ηN+1−J = η−1
J (J = 1,2, . . . ,N) . (2.12)

In this case the model possesses the so-called global CP invariance (the explicit formula for the 
generators Ĉ and P̂ are quoted in eqs. (17.46) and (17.67), respectively). The CP transformation 
intertwines the sectors with Sz and −Sz. Moreover, it relates the operators A+(ζ ) and A−(ζ ) as

A−(ζ )= ζ
N
2 −Sz ĈP̂A+

(
ζ−1) ĈP̂ A(∞)

+ , (2.13)

where

A(∞)
+ = lim

ζ→∞ ζ−
1
2 N+Sz

A+(ζ ) . (2.14)

Therefore, for the diagonalization problem of the commuting family (2.5), it is sufficient to con-
sider A+ and focus on the sector Sz ≥ 0. Thus, in the Bethe ansatz equations (2.10) we will 
always assume

M ≤ 1
2 N . (2.15)

Note that combining (2.13) with the operator relation (2.6) one finds

ĈP̂ T (ζ ) ĈP̂ = ζN T
(
ζ−1) . (2.16)

The eigenvectors can be constructed within the framework of the algebraic Bethe ansatz [39]. 
To this end, introduce the following notation for the entries of the monodromy matrix

M(ζ )=
(

Â(ζ ) a(ζ ) B̂(ζ )

d(ζ ) Ĉ(ζ ) D̂(ζ )

)
, (2.17)

where Â, B̂, Ĉ, D̂ are operators acting in (2.1), while a(ζ ), d(ζ ) stand for the polynomials

a(ζ )=−iω+1 q+
N+1

2

N∏
J=1

(
1+ q−1ζ/ηJ

)
, d(ζ )=+iω−1 q−

N+1
2

N∏
J=1

(
1+ q ζ/ηJ

)
.

(2.18)

Let �(0) ∈C2
N ⊗C2

N−1 ⊗ · · · ⊗C2
1 be the pseudovacuum

�(0) = | ↑〉 ⊗ | ↑〉 ⊗ . . .⊗ | ↑〉︸ ︷︷ ︸
N

. (2.19)

Then the state

�
({ζj })= B̂(ζM) · · · B̂(ζ2) B̂(ζ1)�

(0) (M = 1
2 N − Sz) (2.20)

is a common eigenstate for the commuting family of operators provided that the set {ζj }Mj=1
satisfies the Bethe ansatz equations (2.10).

In this work we consider the case where q and ω are unimodular:

q∗ = q−1 , ω∗ = ω−1 . (2.21)
6
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If the inhomogeneities satisfying (2.12) are also taken to be unimodular,

η∗J = η−1
J = ηN+1−J (2.22)

then the system possesses T -invariance. The time reversal transformation is realized as an anti-
unitary operator acting on an arbitrary state � ∈ VN as

T̂ �= Û�∗ with Û=
N∏

m=1

σx
m . (2.23)

Similar to the CP conjugation, it flips the sign of Sz so that CPT acts invariantly in the sector 
with given Sz. Moreover, for the state � (2.20) corresponding to the set {ζj }Mj=1 solving (2.10), 
one has

ĈP̂T̂ �
({ζj })= �

({ζ ∗j }) . (2.24)

The Bethe state in the r.h.s. of the above formula is built using the Bethe roots for the complex 
conjugated set {ζ ∗j }Mj=1, which is also a solution of the Bethe ansatz equations.

When further restrictions are placed on the inhomogeneities, additional global symmetries 
appear in the model. In particular, suppose that N is divisible by the integer r ,

N = rL , (2.25)

and the ηJ are taken to satisfy the periodicity condition

ηJ+r = ηJ (J = 1,2, . . . ,N) , (2.26)

where ηJ+N ≡ ηJ . Then one can introduce the lattice translation operator

K : [
K, T (ζ )

]= [K, A±(ζ )
]= 0 , KL = e2π ikSz

. (2.27)

Its matrix elements read explicitly as(
K
)bNbN−1...b1
aNaN−1...a1

= eiπk (a1+a2+...+ar ) δ
bN−r
aN δ

bN−r−1
aN−1 . . . δ

bN−r+1
a1 (2.28)

and its eigenvalue K corresponding to the Bethe state (2.20) is expressed in terms of A+(ζ ) (2.9)
as

K =
r∏

	=1

ωq−
N
2 +Sz A+(−q+1η	)

A+(−q−1η	)
. (2.29)

The transfer matrix and A±(ζ ) are not Hermitian w.r.t. the standard matrix conjugation, Ô† =
(Ô∗)T with Ô ∈ End(VN). Nevertheless it is possible to introduce the Hermitian structure in 
the 2N dimensional linear space VN , which is consistent with the integrable structure of the 
inhomogeneous six - vertex model. Such Hermitian structures were discussed in the work [29]. 
A special rôle belongs to the one associated with the conjugation

Ô
 = X̂−1

 Ô† X̂
 . (2.30)

Here X̂
 = X̂†

 stands for the matrix

X̂
 = X̂ eiπ(Sz−N
2 ) A(∞)

+ (2.31)

with A(∞)
+ given in (2.14), while X̂ is defined through the ordered product
7
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X̂=
( N∏

J=1

(ηJ )
1
2 σ

z
J

) �

N∏
m=2

[ �

N−1∏
n=N−m+1

Řn+1,n
(
ηn+m−N/ηm

)]
. (2.32)

In the above formula we use the notation

Řn+1,n(ζ )= 1

q − q−1ζ
Rn+1,n(−ζ )P n+1,n , (2.33)

where Rn+1,n(−ζ ) is the matrix (2.3) acting on the n + 1-st and n-th components of the tensor 
product (2.1), while P n+1,n is the permutation matrix that interchanges the two components. 
Assuming the conditions (2.21), (2.22) it is possible to show that under the 
 - conjugation (2.30)
the transfer matrix as well as A±(ζ ) satisfy[

T (ζ )
]
 =T (ζ ∗) ,

[
A±(ζ )

]
 =A±(ζ ∗) (2.34)

(for details see sec. 5 in ref. [29]).
For the conjugation (2.30) there exists a unique sesquilinear form, which is defined through 

the relations(
�2, Ô�1

)


= (Ô
 �2,�1

)



(∀ �1,�2 ∈ VN) (2.35)

together with the overall normalization

(�(0),�(0))
 = 1 , (2.36)

where �(0) (2.19) is the pseudovacuum. Then it follows from (2.34) as well as the relations

ĈP̂T̂ T (ζ ) ĈP̂T̂ =T (ζ ∗) , ĈP̂T̂ A±(ζ ) ĈP̂T̂ =A±(ζ ∗) (2.37)

that w.r.t. the sesquilinear form the Bethe states satisfy the orthogonality condition(
�(2),�(1))



= 0 unless �(2) = ĈP̂T̂ �(1) . (2.38)

The “norm” of the Bethe state (2.20), in terms of the corresponding set {ζm}, is given by [40–42]

(
ĈP̂T̂ �,�

)


= (

q − q−1)2M M∏
m �=j

qζj − q−1ζm

ζm − ζj
(2.39)

× det

[
δj,m

(
κ(ζj )+

M∑
l=1

(q + q−1) ζj ζl

(qζl − q−1 ζj )(qζj − q−1 ζl)

)

− (q + q−1) ζj ζm

(qζm − q−1 ζj )(qζj − q−1 ζm)

]
with

κ(ζ )=−
N∑ ζ

ηJ (1+ q−1ζ/ηJ )(1+ q+1 ζ/ηJ )
.

J=1

8
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Part I. Homogeneous six-vertex model

3. The Hamiltonian

The purpose of this work is the study of the scaling limit of the alternating six-vertex model, 
where the ηJ are fixed to be ηJ = i (−1)J−1. This is a special case of (2.22) and (2.26) (with 
r = 2). However, since many of our considerations are parallel to those for the homogeneous 
model, where all the ηJ = 1, we’ll begin our discussion with this more familiar example. In this 
case the transfer matrix T (ζ ) (2.4) and the translation operator K (2.27), (2.28) (r = 1, L =N ) 
commute with the spin 1

2 XXZ Hamiltonian

HXXZ =− 1

2 sin(πβ2)

N∑
i=1

(
σx
i σ

x
i+1 + σ

y
i σ

y
i+1 + cos(πβ2)

(
σz
i σ

z
i+1 − 1̂

))
(3.1)

with

σx
N+1 ± iσy

N+1 = e2π ik (σx
1 ± iσy

1

)
, σ z

N+1 = σz
1 . (3.2)

Here we have parameterized the unimodular numbers q and ω as

q = eiπβ2
, ω= eiπk , (3.3)

where β and k lie in the domains

0 < β < 1 , − 1
2 < k≤ 1

2 . (3.4)

The eigenvalue of HXXZ on the state � (2.20) is given in terms of the Bethe roots by

E =−
M∑

m=1

4 sin(πβ2)

ζm + ζ−1
m + 2 cos(πβ2)

, (3.5)

while for the eigenvalue of K, see eq. (2.29) with r = 1 and η	 = 1.

4. RG flow for the Bethe states

The scaling limit is a certain large N limit for a particular class of “low energy” states. The 
latter are defined w.r.t. a reference state – the vacuum. In the case of the homogeneous six-
vertex model the reference state is the lowest energy state of the Hamiltonian (3.1). In turn, the 
class of states we’ll be considering are those whose energy counted from the vacuum energy is 
sufficiently low. It is well known that, with the parameter β2 (3.3) lying in the interval 0 <β2 <

1, the system is critical and as N →∞ the low energy part of the spectrum organizes into the 
conformal towers [43]. In a given tower, the eigenvalues of the Hamiltonian (3.1) and the lattice 
translation operator (2.28) are described by the formulae:

E = e∞N + 2πvF

N

(
P 2 + P̄ 2 − 1

12 + L+ L̄
)+ o

(
N−1) (4.1)

K = σ exp

(
2π i

N

(
P 2 − P̄ 2 + L− L̄

))
.

Here e∞ is the specific bulk energy, while vF is usually referred to as the Fermi velocity and in 
our conventions for the Hamiltonian (3.1) they read explicitly as
9
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e∞ =−2vF

π

∞∫
0

dt
sinh

( β2t

1−β2

)
sinh

(
t

1−β2

)
cosh(t)

(4.2)

vF = 1

1− β2 .

Contrary to e∞ and vF, which are the same for all the low energy states, the factor σ = ±1
so that the low energy states are splitted into two sectors corresponding to different values of 
the sign. The pair (P̄ , P) labels the different conformal towers, VP̄ ,P , and its admissible values 

are described by eq. (4.8) below. Each level subspace of the tower, V(L̄,L)
P̄ ,P

, is specified by the 

non-negative integers L, L̄= 0, 1, 2, . . . and has dimensions

dim V(L̄,L)
P̄ ,P

= par1(L̄)par1(L) , (4.3)

where par1(L) and par1(L̄) are the number of integer partitions of L and L̄ respectively. Fur-
thermore, it turns out that

V(L̄,L)
P̄ ,P

= F̄ (L̄)
P̄

⊗F (L)
P (4.4)

with F (L)
P standing for the level subspace of the Fock space FP :

F (L)
P = span

{
a−n1 . . . a−nj

|P 〉 : n1+ . . .+nj = L , ∀nj > 0
}
, dimF (L)

P = par1(L) .

(4.5)

We’ll use the conventions that the Heisenberg algebra generators {an} obey the commutation 
relations

[am,an] = m
2 δm+n,0 , (4.6)

while the highest weight vector is defined through the conditions

an |P 〉 = 0 (∀n > 0) , a0 |P 〉 = P |P 〉 . (4.7)

The factor F̄ (L̄)
P̄

in the tensor product in the r.h.s. of eq. (4.4) denotes the level subspace of 
the highest weight representation of the Heisenberg algebra, generated by the operators ām that 
commute with {am} and satisfy the same commutation relations as in (4.6), with highest weight 
vector |P̄ 〉.

The zero-mode momenta P, P̄ labeling the conformal tower are not arbitrary, but take a cer-
tain discrete set of values. Namely, in the sector characterized by the eigenvalue Sz of the z -
component of the total spin operator, they are given by

P = 1
2

(
βSz + β−1(k+ w)

)
, P̄ = 1

2

(
βSz − β−1(k+ w)

)
. (4.8)

The integer w = 0, ±1, ±2, . . . appearing in eq. (4.8) will be referred to below as the winding 
number. Together with the non-negative integers L and L̄, the winding number is an important 
characteristic of the low energy stationary states. In particular, the sign factor σ in the second 
line of eq. (4.1) coincides with the parity of w, i.e.,

σ = (−1)w . (4.9)
10
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Note that formulae (4.1), (4.8) imply that the eigenvalues of the lattice translation operator K
satisfy KN = (−1)w(N−2Sz) e2π ikSz

. Since N − 2Sz = 2M is always even it follows that KN =
e2π ikSz

(see the last equality in (2.27) with L =N ).
The natural question arises, for a given Bethe state � what would be its scaling limit? In other 

words, what particular state in V(L̄,L)
P̄ ,P

(4.4), (4.8) would appear in the large N limit of � (2.20). 
In fact, to formulate this question meaningfully, one should first organize the Bethe states for 
different N into a one parameter family, i.e., define an individual Renormalization Group (RG) 
trajectory �N . This procedure could only make sense for the low energy part of the spectrum as 
the Hilbert spaces VN (2.1) are not isomorphic for different lattice sizes.

For a general lattice system it is not clear how to assign the size dependence for individual 
low energy stationary states. However, in the case under consideration, one can exploit the inte-
grability of the model for the construction of the RG trajectory �N . For this end, first re-write 
the Bethe ansatz equations (2.10) with all the ηJ = 1 in the logarithmic form:

Lp(ζm)= 2πk− 2π Im −
M∑
j=1

(ζm, ζj ) , (4.10)

where

p(ζ )=−i log

(
1+ q ζ

q + ζ

)
, (ζ, ζ ′)=−i log

(
q ζ ′ − q−1ζ

q ζ − q−1ζ ′

)
(4.11)

and Im are the so-called Bethe numbers which are integers or half-integers for M odd or even 
respectively. An unambiguous definition of Im requires fixing the branches of the logarithms in 
(4.11). Although this is an important step in any practical calculation, we will not touch on it 
here and only mention that

I (vac)
m =− 1

2 (M + 1)+m
(
m= 1, . . . ,M = 1

2 N − Sz
)

(4.12)

for the vacuum state in the sector with fixed value of Sz. For sufficiently large N the Bethe 
numbers corresponding to the low energy states are given by I (vac)

m + δIm, where the variation 
δIm from the “vacuum” distribution (4.12) are nonzero only in the vicinity of the edges, i.e., for 
m �M or M −m �M . The set {δIm} can be used to define the individual RG flow trajectories 
�N in the following way.

Starting with a spin chain for relatively small N one performs the numerical diagonalization 
of the Hamiltonian. Together with the energies (3.5), one should also compute the eigenvalues 
of A+(ζ ). The explicit construction of the 2N × 2N matrix A+(ζ ) can be found in sec. 3 of 
[29]. Its eigenvalues are polynomials whose zeroes coincide with the corresponding Bethe roots 
(see eq. (2.9)). This allows one to extract the set {ζm}Mm=1 for a particular Bethe state �N and, 
using (4.10), also the set of {δIm}. For the state �N+2, the Bethe ansatz equations are taken 
to have the same {δIm} in the vicinity of the edges. Moreover, for their iterative solution the 
initial approximation can be constructed using the Bethe roots for �N . This procedure provides 
a way for defining the RG flow of an individual low energy Bethe state. Having at hand the RG 
trajectory �N and taking its large N limit, our previous discussion means that

�N ��N ψ̄ P̄ (v̄)⊗ψP (v) as N →∞ . (4.13)

Here the limiting state ψ̄ P̄ (v̄) ⊗ ψP (v) does not depend on N and belongs to the subspace 

V(L̄,L) (4.4), while the constant �N (in fact a functional, �N = �[�N ], whose value depends 

P̄ ,P

11
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on the Bethe state) diverges in the large N limit and will be discussed in details later. In the 
next subsection we’ll describe the state ψ̄ P̄ (v̄) ⊗ ψP (v) in (4.13). It is sufficient to focus on 
the “right” vector ψP (v) since there is only a notational difference between the left and right 
component in the tensor product.

5. Identification of the RG trajectory with a state in the conformal tower

5.1. The sum rules for the scaled Bethe roots

For finite N the Bethe states are unambiguously characterized by the eigenvalues of A+(ζ ). 
Therefore the chiral state ψP (v) may be determined through the study of the large N behaviour 
of the eigenvalue (2.9) corresponding to �N . The scaling limit for A+(ζ ) was discussed in the 
series of papers [30–32,35–37]. Below we present the results relevant to this work.

Let �N be the RG trajectory formed by the low energy Bethe states, whose energy and mo-
mentum are described by the asymptotic formula (4.1), and consider the eigenvalue A+(ζ ) (2.9)
computed on this family. Its logarithm can be expanded in the infinite series,

logA+(ζ )=−
∞∑
j=1

h
(N)
j ζ j , (5.1)

where the coefficients are given by the finite sums

h
(N)
j = j−1

N
2 −Sz∑
m=1

(ζm)−j . (5.2)

Keeping Sz ≥ 0 fixed, consider the large N limit of h(N)
j with given j = 1, 2, 3, . . . . Despite that 

the r.h.s of eq. (5.2) is a symmetric function of the Bethe roots, for analysing this limit it is useful 
to impose an ordering for the set {ζm}. For the case of the vacuum states all ζm are real and, with 
the Bethe numbers given by eq. (4.12), they are ordered as ζ1 < ζ2 < . . . < ζM . In general, the 
Bethe roots are complex numbers and we can order them w.r.t. to their real part

�e(ζ1)≤�e(ζ2)≤ . . .≤�e(ζM)

(the ordering prescription for the Bethe roots with coinciding real parts is not essential for our 
purposes). As was discussed in the work [37] for fixed Sz and m = 1, 2, . . . the following limits 
exist:

sm = lim
N→∞

(
N
π

)2(1−β2)
ζm . (5.3)

Furthermore the numbers sm grow according to

(sm)
1

2(1−β2) =m+O(1) as m→+∞ . (5.4)

For 0 < β2 < 1
2 the above formulae imply the existence of the limit

h
(∞)
j = lim

N→∞N−2j (1−β2) h
(N)
j = π−2j (1−β2) j−1

∞∑
m=1

(sm)−j (5.5)

with fixed j = 1, 2, . . .. Combining (5.1) and (5.5) one arrives at
12
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lim
N→∞ log A+

(
N−2(1−β2) ζ̃

)=− ∞∑
j=1

h
(∞)
j ζ̃ j , (5.6)

where the r.h.s. is understood as a formal power series expansion in ζ̃ without any reference to 
its convergence. It turns out there exists a mutually commuting set of operators H(+)

j that act 

in the Fock space FP and whose eigenvalues for a certain common eigenvector ψP (v) ∈ F (L)
P

coincide with h(∞)
j up to an overall multiplicative factor. The construction of these operators was 

discussed in the works [31,32] and goes along the following line.
Consider the chiral Bose field

ϕ(u)= ϕ0 + a0 u+ i
∑
m �=0

am

m
e−imu , (5.7)

where am are the Heisenberg generators satisfying (4.6) and the additional operator ϕ0 obeys the 
commutation relations

[ϕ0, am] = i
2 δm,0 . (5.8)

Introduce the path-ordered exponent

L±(λ)= e±iπβa0H
←
P exp

( 2π∫
0

du
(
V−(u) q±

H
2 E± + λ2 V+(u) q∓

H
2 E∓

))
(5.9)

involving the vertex operators

V±(u)= e±2iβϕ(u) (5.10)

as well as the generators of the q-oscillator algebra E± and H:

[H,E±] =±2E± , q E+E− − q−1 E−E+ = 1

q − q−1 . (5.11)

Let ρ± be representations of this algebra such that the traces

Trρ±
[
e±2iπβPH] �= 0 with �m(P ) < 0 (5.12)

exist and are non-vanishing. Then one may introduce the operators a±(λ) as

a±(λ)= Trρ±
[

e±iπβa0HL±(λ)
]

Trρ±
[

e±2iπβa0H
] . (5.13)

Formula (5.13) defines a power series in λ2. Since a±(0) = 1, its logarithm obeys the formal 
power series expansion

loga±(λ)=−
∞∑
j=1

H(±)
j λ2j . (5.14)

Each of the coefficients H(±)
j is expressed in terms of ordered integrals over the vertex operators 

(5.10). A simple analysis gives that for 0 < β2 < 1
2 all these integrals converge and each term in 

the power series expansion is well-defined. It is possible to show [32] that H(±)
j act invariantly 

in the level subspaces F (L) and mutually commute,
P

13
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H(±)
j : F (L)

P �→F (L)
P ,

[
H(±)

j , H(±)

j ′
]= [H(±)

j , H(∓)

j ′
]= 0 . (5.15)

Note that, although to take the trace in eq. (5.13) it is required that �m(P ) < 0, the matrix 
elements of H(±)

j restricted to F (L)
P may be analytically continued to any complex P , except for

P =∓ 1
2

(
mβ−1 + jβ

)
, where m= 0,1,2, . . . . (5.16)

The simultaneous diagonalization of the mutually commuting operators H(±)
j , being restricted 

to F (L)
P , becomes a diagonalization problem of finite par1(L) ×par1(L) dimensional matrices. 

Then for an RG trajectory �N with given P , L and characterized by the set 
{
h
(N)
j

}∞
j=1, there 

exists a common eigenvector ψP (v) ∈F (L)
P such that the eigenvalues of the operators H(+)

j ,

H(+)
j ψP (v)=Hj(v)ψP (v) , (5.17)

are related to h(∞)
j (5.5) as

h
(∞)
j =

[
�(1− β2)

(√
π �
( β2

2−2β2

)
�
( 1

2−2β2

) )1−β2 ]−2j

Hj (v) . (5.18)

In writing the above it is assumed that the exponential operators (5.10) are normalized in the 
following way

q e±2iβϕ(u1) e∓2iβϕ(u2)
∣∣
(u1−u2)→0+ → (u1 − u2)

−2β2
> 0 , (5.19)

i.e., we set the coefficient of the most singular term in the operator product expansion to be one. 
It is clear that the eigenvector ψP (v) should be identified with the chiral state, which appears in 
the r.h.s. of (4.13). A similar analysis can be repeated to specify the barred state ψ̄P̄ (v̄) ∈ F̄ (L̄)

P̄
in that relation.

The l.h.s. of (5.18) is an infinite sum over inverse powers of the scaled Bethe roots (5.3). Since 
the eigenvalues Hj(v) may be calculated independently using the definition (5.13), (5.14), the 
relation (5.18) provides a set of sum rules for sm. It is instructive to consider the explicit formulae 
for Hj(v) corresponding to the Fock vacuum |P 〉. As explained in [31] they are expressed in 
terms of the 2m - fold integrals

Qm(h,g)=
2π∫

0

du1

u1∫
0

dv1

v1∫
0

du2

u2∫
0

dv2 . . .

vm−1∫
0

dum

um∫
0

dvm

×
m∏

j>i

[(
4 sin

(ui−uj

2

)
sin
( vi−vj

2

))2g
] m∏

j≥i

(
2 sin

(ui−vj
2

))−2g
(5.20)

×
m∏

j>i

(
2 sin

( vi−uj

2

))−2g
2 cos

(
2h
(
π +

m∑
i=1

(vi − ui)
))

with m ≤ j . For instance
14
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H
(vac)
1 = Q1(βP,β2)

4 sin(πβ2) sin
(
πβ(β + 2P)

) (5.21)

H
(vac)
2 = Q2(βP,β2)

4 sin(2πβ2) sin
(
2πβ(β + P)

)
+ cos

(
2πβ(β + P)

) (
Q1(βP,β2)

)2
16 sin(2πβ2) sin2 (πβ(β + 2P)

)
sin
(
2πβ(β + P)

)
Taking a brief look at eq. (5.20), one finds that the integrals converge as 0 < g < 1

2 and, in this 
parametric domain, Qm(h, g) =Qm(−h, g) are entire functions of h2. However the multifold 
integrals (5.20) are not well suited for numerical purposes. In the Appendix of ref. [44] a tech-
nique is developed which brings H(vac)

j to a form that is convenient for computation. Following 
that work, introduce the functions

f1(h, g)= π �(1− 2g)�(g + 2h)

sin(πg)�(1− g + 2h)
(5.22)

f2(h, g)= 21−4g �2(1− g)

�2( 1
2 + g)

�(2g + 2h)

�(1− 2g + 2h)

∞∫
−∞

dx

2π

S1(x)

x + ih

(
0 < g < 1

2 , �e(h) > 0
)
,

where

S1(x)= sinh(2πx)�(1− 2g+ 2ix)�(1− 2g− 2ix)
(
�(g + 2ix)�(g − 2ix)

)2
. (5.23)

Then for the first two eigenvalues, one has

H
(vac)
j = fj

(
βP,β2) . (5.24)

Notice that, although the ordered integral Q1(h, g) converges only for 0 < g < 1
2 , the expression 

(5.22), (5.24) gives an analytic continuation of H(vac)
1 to the domain 1

2 < β2 < 1, which possesses 
a simple pole at β2 = 1

2 . The analytic continuation of f2(h, g) yields [44]

f2(h, g)= 21−4g �2(1− g)

�2( 1
2 + g)

�(2g + 2h)

�(1− 2g + 2h)

( ∞∫
−∞

dx

2π

S1(x)

x + ih
(5.25)

− sin(2πg)�(3− 4g)�2(1− g)�2(3g − 1)

(2h+ 1− 2g)(2h− 1+ 2g)

) ( 1
2 < g < 1, �e(h) > 0

)
.

The above expression shows that H(vac)
2 possesses a simple pole at β2 = 3

4 . Similarly, by means 

of analytical continuation in β2, the functions H(vac)
j with given j = 1, 2, 3, . . . may be defined 

for any 0 < β2 < 1 except β2 = 1 − 1
2j .

A natural question arises, is it possible to extend the definition, not only of the vacuum eigen-
values H(vac)

j , but of the operators H(±)
j themselves to the domain 0 < β2 < 1? Let us reiterate 

that for given j = 1, 2, . . . formulae (5.9), (5.13) and (5.14) define H(±)
j in terms of the ordered 

integrals over the vertex operators, which can be taken literally for 0 < β2 < 1
2 only. As dis-

cussed in the work [32] (see also [46]), by re-expressing the ordered integrals in terms of contour 
15
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Fig. 1. The crosses come from numerical data that was obtained from the solution of the Bethe ansatz equations with 
N = 50, 100, 200, . . . corresponding to an RG trajectory �N . The latter is characterized by L = L̄= 0 and P , P̄ given by 
eq. (4.8) with Sz = 0, w = 1. The parameters are taken to be β2 = 9

10 and k =− 1
20 . Notice that, since β2 is close to one, 

it is necessary to perform the subtraction h(N,reg)
j

≡ h
(N)
j

+ (−1)j+1 N

2j cos(πjβ2)
as in eq. (5.27), so that N−2j (1−β2)h

(N,reg)
j

with j = 1, 2 tends to a finite number in the large N limit. The solid line represents the limiting value given by the r.h.s. 
of eq. (5.18), where H(vac)

1 , H(vac)
2 were computed using (5.24) with f1 as in (5.22) and f2 from (5.25). The blue dashed 

line comes from fitting the numerical data and was included for visualization.

integrals, it is possible to extend the applicability of these formulae to any 0 < β2 < 1 except 
the points β2 = 1 − 1

2k with k = 1, 2, . . . . At β2 = 1 − 1
2k all the operators H(±)

j with j �= k

remain non-singular. However H(±)
k possesses a simple pole, whose residue is proportional to 

the identity operator:

H(±)
k =− �( 1

2 + k)�2k( 1
2k )√

π (2k − 1)k �(1+ k)

1

β2 − 1+ 1
2k

+O(1) (k = 1,2,3, . . .) . (5.26)

By subtracting the singular term in (5.26) from H(±)
k one may introduce the regularized oper-

ator H(±,reg)
k . The latter is defined up to an overall additive constant, which should be fixed by 

imposing some normalization condition.
In the parametric domain 1

2 ≤ β2 < 1 both (5.3) and (5.4) continue to hold. However the large 

N limit (5.5) involving the coefficients h(N)
j (5.2) no longer exists when 1 ≤ j ≤ 1

2(1−β2)
. To 

properly define h(∞)
j , a certain subtraction needs to be made from N−2j (1−β2) h

(N)
j so that its 

large N limit can be taken. Namely,

h
(∞)
j = lim

N→∞N−2j (1−β2)

[
h
(N)
j + (−1)j+1 N

2j cos(πjβ2)

]
, j = 1,2, . . . < 1

2(1−β2)
.

(5.27)

Without going into details, we just mention that the existence of the above limit follows from the 
Bethe ansatz equations (2.10) with ηJ = 1. When β2 = 1 − 1

2k with k = 1, 2, . . . , not only h(N)
j

with j = 1, . . . , k − 1 but also h(N)
k requires regularization:

h
(∞)
k = lim

N→∞

[
N−1 h

(N)
k − 1

πk
log(NBk)

] (
β2 = 1− 1

2k

)
, (5.28)

where Bk is an arbitrary (k - dependent) constant.
The validity of the relation (5.18) may be extended to the domain 0 <β2 < 1 provided that for 

β2 > 1 the coefficients h(∞) are defined as in (5.27), while the eigenvalues Hj(v) are understood 
2 j

16
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via analytic continuation. Note that in the case when β2 = 1 − 1
2k , eq. (5.18) with j = k becomes 

a relation between h(∞)
k (5.28) and the eigenvalues of the regularized operator H(+,reg)

k . The 

arbitrary constant Bk in (5.28) is related to the ambiguity in the definition of H(+,reg)
k discussed 

above. In what follows we define the regularized operator as

H(±,reg)
k = lim

β2→1− 1
2k

[
H(±)

k + �( 1
2 + k)�2k( 1

2k )√
π (2k− 1)k �(1+ k)

1

β2 − 1+ 1
2k

]
. (5.29)

Then it is not difficult to show that

B1 = eγE

π
, (5.30)

where γE stands for the Euler constant. The analytical expression for Bk with k ≥ 2 is not known. 
Numerical calculations yield

log(B2/B1)= 3.57079634 . (5.31)

Also, in Fig. 1 some numerical data illustrating (5.18), (5.27) is presented.

5.2. Scaling limit of A+(ζ )

The set of “scaled” Bethe roots {sm}∞m=1 (5.3) admits a remarkable interpretation. Namely, 
following the works [36,37], consider the Schrödinger equation(

− d2

dx2 + V (x)−E

)
�= 0 (5.32)

with the so-called Monster potentials of the form

V (x)= 16(α + 1)P 2 − 1

4x2 + x2α − 2
d2

dx2

L∑
b=1

log
(
x2α+2 − α+1

α
vb
)
. (5.33)

Here the set of complex numbers {va}La=1 obeys the system of L algebraic equations:

∑
b �=a

va ( v
2
a + (3+ α)(1+ 2α)vavb + α(1+ 2α)v2

b )

(va − vb)3 − va

4
+ P 2 − α2

4(α + 1)
= 0 . (5.34)

With these constraints imposed on the positions of the singularities any solution of the 
Schrödinger equation is monodromy free everywhere except for x = 0 and x =∞ for any value 
of E. In other words the solutions remain single-valued in the vicinity of each singularity spec-
ified by va . For this reason the complex numbers {va} are referred to as apparent singularities. 
Assuming that α > 0, one can consider the standard spectral problem for the ODE defined on the 
ray x > 0. This leads to a discrete spectral set {Em}∞m=1. Then for an RG trajectory with given P
and L and characterized by the set of scaled Bethe numbers {sm}∞m=1 (5.3), there exists a Monster 
potential of the form (5.33), (5.34) such that

Em =
(
N0/π

)−2(1−β2)
sm . (5.35)

Here
17
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N0 =
√
π �
(
1+ β2

2−2β2

)
2�
( 3

2 + β2

2−2β2

) (5.36)

and the parameter α is related to β as

α = β−2 − 1 > 0 . (5.37)

It was conjectured in the work [36] and proven by Conti and Masoero [45] that for generic 
(complex) values of P and α the number of distinct, up to the action of the symmetric group SN , 
solutions of (5.34) coincides with par1(L). In other words, for given L, the number of Monster 
potentials is equal to the number of states in the level subspace F (L)

P . This allows one to label 
the chiral state ψP (v) entering in the scaling limit (4.13) by the unordered set of solutions of the 
system (5.34),

ψP (v) : v = {va}La=1 . (5.38)

Introduce the spectral determinant

D+(E |v)=
∞∏

m=1

(
1− E

Em

)
. (5.39)

Due to (5.35), (5.4) Em ∼m2(1−β2) as m →∞, so that the infinite product in the r.h.s. converges 
when 0 < β2 < 1

2 for any value of E. Hence in this domain (5.39) defines an entire function. 
Expanding log D+(E) in an infinite series, it follows from eqs. (5.5) and (5.35) that the resulting 

series expansion coincides term by term with the r.h.s. of (5.6) where ζ̃ = N
2(1−β2)
0 E. This 

immediately yields that the series in (5.6) has a non-vanishing radius of convergence and

lim
N→∞A+

(
(N/N0)

2(β2−1)E
)=D+(E |v) (0 < β2 < 1

2 ) . (5.40)

To introduce D+(E | v) for 1
2 ≤ β2 < 1, Weierstrass factors must be included in the infinite 

product (5.39) in order to ensure its convergence. Alternatively one can define the spectral deter-
minant for 0 < β2 < 1 through the set of conditions

(i) D+(E | v) is an entire function whose zeroes coincide with {Em}∞m=1.
(ii) D+(E | v) satisfies the normalization condition:

D+(0 |v)= 1 . (5.41)

(iii) It possesses the asymptotic behaviour as E→∞, | arg(−E)| < π :

logD+(E |v)�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N0

cos( πβ2

2−2β2 )
(−E)

1
2−2β2 + o

(
E
)

for β2 �= 1− 1
2k

�( 1
2 + k)

2
√
π�(1+ k)

Ek
(

log(−E)+ ck
)+ o

(
E
)

for β2 = 1− 1
2k

(5.42)

with k = 1, 2, 3, . . . and

ck =ψ
(1 + k

)
−ψ(1+ k)− 1 + 1

[
log
(2k − 1)− 1 −ψ

( 1 )]
. (5.43)
2 k k 4k 2k− 1 2k

18
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The function D+(E | v), thus defined, coincides with the eigenvalue of the operator a+(λ) for 
the vector ψP (v) (5.38)

a+(λ)ψP (v)=D+(E |v)ψP (v) . (5.44)

As it follows from eqs. (5.6), (5.14), (5.18), (5.40) E and λ are related as

λ2 = (β2/2)2−2β2

�2(1− β2)
E . (5.45)

The above conditions (i) − (iii) fully specify D+(E | v), i.e., all the eigenvalues of a+(λ). Notice 
that with the choice of the constant ck as in (5.43), for β2 = 1 − 1

2k with k = 1, 2, 3, . . . the 
operator a+(λ) is defined as

a+
∣∣
β2=1− 1

2k
= lim

β2→1− 1
2k

E−fixed

a+
(
λ(E)

)
exp

[
− �( 1

2 + k)�2k( 1
2k )√

π (2k − 1)k �(1+ k)

(
λ(E)

)2k
β2 − 1+ 1

2k

]

= exp

(
−H(+,reg)

k λ2k −
∑
j �=k

H(+)
j λ2j

)
, (5.46)

where H(+,reg)
k is given by eq. (5.29).

Now we can describe the scaling limit of the eigenvalue A+(ζ ) corresponding to the RG 
trajectory �N for any 0 < β2 < 1. Namely,

lim
N→∞G(N)

(
E |β2) A+( (N/N0)

2(β2−1)E
)=D+(E |v)

(
0 < β2 < 1

)
(5.47)

with

G(N)(E |g)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

( [ 1
2(1−g)

]∑
m=1

(−1)m N

2m cos(πmg)
(N/N0)

2m(g−1) Em

)
for g �= 1− 1

2k

exp

(
N0E

k

πk
log(NBk)+

k−1∑
m=1

N

2m cos(πm
2k )

(N/N0)
−m

k Em

)
for g = 1− 1

2k

(5.48)

Here k = 1, 2, . . . and [...] stands for the integer part.
The operator a−(λ) (5.13) appears in the scaling limit of A−, which was briefly mentioned 

in the Preliminaries (for a further discussion, including its definition, see sec. 3 of [29]). Similar 
to (5.44), its eigenvalues are related to the spectral determinant D−(E) corresponding to another 
spectral problem for the same Schrödinger equation.

There is an efficient way of computing D±(E). To describe it, first introduce two solutions of 
(5.32), (5.33) satisfying the asymptotic condition

�±P (x)→ 1√
π

(β2/2)
1
2±2βP �(∓2βP ) x

1
2± 2

β
P as x→ 0

(
0 <�e(2P) < β

)
(5.49)
19
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where β = (α+1)− 1
2 > 0. This unambiguously defines the solutions in the strip in the complex P

plane. It turns out that through analytic continuation in P it is possible to introduce the solutions 
�±P for any complex values of P , except for the set P = 1

2 (mβ−1+nβ) with m, n integers. Let 
� be another solution that decays at large positive x according to the asymptotic formula

�(x)� x
− 1

2β2 (1−β2)
exp
(
− β2 x

1
β2 + o(1)

)
as x→+∞ . (5.50)

This condition specifies �(x) for 0 < β2 < 1
2 . In the parametric domain 1

2 < β2 < 1 a more 
accurate description of the large - x asymptotic is required. Namely, the argument in the exponent 
in (5.50) should be replaced by −β2 x1/β2 + x1/β2 ∑

m≥1 dm x2m(1−1/β2), where the coefficients 
dm are easily obtained using the standard WKB technique. This way the solution �(x) may be 
introduced for any 0 < β2 < 1 except the points β2 �= 1 − 1

2k with k = 1, 2, 3, . . . by means of 
the asymptotic condition

�(x)� x
− 1

2β2 (1−β2)

exp
[
− β2xβ−2

2F1
(− 1

2 ,− 1
2(1−β2)

,1− 1
2(1−β2)

∣∣E x2(1−β−2)
)+ o(1)

]
, (5.51)

where 2F1 is the Gauss hypergeometric function. The case β2 = 1 − 1
2k requires further attention 

and will not be discussed here. It turns out that the spectral determinant D+(E | v) defined by 
(i) − (iii) above as well as D−(E | v), which can be introduced by a similar set of conditions, are 
given by

D±(E |v)=∓ sin(2πβP ) W [�±P ,� ] (5.52)

with W [ �±P , � ] =� ∂x�±P −�±P ∂x� being the Wronskian. Indeed, using basic facts from 
the analytic theory of differential equations, it is easy to show that (5.52) defines entire func-
tions of E. When D+(E | v) vanishes, the solutions ψ+ and χ are linearly dependent, so that 
{Em}∞m=1 : D+(Em | v) = 0, is the spectral set for the corresponding spectral problem. Similarly, 
the zeroes of D−(E | v) form the spectral set for the problem, where � becomes proportional 
to �−. The normalization of the solutions �± (5.49) and the overall factor in (5.52) ensure that 
D±(0 | v) = 1. Using the WKB technique one can check that the functions (5.52) satisfy the large 
- E asymptotic (5.42). Finally we note

�(x)=D+(E |v) �−P (x)+D−(E |v) �+P (x) (5.53)

so that D±(E | v) are the connection coefficients in the expansion of � in terms of the funda-
mental set of solutions {�±P }.

5.3. Scaling limit of the transfer matrix

Let Uq(sl2) be the quantum universal enveloping algebra whose generators satisfy the com-
mutation relations

[h,e± ] =±2e± , [e+,e− ] = qh − q−h

q − q−1 . (5.54)

Following ref. [30] consider the formal path ordered exponent built out of the vertex operators 
(5.10),
20
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L(λ)= λ+
1
2h eiπβa0h

←
P exp

( 2π∫
0

du
(
V−(u) q+

h
2 e+ + λ2 V+(u) q−

h
2 e−

))
λ−

1
2h . (5.55)

In the fundamental representation of Uq(sl2), such that π 1
2
(e±) = σ± and π 1

2
(h) = σz, L(λ)

becomes an operator valued 2 × 2 matrix

L 1
2
(λ)= π 1

2

(
L(λ)

)
. (5.56)

As was shown in the work [32], the trace

τ (λ)= Tr
[
eiπβa0σ

3
L 1

2
(λ)
]

(5.57)

commutes with the operator (5.13), 
[
τ (λ), a+(λ′) 

]= 0, and furthermore satisfies the relation

τ (λ)a+(λ)= e+2iπβa0 a+(qλ)+ e−2iπβa0 a+(q−1λ) . (5.58)

It should be clear that (5.58) is the scaling counterpart of (2.6), where τ (λ) appears in the 
scaling limit of the transfer matrix T (ζ ). One can obtain a formula that describes the scaling 
limit of the eigenvalues of T (ζ ) via a comparison of these two relations. Let T (N)(ζ ) be the 
eigenvalue of the transfer matrix for an RG trajectory �N and consider eq. (2.6) specialized 
to that common eigenvector. Substituting the parameter ζ by (N/N0)

2(β2−1) E and then using 
formulae (5.47) and (5.44) one finds

lim
N→∞G(N)

(
q2E |β2)G(N)

(
q−2E |β2) T (N)

(
(N/N0)

2(β2−1)E
)= (−1)w τ(λ) . (5.59)

Here we take into account that in the large N limit,

f
(
(N/N0)

2(β2−1) E
)=G(N)

(
qE |β2 )G(N)

(
q−1E |β2 ) (1+ o(1)

)
, (5.60)

where f (ζ ) is the function (2.7) with all the inhomogeneities set to one. Also recall that q = eiπβ2

and E ∝ λ2 as in (5.45).
The sign factor in the r.h.s. of (5.59) appears for the following reason. According to (4.8), the 

eigenvalues of the operators e+iπβa0 entering into eq. (5.58) are given by eiπ(k+w)+πβ2Sz
. This 

differs from the eigenvalues of the corresponding factors ω q+Sz
in (2.6) by (−1)w. Notice that 

the same sign factor enters into the asymptotic formula (4.1) for the eigenvalues of the lattice 
translation operator K, where it is denoted by σ = (−1)w. Thus eq. (5.59) can be rewritten in the 
operator form as:

lim
N→∞G(N)

(
q2E |β2)G(N)

(
q−2E |β2)T( (N/N0)

2(β2−1)E
)
K= τ (λ) . (5.61)

Since both τ and a± admit a regular power series expansion in λ2, eq. (5.58) allows one to 
express the operators H(±)

j (5.14) in terms of

Qj : τ (λ)=
∞∑
j=0

Qj λ
2j . (5.62)

This leads to relations between the corresponding eigenvalues H(±)
j (v) and Qj(v). For the case 

of the Fock vacuum, formula (5.21) gives the first few eigenvalues H(vac)
j in terms of the 2m fold 

integrals Qm(h, g) (5.20) with h = βP and g = β2, which coincide with the vacuum eigenvalues 
of Qm.
21
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5.4. Chiral states ψP (v)

We have yet to discuss an important practical problem: having at hand the Bethe roots corre-
sponding to the family �N for a few values of N , how to identify the states ψP (v) and ψ̄ P̄ (v̄)
appearing in the r.h.s. of eq. (4.13).

To obtain the set v = {va}La=1 labeling the state ψP (v) one can in principle compute the con-
nection coefficient D+(E | v) from the Bethe roots for �N using eq. (5.47). In practice, however, 
instead of using the full spectral determinant it is sufficient to focus on its large - E asymptotic 
expansion. Eq. (5.42) describes just the leading large - E behaviour. A more detailed description 
involves the asymptotic coefficient RP , which depends on the set of apparent singularities:

D+(E|v)=RP (v) (−E)−P/β exp

(
N0

cos( πβ2

2−2β2 )
(−E)

1
2−2β2 + o(1)

)
(5.63)

(here β2 �= 1 − 1
2k ). In the recent work [47] a closed expression for RP (v) was obtained for 

the Schrödinger equation with Monster potentials involving an arbitrary number of apparent 
singularities L = 0, 1, 2, . . . . It takes the form

RP (v)=R
(0)
P ŘP (v) (5.64)

with

R
(0)
P = β1+4Pβ 22P(β−1−β)

�(1+ 2P
β
)

�(1+ 2Pβ)
(5.65)

and ŘP (v) is given in eq. (5.19) in [47]. On the other hand, formula (5.47) implies an important 
relation which allows one to extract the asymptotic coefficient RP(v) numerically from the Bethe 
roots for sufficiently large N [37]:

M∏
m=1

(
ζ−1
m + q

)(
ζ−1
m + q−1)� (RP (v)

)2 (
N/N0

)−4(β−1−β)P (4(1− β2)
)N (1+ o(1)

)
.

(5.66)

Together with the similar relation

M∏
m=1

(
ζm+q

)(
ζm+q−1)� (RP̄ (v̄)

)2 (
N/N0

)−4(β−1−β)P̄ (
4(1−β2)

)N (
1+o(1)

)
, (5.67)

this provides a way of identifying the sets v = {va}La=1 and v̄ = {v̄a}L̄a=1, which label the state 

ψ̄ P̄ (v̄) ⊗ψP (v) ∈ F̄ (L̄)
P̄
⊗F (L)

P that occurs in the scaling limit of �N (4.13). In practice we found 
this to be an effective procedure for small L and L̄ (≤ 5).

The state ψP (v) ∈F (L)
P can be constructed, in principle, through the diagonalization problem 

of the operator a+. However the computation of its matrix elements using eqs. (5.9), (5.13) is an 
unduly complicated task. It turns out that in practice the most effective way of determining the 
states ψP (v) ∈F (L)

P for small values of L is based on the diagonalization of the so-called reflec-
tion operator. The latter commutes with a±(λ) and its eigenvalues coincide with the subleading 
coefficients RP (v) entering into the asymptotic formula (5.63). There is a simple algebraic pro-
cedure for constructing the reflection operator restricted to a level subspace F (L)

P with given L. 
For L = 1, 2, 3 some explicit formulae can be found in the Appendix of ref. [47].
22
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As an illustration here we quote the explicit expression for the states ψP (v) ∈ F (L)
P for the 

first two levels. For L = 1, when the Monster potential contains only one apparent singularity, 
the system (5.34) dramatically simplifies. Its solution is

v1 = (2P − ρ)(2P + ρ) with ρ = β−1 − β (5.68)

and β is related to α as in (5.37). Since dimF (1)
P = 1 one has

ψP

(
v(1))= 1

2P + ρ
a−1 |P 〉 . (5.69)

For L = 2 there are two solutions of (5.34), which we denote as v(2,+) = (v+1 , v+2 ) and v(2,−) =
(v−1 , v−2 ). They read explicitly as

v±1 = 2ω±
(
ω± + β−1)(ω2± + β2 − β−2) (5.70)

v±2 = 2ω±
(
ω± − β−1)(ω2± + β2 − β−2) ,

where

ω± = 1

2

√
(1+ 2β2)(2β−2 − 1)±B , B =

√
(2ρ2 − 1)2 + 32P 2 > 0 . (5.71)

The corresponding basis states |v(2,±)〉 ∈F (2)
p are given by

ψP

(
v(2,±)

)= ((4P + 2ρ)2 − 2ρ2 − 1±B
) ( 1

4
a2−1 −

P

1− 2ρ2 ∓B
a−2

)
|P 〉 . (5.72)

The normalization of the states (5.69) and (5.72) will be explained in the next section.

6. Scaling limit of the Bethe state norms

The chiral states ψP (v) appearing in the scaling limit of �N (4.13) have been identified as 
eigenstates of the operators a±(ζ ) that act in the Fock space FP . Of course ψ̄ P̄ (v̄) ∈ F̄P̄ may 
be specified similarly. On the other hand, for a given N , �N is a state in the finite dimensional 
space VN (2.1). In order to assign a precise meaning to the asymptotic formula (4.13) we should 
equip VN and the Fock spaces with suitable Hermitian structures. For VN we take the Hermitian 
structure to be one, which is consistent with the integrable structure in the model. As was already 
mentioned in sec. 2, this means that the sesquilinear form is such that the condition (2.38) is 
obeyed. An important feature of the homogeneous six-vertex model is that any set of solutions to 
the Bethe ansatz equations coincides with the complex conjugated set so that eq. (2.24) becomes

ĈP̂T̂ �=� . (6.1)

Hence, for the homogeneous case, consistency between the integrable and Hermitian structures 
implies that different Bethe states are orthogonal to each other. The corresponding Hermitian 
structure in the chiral Fock space should be chosen so that 

(
ψP (v′), ψP (v)

) = 0 for v′ �= v. 
Then specifying the norms of the Bethe states as well as the norms of ψP (v) and ψ̄ P̄ (v̄), one 
may obtain the constant �N as the ratio of the norms of the states appearing on both sides of eq. 
(4.13).

The Fock space FP admits an inner product that is consistent with the natural conjugation 
condition for the Heisenberg generators:
23
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a†
m = a−m (∀m) . (6.2)

Using the definitions (5.13), (5.57) one can show that for real λ2 the operators a±(λ) and τ (λ)
are Hermitian:[

a±(λ)
]† =a±(λ∗) ,

[
τ (λ)

]† = τ (λ∗) . (6.3)

Assuming that the spectrum of a±(λ) is non-degenerate, one concludes that different states 
ψP (v) and ψP (v′) are orthogonal w.r.t. the inner product associated with this conjugation, i.e.,(

ψP (v′),ψP (v)
)

† = FP (v) δv′,v . (6.4)

Here the “†” subscript is used to emphasize that the inner product corresponds to the conjugation 
(6.2) that is consistent with the Heisenberg algebra commutation relations.

It is possible to introduce another natural inner product in FP such that the orthogonality 
condition similar to (6.4) is satisfied. To describe it, we’ll use the fact that the Fock space admits 
the structure of the highest weight representation of the Virasoro algebra. Consider the composite 
field T (u) built from ∂ϕ (5.7)

T (u)= (∂ϕ)2 − iρ ∂2ϕ , (6.5)

where ρ is a real parameter and ∂ ≡ ∂
∂u

. The Fourier coefficients

T (u)=− c

24
+

∞∑
m=−∞

Lm e−imu , (6.6)

are generators of the Virasoro algebra

[Ln,Lm] = (n−m)Ln+m + c
12 n(n2 − 1) δn+m,0 (6.7)

with central charge

c= 1− 6ρ2 . (6.8)

The above relations define the structure of the Verma module for the Virasoro algebra V� on FP

with highest weight

�= P 2 − 1
4 ρ2 . (6.9)

One can introduce the inner product (·, ·)
 in FP
∼= V� that is consistent with the natural conju-

gation condition for the Virasoro algebra generators:

L

m = L−m . (6.10)

Although the 
 - conjugation, as it follows from eqs. (5.7), (6.5) and (6.6), acts non-trivially on the 
Heisenberg generators {am}, it turns out that a±(λ) and τ(λ) satisfy the Hermiticity conditions[

a±(λ)
]
 =a±(λ∗) ,

[
τ (λ)

]
 = τ (λ∗) (6.11)

provided that

ρ = β−1 − β . (6.12)

Thus one has(
ψP (v′),ψP (v)

) = VP (v) δv′,v . (6.13)
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Here the “Virasoro norm” VP (v) is of course different from the Heisenberg one FP (v) from 
eq. (6.4).

The states ψP (v) have been defined as eigenvectors of a+(λ) which specifies them up to an 
overall factor. It will be convenient for us to fix this last ambiguity by imposing

ψP (v)= ( (L−1)
L + . . .

) |P 〉 , v = {va}La=1 , (6.14)

where the dots denote the terms involving L−m with 2 ≤m ≤ L. Let us emphasize that, though 
the condition (6.14) is written in terms of the Virasoro algebra generators, the vector ψP (v) is 
considered as a state in the Fock space FP with the operators {L−m} expressed in terms of the 
Heisenberg generators via eqs. (5.7), (6.5) and (6.6). For instance, the formulae (5.69) and (5.72)
give the states ψP (v) ∈ F (L)

P with L = 1 and L = 2, respectively, that are normalized according 
to (6.14). Having imposed a normalization condition for ψP (v), each of the norms FP (v) (6.4)
and VP (v) (6.13) is determined up to an overall multiplicative factor that does not depend on the 
state in FP . The latter may be fixed by specifying the value of the norms of the Fock vacuum 
ψ

(vac)
P ≡ |P 〉, i.e., (ψ (vac)

P , ψ (vac)
P )† and (ψ (vac)

P , ψ (vac)
P )
, respectively. For the states of the other 

chirality ψ̄ P̄ (v̄) ∈ F̄ (L̄)
P̄

such that ψ̄ P̄ (v̄) = ((L̄−1)
L̄ + . . .

)|P̄ 〉, the Heisenberg and Virasoro 
norms can be introduced similarly and will be uniquely defined up to the choice of the factors 

(ψ̄
(vac)
P̄

, ψ̄
(vac)
P̄

)† and (ψ̄
(vac)
P̄

, ψ̄
(vac)
P̄

)
.
The large N limit of the norms of the low energy Bethe states for the homogeneous six-vertex 

model was studied in the work [37]. The results imply that in the scaling limit the Hermitian 
form (

�(2),�(1))


= (�(1),�(1))



δ�(2),�(1) , (6.15)

where (�(1), �(1))
 = (ĈP̂T̂ �(1), �(1))
 is given by (2.39) with ηJ = 1, induces the Hermitian 
form in the space F̄P̄ ⊗FP defined by the conditions (6.13), (6.14) and the similar relations for 
the barred counterpart. Furthermore, the natural choice for the norms of the Fock vacua turns out 
to be (

ψ
(vac)
P ,ψ

(vac)
P

)


= Z+(P |β) ,

(
ψ̄

(vac)
P̄

, ψ̄
(vac)
P̄

)


= Z+(P̄ |β) , (6.16)

where

Z+(P |β)= (AG)−2β2
(2π)

1
2−2Pβ βh(P )+4Pβ+1 e−( 2P

β
+h(P )+ 1

2− 1
6 β2)γE

�(1+ 2P
β
)�(1+ 2Pβ)

×
∞∏

m=1

2π (mβ2)2mβ2+4Pβ+1 e−2mβ2+ 1
m
( 2P

β
+h(P )+ 1

2− 1
6 β

2)

�2(1+ 2Pβ +mβ2)
. (6.17)

Here we use the notation

h(P )= 4P 2 + 1
6 (β2 + β−2 − 3) (6.18)

and AG, γE stand for the Glaisher and Euler constants, respectively. Now that the norms 
of the states on both sides of the asymptotic formula (4.13) are unambiguously specified, 
the constant �N can be obtained through the study of the large N behaviour of the ratio 
(�, �)
/

(
VP̄ (v̄) VP (v)

)
. Numerical work from ref. [37] suggests

|�N |2 = C2(β) N
1
6
(
N/C(β)

)−h(P )−h(P̄ )−4L−4L̄ eA2N
2
, (6.19)
0
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where A2, C0(β) and C(β) are the same for all the low energy states and only depend on β . The 
constant A2 is given by the integral

A2 =
∞∫

0

dt

t

sinh( β2t

1−β2 ) sinh(t)

2 sinh( t
1−β2 ) cosh2(t)

. (6.20)

For C0(β) and C(β) the explicit analytical form is currently unknown. Numerical data for these 
constants is presented in Appendix A.

Formula (6.19) specifies �N up to an overall phase factor. As usual, this ambiguity can be 
fixed by using global CPT - symmetry. The generators Ĉ, P̂ and T̂ acting in the tensor product 
F̄P̄ ⊗FP may be introduced in such a way that the combination ĈP̂T̂ commutes with all of the 
Heisenberg modes,[

ĈP̂T̂ , am
]= [ĈP̂T̂ , ām

]= 0 (∀m) , (6.21)

and acts identically on the vacuum

ĈP̂T̂ |P̄ 〉 ⊗ |P 〉 = |P̄ 〉 ⊗ |P 〉 . (6.22)

Then the CPT conjugation acts as the identity operator on any state ψ̄ P̄ (v̄) ⊗ ψP (v), where 
ψP (v) is normalized by the condition (6.14) and similarly for ψ̄ P̄ (v̄). In other words all the 
coefficients of the states ψP (v) expanded in the basis {a−i1 . . . a−im |P 〉 : 1 ≤ i1 ≤ i2 ≤ . . . ≤
im, P − real} are real numbers (for an illustration see eqs. (5.69)-(5.72)). Since the CPT conju-
gation also acts trivially on the Bethe states (6.1), it follows that the constant �N must be real, 
and without loss of generality we can take it to be positive:

�N =
√
K(L)

N (P )K(L̄)
N (P̄ ) with K(L)

N (P )= C0(β)N
1
12
(
N/C(β)

)−h(P )−4L e
1
2 A2N

2
.

(6.23)

The following comment is in order here. Together with the CPT - invariance the system pos-
sesses global CP and T symmetry separately. The action of the CP transformation intertwines 
the spaces F̄P̄ ⊗FP �→ F̄−P ⊗F−P̄ and is defined by the following relations

ĈP̂ am = ām ĈP̂ and ĈP̂ |P̄ 〉 ⊗ |P 〉 = | − P 〉 ⊗ | − P̄ 〉 . (6.24)

It was already mentioned that for the lattice model, the CP and T transformations acting in 
VN intertwine the sectors with +Sz and −Sz, while we only focus on the Bethe states (2.20)
in the sector Sz ≥ 0 (see sec. 4 in [29] for the explicit formulae for the action of the C, P and 
T conjugations in VN ). The state ĈP̂ � ∈ VN can be written in the form similar to (2.20), but 
with the set {ζm} being the zeroes of the corresponding eigenvalue A−(ζ ) of the operator A−(ζ ). 
Recall that the solutions sets of the Bethe ansatz equations (2.10) are roots of A+(ζ ).

The Hermitian form (6.15) in the finite dimensional space VN is not positive definite. At 
the same time this space can be equipped with a positive definite inner product, which is con-
sistent with the integrable structure. This is a special property of the homogeneous case. The 
positive definite Hermitian form in VN = C2

N ⊗ C2
N−1 ⊗ . . . ⊗ C2

1 is induced by that of each 
two-dimensional component in the tensor product. The latter is defined as 〈σ |σ ′〉 = δσ,σ ′ , where 
|±〉 ∈C2 stand for the two basis vectors such that σz|±〉 =±|±〉. To make connection with the 
works [41,42] let’s change the overall normalization of the Bethe state (2.20) and introduce

�′ = α(ζ1, . . . , ζM)�
({ζj }) , (6.25)
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where α(ζ1, . . . , ζM) is given by

α(ζ1, . . . , ζM)= (− iq−
1
2 e−iπk (q − q−1)

)−M
A+(−q−1) (6.26)

with A+(−q−1) =∏M
m=1

(
1 + 1/(qζm)

)
. Then the wavefunction

�′(xM, . . . , x1) : �′ =
∑

1≤x1<x2<...<xM≤N

�′(xM, . . . , x1) σ
−
xM
· · ·σ−x1

|0 〉 (6.27)

can be written in the form

�′(xM, . . . , x1)=
∑
P̂

A
P̂

ei
∑M

m=1 p
P̂m

xm . (6.28)

Here the summation is taken over all M! permutations P̂ of the integers (1, 2, . . . , M), and we 
use the notation

A
P̂
=

∏
1≤j<m≤M

qζ
P̂ j
− q−1ζ

P̂m

ζ
P̂ j
− ζ

P̂m

, (6.29)

while pm = p(ζm) which was defined in eq. (4.11). The norm of the Bethe state �′ (6.27) w.r.t. 
the positive definite inner product reads as

‖�′ ‖2=
∑

1≤x1<x2<...<xM≤N

∣∣�′(x1, . . . , xM)
∣∣2 . (6.30)

There exists a remarkable formula for this norm, which was originally conjectured by Gaudin, 
McCoy and Wu in ref. [41] and proven by Korepin in [42]. In our notation it reads as

‖�′ ‖2= ∣∣α(ζ1, . . . , ζM)
∣∣2 (�,�)


M∏
m=1

ζm , (6.31)

where (�, �)
 = (ĈP̂T̂ �, �)
 is given by (2.39) with ηJ = 1 and α(ζ1, . . . , ζM) is as in (6.26).
The scaling limit of the norm (6.31) for the RG trajectory �N was studied in ref. [37]. It 

was found that the positive definite inner product in the space VN becomes the positive definite 
Hermitian form in F̄P̄ ⊗FP consistent with the conjugation conditions a†

m = a−m and ā†
m = ā−m. 

In this case it is convenient to fix the norms of the highest states in the Fock spaces as(
ψ

(vac)
P ,ψ

(vac)
P

)
† = (2/β)2P(β−1−β) Z2(P |β)(

ψ̄
(vac)
P̄

, ψ̄
(vac)
P̄

)
† = (2/β)2P̄ (β−1−β) Z2(P̄ |β)

, (6.32)

where we use the special function Z(P | β) from ref. [37]. The latter can be represented through 
the convergent product similar to (6.17):

Z(P |β)= (AG)−β2
(2π)

1
4−Pβ β

1
2 h(P )+1+P(β−1+3β) e−

1
2 (

2P
β
+h(P )+ 1

2− 1
6 β2)γE

�(1+ 2Pβ)

×
∞∏ √

2π (mβ2)mβ2+2Pβ+ 1
2 e−mβ2+ 1

2m ( 2P
β
+h(P )+ 1

2− 1
6β

2)

�(1+ 2Pβ +mβ2)
. (6.33)
m=1
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The norms FP̄ (v̄)FP (v) of the states ψ̄ P̄ (v̄) ⊗ ψP (v) ∈ F̄P̄ ⊗FP are fully determined by eqs. 
(6.4) and (6.14), their barred counterparts and formula (6.32). As was pointed out in [37] the 
Heisenberg FP (v) (6.4) and Virasoro VP (v) (6.13) norms are related to each other through 
the eigenvalues of the reflection operator (5.63)-(5.65). With the norms of the Fock vacua (
ψ

(vac)
P , ψ (vac)

P

)



and 
(
ψ

(vac)
P , ψ (vac)

P

)
† fixed as in (6.16) and (6.32), respectively, one has the 

relation
FP (v)

VP (v)
=RP (v) . (6.34)

A numerical study leads to the following asymptotic formula describing the large N behaviour 
of the positive definite norm (6.30):

‖�′
N ‖2 � FP̄ (v̄)FP (v)

(
2 sin(πβ2)

) 2
β
(P+P̄ )

× (N/N0)
−2(β−1−β)(P+P̄ ) K(L)

N (P )K(L̄)
N (P̄ ) eA1N . (6.35)

Here K(L)
N (P ) is defined in eq. (6.23), the constant N0 is given by eq. (5.36), while

A1 = log

(
2(1− β2)

sin(πβ2)

)
. (6.36)

Part II. Inhomogeneous six-vertex model with global Z2 symmetry

7. Introduction

As was mentioned in the Preliminaries, additional global symmetries in the inhomogeneous 
six-vertex model arise when certain constraints are imposed on the inhomogeneities. For ex-
ample, the restrictions ηN+1−J = η−1

J and (ηJ )
∗ = η−1

J lead to CP and T invariance, while 
imposing the condition ηJ+r = ηJ with N = rL gives rise to the lattice translation symmetry. 
Proceeding further and completely fixing the inhomogeneities as

ηJ = (−1)re
iπ
r
(2J−1) (J = 1, . . . , rL) (7.1)

one arrives at a model possessing global Zr invariance (for further details see sec. 7 of ref. [29]). 
It turns out that, like in the homogeneous case, which formally corresponds to r = 1, the model 
is critical when q and ω are unimodular (2.21). However for r ≥ 2, different types of critical 
behaviour occur depending on the value of arg(q2). For instance, in the case of the Z2 invariant 
model there are two such domains with arg(q2) ∈ (0, π) and arg(q2) ∈ (π, 2π).

This work is devoted to the study of the critical behaviour of the Z2 invariant six-vertex 
model with arg(q2) ∈ (0, π). The generator of the extra symmetry D̂ ∈ End(VN) is built out of 
the matrices (2.33) as

D̂ =
N/2∏
m=1

Ř2m,2m−1(−1) : D̂2 = 1 . (7.2)

Its adjoint action on the local spin operators is given by

D̂ σ±m D̂ = 1

q + q−1

(
2σ±m+1 − (q − q−1) σ z

m+1σ
±
m

)
(7.3a)

D̂ σz
m D̂ = 1

−1 2

(
4σz

m+1 + (q − q−1)2 σz
m + 4 (q − q−1)

(
σ+m+1 σ

−
m + σ−m+1 σ

+
m

))

(q + q )
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for odd m and

D̂ σ±m D̂ = 1

q + q−1

(
2σ±m−1 + (q − q−1) σ±m σz

m−1

)
(7.3b)

D̂ σz
m D̂ = 1

(q + q−1)2

(
4σz

m−1 + (q − q−1)2 σz
m − 4 (q − q−1)

(
σ−m σ+m−1 + σ+m σ−m−1

))
for even m. On the transfer matrix and the operators A±(ζ ), the adjoint action of D̂ reads as

D̂T (ζ ) D̂ =T (−ζ ) , D̂A±(ζ ) D̂ =A±(−ζ ) . (7.4)

Note that the above equation implies that for the Bethe state (2.20) corresponding to the solution 
set {ζj } of the Bethe ansatz equations,

D̂�
({ζj })=�

({−ζj }
)
. (7.5)

Since the system (2.10) with ηJ = i (−1)J−1 is invariant under the substitution ζj �→ −ζj , the 
set {−ζj } also solves the Bethe ansatz equations.

Despite that D̂ does not commute with the transfer matrix, it is a symmetry of the model in 
the following sense. The transfer matrix commutes with the Hamiltonian1

H=− i

q2 − q−2

N∑
m=1

(
(q − q−1)2 σz

m σ z
m+1 + 2

(
σx
m σx

m+2 + σ
y
m σ

y

m+2 + σz
m σ z

m+2

)

+ (q − q−1)
(
σx
mσx

m+1 + σ
y
mσ

y

m+1

)(
σz
m−1 − σz

m+2

))+ iN
q2 + q−2

q2 − q−2 1̂ , (7.6)

where

σx
N+	 ± iσy

N+	 = e±2π ik (σx
	 ± iσy

	

)
, σ z

N+	 = σz
	 (	= 1,2) (7.7)

and this Hamiltonian commutes with the generator of the Z2 - symmetry[
D̂, H

]= 0 . (7.8)

Recall that the parameter k entering into the boundary conditions (7.7) is related to ω from (2.4)
as ω2 = e2π ik. The eigenvalue of the Hamiltonian (7.6) for the state � is given in terms of the 
Bethe roots by

E =
M∑

m=1

4i (q2 − q−2)

ζ 2
m + ζ−2

m + q2 + q−2
. (7.9)

In this work we’ll use the parameterization

q = e
iπ
n+2 with n > 0 . (7.10)

1 This form for the Hamiltonian, up to an overall multiplicative factor and an additive constant, appeared in 
ref. [16]. The one defined by eq. (2) in the work [15] coincides with V̂H V̂−1, where H is as in (7.6), while V̂ =∏N/2 exp

( iπ σz )
.

m=1 4 2m−1
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8. The low energy Bethe states

The class of states for which we’ll be considering the large N limit is taken to be the low 
energy states for the Hamiltonian (7.6). Similar to what was discussed in the homogeneous case, 
the Bethe ansatz equations allow one to organize the low energy Bethe states for different N
into the RG trajectories �N . For technical details of the construction of these trajectories and 
some specific examples see the work [15]. In the large N limit the low energy Bethe states form 
the conformal towers similar to those in the XXZ spin chain. In particular, each such tower 
is characterized by a set of quantum numbers which includes the value of Sz and the winding 
number w = 0, ±1, ±2, . . .. Following ref. [15] we will employ the notation

p = 1
2

(
Sz + (k+ w)(n+ 2)

)
, p̄ = 1

2

(
Sz − (k+ w)(n+ 2)

)
. (8.1)

Any state in the conformal tower can be assigned a pair of non-negative integers – the chiral 
levels (L̄, L). The extensive numerical work performed in refs. [9–15] suggests that the large N
behaviour of the eigenvalues of H (7.6) and the lattice translation operator K (2.27), (2.28) with 
r = 2, for the RG trajectory with given p, p̄, L and L̄, are described by the formulae

E = e∞N + 4πvF

N

(
p2 + p̄2

n+ 2
+ 2b2

n
− 1

6
+ L+ L̄

)
+ o
(
N−1−ε

)
(8.2a)

K = exp

(
4π i

N

(
p2 − p̄2

n+ 2
+ L− L̄

))
. (8.2b)

Here

e∞ =−2vF

π

∞∫
0

dt
sinh

( 2t
n

)
sinh

(
(n+2)t

n

)
cosh(t)

, vF = 2(n+ 2)

n
, (8.3)

while the correction term o
(
N−1−ε

)
contains an infinitesimally small positive ε > 0 (for a more 

detailed description of the correction term see ref. [15]). An important difference of eq. (8.2a)
compared with the homogeneous case (4.1) is the presence of the additional N - dependent term 
∝ b2 with b= b(N). It turns out that b(N) is related to the eigenvalue of the so-called quasi-shift 
operator, that was introduced in ref. [11]. The latter is expressed in terms of the transfer matrix 
(2.4) as

B=T (−iq−1)
[
T (+iq−1)

]−1 (8.4)

and its eigenvalues are given by

B = A+(−iq)A+(+iq−1)

A+(+iq)A+(−iq−1)
. (8.5)

Then b entering into eq. (8.2a) and B are related as

b(N)= n

4π
log(B) , (8.6)

where B = B(N) denotes the eigenvalue of the quasi-shift operator corresponding to �N .
Since B is in general a complex number, the definition (8.6) requires the specification of the 

branch of the logarithm. It turns out that fixing the branch such that b(N) is real whenever B > 0
ensures that (8.6) is consistent with formula (8.2a) that describes the low energy spectrum. Thus 
30



we define b(N) for all the low energy Bethe states with |arg(B)| < π by supplementing (8.6)
with the condition

−n

4
< �m(b(N)

)
<

n

4
. (8.7)

Special attention is needed for the Bethe states with |arg(B)| = π . The explicit diagonalization 
of the commuting families of operators for small N reveals the existence of states with B =
−1, see Fig. 2. Although for such states δE ≡ N

4πvF
(E − N e∞) is of order one, we found that 

computing δE for increasing N through the solution of the Bethe ansatz equations, |δE | grows 
logarithmically with N and hence the states are not counted as low energy ones. In addition, there 
are states for which B is a complex number that tends to −1 in the large N limit. For most of 
these, |δE | goes to infinity similar as with the states where B =−1. However, there do exist the 
RG trajectories for which the energy follows eq. (8.2a), while limN→∞ b(N) =± in

4 (see Fig. 4).
It is worth mentioning how the value of b(N) transforms under the action of the CPT and 

D conjugations on the Bethe state �N . The quasi-shift operator satisfies the following relations 
with their generators

ĈP̂T̂ B ĈP̂T̂ = B , D̂B D̂ = B−1 . (8.8)

The first equation implies that the eigenvalue of B for the Bethe state and the CPT - transformed 
state (2.24) are complex conjugate of each other. In turn,

CPT : b(N) �→ b∗(N) . (8.9)

The last equation in (8.8) combined with (8.6) yields that under the Z2 symmetry transformation

D : b(N) �→ −b(N) . (8.10)

Note that both the CPT and D conjugations preserve the strip (8.7).
To summarize this section, let us emphasize that the definition of the low energy states for 

the Z2 invariant inhomogeneous six-vertex model is far from evident. In what follows we’ll use 
the “working” definition that a low energy Bethe state �N is one, whose energy and momentum 
is described by eqs. (8.1)-(8.3), with some w = 0, ±1, ±2 and non-negative integers L, L̄, while 
b(N) is defined through eq. (8.6) along with the condition (8.7). Also it is important to note that 
the case of periodic boundary conditions k = 0 requires special attention. In our analysis, unless 
explicitly stated, it will always be assumed that (n + 2) k /∈Z. The results for periodic boundary 
conditions may be obtained through taking the limit k → 0. If necessary, we’ll include comments 
regarding this limit separately.

9. The RG invariant s

The specification of the RG trajectory for the Z2 invariant six-vertex model has some essential 
differences to the homogeneous case. In particular, for the “primary” Bethe states where L = L̄=
0, there exist many RG trajectories �N , which correspond to the same values of the RG invariants 
p and p̄ (8.1) and are distinguished by the eigenvalue of the quasi-shift operator (8.5). Following 
ref. [10], let’s illustrate this on a class of Bethe states which occur when |k| < 2

n+2 . Fixing N
and Sz, the corresponding Bethe roots {ζm}Mm=1 are real, while the states are distinguished by the 
integers M− −M+, where M− stands for the number of negative roots, ζm < 0, while M+ is the 
number of positive ones, ζm > 0. An example of such a pattern is depicted in the left panel of 
Fig. 5 in the complex β plane with β = − 1 log(ζ ). Although in principle one can construct a 
V.V. Bazhanov, G.A. Kotousov, S.M. Koval et al. Nuclear Physics B 965 (2021) 115337
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Fig. 2. The blue dots mark the values of b = n
4π log(B) in the complex plane for the first 400 lowest energy states of 

the Hamiltonian (7.6), (7.7) with N = 24 in the sector Sz = 0. The branch of the logarithm of B is chosen such that 
|�m( logB

)| ≤ π . The parameters were taken to be n = 3, πk = 18/100. There are four states with B =−1, which are 
represented by the red crosses in the figure. Two of them have the same complex energy and they are related to each 
other through the Z2 transformation (7.5). The other two have the complex conjugated energy, they may be obtained 
from the Z2 doublet by means of the CPT conjugation (2.24). The typical pattern of Bethe roots for one of these states 
is depicted in the left panel of Fig. 3. The right panel of that figure plots the absolute value of δE ≡ N

4πvF
(E −N e∞) as 

a function of N . Clearly the energy is not described by (8.2a). Moreover, the eigenvalue of the lattice translation operator 
K remains fixed at K = −1 for any N , which does not follow (8.2b). Due to this we do not count these states as low 
energy ones.

Fig. 3. The typical pattern of Bethe roots βj = − 1
2 log ζj for one of the four states having B = K = −1, with n = 3, 

πk = 18/100 and N = 60 (left panel). The scaled energy δE = N
4πvF

(E −N e∞) for these states grows logarithmically 
for large N . The crosses in the right figure depict the numerical values of |δE | found via the solution of the Bethe ansatz 
equations. The solid line comes from the fit δE ≈−4.5702 − 0.2272 i + (1.7724 − 0.4110 i) log(N).
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Fig. 4. The left panel depicts the pattern of Bethe roots βj = − 1
2 log(ζj ) for a low energy state �N for which 

limN→∞ b(N) = in
4 , i.e., belongs to the boundary of the strip (8.7). The parameters are n = 3, k = 1

10 , while the 
state belongs to the sector Sz = w = 0 and L = L̄= 1. On the right panel −ib(N) (which turns out to be real) is plotted 
as a function of log(N) for this RG trajectory. The red crosses correspond to b(N) calculated from the eigenvalue of the 
quasi-shift operator using eq. (8.6), while the dashed line shows the limiting value limN→∞ b(N) = 0.75 i. To illustrate 
that the energy for this state obeys eq. (8.2a), we depict via the open circles the values of b(N) computed from the 
numerical data for the energy by inverting (8.2a) for b(N) with the correction terms ignored.

Fig. 5. The left panel shows the pattern of Bethe roots in the complex β plane with β = − 1
2 log(ζ ) for the primary 

Bethe state with N = 40, n = 3, k = 1
10 and Sz = w = 0. The value of b obtained from (8.5), (8.6) is consistent with 

the asymptotic relation (9.2) with m = 2. The right panel depicts the pattern of Bethe roots for the eigenstate of the 
Hamiltonian (7.6), (7.7) with n = 3, k = 1

25 and N = 40 characterized by w = 1, Sz = 0, L = L̄ = 0. For the RG 
trajectory continued from this state, limN→∞ b(N) =− i

10 , for further details see fig. 8 in ref. [15].

state with M− −M+ being any integer from −N
2 + Sz to N2 − Sz, it should be emphasized that 

the states will only be low energy ones provided that |M−−M+| �N . With this restriction they 
turn out to be primary Bethe states all having the same p, p̄ given by eq. (8.1) with w = 0. The 
value of b(N) (8.6) is always real and possesses the following leading large N behaviour

b(N)� πm

4 log(N)
, N →∞ with m− fixed (L= L̄= 0) , (9.1)

where m =M− −M+.
Formula (9.1) resembles the quantization condition of a quantum mechanical particle in a 

potential well of length ∝ log(N). A more accurate quantization condition is achieved by taking 
into account the phase shift that the particle picks up in the vicinity of the turning points.2 In 

2 The analogy with the potential well may seem rather artificial here. However in the third part of this work, in sec. 21.3, 
it will arise naturally in the discussion of the CFT underlying the scaling behaviour of the Z2 invariant six-vertex model.
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ref. [11], based on a numerical analysis, the following remarkable formula was proposed for 
describing the large N behaviour of b(N) for an RG trajectory with L = L̄= 0:

8b(N) log

(
N

2N0

)
+ δ

∣∣
s=b(N)

= 2π m+O
(
(logN)−∞

)
. (9.2)

Here the phase shift δ is a continuous function of s ∈ (−∞, +∞) such that δ|s=0 = 0 and

e
i
2 δ = 2

4is(n+2)
n

�( 1
2 + p− is)�( 1

2 + p̄− is)

�( 1
2 + p+ is)�( 1

2 + p̄+ is)
(L= L̄= 0) . (9.3)

The integer m takes even values if N2 − Sz is even and odd values otherwise, so that

(−1)m = (−1)
N
2 −Sz

, (9.4)

while the symbol O
(
(logN)−∞

)
indicates that (9.2) holds true up to power law corrections in 

N . The explicit formula for the n dependent constant N0 was found in the later work [15] and 
reads as

N0 =
√
π �
(
1+ 1

n

)
2�
( 3

2 + 1
n

) . (9.5)

Since the above expression coincides with N0 from (5.36) upon the substitution β2 �→ 2
n+2 , with 

some abuse of notation we use the same symbol for these two constants.
For a primary Bethe state with |k| > 2

n+2 or non-zero w some of the Bethe roots ζj be-
come complex. Nevertheless, numerical work shows that eq. (9.2) holds true for the primary 
Bethe states for any generic value of the twist parameter − 1

2 < k < 1
2 , the positive integer 

Sz = 0, 1, 2, . . . as well as the winding number w = 0, ±1, ±2 . . . . However there is a possi-
bility that there could be multiple primary Bethe states having distinct b(N), which satisfy eq. 
(9.2) with the same integer m. We observed that for sufficiently large N for one of these states 
b(N) is always real, while for the rest it is pure imaginary. This is tied to the fact that for N � 1
the l.h.s. of (9.2) becomes a monotonic continuous function of real b. Thus for given N � 1, p
and p̄, one can distinguish the primary Bethe states �N having real b(N) via the integer m from 
eq. (9.2). Moreover b= bm(N) obeys the ordering

bm(N) < bm′(N) whenever m< m′ . (9.6)

For m in (9.2) to correspond to a low energy state, it should be bounded as |m| ≤ mmax with some 
positive integer mmax = mmax(N) � N . This is similar to the case with w = 0 and |k| < 2

n+2
discussed above. Again numerical work suggests that it is possible to construct a Bethe state for 
any m = −mmax, −mmax + 2, . . . , mmax − 2, mmax. Eq. (9.1) implies that bm+1(N) − bm(N) ∝
1/ log(N) and hence for N � 1 the bm(N) become densely distributed within the segment 
(−bmax(N), +bmax(N)) where bmax(N) = bm(N) with m = mmax(N). Though it is difficult to 
give an accurate estimate of bmax(N), one may expect that

lim
N→∞

log(N)

mmax(N)
= 0 (9.7)

and hence limN→∞ bmax(N) =∞. This way we conclude that in the scaling limit the spectrum 
develops a continuous component, which we will label by the parameter −∞ < s <+∞. As it 
follows from (9.2), for N � 1 the number of primary Bethe states with real b(N) lying in the 
segment (s, s +�s) is approximated by ρ(0,0)

(s) �s with
p̄,p
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Fig. 6. For the two cases N = 200, 400 with the parameters taken to be Sz = 0, k = 1
10 , n = 3, the Bethe states were 

constructed for which the Bethe roots are real with M+ of them being positive and M− being negative, i.e., {ζm}Mm=1 =
{ζ (+)

m > 0}M+
m=1 ∪ {ζ (−)

m < 0}M−
m=1. Note that when |M− −M+| � N these states are part of the low energy spectrum 

with L = L̄ = w = 0. The corresponding values of b = bm were computed for m ≡M− −M+ = 0, 2, 4, . . . N
2 and the 

crosses on the plots represent (bm+1 − bm)
−1 − 2

π log
(

N
2N0

)
as a function of s = (bm+1 + bm)/2. The blue line depicts 

ρ
(reg)
p̄,p

= ρ
(0,0)
p̄,p

(s) − 2
π log

(
N

2N0

)
, where ρ(0,0)

p̄,p
(s) is the density of primary Bethe states given in eq. (9.8).

ρ
(0,0)
p̄,p (s)= 2

π
log

(
N

2N0

)
+ 1

2π i
∂s log

[
2

4is(n+2)
n

�( 1
2 + p− is)�( 1

2 + p̄− is)

�( 1
2 + p+ is)�( 1

2 + p̄+ is)

]
. (9.8)

For an illustration see Fig. 6. The parameter s can be understood as an RG invariant along with 
p and p̄. Then the scaling limit of a family of primary Bethe states �N corresponding to a given 
value of s can be achieved by assigning an N dependence to the integer m via the formula

8 s log

(
N

2N0

)
+ δ = 2π m(N)+O

(
(logN)−∞

)
. (9.9)

With this understanding of the scaling limit it follows from (9.9), (9.2) that s limN→∞ b(N) = s

for a RG trajectory labeled by s and hence

slim
N→∞

N

4πvF

(
E − e∞N

)
= p2 + p̄2

n+ 2
+ 2s2

n
− 1

6
(L= L̄= 0) . (9.10)

Numerical studies show that there exist the RG trajectories �N with b(N) tending to a pure 
imaginary number in the large N limit. The pattern of Bethe roots for one such trajectory with 
L = L̄ = 0 is shown in the right panel of Fig. 5. In this case the quantum number m is not well 
defined (besides its parity). However, b(N) still satisfies the exponential form of eq. (9.2),(

N

2N0

)4ib(N)

e
i
2 δ
∣∣
s=b(N)

= σ +O
(
(logN)−∞

)
(9.11)

with e
i
2 δ as in (9.3) and σ is a sign factor, which coincides with the parity of N2 − Sz:

σ = (−1)
N
2 −Sz

. (9.12)

In constructing a RG trajectory the value of σ should be kept fixed.
Let’s consider a trajectory with limN→∞ b(N) = s such that �m(s) �= 0. The factor N4ib(N) in 

the l.h.s. of eq. (9.11) goes to zero as N →∞ if �m(s) > 0 or tends to infinity when �m(s) < 0. 
Hence in order for (9.11) to be obeyed, one must have that
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Fig. 7. The value of δE = N
4πvF

(E − e∞N) is plotted as a function of log(N) for two RG trajectories in the case 
n = 3 and k = 0.235 > 1

n+2 . The blue dots depict δE for the trajectory having L = L̄ = Sz = w = 0 and with s = 0. 
If log(N) � 4.5 the corresponding Bethe state is the ground state of the Hamiltonian H. For the second RG trajectory 
(crosses) the RG invariants L, L̄, Sz , w are also zero but s = i

2

(
(n + 2) k − 1

) = 7i
80 is a pure imaginary number. The 

dashed lines denote the limiting values δE =−0.0286 . . . for the RG trajectory with zero s and δE =−0.0337 . . . for the 
other one.

e−
i
2 δ = 0 for �m(s) > 0 (9.13)

e+
i
2 δ = 0 for �m(s) < 0 .

This condition, combined with the explicit formula for e
i
2 δ (9.3), yields that the limiting values 

s = limN→∞ b(N) with �m(s) �= 0 must be of the form

s =±i
(− pmin − 1

2 − a
)
, (9.14)

where pmin =min(p, p̄) and a may be any non-negative integer provided that

a : a ≥ 0 and − pmin − n+2
4 ≤ a <−pmin − 1

2 . (9.15)

In writing the above inequalities on a we’ve taken into account the restriction (8.7). Note that 
−pmin − 1

2 − a must be a positive number. Hence such values (9.14) are only possible if either 
p <− 1

2 , in which case p̄ > 1
2 or the other way around: p̄ <− 1

2 and p > 1
2 .

The RG trajectory for which b(N) tends to a pure imaginary number can be labeled by the 
limiting value of b(N), i.e., s from (9.14), (9.15). The latter should be treated as an RG invariant 
along with p and p̄. The scaling limit of the energy for such states is still described by eq. (9.10). 
It should be mentioned that when 1

n+2 < |k| < 1
2 , the Z2 doublet of the primary Bethe states 

with w = Sz = 0 and s = ± i
2

(
(n + 2) |k| − 1

)
turn out to be the lowest energy states of the 

lattice Hamiltonian H for N � 1. Their energy is lower than that of the primary Bethe state 
with w = Sz = s = 0, which is the ground state in the case |k| ≤ 1

n+2 . An example is provided in 
Fig. 7.

10. Summary of numerical work: basic conjectures

From the study of the primary Bethe states we’ve found that, with a proper understanding 
of the scaling limit, the RG trajectories with L = L̄ = 0 are labeled by p, p̄ and s. The last 
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RG invariant may take any real values s ∈ (−∞, +∞) as well as a finite discrete set of pure 
imaginary numbers given by eqs. (9.14) and (9.15). For the low energy Bethe states with L + L̄>

0 the same qualitative picture is expected to hold true as well. In particular, these trajectories may 
be assigned the number s = s limN→∞ b(N), subject to the constraint

−n

4
≤�m(s)≤ n

4
(10.1)

(to be compared with (8.7)). This way the conformal towers appearing in the scaling limit are 
labeled by p̄, p, as well as s, whose set of admissible values contains both a continuous and a 
discrete component. An explicit description of both these components is given in this section. 
Since our analysis involves many assumptions, which are mostly justified through the numerical 
work, we formulate our findings regarding the conformal towers as a series of conjectures.

Clearly, when L + L̄> 0, the RG invariants p, p̄ and s are insufficient for the unambiguous 
specialization of a RG trajectory or, equivalently, a state in the level subspace of the conformal 
tower. The latter is achieved by means of the two non-ordered sets

w = {wa}La=1 , w̄ = {w̄a}L̄a=1 , (10.2)

which play a rôle similar to v = {va}La=1 and v̄ = {v̄a}L̄a=1 in the homogeneous case. For the Z2

invariant six-vertex model, the algebraic systems satisfied by w and w̄ read, respectively, as

4nw2
a + 8is (n+ 1)wa − (n+ 2)

(
(n+ 1)2 − 4p2) (10.3a)

+ 4
L∑

b �=a

wa ( (n+ 2)2 w2
a − n(2n+ 5)wawb + n(n+ 1)w2

b )

(wa −wb)3 = 0

(a = 1, . . . ,L) ,

4n w̄2
a + 8is (n+ 1) w̄a − (n+ 2)

(
(n+ 1)2 − 4p̄2) (10.3b)

+ 4
L̄∑

b �=a

w̄a ( (n+ 2)2 w̄2
a − n(2n+ 5) w̄aw̄b + n(n+ 1) w̄2

b )

(w̄a − w̄b)3 = 0

(a = 1, . . . , L̄) .

It was conjectured in the work [15] that for fixed L and for generic values of p, n the number of 
solutions of (10.3a), up to the action of the permutation group, is equal to par2(L) – the number 
of bipartitions of L,

∞∑
L=0

par2(L)q
L = 1

(q,q)2∞
= 1+ 2q+ 5q2 + 10q3 + 20q4 + 36q5 + . . . . (10.4)

Here and below we use the notation

(z,q)∞ =
∞∏

m=0

(1− zqm) . (10.5)

In turn, the number of solutions of (10.3b) is expected to be par2(L̄).
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In the description of the scaling limit for the primary Bethe states a key rôle was played by 
eq. (9.11). This relation was extended to the RG trajectories with any values of the non-negative 
integers L and L̄ in the work [15]. All that is required is a modification of the phase shift δ, 
which is now a function of the sets w and w̄ solving eqs. (10.3), as well as p̄, p and s so that 
δ = δ(w̄, w | p̄, p, s). In that same work a formula was proposed, which expresses e

i
2 δ in terms 

of the connection coefficients of a certain ODE (see also the next section and, in particular, eq. 
(11.22) below). It reads as

e
i
2 δ(w̄,w|p̄,p,s) =Dp̄,s(w̄)Dp,s(w) , (10.6)

where

Dp,s(w)= 2
2i(n+2)s

n
�( 1

2 + p− is)

�( 1
2 + p+ is)

Ďp,s(w) (10.7)

and Ďp,s(w) are normalized to be one for L = 0. For general L, the explicit expression for 
Ďp,s(w) as a function of p, s and the set w was derived in ref. [47]. It’s quoted in formula (B.2)
in Appendix B.

10.1. Continuous spectrum

In general (9.11), regarded as an equation determining the large N dependence of b(N), has 
complex solutions. Nevertheless there exists a class of them such that limN→∞�m(b(N)

)= 0. 
For their description it is useful to take the logarithm of both sides of (9.11) and bring it to 
the form (9.2). The phase shift δ entering into that equation depends on s both explicitly and 
implicitly through the solution sets w, w̄ of (10.3). One should choose w, w̄ in such a way so 
that they are continuous functions of s. It will be argued later that for real p, p̄ the product 
Dp̄,s(w̄) Dp,s(w) in (10.6) is never zero or infinity for any s ∈ (−∞, +∞). Due to this δ can be 
made to be a uniformly bounded continuous function of real s.

Suppose that the term ∝ log(N) in the l.h.s. of eq. (9.2) dominates. Then an iterative solution 
yields

bm(N)� πm− 1
2 δ0

4 log
(
Ne

1
8 δ
′
0/(2N0)

) +O
(
(logN)−3) , N →∞ with m−fixed , (10.8)

where

δ0 = δ
∣∣
s=0 , δ′0 = ∂s δ

∣∣
s=0 . (10.9)

These last two numbers are typically complex so that �m(bm(N)
) = O

(
1/ log(N)

)
. The solu-

tions of this class can be labeled by the integer m and, in addition, obey the ordering

�e
(
bm(N)

)
<�e

(
bm′(N)

)
, for m< m′ (N � 1) . (10.10)

Let H(cont)
N |Sz be the set of low energy Bethe states in the sector with given Sz such that 

�m(b(N)
)→ 0 as N →∞. Appealing to numerical work, we expect that for fixed N � 1, 

and given L, L̄, w and w̄, the states from H(cont)
N |Sz can be labeled by the integer m, which is defined 

through eq. (9.2). This integer takes the values m = −mmax, −mmax + 2, . . . , mmax − 2, mmax
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Fig. 8. The figure depicts all the solutions of (9.11), regarded as an equation for b(N) with the correction term ignored, 
in the rectangle −0.6 < �m(b(N)

)
< 0.6 and −2.4 < �e

(
b(N)

)
< 2.4. The case being considered is N = 22 and L =

L̄ = 1, while the parameters are n = 3, k = −0.18, Sz = 1 and w = 0 so that p = 1
20 , p̄ = 19

20 . The algebraic system 
(10.3a) for L = 1 becomes a quadratic equation on w ≡w1, whose two solutions are given by w± =− n+1

2n

(
2i s±√C

)
, 

where C = n(n + 2) 
(
1 − 4p2

(n+1)2
− 4s2

n(n+2)

)
. Here the branch of the square root is taken so that 

√
C is positive when 

C > 0. In the case when C < 0, we set w± =−i n+1
2n

(
2s ∓√−C

)
. Similar formulae, with p substituted by p̄, are used 

to define w̄± which solve (10.3b) with L̄= 1. The phase shift entering into (9.11) may be any one of the four functions 
δ(w̄σ , wσ ′ ) ≡ δ(w̄σ , wσ ′ | p̄, p, s) with σ, σ ′ = ±1. The filled circles corresponding to the solutions of (9.11) with the 
same function δ are grouped together by the dashed line for visualization. Those from the top set represent solutions 
of (9.2) with δ = δ(w̄+, w+). The integer m entering into that equation is indicated by the label beside each circle. 
The lower set of connected filled circles corresponds to δ = δ(w̄−, w+), the next lowest (just below the real axis) to 
δ = δ(w̄+, w−), while for the bottom most set of circles δ = δ(w̄−, w−). The green boxes also depict solutions of (9.11)
with δ = δ(w̄+, w+) for the top box and δ = δ(w̄−, w−) for the bottom one. However, whereas all the filled circles 
correspond to the RG trajectories with limN→∞�m(b(N)

)= 0, for the green boxes b(N) tends to a non-vanishing pure 
imaginary value limN→∞�m(b(N)

) = ±i (p + 1
2 ) = ±0.55 i. For these solutions the definition of the integer m from 

(9.2) is ambiguous, since δ turns out to have a logarithmic branch point at s = ±i (p + 1
2 ). Finally, the empty circles 

represent the value of b(N) (8.6) that was obtained by means of direct diagonalization of the quasi-shift operator (8.4)
within the sector L = L̄ = 1, Sz = 1 and w = 0. Note that the states corresponding to m = −8 and m = 10 were not 
observed among the first 700 lowest energy states.

with some mmax = mmax(N) � N . For an illustration see Fig. 8. The asymptotic condition 
(10.8) implies that bm+1(N) − bm(N) ∝ 1/ log(N) so that the set {bm(N)} becomes densely dis-
tributed within the segment 

( − bmax(N), +bmax(N)
)
. As N tends to infinity we suppose that 

bmax(N) →+∞. All the above properties are analogous to those of the primary Bethe states 
with real b(N) discussed before, except that now �m(b(N)

)
vanishes only in the limit N →∞. 

This way we come to the conjecture:
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(I) For fixed N � 1 let �N (L̄,L)
p̄,p,s be the number of Bethe states from the set H(cont)

N |Sz with given 
L, L̄, p, p̄ such that �e

(
b(N)

)
lies in the interval (s, s +�s) ⊂ (− bmax(N), +bmax(N)

)
. 

Then

�N (L̄,L)
p̄,p,s ≈ ρ

(L̄,L)
p̄,p (s)�s (�s� 1) (10.11)

with the density

ρ
(L̄,L)
p̄,p (s)= par2(L)par2(L̄) ρ

(0,0)
p̄,p (s)+ (10.12)

1

2π i
∂s

(
par2(L) log

( ∏
w̄

L̄−fixed

Ďp̄,s(w̄)

)
+ par2(L̄) log

( ∏
w

L−fixed

Ďp,s(w)

))
.

The density of primary Bethe states ρ(0,0)
p̄,p (s) is quoted in eq. (9.8). Also the product in ∏

w Ďp,s(w) goes over all the par2(L) solutions w of eq. (10.3a) with fixed L and similarly 
for 
∏

w̄ Ďp̄,s(w̄).

In ref. [47] the following explicit formula for the product 
∏

w Ďp,s(w) was obtained:∏
w

L−fixed

Ďp,s(w)

=
L∏

m=1

∏
1≤j,k
jk≤m

[
(2p− 2is + 2k− j) (2p+ 2is − 2k+ j)

(2p+ 2is + 2k− j) (2p− 2is − 2k+ j)

]par1(m−kj)par1(L−m)

(10.13)

Since ρ(0,0)
p̄,p (s) =O

(
log(N)

)
, see eq. (9.8), Conjecture (I) implies that

�N (L̄,L)
p̄,p,s

�N (0,0)
p̄,p,s

= par2(L)par2(L̄)+O
(
1/ log(N)

)
. (10.14)

Like for the primary Bethe states, the scaling limit of any state from H(cont)
N |Sz can be defined by 

assigning the integer m an N dependence via eq. (9.9) so that s limN→∞ b(N) = s with some real 
s. Although H(cont)

N |Sz has been so far regarded merely as the formal set of all the low energy Bethe 
states with limN→∞�m(b(N)

) = 0, it is natural to introduce the structure of the linear space 

on H(cont)
N |Sz . Then, with the above understanding of the scaling limit, it follows that for given 

Sz = 0, 1, 2, . . . , the linear space

H(cont)
Sz = slim

N→∞H(cont)
N |Sz (10.15)

admits the decomposition:

H(cont)
Sz =

⊕
w∈Z

⊕∫
R

ds

[ ∞⊕
L,L̄=0

H(L̄,L)
p̄,p,s

]
, where

p = 1
2 Sz + 1

2 (n+ 2) (k+ w)

p̄ = 1
2 Sz − 1

2 (n+ 2) (k+ w)

(10.16)
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and each level subspace has dimensions

dim
(
H(L̄,L)

p̄,p,s

)= par2(L)par2(L̄) . (10.17)

In the scaling limit, the low energy Bethe states in H(cont)
N |Sz with given p̄, p, L̄, L and s form a 

basis in H(L̄,L)
p̄,p,s . For all of them the scaled energy is

E = slim
N→∞

N

4πvF

(
E − e∞N

)
= p2 + p̄2

n+ 2
+ 2s2

n
− 1

6
+ L+ L̄ . (10.18)

Thus, one can introduce the CFT Hamiltonian Ĥ ∈ End
(
H(cont)

Sz

)
such that any state from H(L̄,L)

p̄,p,s

is an eigenstate of this operator with energy given by the r.h.s. of (10.18). Symbolically,

Ĥ = slim
N→∞

N

4πvF

(
H− e∞N

)
. (10.19)

10.2. Discrete spectrum

The states from H(cont)
N |Sz do not cover all the low energy states in the lattice model. As we saw 

previously, there exist RG trajectories such that limN→∞ b(N) = s with �m(s) �= 0. The possible 
limiting values of b(N) are still determined by the condition (9.13), which already appeared in 
our discussion of the primary Bethe states. In view of eq. (10.6), for a RG trajectory �N labeled 
by L, L̄, p, p̄ as well as the solutions sets w, w̄ of the algebraic system (10.3), this condition can 
be rewritten as(

Dp̄,s(w̄)Dp,s(w)
)−1 = 0 for �m(s) > 0 (10.20)(

Dp̄,s(w̄)Dp,s(w)
)+1 = 0 for �m(s) < 0 .

The formula for Dp,s(w) follows from eq. (10.7) as well as (B.2) from Appendix B. Notice that 
the algebraic system (10.3) is invariant w.r.t. the substitution s �→ −s, w �→ −w and w̄ �→ −w̄. 
Furthermore it turns out that

Dp,s(w)= (Dp,−s(−w)
)−1

, Dp̄,s(w̄)= (Dp̄,−s(−w̄)
)−1

. (10.21)

Thus, without loss of generality, one can always focus on the domain �m(s) > 0 and consider 
only the first line of (10.20).

The classification of the possible values of non-real s appearing in the scaling limit reduces 
to a study of the condition (10.20), where w and w̄ are solution sets of the joint algebraic system 
(10.3) with given non-negative integers L and L̄. Due to eqs. (8.1), (10.1) the parameters p, p̄
and s will be restricted to the domain

�m(p)=�m(p̄)= 0 , p+ p̄ = Sz = 0,1,2, . . . ; 0 < �m(s)≤ n

4
, (10.22)

while n is a generic positive number. The position of the singularities of Dp,s(w) as a function 
of s can in principle be found using the explicit formulae (10.7) and (B.2). However since s
enters into the algebraic system (10.3a) that is solved by w, such an analysis of Dp,s(w) is rather 
difficult except for the first few levels. Nevertheless, one can make use of (10.13), which provides 
a simple expression for the product of Dp,s(w) over all the par2(L) solutions of (10.3a) with fixed 
L. It is possible to re-write it in the form
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∏
w

L−fixed

Dp,s(w)=
(

2
2i(n+2)s

n
�( 1

2 + p− is)

�( 1
2 + p+ is)

)par2(L) ∏
w

L−fixed

Ďp,s(w) , (10.23)

where ∏
w

L−fixed

Ďp,s(w)=
L−1∏
a=0

[( 1
2 + a + p− is

) ( 1
2 + a − p− is

)( 1
2 + a + p+ is

) ( 1
2 + a − p+ is

)]par2(L)−da(L)

. (10.24)

Here the generating function for the integers 0 ≤ da(L) ≤ par2(L) reads as

χa(q)≡ (q,q)−2∞
∞∑

m=0

(−1)m qma+m(m+1)
2 =

∞∑
L=0

da(L)q
L (10.25)

(for details see Appendix B). Assuming that all the singularities of Dp,s(w) are poles and that 
there is no mutual cancellation of poles and zeroes in the product 

∏
w Ďp,s(w) in the r.h.s. of 

(10.23) one concludes that the poles of Dp,s(w) may only be at s = ±i (p + 1
2 + a) with a

an integer. Provided some further assumptions are made (again see Appendix B), an analysis 
of eq. (10.23) together with the analogous formula for 

∏
w̄ Dp̄,s(w̄) leads one to the following 

conjectures:

(A) Let the parameters be such that 0 < �m(s) ≤ n
4 , �m(p) = �m(p̄) = 0 with p + p̄ = Sz =

0, 1, 2, . . . and n a generic positive number. For any sets w and w̄, the values of s at which 
(10.20) is satisfied must be of the form s = iqa, iq̄a with

qa =−p− 1
2 − a , q̄a =−p̄− 1

2 − a . (10.26)

Here a is an integer such that

−p− n+2
4 ≤ a <− 1

2 − p for s = iqa (10.27)

−p̄− n+2
4 ≤ a <− 1

2 − p̄ for s = iq̄a .

With the last restriction 0 < qa, ̄qa ≤ n
4 .

(B) There are par2(L) × par2(L̄) solutions of the joint system (10.3). Let N (L̄,L)
a and N̄ (L̄,L)

a

denote the number of them for which (10.20) is obeyed at s = iqa and s = iq̄a , respectively. 
Then

N (L̄,L)
a = dSz+a(L̄) da(L) , N̄ (L̄,L)

a = da(L̄) dSz+a(L) , (10.28)

where the integers da(L) are defined via (10.25).3

3 The generating function χa(q) obeys the identity

χa(q)+ χ−1−a(q)= (q,q)−2∞ ,

which in turn implies that

da(L)+ d−1−a(L)= par2(L) .

This makes the definition of 0 ≤ da(L) ≤ par2(L) (10.25) applicable for the case of negative a. Also there exists the 
following integral representation for χa(q):

χa(q)=
∮

|z|<1

dz

2π i

z−a−1

(z,q)∞(z−1 q,q)∞
.
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Since the condition (10.20) as well as the algebraic equations satisfied by w and w̄ are invariant 
w.r.t. the substitutions s �→ −s, w �→ −w and w̄ �→ −w̄, all the above follows through essentially 
unchanged for −n

4 ≤ �m(s) < 0. Thus, to take into account the full domain |�m(s)| ≤ n
4 , one 

just needs to replace s = iqa, iq̄a appearing in the above two conjectures with s =±iqa, ±iq̄a .
Let H(disc)

N |Sz be the set of low energy states such that in the N →∞ limit b(N) tends to a pure 
imaginary number ±iqa or ±iq̄a defined through eqs. (10.26) and (10.27). In our investigations 
of the low energy states of the lattice model we found only the RG trajectories belonging to 
H(disc)

N |Sz , or those with limN→∞�m(b(N)
) = 0 which are members of H(cont)

N |Sz . For instance, we 
performed a numerical check by explicitly constructing the RG trajectories for all the low energy 
states in the lattice model with N = 22 sites in the sector Sz = 1, w = 0 and L + L̄= 1. For those 
states having both �m(b(N)

)≥ 0 and �e
(
b(N)

)≥ 0, a plot of b as a function of N is provided 
in Fig. 9. A systematic exposition of our numerical work is given in sec. 18 below. This way we 
come to expect

(II) For any low energy Bethe state �N belonging to the sector with Sz = 0, 1, 2, 3 . . . ei-
ther limN→∞�m(b(N)

) = 0 and �N ∈ H(cont)
N |Sz , or else limN→∞�m(b(N)

) = s with 

s =±iqa, ±iq̄a (10.26), (10.27). In the latter case �N ∈H(disc)
N |Sz .

It should be kept in mind that eq. (10.20) is a necessary condition for the existence of an 
RG trajectory belonging to the set H(disc)

N |Sz . Establishing that such a trajectory actually exists can 
not be done based on the formal analysis of this equation alone. Moreover, one may imagine 
that there could be multiple RG trajectories, labeled by the identical sets w and w̄, whose b(N)

tends to the same pure imaginary value of s. Nevertheless in our numerical work we have always 
observed that for every w, w̄ and s =±iqa, ±iq̄a at which (10.20) is obeyed, there exists one and 
only one RG trajectory with limN→∞ b(N) = s.4 For instance, the right panel of Fig. 5 depicts 
the typical pattern of Bethe roots for �N with limN→∞ b(N) = −iq̄2. Among others, Fig. 9
presents numerical data for an RG trajectory with L = 0, L̄ = 1 and for which b(N) → iq−1. 
This leads us to the conjecture:

(III) For sufficiently large N and fixed L, L̄, p, p̄, the number of low energy Bethe states �N

such that limN→∞ b(N) = ±iqa is given by N (L̄,L)
a = dSz+a(L̄) da(L), where da(L) are 

defined through eq. (10.25). Similarly, there are N̄ (L̄,L)
a = da(L̄) dSz+a(L) trajectories with 

limN→∞ b(N) =±iq̄a .

It should be pointed out that the integers N (L̄,L)
a satisfy the condition

N (0,0)
a =

⎧⎨⎩1 for a ≥ 0

0 for a < 0
(10.29)

and in describing the conformal towers corresponding to pure imaginary s, it is necessary to 
distinguish the cases a ≥ 0 and a < 0. For this purpose we denote by H(disc,+)

N |Sz the set of RG 

4 Recall that in constructing an RG trajectory �N with pure imaginary s = limN→∞ b(N) the parity of N2 − Sz must 
be kept fixed. There exist the RG trajectories with even N2 − Sz and odd N2 − Sz which have the same value of s. 
However since for fixed parity of N − Sz only one of these trajectories is present, we do not count this as a degeneracy.
2
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Fig. 9. The plots present the real and imaginary parts of b(N), as functions of log(N), for twelve RG trajectories. The 
initial points of the trajectories correspond to all the low energy states in the sector Sz = 1, w = 0, L + L̄= 1 and with 
�e
(
b(N)

)≥ 0, �m(b(N)
)≥ 0 (see also Fig. 20). These were found from the numerical diagonalization of the Hamilto-

nian and quasi-shift operator for the spin chain of length N = 22 and with n = 3, k =−0.18. The points for N > 22 were 
obtained via the solution of the Bethe ansatz equations. The dashed lines represent b(N), which solves (9.11) regarded 
as an equation for b(N) with the correction terms ignored. For the first eleven trajectories limN→∞�m(b(N)

) = 0
(the different symbols crosses/circles and colours black/blue are used only to improve the readability of the plot). Note 
that for trajectories 9 and 11, b(N) is real for N ≤ 26 and forms a complex conjugated pair as N ≥ 30 (the trajectory 
with �m(b(N)

)
< 0 is not depicted for N ≥ 30). For the 12-th trajectory (green squares and dashed line) b(N) is pure 

imaginary for any N ≥ 22 and limN→∞ b(N) = 0.45 i.

trajectories with b(N) →±iqa, ±iq̄a and a ≥ 0, while H(disc,−)
N |Sz is the set of trajectories labeled 

by s =±iqa, ±iq̄a with a < 0. As before the sets H(disc,±)
N |Sz may be equipped with the structure 

of a linear space. Their scaling limits,

H(disc,±)
Sz = slim

N→∞H(disc,±)
N |Sz , (10.30)

are decomposed into a direct sum over finite dimensional subspaces, similar to eq. (10.16), but 
with the direct integral replaced by a sum over the admissible values of the RG invariant s =
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±iqa, ±iq̄a . We’ll postpone a detailed account of this decomposition to sec. 12 as it requires a 
discussion of the scaling limit of the eigenvalues of the lattice operators A±(ζ ).

11. Scaling limit of A±(ζ )

In ref. [15] it was proposed that the scaling limit of the eigenvalues of A±(ζ ) for the low 
energy Bethe states is given in terms of the connection coefficients of a certain ODE. Let A±(ζ )
be the eigenvalue corresponding to �N , labeled by the full set of RG invariants p, p̄, w, w̄ and 
s. Then

slim
N→∞
b(N)→s

G(N/2)(−μ2 | 2
n+2

)
A±
(

i
(
N/(2N0)

)− n
n+2 μ

)=D±(μ |w,p, s) , (11.1)

where G(N)(E | g) and N0 are given in eqs. (5.48) and (9.5), respectively. The functions 
D±(μ | w, p, s) coincide with the connection coefficients for the linear differential equation:[

− d2

dz2 +
p2 − 1

4

z2 + 2is

z
+ 1+

L∑
a=1

(
2

(z−wa)2 +
n

z(z−wa)

)
+μ−2−n zn

]
�= 0 .

(11.2)

The fact that the set w≡ {wa}La=1 satisfies the algebraic system (10.3a) ensures that any solution 
of this ODE is monodromy free in the vicinity of each apparent singularity at z=wa . To specify 
the connection coefficients introduce the two basis solutions, �±p(z), of (11.2) such that

�±p(z)→ 1√
π

(n+2)∓
2p
n+2− 1

2 μ∓p− 1
2 �(∓ 2p

n+2 ) z
1
2±p as z→ 0

(
0 <�e(p) < 1

)
.

(11.3)

For large z the term μ−2−n zn in (11.2) becomes dominant and one can define another solution 
through the z→+∞ asymptotic (to be compared with (5.51))

�(z)�
( z

μ

)− n
4

exp

[
− 2

n+ 2

( z

μ

) n
2+1

2F1
(− 1

2 ,−n+2
2n , n−2

2n

∣∣−μn+2 z−n
) + o(1)

]
.

(11.4)

Here we make the technical assumption that μ > 0 and n �= 2
2k−1 with k = 1, 2, . . . . The connec-

tion coefficients D±(μ | w, p, s) are given by

D±(μ |w,p, s)=∓μ sin( 2πp
n+2 )W [�±p,� ] (11.5)

with W [ �±p, � ] =�∂z�±p −�±p∂z� being the Wronskian. The overall factor in (11.5) has 
been chosen so that, for generic values of p,

D±(0 |w,p, s)= 1 . (11.6)

It can be shown that when n > 0 and p is a generic complex number, D±(μ | w, p, s) are entire 
functions of μ.

Unfortunately the formula (11.1), where the r.h.s. coincides with the connection coefficient 
(11.5), at the current moment remains a conjecture. Below we’ll discuss some possible ways of 
checking this relation. However, before doing so let us explain at the formal level the link between 
the ODE (11.2), (10.3a), and the one appearing in the homogeneous case (5.32)-(5.34). When L
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is even and s = 0, the algebraic system (10.3a) admits solutions such that wL+1−a =−wa . Then 
the substitution

s �→ 0 , wa =−wL+1−a �→ i
√

va
α(α+1) , n �→ − 2α

α+1 , p2 �→ 4
α+1 P 2 (11.7)

brings (10.3a) to the form (5.34). With these specializations and upon the change of variables 
�(z) �→ x

α
2 �(x), z �→ xα+1

α+1 , the ODE (11.2) is transformed to the one given by (5.32), (5.33)

with E = (1 + α)
2α

1+α μ−
2

1+α .
Expanding both sides of the relation (11.1) in a Taylor series in μ leads to an infinite set of 

sum rules for the Bethe roots. In particular, the series expansion of A+(ζ ) involves the finite 
sums

h
(N)
j = j−1

N
2 −Sz∑
m=1

(ζm)−j (11.8)

computed on the corresponding RG trajectory �N . On the other hand, in view of eq. (11.6) and 
that the connection coefficients are entire functions of μ, one has

logD±(μ |w,p, s)=−
∞∑
j=1

J
(±)
j (w,p, s)λj . (11.9)

Here, for future convenience, we swap μ for the parameter λ defined via the relation

μ=−i (n+ 2)−
2

n+2 �2(− 1
n+2

)
λ . (11.10)

Through the perturbation theory for the differential equation (11.2), one can in principle derive 
an explicit expression for the expansion coefficients J (±)

j (w, p, s). The computations turn out to 
be quite cumbersome, however, for the case L = 0 when there are no apparent singularities, the 
first two J (vac)

j (p, s) ≡ J
(+)
j (w, p, s)

∣∣
L=0 are given by

J
(vac)
1 (p, s)=−2s f1

( p
n+2 ,

1
n+2

)
(11.11)

J
(vac)
2 (p, s)= 2

4
n+2

π�2(− 1
n+2 )

�2( 1
2 − 1

n+2 )
f1
( p
n+2 ,

2
n+2

)+ 4s2 f2
( p
n+2 ,

1
n+2

)
,

where the functions fj are defined in eqs. (5.22), (5.25). The analogous expression for 
J

(−)
1,2 (w, p, s)

∣∣
L=0 may be obtained from (11.11) through the substitution p →−p. Note that 

for general j = 1, 2, . . . the coefficients J (vac)
j (p, s) turn out to be polynomials in s of order j . A 

quick inspection of (11.11) as well as the formula (5.22) for f1 shows that J (vac)
2 (p, s) contains 

a simple pole when 2
n+2 is equal to 1

2 . In fact, similar to the homogeneous case, the coefficients 

J
(±)
2k (w, p, s) with k = 1, 2, 3, . . . possess a simple pole if 2

n+2 = 1 − 1
2k . In this case one can 

define the regularized coefficient through the subtraction

J
(±,reg)
2k

= lim
2

n+2→1− 1
2k

[
J

(±)
2k +

(
�2(− 1

n+2 )�( 1
2k )

(n+ 2)�(1− 2
n+2 )

)2k �(− 1
2 + k)

2
√
π k �(1+ k)

1
2

n+2 − 1+ 1
2k

]
.

(11.12)
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Formulae (11.1) and (11.9) imply the infinite set of relations for h(N)
j (11.8):

slim
N→∞
b(N)→s

N− jn
n+2 h

(N)
j =

[
(2N0)

n
n+2 (n+ 2)−

2
n+2 �2(− 1

n+2

)]−j

Jj (w,p, s) , (11.13)

which hold true for any odd j = 1, 3, . . . and for all even j > 1 + 2
n

. When j is even and j < 1 + 2
n

(11.13) should be replaced by

slim
N→∞
b(N)→s

N− jn
n+2

[
h
(N)
j + (−1)

j
2+1 N

2j cos( πj
n+2 )

]

=
[
(2N0)

n
n+2 (n+ 2)−

2
n+2 �2(− 1

n+2

)]−j

Jj (w,p, s) . (11.14)

Finally in the case n = 2
2k−1

slim
N→∞
b(N)→s

[
N−1 h

(N)
2k − 1

2πk
log(NBk/2)

]

= (2N0)
−1
[
(n+ 2)−

2
n+2 �2(− 1

n+2

)]−2k
J2k(w,p, s) . (11.15)

Here Bk are the constants that enter in to the function G(N)(E | g) (5.48), which appears in the 
relation (11.1). The first two of them are given by eqs. (5.30) and (5.31).

We performed extensive numerical checks of (11.13)-(11.15) considering both the Bethe 
states belonging to the space H(cont)

N |Sz and H(disc,±)
N |Sz , where the RG invariant s is real and pure 

imaginary, respectively. Some results concerning the primary Bethe states for which L = L̄= 0
are shown in Fig. 10.

It is worth mentioning that formula (11.1) recovers the universal properties of the eigenvalues 
A±(ζ ) in the vicinity of ζ = 0. By organizing the scaling limit differently one can describe the 
universal behaviour of A±(ζ ) near the point ζ =∞. The latter involves the connection coeffi-
cients for an ODE similar to (11.2), but with p and {wa}La=1 replaced by their barred counterparts 
p̄ and {w̄a}L̄a=1, respectively. All the above could, of course, be repeated for this case as well. 
In the scaling limit the low energy Bethe states take the form ψ̄ p̄,s (w̄) ⊗ ψp,s(w), where the 
chiral states ψ̄ p̄,s (w̄) and ψp,s(w) are specified by the connection coefficients D±(μ | w̄, p̄, s)
and D±(μ | w, p, s), respectively.

Apart from the sum rules there is another way of checking the key relation (11.1) (and its 
barred counterpart), which turns out to be more convenient for the case of the non-primary 
Bethe states. It involves the coefficients, which occur in the large μ asymptotic expansion of 
D±(μ | w, p, s). For D+ ≡D+(μ | w, p, s), the latter takes the form

D+ � C(±)
p,s (w)

(±μ
)± i(n+2)s

n
−p exp

(
N0

cos(π
n
)

(±μ
) n+2

n + o(1)

)
for �e(±μ) > 0 .

(11.16)

At the special values n = 2 with k = 1, 2, . . . :
2k−1

47



V.V. Bazhanov, G.A. Kotousov, S.M. Koval et al. Nuclear Physics B 965 (2021) 115337
Fig. 10. The sums h(N)
1 and h(N,reg)

2 ≡ h
(N)
2 + N

4 cos( 2π
n+2 )

were computed by solving the Bethe ansatz equations with 

the value of the parameters n = 3
2 , k = 1

10 and Sz = 0. The solution sets were taken to be the ones corresponding to the 
primary Bethe states, which were discussed at the beginning of sec. 9. For the black dots, the integer m =M− −M+ was 
set to m = 2, while N = 100, 200, 400, 800. For the crosses m = 3 and N = 102, 202, 402, 802, 1602. The numerical data 
is plotted versus b(N). The latter was computed from the Bethe roots via eqs. (8.5) and (8.6). The dashed blue lines come 
from the predictions (11.13), (11.14) with the vacuum eigenvalues J (vac)

1,2 (p, s) calculated through eq. (11.11). Note that 
the relative error between the numerical data and the analytical formula is of the order of 10−4 − 10−6.

D+ � C(±)
p,s (w)

(±μ
)±2iks−p exp

(
(−1)k �( 1

2 + k)√
π �(1+ k)

μ2k ( log(±μ)+ 1
2 ck
)+ o(1)

)
(11.17)

for �e(±μ) > 0 and ck are the same as in eq. (5.43). Note that the large μ behaviour of 
D−(μ | w, p, s) can be obtained from that of D+ by means of the substitution p �→ −p. It is 
possible to compute the coefficients C(±)

p,s (w) explicitly through an analysis of the ODE (11.2). 
In particular, when there are no apparent singularities,

C(0,±)
p,s =

√
2π

n+ 2
2−p± i(n+2)s

n (n+ 2)−
2p
n+2

�(1+ 2p)

�(1+ 2p
n+2 )�( 1

2 + p± is)
. (11.18)

For a general set w satisfying the algebraic system (10.3), the expression for C(±)
p,s (w) is provided 

by eq. (3.7) in ref. [47].
The coefficients C(±)

p,s (w), and the similarly defined C(±)
p̄,s (w̄), occur in the large N asymp-

totic formulae for the products over the Bethe roots which resemble the relation (5.66) for the 
homogeneous case:

M∏
m=1

q
(
ζm ∓ iq−1) (ζ−1

m ∓ iq−1)� e±
2πs
n C

(±)
p̄,s (w̄)C(±)

p,s (w)

(
N

2N0

)− n(p̄+p)
n+2 ±2is ∣∣∣∣

s=b(N)

×
( 4n

n+ 2

)N/2 (
1+ o(1)

)
(11.19)

as well as

M∏
ζ 2
m � C

(+)
p̄,s (w̄)C

(−)
p̄,s (w̄)

C
(+)

(w)C
(−)

(w)

∣∣∣∣
s=b(N)

(
N

2N0

) 2n(p−p̄)
n+2 (

1+ o(1)
)
. (11.20)
m=1 p,s p,s
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Note that in these formulae we substitute the RG invariant s by the “running coupling” b(N) =
n

4π log(B) with B being the eigenvalue of the quasi shift operator (8.5). This significantly im-
proves their accuracy.

There are many consequences of (11.19) and (11.20). An important one follows from taking 
the ratio of the asymptotic relation (11.19) corresponding to “+” with that corresponding to “−”. 
Keeping in mind that the eigenvalues of the quasi-shift operator are given by (8.5), it is easy to 
see that the l.h.s. of the ratio coincides with (−1)

N
2 −Sz

B . Then since B = e
4π
n
b(N) one finds(

N

2N0

)4is C
(+)
p̄,s (w̄)C

(+)
p,s (w)

C
(−)
p̄,s (w̄)C

(−)
p,s (w)

∣∣∣∣
s=b(N)

� (−1)
N
2 −Sz(

1+ o(1)
)
. (11.21)

Upon the identification

Dp,s(w)= C
(+)
p,s (w)

C
(−)
p,s (w)

, Dp̄,s(w̄)= C
(+)
p̄,s (w̄)

C
(−)
p̄,s (w̄)

(11.22)

this is nothing but the asymptotic formula (9.11), where e
i
2 δ =Dp,s(w) Dp̄,s(w̄).

Another important outcome of the relations (11.19) and (11.20) involves the products

Rp,s(w)= C(+)
p,s (w)C(−)

p,s (w) , Rp̄,s(w̄)= C
(+)
p̄,s (w̄)C

(−)
p̄,s (w̄) . (11.23)

Namely,

M∏
m=1

(
ζ−2
m + q2)(ζ−2

m + q−2)� (Rp,s(w)
)2 ∣∣∣

s=b(N)

(
N

2N0

)− 4np
n+2
(

4n

n+ 2

)N (
1+ o(1)

)
(11.24)

and

M∏
m=1

(
ζ+2
m + q2)(ζ+2

m + q−2)� (Rp̄,s(w̄)
)2 ∣∣∣

s=b(N)

(
N

2N0

)− 4np̄
n+2
(

4n

n+ 2

)N (
1+ o(1)

)
.

(11.25)

The advantage of (11.24) compared with the sum rules (11.13)-(11.15) is that, contrary to the ex-
pansion coefficients J (±)

j (w, p, s) from the Taylor series (11.9), there exists a closed expression 
for Rp,s(w) in terms of the set w. In the case with no apparent singularities, eq. (11.18) implies 
that

R(0)
p,s = 21+2p (n+ 2)−1− 4p

n+2

[
�(1+ p)

�(1+ 2p
n+2 )

]2 �2( 1
2 + p)

�( 1
2 + p+ is)�( 1

2 + p− is)
. (11.26)

For L ≥ 0,

Rp,s(w)=R(0)
p,s Řp,s(w) (11.27)

and eq. (B.4) in Appendix B gives Řp,s(w) in terms of p, s and w (the latter, up to notation, 
coincides with (3.11) from ref. [47]).

It should be pointed out that for the RG trajectories with pure imaginary s, the large N
asymptotic formulae (11.19), (11.20) as well as their derivatives require some special attention. 
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Fig. 11. Numerical data for an RG trajectory �N with L = L̄= Sz = w = 0 and labeled by pure imaginary s = i (−p −
1
2 ) = i

4 is used to illustrate the asymptotic formula (11.29). The parameters have been set to be n = 3, k = − 3
10 . 

Depicted by the crosses is the r.h.s. of (11.29), calculated from the solution of the Bethe ansatz equations corresponding 
to �N and then divided by the leading and subleading large N asymptotic that is given in the second line of that 
relation, i.e., 

(
N

2N0

)− 4np
n+2−8|s| ( 4n

n+2

)−N ∏
(ζ−2

m + q2)(ζ−2
m + q−2). The predicted limiting value of the last quantity, 

2−
1
3 5−

4
5 π3/ �4( 7

10 ) = 2.392 . . . , is represented by the solid line. The dashed line corresponds to 
(

N
2N0

)−8|b| (
R

(0)
p,b

)2, 

where b= b(N) was obtained by solving eq. (9.11) with the correction terms ignored, σ =+1 and e
i
2 δ is given by (9.3).

As an illustration, let’s consider (11.24) applied to such a trajectory with L = L̄ = 0. In this 
case the admissible values of s are described by eqs. (9.14), (9.15). When p < − 1

2 this gives 
s = ±i (−p − 1

2 − a) and a is a non-negative integer such that −p − n+2
4 ≤ a < −p − 1

2 . At 

these values of s the vacuum eigenvalue R(0)
p,s vanishes. Nevertheless (11.24) continues to hold 

if one follows the prescription of replacing s by b(N) computed from the Bethe roots for �N . 
Relation (9.11) with e

i
2 δ as in (9.3) implies that

b(N)=± i

[
qa + σ (−1)a

a! (Sz + a)! 2−
4
n
(n+2)qa

�(p̄− p− a)

�(1+ 2p+ a)

(
N

2N0

)−4qa

+ o
(
N−4qa

)]
,

(11.28)

where σ = (−1)
N
2 −Sz

. Then one finds

M∏
m=1

(
ζ−2
m + q2)(ζ−2

m + q−2)
�
[

2− 4
n
(n+2)qa �(p̄− p− a)

(n+ 2)1+ 4p
n+2 (Sz + a)!

]2 [ 2
1
2+p �(1+ p)�( 1

2 + p)

�(1+ 2p
n+2 )�(1+ a + 2p)

]4

×
(

N

2N0

)− 4np
n+2−8qa( 4n

n+ 2

)N (
1+ o(1)

) (
L= L̄= 0, s =±iqa

)
. (11.29)

In Fig. 11 the prediction coming from the last relation is compared with the numerical data.
A second comment regarding (11.19), (11.20) concerns the remainder term denoted by o(1). 

It is expected to be a double series of the form 
∑

i,j Ci,j N
−i−jn. The expansion coefficients Ci,j

may become singular when s belongs to the discrete set of admissible values, s = ±iqa, ±iq̄a , 
which results in a change of the leading large N behaviour of the products over the Bethe roots.
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12. Conformal towers for pure imaginary s

The low energy Bethe states characterized by pure imaginary values of the RG invariant s =
σ iqa, σ iq̄a (σ is a sign factor) were split into the two sectors H(disc,+)

N |Sz and H(disc,−)
N |Sz according 

to whether a was a non-negative or a negative integer. The reason for doing so was motivated 
by the following observation. Together with the integer a the states are labeled by the pair of 
non-negative integers (L̄, L). For the case of H(disc,+)

Sz = slimN→∞H(disc,+)
N |Sz there exists at least 

one state for any value of L and L̄. Contrary to this, there are no states belonging to H(disc,−)
Sz

at the levels L = 0, 1, 2, . . . , |a| − 1 for s = σ iqa and L̄ = 0, 1, 2, . . . , |a| − 1 when s = σ iq̄a . 
To be more precise, introduce the notation H(L̄,L,±)

p̄,p,σ iqa
and H(L̄,L,±)

p̄,p,σ iq̄a
, for the level subspaces of 

the corresponding conformal towers belonging to H(disc,±)
Sz . According to conjecture (III) from 

sec. 10.2 the dimensions of these level subspaces are given by N (L̄,L)
a = dSz+a(L̄) da(L) and 

N̄ (L̄,L)
a = da(L̄) dSz+a(L), respectively. It follows from the definition (10.25) of the integers 

da(L) that dim
(
H(L̄,L,+)

p̄,p,σ iqa

)
is always greater or equal to one, while

dim
(
H(L̄,L,−)

p̄,p,σ iqa

)=
⎧⎪⎨⎪⎩

0 for L< |a| or L̄< |a| − Sz

1 for L= |a| and L̄=max(0, |a| − Sz)

≥ 1 otherwise

(a =−1,−2, . . .) .

(12.1)

For dim
(
H(L̄,L,−)

p̄,p,σ iq̄a

)
similar conditions hold true with L and L̄ interchanged.

To avoid excessive technical details and cumbersome notation, let’s first focus on the confor-
mal tower with s = +iqa and |a| ≤ Sz. Then the lowest energy state would occur at L = |a|, 
L̄ = 0 and be characterized by the set w solving (10.3a) and subject to the extra constraint (
Dp,iqa (w)

)−1 = 0 (see eq. (10.20)). Since the space H(0,|a|,−)
p̄,p,iqa

is one dimensional, these con-

ditions must uniquely determine w = {wj }|a|j=1. It turns out to be possible to give an explicit 
description of this set by showing that the |a| numbers 2wj are roots of the generalized Laguerre 
polynomial5

L
(−2p−n−2)
|a| (2wj)= 0 . (12.2)

As will be explained shortly, the connection coefficients of the ODE (11.2) with the apparent 
singularities as in (12.2) coincide with the connection coefficients of a similar ODE having no 
apparent singularities:

D±(μ |w,p, iqa)=D
(vac)
± (μ |p′, iq′a) , (12.3)

where

p′ = p+ 1
2 (n+ 2) , q′a = qa − n

2 . (12.4)

5 Recall the definition of the generalized Laguerre polynomials:

L
(α)
m (x)= x−α ex

m!
dm

dxm

(
e−x xm+α

)
.
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This suggests that the lowest energy states in the conformal towers from H(disc,−)
Sz can be de-

scribed by the differential equations without apparent singularities, similar to the primary states 
of the conformal towers from H(disc,+)

Sz .
Relation (12.3) between the connection coefficients and its generalization arises from a simple 

relation for the corresponding ODEs. Let’s consider the case where the level L, or equivalently 
the number of apparent singularities, is greater or equal to |a|, i.e., can be written in the form 
L = |a| +L′ with L′ a non-negative integer. If � is a solution of the ODE (11.2) with s = iqa and 
a < 0, one can show via a straightforward computation that the function

�′ = z−
n
2

(
d

dz
− 1− p+ 1

2

z
+

L∑
j=1

1

z−wj

−
L′∑

j=1

1

z−w′
j

)
� (12.5)

satisfies the differential equation[
− d2

dz2 +
(p′)2 − 1

4

z2 + 2is′

z
+ 1+

L′∑
j=1

(
2

(z−w′
j )

2 +
n

z (z−w′
j )

)
+μ−2−n zn

]
�′ = 0 .

(12.6)

Here s′ = iq′a (12.4), and the sets w = {wj }Lj=1, w′ = {w′
j }L

′
j=1 must obey the coupled algebraic 

system

1+ n+ 2p

2wl

+ 1−
L∑

j �=l

1

wl −wj

+
L′∑

j=1

1

wl −w′
j

= 0 , l = 1,2, . . .L

(12.7)
1+ 2p

2w′
l

+ 1+
L′∑
j �=l

1

w′
l −w′

j

−
L∑

j=1

1

w′
l −wj

= 0 , l = 1,2, . . .L′ .

In the case L′ = 0 the above equations simplify to

1+ n+ 2p

2wl

+ 1−
L∑

j �=l

1

wl −wj

= 0 , l = 1,2, . . .L . (12.8)

It turns out that their solution is unique (up to permutation of the wj ) and that 2wj coincide 
with the roots of the generalized Laguerre polynomial as prescribed by (12.2). For L′ > 0 the 
rigorous analysis of the solutions of the algebraic system (12.7) is an interesting mathematical 
problem. However, it would take us well beyond the original aim of describing the states in the 
level subspaces H(L̄,L,−)

p̄,p,iqa
. Our intuition, supported by a numerical study, leads us to the following 

picture. If the set w obeys (10.3a) as well as the extra condition 
(
Dp,iqa (w)

)−1 = 0, then (12.7)
reduces to just L′ independent equations that uniquely determine the set w′, which satisfies

4n (w′
a)

2 + 8is′ (n+ 1)w′
a − (n+ 2)

(
(n+ 1)2 − 4(p′)2) (12.9)

+ 4
L′∑

b �=a

w′
a ( (n+ 2)2 (w′

a)
2 − n(2n+ 5)w′

aw
′
b + n(n+ 1) (w′

b)
2 )

(w′
a −w′

b)
3 = 0

along with 
(
Dp′,iq′a (w

′)
)−1 = 0. It is clear from (12.5) that the functions ψ and z

n
2 ψ ′ possess the 

same monodromy properties and hence
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D±(μ |w,p, iqa)=D±(μ |w′,p′, iq′a) (12.10)

for any two sets w, w′ satisfying (12.7).
We are now in a position to describe the conformal towers from H(disc,+)

Sz and H(disc,−)
Sz in 

a uniform way. For the case of H(disc,+)
Sz each conformal tower is decomposed into the level 

subspaces, which themselves can be expressed as a tensor product of the form

H(L̄,L,+)
p̄,p,σ iqa

= V̄(L̄)
p̄,σ iqa

⊗ V(L)
p,σ iqa

, H(L̄,L,+)
p̄,p,σ iq̄a

= V̄(L̄)
p̄,σ iq̄a

⊗ V(L)
p,σ iq̄a

. (12.11)

Here σ =± while qa =−p − 1
2 − a, q̄a =−p̄ − 1

2 − a and a is a non-negative integer subject 
to the restrictions (10.27) which ensure that

0 < qa, q̄a ≤ n
4 . (12.12)

The chiral components in (12.11) are finite dimensional linear spaces whose dimensions are 
given by

dim
(
V̄(L̄)
p̄,σ iqa

)= dSz+a(L̄) , dim
(
V(L)
p,σ iqa

)= da(L)

dim
(
V̄(L̄)
p̄,σ iq̄a

)= da(L̄) , dim
(
V(L)
p,σ iq̄a

)= dSz+a(L) .

(12.13)

To describe the level subspaces of the conformal towers from H(disc,−)
Sz one should distinguish 

the two cases s = σ iqa and s = σ iq̄a . When s = σ iqa it is useful to introduce the notation p+, 
p̄+, L+, L̄+ and q′a as

p+ = p+ 1
2 (n+ 2) , L+ = L− |a|

p̄+ = p̄− 1
2 (n+ 2) , L̄+ = L̄− |a| + Sz

and q′a = qa − n
2 ,

(12.14)

where a is negative and obeys the same constraints (10.27). Then the analogue of (12.11) is given 
by

H(L̄,L,−)
p̄,p,σ iqa

=
⎧⎨⎩V̄

(L̄)
p̄,σ iqa

⊗ V(L+)

p+,σ iq′a
for |a| ≤ Sz

V̄(L̄+)

p̄+,σ iq′a
⊗ V(L+)

p+,σ iq′a
for |a|> Sz

. (12.15)

Here the dimension of each chiral component reads as

dim
(
V̄(L̄)
p̄,σ iqa

)= d|Sz+a|(L̄) , dim
(
V̄(L̄+)

p̄+,σ iq′a
)= d|Sz+a|(L̄+)

dim
(
V(L+)

p+,σ iq̄′a
)= d|a|(L+) . (12.16)

For the case s = σ iq̄a we define p−, p̄−, L−, L̄− and q̄′a , through the formulae

p− = p− 1
2 (n+ 2) , L− = L− |a| + Sz

p̄− = p̄+ 1
2 (n+ 2) , L̄− = L̄− |a|

and q̄′a = q̄a − n
2 .

(12.17)

With this notation, the decomposition of the level subspace looks similar to that for s = σ iqa . 
Namely,
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H(L̄,L,−)
p̄,p,σ iq̄a

=
⎧⎨⎩V̄

(L̄−)

p̄−,σ iq̄′a
⊗ V(L)

p,σ iq̄a
for |a| ≤ Sz

V̄(L̄−)

p̄−,σ iq̄′a
⊗ V(L−)

p−,σ iq̄′a
for |a|> Sz

(12.18)

and the dimensions of the chiral subspaces are given by

dim
(
V(L)
p,σ iq̄a

)= d|Sz+a|(L) , dim
(
V(L−)

p−,σ iq̄′a
)= d|Sz+a|(L−)

dim
(
V̄(L̄−)

p̄−,σ iq̄′a
)= d|a|(L̄−) . (12.19)

The following comment is in order here. It is simple to check the identities

p2

n+ 2
− q2

a

n
+ L= (p+)2

n+ 2
− (q′a)2

n
+ L+ ,

p̄2

n+ 2
− q2

a

n
+ L̄= (p̄+)2

n+ 2
− (q′a)2

n
+ L̄+ ,

(12.20)

where p+, p̄+, L+, L̄+ and q′a are given in (12.14). This makes it possible to re-write the scaled 

energy, defined by eq. (10.18), for the level subspaces H(L̄,L,−)
p̄,p,σ iqa

in terms of the numbers labeling 

the chiral components V̄ and V in the r.h.s. of eq. (12.15). For example, for the case s = σ iqa
and |a| > Sz one has

E = (p+)2 + (p̄+)2

n+ 2
− 2(q′a)2

n
− 1

6
+ L+ + L̄+ . (12.21)

The same can be done for H(L̄,L,−)
p̄,p,σ iq̄a

using the similar relations to (12.20) involving p−, p̄−, L−, 
L̄− and q̄′a . It should be emphasized that q′a and q̄′a do not lie in the strip from (12.12), but rather

−n
2 < q′a, q̄′a ≤−n

4 . (12.22)

As a result s′ = ±iq′a, ±iq̄′a does not obey the constraint (10.1).

13. Scaling limit of the lattice operators A±(ζ )

The key rôle in the description of the scaling limit of the Z2 invariant inhomogeneous six-
vertex model is played by the relation (11.1). Much of our numerical work, which was outlined 
in sec. 11, was devoted to its verification. Accepting that (11.1) holds true, it can be interpreted 
as an operator relation

slim
N→∞
b(N)→s

G(N/2)(−μ2 | 2
n+2

)
A±
(

i
(
N/(2N0)

)− n
n+2 μ

)=a±(λ) (13.1)

with a±(λ) acting invariantly in the right chiral component of the level subspaces of the confor-
mal towers. In view of (11.9), the operators loga±(λ) possess the series expansion

loga±(λ)=−
∞∑
j=1

J(±)
j λj (13.2)

and the eigenvalues of J(±)
j coincide with J (±)

j (w, p, s). Recall that the parameters λ and μ
are proportional to each other as in eq. (11.10). The dimensions of the level subspaces of the 
conformal towers have already been described in sections 10.1 and 12. In particular (10.17)
suggests that for real s,
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H(L̄,L)
p̄,p,s = V̄(L̄)

p̄,s ⊗ V(L)
p,s with dim

(
V(L)
p,s

)= par2(L) , dim
(
V̄(L̄)
p̄,s

)= par2(L̄) .

(13.3)

As this is simpler than for the case of pure imaginary s, where the corresponding dimensions are 
given by eqs. (12.13), (12.16) and (12.19), we start by describing the operators a±(λ) : V(L)

p,s �→
V(L)
p,s with s being a real number.

13.1. The case of real s

For real s the dimensions of V(L)
p,s coincide with those of the level subspace of the Fock space 

generated by two independent copies of the Heisenberg algebra. Hence one can identify them as 
linear spaces:

V(L)
p,s =F (L)

P (s ∈R) . (13.4)

We take the commutation relations for the Heisenberg algebra generators to be

[am,aj ] = m
2 δm+j,0 , [bm,bj ] = m

2 δm+j,0 , [am,bj ] = 0 , (13.5)

while P stands for the highest weight, i.e., the values of a0 and b0 in FP. The dimensions of F (L)
P

of course do not depend on the value of the highest weight. We’ll set

P= ( p√
n+2

, s√
n

)
. (13.6)

The construction of the operators a±(λ) parallels that for the homogeneous case. Formulae 
(5.9), (5.13) remain essentially unchanged, but the vertex operators are now given by

V+(u)= e
+ 2iϕ√

n+2 (u) , V−(u)=−2
√
n ∂ϑ e

− 2iϕ√
n+2 (u) . (13.7)

Here ϕ(u) is the same as in eq. (5.7) and the additional chiral field

∂ϑ(u)=
∞∑

m=−∞
bm e−imu (13.8)

involves the Heisenberg generators {bm} (13.5). Then it turns out that

a±(λ)= Trρ±
[

e
± iπ√

n+2
a0H

L±(λ)
]

Trρ±
[

e
± 2iπ√

n+2
a0H ] (13.9)

with

L±(λ)= e
± iπ√

n+2
a0 H ←

P exp

( 2π∫
0

du
(
V−(u) q±

H
2 E± + λV+(u) q∓

H
2 E∓

))
. (13.10)

As before E± and H stand for the generators of the q-oscillator algebra (5.11) and ρ± are rep-
resentations of this algebra – the same as in (5.13). Since a±(0) = 1 the formal power series 
(13.9) can be rewritten as the Taylor series (13.2) for loga±(λ). The expansion coefficients J(±)

j

involve the ordered multifold integrals. Like in the homogeneous case, expressing these in terms 
of the contour integrals makes the operators J(±) well defined for any n > 0 except n = 2
j 2k−1
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with k = 1, 2, . . . . In the latter case J(±)
2k requires regularization and we define J(±,reg)

2k through a 
subtraction of the counterterm of the unit operator, similar to eq. (5.29).

Following the lines of ref. [32] one can prove that a±(λ), defined as above, act invariantly in 
F (L)

P and form a commuting family[
a±(λ), a±(λ′)

]= 0 . (13.11)

In addition, it is possible to derive a set of operator relations for a±(λ), which in turn become 
functional relations for their eigenvalues. The latter are identical to those satisfied by the connec-
tion coefficients, which follow from the basic properties of the ODE (11.2). Among these is the 
so-called quantum Wronskian relation

q2p D+(q+1μ)D−(q−1μ)− q−2p D−(q+1μ)D+(q−1μ)= 2i sin
( 2πp
n+2

)
, (13.12)

where D±(μ) ≡D±(μ | w, p, s). The fact that the functional relations coincide is not sufficient to 
prove that each of the par2(L) eigenvalues of a±(λ) in F (L)

P is given by a connection coefficient 
D±(μ) for one of the par2(L) solution sets w of the algebraic system (10.3a). Nevertheless 
we confirmed, for instance, that the vacuum eigenvalues of J(±)

1 and J(±)
2 , computed from the 

definition (13.9), (13.10), coincide with J (vac)
1 (p, s) and J (vac)

2 (p, s) from (11.11), which were 
obtained via the perturbation theory of the ODE (11.2). This strongly suggests that

a±(λ)ψp,s(w)=D±(μ |w,p, s)ψp,s(w) , (13.13)

where ψp,s(w) ∈ F (L)
P stands for the corresponding eigenvector and with the λ-μ relation as in 

(11.10).

13.2. The case of pure imaginary s

It should be pointed out that formulae (13.9) and (13.10) define the operators a±(λ), acting 
invariantly in the level subspace of the Fock space,

a±(λ) : F (L)
P �→F (L)

P , (13.14)

for any value of the highest weight P ≡ (P1, P2) except when q2
√
n+2P1 = ±qm and m =

0, ±1, ±2 . . . . In the latter case a±(λ) may still be introduced, though some special treatment 
is required. The same holds true for the connection coefficients and it is expected that (13.13)
is valid for any complex P1 and P2. On the other hand, the operators which appear in the scal-
ing limit (13.1) act in the chiral components of the conformal towers. For the discrete spectrum, 
where P1 and P2 are related as

√
n+ 2 P1 + 1

2 ± i
√
n P2 ∈Z , (13.15)

these have dimensions that are typically less than dim
(
F (L)

P

)
. In this case the operators from 

(13.1) should be understood to be the ones in (13.14) restricted to a certain subspace of F (L)
P . 

Since a rigorous treatment of these restrictions involves many technical details, here we just give 
a sketch of the underlying ideas.

Let’s take P1 and P2, satisfying (13.15), in the form

P1 = 1√ (
p+ 1 (n+ 2) 	

)
, P2 =− iσ√ (p+ 1 + a + n 	 ) , (13.16)
n+2 2 n 2 2
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where a, 	 are integers, σ =±1, while p can be arbitrary. The Fock space FP corresponding to 
this value of the highest weight P = (P1, P2) will be denoted as F

[σ,	
p,a

]
. Consider the so-called 

“screening charge” built from the chiral fields ϕ and ϑ [49] (see also [53,54])

Q̂σ =
2π∫

0

du ei
√
n+2ϕ+σ

√
nϑ(u) . (13.17)

The field ϑ is defined via a formula similar to eq. (5.7) and involves the mode ϑ0 conjugated to 
b0 such that [ϑ0, bm] = i

2δm,0. It turns out that for a fixed choice of the sign factor σ =±1 the 
following holds true:

(a) The screening charge is a well defined operator in the direct sum of the Fock spaces

Q̂σ ∈ End
( ∞⊕

	=−∞
F
[
σ,	
p,a

])
(13.18)

and acts as the intertwiner

Q̂σ : F
[
σ,	
p,a

] �→F[σ,	+1
p, a

]
. (13.19)

(b) The operator Q̂σ is nilpotent

Q̂2
σ = 0 . (13.20)

(c) The action of Q̂σ commutes with the action of a±(λ):

Q̂σ a±(λ)=a±(λ) Q̂σ . (13.21)

Introduce the notation

K
[
σ,	
p,a

]=Ker(Q̂σ )∩F
[
σ,	
p,a

]
, I

[
σ,	
p,a

]= Im(Q̂σ )∩F
[
σ,	
p,a

]
. (13.22)

Property (b) implies I
[σ,	
p,a

] ⊆ K
[σ,	
p,a

]
, while (c) gives that (13.22) are invariant subspaces of 

F
[σ,	
p,a

]
w.r.t. the action of a±(λ). Moreover one expects that

K
[
σ,	
p,a

]=F
[
σ,	
p,a

]
, I

[
σ,	
p,a

]= ∅ (	 > a + 1) (13.23)

K
[
σ,a+1
p, a

]= I
[
σ,a+1
p, a

]=F
[
σ,a+1
p, a

]
.

In the case 	 ≤ a the subspaces (13.22) coincide,

K
[
σ,	
p,a

]= I
[
σ,	
p,a

]
(	≤ a) (13.24)

and are proper subspaces in the sense that they are neither the empty set nor equal to the Fock 
space itself. In particular, it is easy to check that the highest state in F

[σ,	
p,a

]
does not belong to 

the kernel of Q̂σ , while the Q̂σ -image of the highest state from F
[σ,	−1
p, a

]
takes the form[(

∂

∂z

)a+1−	

exp

( ∞∑(√
n+ 2 a−m − σ i

√
nb−m

) zm

m

)] ∣∣P〉 ∈ I
[
σ,	
p,a

]
. (13.25)
m=1 z=0
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Fig. 12. A depiction of a fragment of the half-infinite chain complex for the action of the screening charges (13.18) with 
	′ ≤ a. The shaded regions represent the proper subspaces K

[σ,	
p,a

]= I
[σ,	
p,a

]⊂F
[σ,	
p,a

]
with 	 = 	′ − 1, 	′, 	′ + 1 and the 

bullet at each vertex corresponds to the state (13.25). The chain is infinitely extended to the left. If 	′ = a + 1, the chain 
terminates since, according to eq. (13.23), the whole Fock space F

[σ,a+1
p, a

]
lies in the kernel of Q̂σ .

Fig. 12 provides a visualization of the action of the screening charges on the Fock spaces. With 
the above properties one can show (see, e.g., [53,54]) that the dimensions of the level subspaces 
of the factor space V

[σ,	
p,a

]≡F
[σ,	
p,a

]
/I
[σ,	
p,a

]
are given by

dim
(
V(L)

[
σ,	
p,a

])= da−	(L) (	≤ a) (13.26)

with da(L) as in (10.25).
From here on out, without loss of generality, we set the parameter 	 in (13.16) to be zero. In 

fact, 	 is a fake parameter that was introduced only for convenience. Then using our previous 
notation, qa =−p− 1

2 − a, one has P1 = p√
n+2

, P2 = σ iqa√
n

so that

√
n+ 2 P1 + 1

2 − σ i
√
n P2 =−a . (13.27)

In view of (13.23) and (13.24) one should distinguish the cases a < 0 and a ≥ 0. Let’s first 
take a to be a non-negative integer. The eigenstates ψp,σ iqa

(w) (13.13) form a basis in the level 

subspace of F
[σ,0
p,a

]
. Those which are annihilated by the screening charge, Q̂σψp,σ iqa

(w) = 0, 

are a basis in the level subspace of K
[σ,0
p,a

]
. Among them is the state (13.25) occurring at the level 

L = a + 1. The eigenstates ψp,σ iqa
(w) which do not belong to the kernel of Q̂σ provide a basis 

for the level subspace V(L)
p,σ iqa

of the space

Vp,σ iqa =
(
1̂− �̂Ka

) (
F
[
σ,0
p,a

])
, Vp,σ iqa =

⊕
L≥0

V(L)
p,σ iqa

(a ≥ 0) .

(13.28)

Here �̂Ka
stands for the projector onto K

[σ,0
p,a

]
. The dimensions of V(L)

p,σ iqa
are given by da(L)

and, moreover, they can be identified with the chiral components appearing in the decomposition 
of the conformal tower (12.11).
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When a from (13.27) is a negative integer, the above analysis does not follow through literally 
since the full Fock space F

[σ,0
p,a

]
belongs to the kernel of the screening charge. Nevertheless, one 

can use the fact that the algebraic equations (10.3a), obeyed by the sets w labeling the eigenbasis 
of a±(λ), do not depend on the sign of p. This allows one to introduce the operator ĈR via the 
formula

ĈR ψp,s(w)=ψ−p,s(w) . (13.29)

The precise specification of ĈR requires fixing the normalization of the states ψ±p,s(w). How-
ever, this is not important for our purposes as all that is needed is that ĈR intertwines the Fock 
spaces,

ĈR
(
F(±P1,P2)

)=F(∓P1,P2) (13.30)

and obeys the following commutation relations

ĈR a±(λ)=a∓(λ) ĈR . (13.31)

It is easy to see that for P2 as in eq. (13.16) with 	 = 0, a change in the sign of p is equivalent to 
the substitutions σ �→ −σ and a �→ −a − 1. Hence

ĈR

(
F
[ σ,0
±p,a

])=F
[−σ, 0
∓p ,−a−1

]
. (13.32)

The transformed space contains the proper subspace K
[−σ, 0
∓p ,−a−1

]
, which is invariant w.r.t. the 

action of a±(λ). Then instead of (13.28) one should introduce Vp,σ iqa for negative a as

Vp,σ iqa = ĈR
(
1̂− �̂K−a−1

) (
F
[−σ, 0
−p ,−a−1

])
Vp,σ iqa =

⊕
L≥0

V(L)
p,σ iqa

(a < 0) ,

(13.33)

where �̂K−a−1 stands for the projector onto the subspace K
[−σ, 0
−p ,−a−1

]
. The dimensions of the 

level subspaces are given by dim
(
V(L)
p,σ iqa

)= d|a+1|(L).
The right chiral level subspaces of the conformal towers from H(disc,±)

Sz , appearing in (12.11), 
(12.15) and (12.18), may be organized into the graded linear spaces

Vp,σ iqa =
⊕
L≥0

V(L)
p,σ iqa

, Vp+,σ iq′a =
⊕
L+≥0

V(L+)

p+,σ iq′a

Vp,σ iq̄a =
⊕
L≥0

V(L)
p,σ iq̄a

, Vp−,σ iq̄′a =
⊕
L−≥0

V(L−)

p−,σ iq̄′a

. (13.34)

In all four cases the corresponding combination 
√
n+ 2 P1 + 1

2 ± i
√
n P2 ∈Z, for some choice 

of the sign ±, so that formulae (13.28) and (13.33) provide a description of these spaces in terms 
of the Fock spaces. In turn, this defines the action of a±(λ) in the chiral components of the 
conformal towers for pure imaginary s.

Finally we note that the description of Vp,σ iqa with a < 0 requires, in addition to the screening 
charges, the intertwiner ĈR. The latter was defined rather formally through the eigenbasis of 
a±(λ). As will be explained in sec. 16, the operator ĈR may be introduced in an invariant way 
that does not require the choice of a specific basis.
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14. Scaling limit of the transfer matrix

In our previous discussion the scaling limit was taken in such a way that resulted in the oper-
ators acting in the chiral Fock space FP. Of course it is possible to organize the scaling limit of 
A±(ζ ) and the transfer matrix T (ζ ) that yields the operators acting in the barred chiral space F̄P̄. 
Since the corresponding formulae are very similar they were omitted up to this point. However 
here, for future references, we will need to describe both τ(λ) ∈ End(FP) and τ̄ (λ̄) ∈ End(F̄P̄)

that appear in the scaling limit of the transfer matrix. For this purpose let us introduce the barred 
counterpart of the vertex operators from (13.7):

V̄+(ū)= e
+ 2iϕ̄√

n+2 (ū) , V̄−(ū)=−2
√
n ∂̄ϑ̄ e

− 2iϕ̄√
n+2 (ū) , (14.1)

where

ϕ̄(ū)= ϕ̄0 + ā0 ū+ i
∑
m �=0

ām

m
e−imū

( [ϕ̄0, ām] = i
2 δm,0

)
(14.2)

ϑ̄(ū)= ϑ̄0 + b̄0 ū+ i
∑
m �=0

b̄m

m
e−imū

( [ϑ̄0, b̄m] = i
2 δm,0

)
.

Then consider the two formal path ordered exponents, which are defined similarly as in the 
homogeneous case (see sec. 5.3):

L(λ)= λ+
h
4 e

iπ√
n+2

a0h
←
P exp

( 2π∫
0

du
(
V−(u) q+

h
2 e+ + λV+(u) q−

h
2 e−

))
λ−

h
4 (14.3)

L̄(λ̄)= λ̄+
h
4 'P exp

( 2π∫
0

dū
(
V̄−(ū) q+

h
2 e+ + λ̄ V̄+(ū) q−

h
2 e−

))
e
− iπ√

n+2
ā0h

λ̄−
h
4 .

The universal enveloping algebra Uq(sl2) admits a 2j + 1 dimensional representation (j =
1
2 , 1, 

3
2 , . . .), so that

Lj (λ)= πj

(
L(λ)

)
, L̄j (λ̄)= πj

(
L̄(λ̄)

)
(14.4)

are (2j + 1) × (2j + 1) operator valued matrices. Following the same line of arguments as in 
ref. [32], one can show that these satisfy the Yang-Baxter algebra of the form

Rjj ′
(√

λ1/λ2
) (

Lj (λ1)⊗ 1
)(

1⊗Lj ′(λ2)
)

= (1⊗Lj ′(λ2)
)(

Lj (λ1)⊗ 1
)
Rjj ′

(√
λ1/λ2

)
Rjj ′

(√
λ̄2/λ̄1

) (
L̄j (λ̄1)⊗ 1

)(
1⊗ L̄j ′(λ̄2)

)
= (1⊗ L̄j ′(λ̄2)

)(
L̄j (λ̄1)⊗ 1

)
Rjj ′

(√
λ̄2/λ̄1

)
(
Lj (λ)⊗ 1

) (
1⊗ L̄j ′(λ̄)

)= (1⊗ L̄j ′(λ̄)
) (

Lj (λ)⊗ 1
)
. (14.5)

Here Rjj ′(λ) is the trigonometric solution to the Yang-Baxter equation which acts in the tensor 
product πj ⊗ πj ′ and in particular
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R½½(λ) =

⎛⎜⎜⎝
q−1λ− qλ−1 0 0 0

0 λ− λ−1 q−1 − q 0
0 q−1 − q λ− λ−1 0
0 0 0 q−1λ− qλ−1

⎞⎟⎟⎠ . (14.6)

Notice that in the first line of (14.5) the R-matrix depends on the ratio λ1/λ2, while in the second 
line it depends on λ̄2/λ̄1. This is because in the definition (14.3), the path ordering for L(λ) is 
opposite to that of L̄(λ̄). An immediate consequence of the algebraic relations (14.5) is that the 
operators

τ (λ)= Tr
[
e

iπ√
n+2

a0σ
3

L 1
2
(λ)
]
, τ̄ (λ̄)= Tr

[
L̄ 1

2
(λ̄) e

− iπ√
n+2

ā0σ
3 ]

(14.7)

obey the commutativity conditions[
τ (λ), τ (λ′)

]= [τ̄ (λ̄), τ̄ (λ̄′)
]= [τ (λ), τ̄ (λ̄)

]= 0 . (14.8)

As in the homogeneous case, τ(λ) commutes with a±(λ′) and satisfies the relation

τ (λ)a+(λ)= e
+ 2iπ√

n+2
a0 a+(q+2λ)+ e

− 2iπ√
n+2

a0 a+(q−2λ) . (14.9)

However, it deserves to be mentioned that now τ(λ) and a±(λ) possess a power series expansion 
in λ rather than λ2. The similar statements hold true for the barred counterparts τ̄(λ̄) and ā±(λ̄). 
The latter is defined by the formulae analogous to (13.7)-(13.10).

It is instructive to consider explicitly the first few terms in the Taylor series for the vacuum 
eigenvalues of τ (λ). From the definition (14.7) it follows that

τ (vac)(λ |p, s)= 2 cos( 2πp
n+2 )− 2s Q1

( p
n+2 ,

1
n+2

)
λ (14.10)

+
(

4s2 Q2
( p
n+2 ,

1
n+2

)− 2nQ̃2
( p
n+2 ,

1
n+2

))
λ2 +O(λ3) ,

where Q1,2(h, g) are given in eq. (5.20), while

Q̃2(h, g)=
2π∫

0

du1

u1∫
0

dv1

v1∫
0

du2

u2∫
0

dv2

(
2 sin

(
u1−u2

2

))2g−2(
2 sin

(
v1−v2

2

))2g

×
(

2 sin
(
u1−v1

2

))−2g(
2 sin

(
u1−v2

2

))−2g(
2 sin

(
v1−u2

2

))−2g(
2 sin

(
u2−v2

2

))−2g

× 2 cos
(
2h(π − u1 − u2 + v1 + v2)

)
. (14.11)

Remarkably, the four-fold integral Q̃2(h, g) may be computed analytically. Indeed, using eqs. 
(14.10) and (13.2) to expand both sides of (14.9) in λ, and comparing the coefficient of λ2 from 
both sides of that equation, one can express Q̃2(h, g) in terms of the vacuum eigenvalues of J(+)

1

and J(+)
2 . Then with eq. (11.11) at hand one finds

Q̃2(h, g)= g

2(2g − 1)

π2 �(1− 4g)

�(1− 2g+ 2h)�(1− 2g− 2h)

�4(−g)

�2(−2g)
. (14.12)

The last formula shows that the integral in the r.h.s. of (14.11) converges only in the left half plane 
�e(g) < 0. Nevertheless, (14.12) provides an analytic continuation of this multi-fold integral to 
the whole complex plane. Note that Q1(h, g) and Q2(h, g) (5.20) converge for any �e(g) < 1 .
2
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The analysis of the vacuum eigenvalues leads one to conclude that the definition (14.7), un-
derstood as a series expansion involving ordered integrals over the vertex operators, can not be 
taken literally for any n > 0. This is an important difference to the homogeneous case, where the 
expression (5.57) makes sense in the domain 0 < β2 < 1

2 . For the Z2 invariant model, the for-
mulae for τ (λ) and τ̄ (λ̄) (14.7) as well as eq. (13.9) that defines a±(λ) may only be understood 
via analytic continuation in complex n. The latter is achieved by re-writing the ordered integrals 
in terms of the contour integrals following the procedure explained in the work [32].

The scaling limit of the eigenvalue of the transfer matrix corresponding to the RG trajectory 
�N may be obtained through a comparison of eqs. (2.6), (2.7) where ηJ = i (−1)J+1 and the 
scaling counterpart (14.9). Keeping in mind the formula (11.1) describing the scaling limit of 
A+(ζ ) as well as (13.13), one finds

slim
N→∞
b(N)→s

G(N/2)(− q2μ2 | 2
n+2

)
G(N/2)(− q−2μ2 | 2

n+2

)
T (N)

( (
N/(2N0)

)− n
n+2 iμ

)
= (−1)w τ(λ) , (14.13)

where τ(λ) = τ(λ | w, p, s) stands for the eigenvalue of the operator τ(λ) on the state ψp,s(w). 

Recall that q = e
iπ
n+2 while (11.10) provides the relation between λ and μ. Contrary to the homo-

geneous case the sign factor (−1)w does not show up in the formula (8.2b) for the eigenvalues 
of the lattice translation operator K on �N . However, in the sector of low energy states, one 
can define the operator 

√
K, which belongs to the commuting family of operators and whose 

eigenvalues on �N are given by6

√
K = (−1)w exp

(
2π i

N

(
p2 − p̄2

n+ 2
+ L− L̄

))
. (14.14)

Then eq. (14.13) may be rewritten in the operator form

slim
N→∞
b(N)→s

G(N/2)(− q2μ2 | 2
n+2

)
G(N/2)(− q−2μ2 | 2

n+2

)
T
( (

N/(2N0)
)− n

n+2 iμ
)√

K

= τ (λ) . (14.15)

The “barred” version of the above relation reads as

slim
N→∞
b(N)→s

G(N/2)(− q2μ̄−2 | 2
n+2

)
G(N/2)(− q−2μ̄−2 | 2

n+2

)
T
( (

N/(2N0)
)+ n

n+2

× (iμ̄)−1)√K= τ̄ (λ̄) , (14.16)

where μ̄ is given in terms of λ̄ similar to (11.10):

μ̄=−i (n+ 2)−
2

n+2 �2(− 1
n+2

)
λ̄ . (14.17)

6 Notice that 
√
K does not coincide with the one - site lattice translation operator K, whose matrix elements are(

K
)bNbN−1...b1
aNaN−1...a1

= eiπka1 δ
bN−1
aN

δ
bN−2
aN−1 . . . δ

bN
a1 .

Despite that K2 =K, the one - site translation does not commute with the transfer matrix. As is discussed in sec. 7 of 
ref. [29],

K−1 T (ζ )K= D̂ T (ζ ) D̂ =T (−ζ ) .
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There is an alternative way to define 
√
K. To this end, consider the operators

K(±) = eiπk q−
N
2 +Sz

A+(∓iq+1)
[
A+(∓iq−1)

]−1
. (14.18)

As it follows from eqs. (2.29), (8.5) the lattice translation operator K and the quasi-shift B are 
expressed in terms of (14.18) as follows

B=K(+)
(
K(−)

)−1
, K=K(+)K(−) . (14.19)

It was discussed in sec. 8 that for the low energy states one can unambiguously introduce the 
operator n

4π logB. Its eigenvalues are equal to b(N) that appears in eq. (8.2a) describing the low 
energy spectrum of the lattice Hamiltonian and lie in the strip |�m(b(N)

)| < n
4 (see (8.7)). This 

allows one to define the operator 
√
B, acting on the low energy states, with eigenvalues given by 

e
2π
n
b . Our numerical work confirms the relation

K(±) =√K
(√

B
)±1

. (14.20)

The latter, instead of (14.14), may be used to introduce the operator 
√
K.

15. Local integrals of motion and the chiral states ψp,s(w)

In the scaling limit the low energy Bethe states take the form ψ̄ p̄,s (w̄) ⊗ψp,s(w). The chiral 
states may be interpreted as states in the Fock spaces, based on the diagonalization problem of 
a±(λ) and ā±(λ̄). The latter, being defined in terms of a path-ordered exponential, are difficult 
to work with for any practical calculations. As in the homogeneous case, for the explicit con-
struction of ψp,s(w) ∈ FP it turns out to be most convenient to diagonalize the operators which 
occur in the large λ asymptotic of a±(λ) and/or τ (λ). Among these are the so-called local Inte-
grals of Motion (IM). For n > 2 they are the only operators that appear in the large λ expansion 
of τ (λ). It follows from the results of the work [63] that as λ →∞

logτ (λ)�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2π

∞∑
m=−1

cm Im
(+ (n+ 2)λ

)− (n+2)m
n �e(λ) > 0

+2π
∞∑

m=−1
cm (−1)m Im

(− (n+ 2)λ
)− (n+2)m

n �e(λ) < 0

(n > 2) .

(15.1)

Here I−1 = 1, I0 =
∫ 2π

0
du
2π ∂ϑ = b0, while the non-trivial local IM {Im}∞m=1 have the form

Im =
2π∫

0

du

2π
Tm+1(u) (15.2)

with Tm+1(u) being a chiral local density, i.e., a differential polynomial in ∂ϕ(u) and ∂ϑ(u), of 
Lorentz spin m + 1. Another way to formulate the last condition is to assign a grade 1 to ∂ϑ(u), 
∂ϕ(u) as well as the derivative. Then Tm+1 is a homogeneous polynomial in the chiral fields and 
their derivatives of grade m + 1. The first few densities read explicitly as [62,63]

T2 = (∂ϑ)2 + (∂ϕ)2

T3 = (∂ϑ)3 + 3(n+ 2)
(∂ϕ)2∂ϑ + 3i(n+ 1)

√
n+ 2

∂2ϕ ∂ϑ (15.3)

3n+ 4 3n+ 4
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T4 = (∂ϑ)4 − n2 − 2

5n+ 6
(∂2ϑ)2 + 6 (n+ 2)

5n+ 6
(∂ϑ)2 (∂ϕ)2 + 6i (n+ 1)

√
n+ 2

5n+ 6
(∂ϑ)2 ∂2ϕ

− (n+ 1)2

5n+ 6
(∂2ϕ)2 + n+ 2

5n+ 6
(∂ϕ)4 .

Notice that the local IM are defined up to an overall normalization. If we take Tm+1 = (∂ϑ)m+1+
. . . , where the “. . .” denote terms containing lower powers of ∂ϑ , then the numerical coefficients 
cm in (15.1) are given by

cm = 2m �( 1
2 + n+1

n
m)√

π (m+ 1)!�(1+ m
n
)

(
1+ 2

n

)−m
[
�
(
1− 1

n+2

)]− 2(n+2)m
n

n−
m+1

2 . (15.4)

The local IM act invariantly in the level subspace of the Fock space. Restricted to F (L)
P they 

are given by a sum of a finite number of terms involving the Heisenberg generators (13.5). This 
makes the computation of the matrix elements of Im and, in turn, the diagonalization problem

Im ψp,s(w)= Im(w,p, s)ψp,s(w) (15.5)

a straightforward task – much simpler than the spectral problem of a±(λ). The Fock highest 
state is, of course, an eigenstate and the corresponding eigenvalues for the first few IM can be 
easily extracted from the explicit formulae (15.3):

I
(vac)
1 (p, s)= p2

n+ 2
+ s2

n
− 1

12

I
(vac)
2 (p, s)= s√

n

( 3p2

3n+ 4
+ s2

n
− (2n+ 3)

4(3n+ 4)

)
(15.6)

I
(vac)
3 (p, s)= p4

(5n+ 6)(n+ 2)
− p2

2(5n+ 6)
+ 6p2 s2

n(5n+ 6)
+ s4

n2 −
(3n+ 4) s2

2n(5n+ 6)

− (n− 6) (2n+ 3)

240 (5n+ 6)
.

The vacuum and higher level eigenvalues may be alternatively obtained through a WKB analysis 
of the ODE (11.2). It turns out that Im(w, p, s) is a symmetric polynomial in w = {wj }Lj=1 of 
degree m − 1. For instance,

I1(w,p, s)= I
(vac)
1

(√
p2 + (n+ 2)L, s

)
I2(w,p, s)= I

(vac)
2

(√
p2 + (n+ 2)L, s

)+ 3i
√
n

3n+ 4

L∑
j=1

wj (15.7)

I3(w,p, s)= I
(vac)
3

(√
p2 + (n+ 2)L, s

)
− 4

(5n+ 6)(n+ 2)

(
n

L∑
j=1

w2
j − is (n+ 4)

L∑
j=1

wj

)
.

It is expected that the joint spectrum of the local IM lifts all the degeneracies in F (L)
P so that 

the state ψp,s(w) is uniquely specified by the eigenvalues Im(w, p, s). For L ≤ 5 we found it 
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sufficient to use just the first three IM, along with formulae (15.7), to obtain ψp,s(w) for some 
given set w.

The local IM also appear in the large λ asymptotic expansion for a±(λ). However, unlike eq. 
(15.1) for τ (λ), the latter involves the so-called dual non-local IM as well. The simplest of these 
are the operators Č(±):

Č(±) ψp,s(w)= Č(±)
p,s (w)ψp,s(w) with Č(±)

p,s (w)= C(±)
p,s (w)/C(0,±)

p,s . (15.8)

Here C(±)
p,s (w) are the coefficients that enter into the asymptotic formula (11.16), while C(0,±)

p,s =
C
(±)
p,s (w)

∣∣
L=0 are given in (11.18). This way, as indicated by the “check” symbol, the operators are 

normalized so that their eigenvalue on the Fock highest state is one. Earlier, we used the functions 
Ďp,s(w) and Řp,s(w) (see, e.g., eqs. (10.7) and (11.27)), which coincide with the eigenvalues of 
the reflection operators

Ď= Č(+)
(
Č(−)

)−1
, Ř= Č(+)

(
Č(−)

)−1
. (15.9)

The construction of Č(±), Ď and Ř as operators acting in the Fock space, as well as a closed 
analytic expression for their eigenvalues in terms of the sets w is given in sec. 3 of ref. [47]. For 
the reader’s convenience, we quote the formulae for Ďp,s(w) and Řp,s(w) in Appendix B. We 
found the diagonalization problem of the reflection operators useful for the construction of the 
chiral states ψp,s(w).

16. Extended conformal symmetry

16.1. The W∞ - algebra

The graded linear space Vp,s =⊕L V
(L)
p,s (13.4) for real s as well as the spaces Vp,s with 

s = ±iqa, ±iq̄a and Vρ,ν with (ρ, ν) = (p+ ± iq′a), (p− ± iq̄′a) (13.34) are the building blocks 
of the right chiral components of the conformal towers in H(cont)

Sz and H(disc,±)
Sz . The operators 

from the commuting family generated by a±(λ), including the local IM, act invariantly inside 
these spaces. However the local densities Tm+1(u), which occur in the definition of the local IM 
(15.2) do not, in general, act invariantly in Vp,s for pure imaginary s when the graded space does 
not coincide with the Fock space. Since the local densities are defined up to a total derivative 
one could try to choose them in such a way so that the chiral spaces Vp,s are invariant w.r.t. 
their action both for real or pure imaginary s. The most general form of the spin 2 density is 
W2 = T2 + α1 ∂

2ϑ + α2 ∂
2ϕ, where T2 is given in (15.3) and α1, α2 are arbitrary constants. 

This local field would leave Vp,s invariant provided it commutes with the two screening charges 
(13.17), i.e.,

W2(u)Qσ = Qσ W2(u) (σ =±) . (16.1)

The commutativity condition fixes W2(u) to be

W2 = (∂ϑ)2 + (∂ϕ)2 + i√
n+ 2

∂2ϕ . (16.2)

Then a simple calculation shows that W2(u) satisfies the Operator Product Expansion (OPE)

W2(u)W2(0)= c − 2
W2(0)− 1

∂W2(0)+O(1) (16.3)

2u4 u2 u
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with

c= 2 (n− 1)

n+ 2
. (16.4)

In turn the modes W̃2(m), defined through the Fourier series

W2(u)=− c

24
+

∞∑
m=−∞

W̃2(m) e−imu , (16.5)

form the Virasoro algebra with the central charge (16.4). Thus the chiral spaces Vp,s can be 
classified according to the irreps of this conformal symmetry algebra. Note that the local IM I1
coincides with the zero mode W̃2(0) up to an additive constant and its eigenvalue is related to the 
conformal dimension of a state as

I1 =�− c

24
. (16.6)

The conformal algebra admits a natural extension. Clearly a local field defined through the 
commutator 

[
W2(u), I2

]
acts invariantly in Vp,s for any values of real or pure imaginary s. An 

explicit calculation shows that

∂W3(u)= 3n+ 4

3i(n+ 2)

[
W2(u), I2

]
, (16.7)

for7

W3 = 6n+ 8

3n+ 6
(∂ϑ)3 + 2 (∂ϕ)2∂ϑ + i

√
n+ 2 ∂2ϕ ∂ϑ − in√

n+ 2
∂ϕ ∂2ϑ + n

6(n+ 2)
∂3ϑ .

(16.8)

The choice of the overall factor in the definition of W3(u) is somewhat arbitrary and we take it 
to be 6n+8

3n+6 for future convenience. Computing the OPE of W2 and W3 yields

W2(u)W3(0)=− 3

u2 W3(0)− 1

u
∂W3(0)+O(1) , (16.9)

which means that W3(u) is a primary chiral field of spin 3. Similar to (16.5) it can be expanded 
in the Fourier series

W3(u)=
∞∑

m=−∞
W̃3(m) e−imu . (16.10)

Notice that the zero mode W̃3(0) coincides with the local IM I2 (15.2), (15.3) up to an overall 
factor,

I2 = 3n+ 6

6n+ 8
W̃3(0) , (16.11)

so that the operators W̃2(0) and W̃3(0) can be diagonalized simultaneously.
The linear space of local spin 3 fields, invariantly acting in Vp,s , is generated by W3 and ∂W2. 

As for the spin 4 fields acting in Vp,s , they include the derivatives ∂2W2, ∂W3 as well as the 

7 The currents W2 (16.2) and W3 (16.8), along with the screening charge Qσ (13.17), were originally obtained in the 
work [49]. See the footnote on page 649 therein.
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composite field W 2
2 , which is defined as the first regular term in the OPE (16.3). There is one 

more linearly independent spin 4 field W4(u), which we introduce through the OPE:

W3(u)W3(0)

=−c(c+ 7)(2c− 1)

9(c− 2)u6
+ (c+ 7)(2c− 1)

3(c− 2)u4

(
W2(u)+W2(0)

)− 1

u2

(
W4(u)+W4(0)

+W 2
2 (u)+W 2

2 (0)+
2c2 + 22c− 25

30(c− 2)

(
∂2W2(u)+ ∂2W2(0)

))+O(1) . (16.12)

The definition of W4(u) is not unique and it is fixed as in (16.12) for the following reason. A 
priori, it would be natural to have W4(u) be a spin 4 primary field. However it turns out that this 
is impossible to achieve for any linear combination of W4, ∂2W2, ∂W3 and W 2

2 . With W4 defined 
through (16.12), the OPE of W4 and W2,

W2(u)W4(0)= (c+ 10)(17c+ 2)

15(c− 2)u4 W2(0)− 4

u2 W4(0)− 1

u
∂W4(0)+O(1) , (16.13)

does not contain the singular terms ∝ u−6 and u−3. Since the densities for the local IM are 
defined up to a total derivative, I3 (15.2), (15.3) must be expressible as an integral over a linear 
combination of W4(u) and W 2

2 (u). A straightforward calculation yields

I3 = n+ 2

(2n+ 3)(5n+ 6)

2π∫
0

du

2π

(
(n+ 2)W4 + (2n+ 3)W 2

2

)
. (16.14)

Continuing the process one can describe the linear space of local spin j = 2, 3, 4, . . . fields that 
act invariantly in Vp,s . It turns out that a basis would consist of composite fields built from the 
W fields of lower spin and their derivatives as well as one extra field Wj . The latter, of course, 
is not uniquely defined and can be generated through the OPE of the W fields of lower spin, 
similar to how W4 is generated in the OPE (16.12). For generic values of n > 0 the total number 
of linearly independent spin j fields is N(j) = d0(j) − d1(j − 1) = 1, 2, 4, 6, 11, . . . , where 
the integers da(L) are described by eq. (10.25).8 In turn the densities for the local IM (15.2) are 
expressible as a linear combination of such fields. Since Tm+1 is defined up to a total derivative, it 
can be written as a sum of N(m +1) −N(m) terms. The corresponding coefficients may be fixed 
through the commutativity condition [Im, I2] = 0. One of them would remain undetermined, 
which manifests the freedom in the overall normalization of Im.

There exists a simple way of obtaining the “independent” set of local fields {Wj(u)}∞j=2, which 
is based on the following observation. Consider the pair of chiral non-local fields of Lorentz spin 
1 − 1

n
,

ξ±(u)= n−1
(√

n∂ϑ ± i
√
n+ 2 ∂ϕ

)
e
± 2ϑ√

n (u) . (16.15)

It is simple to check that they commute with the screening charges (13.18)

ξ+(u)Qσ = Qσ ξ+(u) , ξ−(u)Qσ = Qσ ξ−(u) (σ =±) . (16.16)

Hence the local fields occurring in the OPE

8 The expression for N(j) follows from the formula for the character of the W∞ - algebra (16.31) specialized to the 
case |ρ| = 1 , ν = 0.
2
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ξ+(u) ξ−(0)=−n−1 u−2(1− 1
n
)

×
[

1− n+ 2

2n

(
W2(u)+W2(0)

)
u2 − n+ 2

2n
√
n

(
W3(u)+W3(0)

)
u3

− (n+ 2)2

4n2 (2n+ 3)

(
W4(u)+W4(0)− n (2n+ 3)

5 (n+ 2)

(
∂2 W2(u)+ ∂2 W2(0)

))
u4 + . . .

]
(16.17)

would also commute with Qσ . A straightforward calculation shows that the coefficients of u2 and 
u3 involve the fields W2 from (16.2) and W3 in (16.8). The spin 4 field W4 appearing in the coeffi-
cient of u4 is the same as the one defined via the OPE (16.13). One can choose the fields Wj with 
j ≥ 5 in such a way that the remaining terms in the expansion in (16.17), denoted by the ellipsis, 
coincide with 

∑
j≥5

(
Wj(u) +Wj(0)

)
uj . Notice that (16.15) is the well known bosonization 

formula [50–54], which extends the notion of the Fateev-Zamolodchikov Zn parafermions [48]
to the case when n is non-integer.

The infinite set of local chiral fields {Wj(u)}∞j=2 form a closed operator algebra, in the sense 
that the singular part of the OPE of Wj(u)Wj ′(0) is expressible in terms of composite fields built 
out of the W fields and their derivatives. This algebra was discussed in the work [55], and we 
will refer to it as the W∞ - algebra. Repeating all the above for the left chirality one would arrive 
at a barred copy of the algebra, W∞, for the currents {Wj(ū)}∞j=2. Thus the algebra of extended 
conformal symmetry underlying the critical behaviour of the Z2 invariant inhomogeneous six-
vertex model is W∞ ⊗W∞.

Let’s make some comments regarding our terminology, which was borrowed from CFT [61]. 
In the description of a Lorentz invariant 1 +1D quantum field theory one employs the space-time 
co-ordinates xμ = (t, x). For a CFT in finite volume, the space co-ordinate can be rescaled so 
that x belongs to the segment of length 2π . Moreover it is always possible to choose the unit 
measurement of time such that the “speed of light” is one. Then it is convenient to use the light 
cone co-ordinates

u= t + x , ū= t − x (0≤ x ≤ 2π) . (16.18)

A theory with extended conformal symmetry possesses chiral currents, which are local fields 
such that Wj(t, x) =Wj(u) and Wj(t, x) =Wj(ū) as a consequence of the equations of motion. 
We use the convention that the (half-)integer j coincides with the Lorentz spin in the case of 
Wj(t, x) and minus the spin for Wj(t, x). The theory with W∞ ⊗ W∞ extended conformal 
symmetry contains, among the local fields, two infinite sets currents with j = 2, 3, 4, . . . , which 
are independent in the sense that no one current can be expressed as a differential polynomial in 
the others. The fields W2(u) and W 2(ū) are naturally identified with the holomorphic and anti-
holomorphic components of the energy momentum tensor, respectively. Assuming the boundary 
conditions of the theory are such that the chiral currents are periodic, as is the case here,

Wj(t, x)=Wj(t, x + 2π) , Wj (t, x)=Wj(t, x + 2π) , (16.19)

they can be expanded in the Fourier series:

Wj =− c

24
δj,2 +

∞∑
m=−∞

W̃j (m) e−imu , Wj =− c

24
δj,2 +

∞∑
m=−∞

W̃ j (m) e−imū .

(16.20)
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As usual, the modes W̃2(m) and W̃ 2(m) generate two independent copies of the Virasoro algebra 
with central charge c and the CFT Hamiltonian is given by

Ĥ = W̃2(0)+ W̃ 2(0)− c

12
. (16.21)

The states in a 2D CFT can be chosen to have a definite value of the pair of conformal dimensions 
(�̄, �). The corresponding CFT energy reads as

E =�+ �̄− c

12
, (16.22)

while the Lorentz spin coincides with the difference � − �̄.
In the case of the Z2 invariant inhomogeneous six-vertex model, with the anisotropy parame-

ter q = e
iπ
n+2 and n > 0, the central charge is given by c= 2(n−1)

n+2 and lies in the interval

−1 < c < 2 . (16.23)

The CFT energy appears in the large N asymptotics of the eigenvalues of the lattice Hamiltonian 
while the Lorentz spin is related to the eigenvalue of the lattice translation operator. Namely (8.2)
can be written as [43]

E =Ne∞ + 4πvF

N

(
�+ �̄− c

12

)
+ o(N−1)

K = exp

(
4π i

N

(
�− �̄

))
. (16.24)

16.2. Highest weight irreps of the W∞ - algebra

For a theory possessing extended conformal symmetry, the space of states is naturally classi-
fied according to the highest weight irreps of the symmetry algebra. It is convenient to describe 
the latter in terms of the Verma module. The Verma module of the W∞ - algebra contains the 
highest state which is defined by the conditions

W̃j (m) |ω〉 = 0 (∀m> 0) , W̃j (0) |ω〉 = ωj |ω〉 , (16.25)

where ω= (ω2, ω3) is the highest weight. The component ω2 is equal to the conformal dimension 
of the highest state and is simply related to the eigenvalue of the local IM I1 (16.6), while ω3
coincides up to an overall factor with the eigenvalue of I2 (16.11). It turns out that the highest 
state |ω〉 is fully specified by the relations (16.25) with j = 2, 3. Moreover, the Verma module is 
spanned by the states of the form

W̃2(−l1) . . . W̃2(−lm) W̃3(−l′1) . . . W̃3(−l′m′)|ω〉 (16.26)

with 1 ≤ l1 ≤ l2 ≤ . . . ≤ lm and 1 ≤ l′1 ≤ l′2 ≤ . . . ≤ l′
m′ , which contain the Fourier modes of the 

spin 2 and spin 3 currents only. It is a naturally graded linear space and the dimensions of its level 
subspace with 	 =∑i li +

∑
i′ l
′
i′ is given by par2(	). Formulae (16.2) and (16.8) introduce the 

structure of the W∞ Verma module in the Fock space FP with the highest weight ω= (ω2, ω3)

related to P = (
ρ√
n+2

, ν√
n
) as

ω2 = ρ2 − 1
4 + ν2

(16.27)

n+ 2 n
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ω3 = 2ν√
n

( ρ2

n+ 2
+ (3n+ 4) ν2

3n (n+ 2)
− 2n+ 3

12 (n+ 2)

)
.

In fact, it is convenient to use ρ and ν to parameterize ω without necessarily any reference to the 
Fock space. Note that in this parameterization the highest weight depends only on ρ2 so that ρ
should be identified with −ρ. The highest weight irrep of the W∞ - algebra, with ω parameterized 
by the pair (ρ, ν) as in (16.27), will be denoted by Wρ,ν ≡W−ρ,ν .

For generic complex values of ρ and ν the Verma module is an irrep of the W∞ - algebra. Its 
character,

chρ,ν(q)≡ TrWρ,ν

[
qW̃2(0)− c

24

]
, (16.28)

with c= 2(n−1)
n+2 is given by

chρ,ν(q)= q−
1
12+ ν2

n
+ ρ2

n+2

(q,q)2∞

(
ρ, ν generic

)
. (16.29)

When certain constraints are imposed on ρ and ν, the Verma module contains null vectors – 
highest states occurring at non-zero levels. In this case the highest weight irrep can be ob-
tained from the Verma module by factoring out all of the invariant subspace(s) generated by 
the null vector(s). As was demonstrated in sec. 13.2 using the Fock space realization of the 
Verma module, when ρ + 1

2 + iν =−a+ = 0, ±1, ±2, . . . there is a null vector |χ+〉 at the level ∣∣a++ 1
2

∣∣+ 1
2 . Similarly if −ρ+ 1

2 + iν =−a− = 0, ±1, ±2, . . . , a null-vector |χ−〉 occurs at the 
level 

∣∣a− + 1
2

∣∣+ 1
2 . Such Verma modules are usually referred to as degenerate. It turns out that if 

either ρ + 1
2 + iν =−a ∈Z or ρ + 1

2 − iν =−a ∈Z and 2ρ /∈Z, the character (16.28) is given 
by [53]

chρ,ν(q)= q−
1
12+ ν2

n
+ ρ2

n+2

(q,q)2∞

∞∑
m=0

(−1)m qm|a+ 1
2 |+m2

2
ρ + 1

2 ± iν ∈Z

ρ generic
. (16.30)

Note that when 2ρ, 2iν ∈ Z, while 2(ρ + iν) is an odd integer then the Verma module contains 
both null-vectors |χ±〉. In this case, assuming n is irrational,9

chρ,ν(q)= q−
1
12+ ν2

n
+ ρ2

n+2

(q,q)2∞

∞∑
m=0

(−1)m q
m2
2
(
qm| |ρ|−|ν| | − q(m+1)(|ρ|+|ν|+1)− 1

2
)
, (16.31)

where �m(ρ) =�e(ν) = 0 such that

|ρ| ± |ν| ∈ 1
2 +Z . (16.32)

The chiral subspaces Vp,σ iqa , Vp,σ iq̄a , Vp+,σ iq′a and Vp−,σ iq̄′a (13.34) of the conformal 

towers in H(disc,±)
Sz , that were discussed in sec. 13.2, are highest weight irreps of the W∞ -

algebra. Namely Vρ,ν
∼= Wρ,ν , where for the four spaces (ρ, ν) should be replaced by 

(p, σ iqa), (p, σ iq̄a), (p+, σ iq′a) and (p−, σ iq̄′a), respectively. The admissible values of ρ =

9 For integer n = 2, 3, . . . the corresponding formula for the character was first obtained in ref. [56] (see also [53]). 
In addition note that eqs. (16.29)-(16.32), which assume that c = 2 − 6

n+2 < 2, can be applied to the case c > 2 if one 
makes the formal substitutions n →−n − 2, ρ → is, ν → ip. The central charge and highest weight of the irrep would 
be parameterized as in (22.6) and (22.7) below, see refs. [54,55].
70



V.V. Bazhanov, G.A. Kotousov, S.M. Koval et al. Nuclear Physics B 965 (2021) 115337
p, p± for the lattice model has the form 2ρ = m1 + (n + 2)(k +m2), where m1, m2 are inte-
gers. We will mainly focus on the case when the twist parameter k and/or anisotropy parameter 
n are generic and assume that 2ρ /∈ Z. When ν is real and 2ρ = m1 + (n + 2)(k + m2) with 
(n + 2) k /∈ Z the chiral subspace Vρ,ν = FP (see eq. (13.4)) is an irreducible representation of 
the W∞ - algebra, i.e., Vρ,ν

∼=Wρ,ν .
In the case of generic ν but with 2ρ =m1 + (n + 2) m2, i.e., k = 0, the Verma module may 

become degenerate. This is related to the existence of the “bosonic” screening charge (see, e.g., 
[52–54]):

Q̂=
u0+2π∫
u0

du ∂ϑ e
− 2iϕ√

n+2 (u) (16.33)

(in the physical slang the formal operators Q̂σ (13.17) are referred to as “fermionic” screening 
charges). Similar to Q̂σ , the integrand here has conformal dimensions � = 1 w.r.t. the chiral 
component of the energy momentum tensor W2(u) (16.2). Thus, being a 1-form, the screening 
charge density can be integrated so that the action of Q̂ is formally defined on any Fock space 
FP. For generic values of P the integration contour in (16.33) is not closed, i.e., Q̂ depends on 
the arbitrarily chosen initial integration point u0. However, when restricted to the Fock space FP
with P1 = 1

2 (m(n + 2) + r) and arbitrary P2, one can show that the action of the r-th power of Q̂
is well defined and does not depend on the choice of u0. It is not difficult to see that for positive 
integers m and r the state

|χ〉 = lim�m(v)→+∞ e−iv�χ Q̂r e
i(m

√
n+2+ r−1√

n+2
)ϕ
(v) |P0〉 , where P0 =

( 1
2
√
n+2

,P2
)
(16.34)

and �χ = (m(n+2)+r)2−1
4(n+2) is non-trivial and belongs to the level subspace F (L)

P with P =
(
m(n+2)−r

2
√
n+2

, P2) at level L =mr . Furthermore it turns out to be a highest state of the W∞ - alge-
bra. Once the invariant subspace generated by this null vector is factored out one obtains an irrep 
whose character is given by

chρ,ν(q)= q−
1
12+ ν2

n
+ ρ2

n+2
1− qmr

(q,q)2∞
,

ρ =± 1
2

(
m(n+ 2)− r

)
, m, r = 1,2, . . .

ν, n generic

(16.35)

A final comment is in order regarding the intertwiner ĈR : F(±P1,P2) �→F(∓P1,P2), which was 
used in the description of the irreps of the W∞ - algebra in terms of the Fock spaces for some 
cases with pure imaginary ν. This operator was introduced through the eigenbasis of a±(λ)
(13.31). An alternative definition is based on the fact that, as it follows from (16.27), the Fock 
spaces F(+P1,P2) and F(−P1,P2) are equivalent highest weight representations of the W∞ - alge-
bra. Then the intertwiner ĈR can be unambiguously defined by the commutativity condition with 
the W currents

ĈR Wj(u)=Wj(u) ĈR (j = 2,3) (16.36)

supplemented by its action on the highest weight: ĈR|(±P1, P2)〉 = |(∓P1, P2)〉.
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17. The space of states in the scaling limit

We are now ready to synthesize the analyses of the previous sections and describe the linear 
space of states occurring in the scaling limit of the low energy sector of the Z2 invariant inho-
mogeneous six-vertex model. Some of the formulae presented here constitute the main results of 
our study of the lattice model and will be referred back to in the later part of the paper.

17.1. The sectors with Sz = 0, 1, 2, . . . and (n + 2) k /∈Z

Recall our working definition of a low energy state – a state which can be assigned the quan-
tum numbers Sz, w, L and L̄, such that the energy and eigenvalue of the lattice translation operator 
follow the large N asymptotics (8.1)-(8.3), where b = b(N) is defined by (8.6) along with the 
condition |�m(b(N)

)| < n
4 . In the scaling limit the states with fixed value of Sz were organized 

into the three sectors H(cont)
Sz , H(disc,+)

Sz and H(disc,−)
Sz . Each of these is further split into the sub-

sectors labeled by the winding number w = 0, ±1, ±2, . . . :

H(cont)
Sz =

⊕
w∈Z

H(cont)
Sz,w , H(disc,±)

Sz =
⊕
w∈Z

H(disc,±)
Sz,w . (17.1)

The subsector H(cont)
Sz,w is described through a direct integral as

H(cont)
Sz,w =

⊕∫
R

ds V̄p̄,s ⊗ Vp,s , where
p = 1

2 Sz + 1
2 (n+ 2) (k+ w)

p̄ = 1
2 Sz − 1

2 (n+ 2) (k+ w)
(17.2)

and V̄p̄,s ⊗ Vp,s is isomorphic to a highest weight irrep of the W∞ ⊗W∞ - algebra. Contrary to 
H(cont)

Sz,w , the decomposition of the linear space H(disc,+)
Sz,w involves a direct sum over the discrete 

set of pure imaginary admissible values of s. It reads as

H(disc,+)
Sz,w =

⊕
σ=±1

(
H(1,+)

Sz,w,σ ⊕ H(2,+)
Sz,w,σ

)
(17.3)

with

H(1,+)
Sz,w,σ =

⊕
a∈!(p)

V̄p̄,σ iqa ⊗Vp,σ iqa , H(2,+)
Sz,w,σ =

⊕
a∈!(p̄)

V̄p̄,σ iq̄a ⊗Vp,σ iq̄a . (17.4)

Here

qa =−p− 1
2 − a, q̄a =−p̄− 1

2 − a (17.5)

and the summation is taken over the non-negative integer a restricted to the sets

!(p)=
{
a : a ∈Z+, −p− n+2

4 ≤ a <− 1
2 − p

}
(17.6)

as well as !(p̄), which is given by the same formula with p substituted by p̄. Each of the 
components V̄p̄,s ⊗ Vp,s from (17.2), (17.4), being a highest weight irrep of the W∞ ⊗W∞ -
algebra, is a naturally graded linear space. The pair of non-negative quantum numbers (L̄, L) for 
a state coincides with its level in the highest weight irrep.

The subsector H(disc,−)
Sz,w is also decomposed into the irreps of the W∞ ⊗W∞ - algebra. How-

ever an important difference from the cases H(cont)
z and H(disc,+)

z is that the pair (L̄, L) does not 
S ,w S ,w
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coincide with the level of the state in the highest weight irrep. The linear structure of H(disc,−)
Sz,w is 

more involved. To describe it, in addition to p, p̄, qa and q̄a , we use the notation

p+ = 1
2 Sz + 1

2 (n+ 2)(k+ w+ 1) , p̄+ = 1
2 Sz − 1

2 (n+ 2)(k+ w+ 1)
p− = 1

2 Sz + 1
2 (n+ 2)(k+ w− 1) , p̄− = 1

2 Sz − 1
2 (n+ 2)(k+ w− 1)

q′a =−p− n+1
2 − a , q̄′a =−p̄− n+1

2 − a .

(17.7)

Then

H(disc,−)
Sz,w =

⊕
σ=±1

(
H(1,−)

Sz,w,σ ⊕H(2,−)
Sz,w,σ ⊕H(3,−)

Sz,w,σ ⊕H(4,−)
Sz,w,σ

)
(17.8)

and the decomposition of each of the four spaces H(i,−)
Sz,w,σ into irreps of the W∞⊗W∞ - algebra 

reads explicitly as

H(1,−)
Sz,w,σ =

⊕
a∈!1(p)

V̄p̄+,σ iq′a ⊗ Vp+,σ iq′a , H(2,−)
Sz,w,σ =

⊕
a∈!2(p)

V̄p̄,σ iqa ⊗ Vp+,σ iq′a

H(3,−)
Sz,w,σ =

⊕
a∈!2(p̄)

V̄p̄−,σ iq̄′a ⊗ Vp,σ iq̄a , H(4,−)
Sz,w,σ =

⊕
a∈!1(p̄)

V̄p̄−,σ iq̄′a ⊗ Vp−,σ iq̄′a

(17.9)

Here the summation index a takes negative integer values and runs over the sets

!1(p)=
{
a : a ∈Z−, −p− n+2

4 ≤ a <− 1
2 − p & a <−Sz

}
(17.10)

!2(p)=
{
a : a ∈Z−, −p− n+2

4 ≤ a <− 1
2 − p & a ≥−Sz

}
and !1(p̄), !2(p̄) which are defined by the analogous formulae. The levels w.r.t. the W∞⊗W∞
- algebra of the components in the r.h.s. of (17.9) do not coincide with (L̄, L). The relation 
between them depends on the case being considered, and can be read off from eqs. (12.15) and 
(12.18). For example, for the right chiral component Vp+,σ iq′a the level w.r.t. the W∞ - algebra, 
denoted by L+, is expressed in terms of L as L+ = L − |a|.

In the linear decompositions (17.2), (17.4) and (17.9), each of the chiral components Vp,s , 
Vp,iqa , . . . is isomorphic to Wρ,ν , the highest weight irrep of the W∞ - algebra, whose highest 
weight is given by (16.27) with (ρ, ν) = (p, s), (p, iqa), . . . , respectively.

17.2. Global symmetries

The Z2 invariant inhomogeneous six-vertex model possesses global CPT and Z2 symmetry. 
Since their generators ĈP̂T̂ and D̂ commute with the lattice Hamiltonian, they preserve the low 
energy sector of the model. The action of the symmetry transformations on the low energy states 
in the scaling limit can be deduced from eqs. (2.37) and (7.4), which describe the commuta-
tion relations of ĈP̂T̂ and D̂ with the lattice operators A±(ζ ), T (ζ ). Combining them with the 
scaling relations (13.1), (14.15) yields

ĈP̂T̂ a±(λ) ĈP̂T̂ =a±(λ∗) , D̂a±(λ) D̂ =a±(−λ)

ĈP̂T̂ τ (λ) ĈP̂T̂ = τ (λ∗) , D̂ τ (λ) D̂ = τ (−λ)
. (17.11)

The similar formulae also hold true for ā±(λ̄) and τ̄ (λ̄). For our purposes it is sufficient to focus 
on the commutation relations of the global symmetry generators with τ(λ) and τ̄ (λ̄). Keeping in 
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mind that the local IM Im
(

Īm
)

occur in the large λ (λ̄) asymptotic expansion for τ (λ)
(
τ̄ (λ̄)

)
as 

in eq. (15.1), one concludes that

ĈP̂T̂ Im ĈP̂T̂ = Im , D̂ Im D̂ = (−1)m+1 Im

ĈP̂T̂ Īm ĈP̂T̂ = Īm , D̂ Īm D̂ = (−1)m+1 Īm
. (17.12)

The densities for the local IM can be expressed in terms of the W currents, so that the above 
relations would follow from

ĈP̂T̂ Wj(u) ĈP̂T̂ =Wj(−u∗) , D̂Wj(u) D̂ = (−1)j Wj (u)

ĈP̂T̂ Wj(ū) ĈP̂T̂ =Wj(−ū∗) , D̂Wj(ū) D̂ = (−1)j Wj (ū)

.

(17.13)

These immediately imply that the symmetry transformations act, in general, as the intertwiners 
between the highest weight irreps appearing in the decompositions (17.2), (17.4) and (17.9). 
Namely,

ĈP̂T̂ : Vρ̄,ν̄ ⊗ Vρ,ν �→ Vρ̄,ν̄∗ ⊗ Vρ,ν∗ , D̂ : Vρ̄,ν̄ ⊗ Vρ,ν �→ Vρ̄,−ν̄ ⊗ Vρ,−ν ,

(17.14)

where (ρ, ν) = (p, s), (p, σ iqa), . . . and (ρ̄, ν̄) = (p̄, s), (p̄, σ iqa), . . . . Notice that each of the 
subsectors H(cont)

Sz,w and H(disc,±)
Sz,w turn out to be invariant under the CPT and D transformations. 

In order to specify the action of the global symmetries on the states from the irrep Vρ̄,ν̄ ⊗ Vρ,ν

one should return to the lattice system. The scaling limit of the low energy Bethe states yields 
the basis states

ψ ρ̄,ρ,ν̄,ν(w̄,w)≡ ψ̄ ρ̄,ν̄ (w̄)⊗ψρ,ν(w) ∈ V̄ρ̄,ν̄ ⊗ Vρ,ν . (17.15)

Formulae (2.24) and (7.5), that describe the action of the CPT and D conjugations on �N , 
allow one to deduce how the global symmetries act on ψ ρ̄,ρ,ν̄,ν . In particular, for the W∞⊗W∞
primary states

ĈP̂T̂ ψ
(vac)
ρ̄,ρ,ν̄,ν =+ψ

(vac)
ρ̄,ρ,ν̄∗,ν∗ , D̂ψ

(vac)
ρ̄,ρ,ν̄,ν =+ψ

(vac)
ρ̄,ρ,−ν̄,−ν . (17.16)

The latter, combined with the commutation relations (17.13), unambiguously defines the sym-
metry transformations for any state in Vρ̄,ν̄ ⊗ Vρ,ν .

Formula (17.13) involves the left and right W currents separately, so that the action of the 
CPT and Z2 symmetries may be naturally defined for each chiral component of the W∞⊗W∞
irrep. For instance, for the right chiral component:

ĈP̂T̂ : Vρ,ν �→ Vρ,ν∗ , D̂ : Vρ,ν �→ Vρ,−ν . (17.17)

For the chiral primary state ψ (vac)
ρ,ν ∈ Vρ,ν , by choosing a proper normalization including the 

phase assignment, one can arrange that

ĈP̂T̂ ψ (vac)
ρ,ν =ψ

(vac)
ρ,ν∗ , D̂ψ (vac)

ρ,ν =ψ
(vac)
ρ,−ν . (17.18)

Recall that the chiral state ψρ,ν(w) ∈ Vρ,ν in eq. (17.15) is an eigenvector of a±(λ) with 
eigenvalue D±(μ | w, ρ, ν) (13.13) and similarly for ψ̄ ρ̄,ν̄ (w̄). Again, with a proper choice of 
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the normalization, the action of the CPT and Z2 conjugations on the eigenstates can be taken to 
be

ĈP̂T̂ ψρ,ν(w)=ψρ,ν∗(−w∗) , D̂ψρ,ν(w)=ψρ,−ν(−w) . (17.19)

The above is motivated through an examination of the algebraic system satisfied by the set w=
{wa}La=1 (10.3a). Given a solution, the set −w∗ ≡ {−w∗

a}La=1 solves the same equations with the 
parameter s substituted by its complex conjugate, while −w≡ {−wa}La=1 is a solution of (10.3a)
with s replaced by −s. In turn the eigenvalues of a±(λ) corresponding to ψρ,ν(w) obey(

D±(μ |w, ρ, ν)
)∗ =D±(−μ∗ | −w∗, ρ, ν∗) , D±(μ |w, ρ, ν)=D±(−μ | −w, ρ,−ν)

(17.20)

where we take into account the imaginary unit entering into the λ-μ relation (11.10).
The lattice model also possesses CP invariance which, in turn, becomes a symmetry that 

acts in the space of states occurring in the scaling limit. The key relation for defining the CP
conjugation is

ĈP̂Wj(u)=Wj(u) ĈP̂ . (17.21)

It may be advocated for using the similar arguments that led to (17.13). Namely, one should start 
with the commutation relation of ĈP̂ with the lattice transfer matrix,

ĈP̂ T (ζ ) ĈP̂ = ζN T (ζ−1) , (17.22)

which was already quoted in the Preliminaries. This, in view of eqs. (14.15) and (14.16), in the 
scaling limit becomes

ĈP̂ τ (λ) ĈP̂ = τ̄ (λ̄) . (17.23)

The latter, combined with the large λ asymptotic formula (15.1) and the similar one for τ̄ (λ̄), 
results in ĈP̂ Im ĈP̂ = Īm, which is clearly consistent with (17.21).

Contrary to the other global symmetries, the CP conjugation does not commute with the 
lattice total spin operator Sz. As a result, it acts invariantly only in the subsectors H(cont)

Sz,w and 

H(disc,±)
Sz,w with Sz = 0. In this case, the action of CP on the W∞ ⊗W∞ irreps is described by

CP : V̄ρ̄,ν̄ ⊗ Vρ,ν �→ V̄−ρ,ν ⊗ V−ρ̄,ν̄ , (17.24)

where again (ρ, ν) = (p, s), (p, σ iqa), . . . and (ρ̄, ν̄) = (p̄, s), (p̄, σ iqa), . . . . Recall that the 
space Vρ,ν , being considered as a highest weight irrep of the W∞ - algebra, is isomorphic to 
V−ρ,ν as the highest weight is not sensitive to a flip of the sign of ρ, see eq. (16.27). This makes 
(17.24) consistent with the relations (17.21).

The components V̄ρ̄,ν̄ ⊗ Vρ,ν occurring in the decomposition of H(cont)
0,w (17.2) and H(disc,+)

0,w
(17.3), are always such that ρ + ρ̄ = 0 and ν = ν̄ so that the CP conjugation acts invariantly in 
each of them. At first glance, this property does not seem to hold true for the case of H(disc,−)

0,w . The 

direct sum (17.8) for the subsector H(disc,−)
0,w in general contains eight terms. However, when Sz =

0 the sets !2(p) and !2(p̄) are empty and the linear spaces H(2,−)
Sz,w,σ and H(3,−)

Sz,w,σ (17.9) become 
trivial. In addition p̄± + p± = 0 so that the components V̄p̄+,σ iq′a ⊗ Vp+,σ iq′a and V̄p̄−,σ iq̄′a ⊗
Vp−,σ iq̄′a , appearing in the decomposition of the remaining four spaces H(1,−)

Sz,w,σ and H(4,−)
Sz,w,σ , 

respectively, are preserved under the CP conjugation.
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Similar as for the other global symmetries discussed above, the CP conjugation in H(cont)
0,w and 

H(disc,±)
0,w may be determined by considering its action on the low energy Bethe states of the finite 

lattice system. A numerical analysis suggests that for the W∞ ⊗W∞ primary states

ĈP̂ ψ
(vac)
ρ̄,ρ,ν̄,ν =+ψ

(vac)
−ρ,−ρ̄,ν,ν̄ (ρ + ρ̄ = 0) . (17.25)

Together with the relation (17.21), this unambiguously defines the action of the CP transforma-
tion for any state from H(cont)

Sz,w and H(disc,±)
Sz,w with Sz = 0.

In our study of the scaling limit we have focused on the case with Sz ≥ 0. Since ĈP̂ Sz =
−Sz ĈP̂ , one can make use of CP invariance to describe the scaling limit of the low energy 
states with Sz < 0. These would organize into the subsectors H(cont)

Sz,w and H(disc,±)
Sz,w , which are the 

CP image of the corresponding spaces having the opposite sign of Sz:

H(cont)
Sz,w ≡ ĈP̂

(
H(cont)
−Sz,w

)
, H(disc,±)

Sz,w ≡ ĈP̂
(
H(disc,±)
−Sz,w

)
(Sz < 0) . (17.26)

Supplementing the W∞ ⊗ W∞ decomposition of H(cont)
Sz,w and H(disc,±)

Sz,w given in the previous 
subsection with eq. (17.21) provides a classification of the states from (17.26) w.r.t. the irreps of 
the conformal symmetry algebra. Note that formula (17.25) for ρ + ρ̄ > 0 can be taken as the 
definition of ψ(vac)

−ρ,−ρ̄,ν,ν̄ , which are the primary W∞⊗W∞ states in the irreps with Sz < 0. This 
way the full space of states occurring in the scaling limit of the Z2 invariant inhomogeneous 
six-vertex model is split into the continuous and discrete components of the form

H(cont) =
⊕

Sz,w∈Z
H(cont)

Sz,w , H(disc,±) =
⊕

Sz,w∈Z
H(disc,±)

Sz,w . (17.27)

17.3. Partition function in the scaling limit

The linear decomposition of the spaces H(cont) and H(disc,±) described above allows one to 
study the scaling behaviour of the lattice partition function. For a lattice with N horizontal sites, 
we define the partition function associated with the Hamiltonian H (7.6) and the shift operator 
K, given by (2.28) with r = 2, via the formula

Z
(lattice)
N (M1,M2)= TrVN

[
e−M1H KM2

]
(17.28)

with the trace being taken over the 2N dimensional space VN =C2
N ⊗C2

N−1⊗· · ·⊗C2
1 . Keeping 

fixed the ratios

τ = 2i

N

(
vF M1 − iM2

)
, τ̄ = 2i

N

(
vF M1 + iM2

)
(17.29)

the large N behaviour of the lattice partition function is described as

Z
(lattice)
N (M1,M2)� e−M1Ne∞ Z(scl) . (17.30)

Here Z(scl) is given in terms of a trace over the full space of states occurring in the scaling limit 
of the lattice model H=H(cont) ⊕H(disc,+) ⊕H(disc,−). Namely,

Z(scl) = TrH
[
q̄W̃ 2(0)− c

24 qW̃2(0)− c
24

]
with q= e2π iτ , q̄= e2π iτ̄ . (17.31)

The trace in (17.31) is naturally split into the contributions of the states from the continuous 
and discrete components:
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Z(scl) = Z(cont) +Z(disc) . (17.32)

It is straightforward to calculate Z(disc) using the formulae (17.3)-(17.10), as well as the explicit 
expression (16.30) for the character of the highest weight irrep of the W∞ - algebra. To write the 
result in a compact way we borrow the notation χd

(j,a−j)(q) from ref. [26]. Up to a simple factor, 
this function coincides with χa(q) defined in eq. (10.25) (see also footnote 3):

χd
(j,a−j)(q)≡ q−

1
12−

(j+ 1
2 )2

n
+ (j−a)2

n+2 χa(q) (a ∈Z) . (17.33)

It is related to the character of the irrep as

χd
(j,a−j)(q)= ch

a−j,i(j+ 1
2 )
(q)×

⎧⎨⎩1 for a ≥ 0

q−a for a < 0
. (17.34)

Also introduce the notation J(v, u) for the finite set of all real numbers belonging to the half-
open segment [−n+1

2 , − 1
2 ) such that

J(v,u)≡
{
j : j ∈ [− n+1

2 ,− 1
2

)
& j− 1

2 v− 1
2 (n+ 2)(k+ u) ∈Z

}
. (17.35)

Then the calculation of the trace over the space H(disc) =H(disc,+) ⊕H(disc,−) yields

Z(disc) = 2
∑
v,u∈Z

∑
j∈J(v,u)

χd
(j,p̄)(q̄)χ

d
(j,−p)(q) , (17.36)

where10

p̄= 1
2 v− 1

2 (n+ 2) (k+ u) , p= 1
2 v+ 1

2 (n+ 2) (k+ u) . (17.37)

The overall factor of 2 in the formula for Z(disc) occurs due to the global Z2 invariance of the 
model.

The following comment is in order here. For arbitrary values of k, the inclusion of the end-
points into the interval for j in (17.35) has no effect on the set J(v, u). However for k = 0 and 
with n generic, which is of special interest, j may coincide with −n+1

2 or − 1
2 . Taking the limit 

k → 0 of Z(disc) one finds that in order for (17.36) to correctly describe the contribution of the 
discrete spectrum to the partition function Z(scl) for the model with periodic boundary conditions, 
one of the endpoints in (17.35) must be included. The choice of whether to include j =−n+1

2 or 
j =− 1

2 does not matter, since they correspond to the contribution of the same states to Z(disc).
The contribution of the continuous spectrum to the partition function Z(scl) is simply obtained 

by combining the decomposition of H(cont) into the direct integral (17.2) with the density of 
states (10.12). For future reference, we write it in the form

10 In the formula (17.36) for Z(disc), the integers v and u are formal summation variables, which can not be identified 
with the eigenvalue of Sz and the winding number w. In turn the notation p and p̄ in (17.37) should not be confused with 
p and p̄ from (8.1).
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Z(cont) =
√

n

�m(τ)

log
(
2

2
n N/N0

)
π (q̄, q̄)2∞(q,q)2∞

∞∑
Sz,w=−∞

q̄−
1
12+ p̄2

n+2 q−
1
12+ p2

n+2 (17.38)

+
∞∑

Sz,w=−∞

+∞∫
−∞

ds
∑
L,L̄≥0

ρ̃
(L̄,L)
p̄,p (s) q̄−

1
12+ s2

n
+ p̄2

n+2+L̄ q−
1
12+ s2

n
+ p2

n+2+L .

Here we take into account that τ̄ =−τ ∗ so that

q̄q= e−4π�m(τ) . (17.39)

The summand in the second line of (17.38) is naturally interpreted as the regularized matrix 
elements of a certain density matrix and the expansion coefficients ρ̃(L̄,L)

p̄,p read explicitly as

ρ̃
(L̄,L)
p̄,p (s)= 1

2π i
∂s log

[(
D

(L̄)
p̄ (s)

)par2(L)
(
D(L)

p (s)
)par2(L̄)

]
(17.40)

with

D(L)
p (s)=

(
�( 1

2 + p− is)

�( 1
2 + p+ is)

)par2(L)

×
L−1∏
a=0

[( 1
2 + a + p− is

) ( 1
2 + a − p− is

)( 1
2 + a + p+ is

) ( 1
2 + a − p+ is

)]par2(L)−da(L)

. (17.41)

The integers da(L), appearing in the exponent, are defined in (10.25). Due to the property 
da(L) = par2(L) for a ≥ L, the upper limit in the product in (17.41) may be set to infinity. This 
allows one to perform the sum over L and L̄ in the second line of (17.38) and bring it to the form, 
which is convenient for numerical calculations:∑

L,L̄≥0

ρ̃
(L̄,L)
p̄,p (s) q̄L̄qL =− rp̄(s, q̄)+ rp(s,q)

π (q̄, q̄)2∞(q,q)2∞
(17.42)

with

rp(s,q)= 1

2

∑
σ=±

ψ
( 1

2 + p+ iσs
)

(17.43)

+
∮

|z|<1

dz

2π i

(q,q)2∞
(z,q)∞(z−1 q,q)∞

1

2

∑
σ,σ ′=±

�(z,1, 1
2 + σ ′p+ iσs) .

Here ψ(α) = ∂α log�(α), while �(z, 1, α) stands for the Lerch transcendent,

�(z, s,α)=
∞∑

m=0

zm

(m+ α)s
. (17.44)

Similar to the contribution of the discrete spectrum to the partition function, the formula for 
Z(cont) requires special attention for the case of periodic boundary conditions. This is because 
at k = 0, p (p̄) can take half integer values for which the function rp(s, q) (rp̄(s, q)) (17.43)

contains simple poles at s = 0. These poles ∝ σ ′
s

formally cancel out after summation over 
the sign factor σ ′. However, the naive cancellation does not take into account the possibility of 
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contact terms proportional to the Dirac delta function δ(s) which would give a finite contribution 
to the integral in (17.38). To resolve the ambiguity one should start with Z(cont) for non-vanishing 
k and then perform the limit k → 0 using the Sokhotski-Plemelj formula.

17.4. The case of k = 0 with generic n > 0

In view of applications to local quantum field theory, of special interest is when the spectrum 
of the Lorentz spin in H(cont) and H(disc,±) consists of (half-)integers. Since the Lorentz spin of 
the states, characterized by the quantum numbers Sz, w, L and L̄, reads as

�− �̄= Sz (k+ w)+ L− L̄ (17.45)

this motivates a detailed study of a few special cases. Among them is the CP invariant sector of 
the model, where Sz = 0. If in addition one sets k =± 1

n+2 , then the space of states contains a 
CP and Z2 invariant W∞⊗W∞ primary state with conformal dimensions � = �̄= 0. Thus the 
sector Sz = 0 with k =± 1

n+2 (and, perhaps, with n a positive integer) is interesting to study in 
the context of the RSOS reductions of the inhomogeneous six-vertex model.11 However, this will 
not be considered here. Instead we’ll focus on another situation when the Lorentz spin (17.45)
takes integer values, namely, when k = 0.

The case k = 0, i.e., periodic boundary conditions for σa
m entering into the Hamiltonian H

(7.6), (7.7), has a special feature. As discussed in ref. [29] for arbitrary k the matrix

Ĉ = cN

N∏
J=1

(ηJ )
1
2 σ

z
J σ x

J

(
ηJ = (−1)J+1 i

)
, (17.46)

where c2
N = 1, satisfies the following commutation relations with A±(ζ ) and the transfer matrix:

ĈA±(ζ |k) Ĉ =A∓(ζ | − k) , ĈT (ζ |k) Ĉ =T (ζ | − k) . (17.47)

In turn the Hamiltonian H does not commute with Ĉ when the twist is non-trivial. However, for 
k = 0 the system possesses an additional global symmetry – C invariance. The space of states VN

(2.1) can be split into two components distinguished by their C parity. Numerical work shows that 
for k = 0 and generic values of the anisotropy parameter n > 0 the transfer matrix resolves all 
the degeneracies in the energy spectrum in each component. This implies that one can introduce a 
basis in the finite dimensional space VN , which diagonalizes T (ζ ) and Ĉ simultaneously. Though 
the latter commutes with the transfer matrix for k = 0, it anti-commutes with the total spin 
operator Sz = 1

2

∑
J σ z

J . Hence each basis state would no longer have a definite value of Sz, 
except for the states with Sz = 0. Note that the matrices A±(ζ ) restricted to this sector coincide, 
so that

A+(ζ )=A−(ζ ) (k= Sz = 0) . (17.48)

This follows from the first equation in (17.47), specialized to k = 0, and the fact that the transfer 
matrix, which commutes with A±(ζ ), by itself lifts all the degeneracies in the Sz = 0 sector. Also 
it turns out that in this sector the generator Ĉ, up to a sign factor, coincides with A(∞)

+ (2.14). 
Namely, one can show that

11 In fact, RSOS reductions of the inhomogeneous six-vertex model for various boundary conditions have been already 
considered in refs. [57,58].
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Ĉ�= C� � , C� = cN

N/2∏
m=1

ζ−1
m

(
k= Sz = 0

)
. (17.49)

Since Ĉ anticommutes with Sz, the C even and odd components of VN do not possess the 
U(1) symmetry. Nevertheless, these sectors are still invariant w.r.t. the subgroup of U(1), whose 
generator corresponds to a 180◦ rotation and may be chosen to be

Û = (−1)N/2 eiπSz

, Û2 = 1 . (17.50)

The extra factor (−1)N/2 has been included so that the eigenvalues of Û coincide with the sign 
factor σ (9.12) entering into the asymptotic relation (9.11). Recall that ĈP̂ commutes with the 
generator D̂ of the Z2 symmetry for arbitrary values of the twist parameter k. However the 
matrix Ĉ satisfies the commutation relations

Ĉ D̂ = Û D̂ Ĉ ,
[
Ĉ , Û

]= [ D̂ , Û
]= 0 . (17.51)

The following comment is in order here. The definition of the C conjugation (17.46) contains 
the sign factor cN = ±1, which may depend on the number of sites. We found it convenient to 
set

cN =
⎧⎨⎩(−1)N/4 N/2 − even

1 N/2 − odd
. (17.52)

For N/2 even the ground state (the state with the lowest possible energy) of the lattice Hamilto-
nian with periodic boundary conditions is non-degenerate. With the choice of the sign factor as 
in (17.52), its C parity is equal to +1. When N/2 is odd the ground state is a Z2 doublet and the 
C parity of the two states is +1 and −1.

In taking the scaling limit, one can apply the same arguments that lead to eqs. (17.13) and 
(17.21) for the previously discussed global symmetries. This way one finds

Ĉ Wj(u) Ĉ =Wj(u) , Ĉ Wj(ū) Ĉ =Wj(ū) (k= 0) . (17.53)

Hence Ĉ maps a W∞⊗W∞ highest weight irrep to an equivalent representation, i.e., one that is 
characterized by the same highest weight. For the components H(cont)

Sz,w and H(disc,+)
Sz,w occurring in 

the linear decomposition (17.27) the C conjugation acts as

Ĉ :
H(cont)
+Sz,+w �→H(cont)

−Sz,−w

H(disc,+)
+Sz,+w �→H(disc,+)

−Sz,−w
for Sz > 0 . (17.54)

The case of H(disc,−)
Sz,w is more involved. It turns out that the action of Ĉ is described by the relations

Ĉ : H(i,−)
+Sz,+w,σ �→H(5−i,−)

−Sz,−w,σ for Sz > 0 . (17.55)

Here H(i,−)
Sz,w,σ with i = 1, . . . , 4 are given by (17.9) for Sz > 0, while

H(i,−)
Sz,w,σ ≡ CP

(
H(i,−)
−Sz,w,σ

)
for Sz < 0 .

Special attention is required for the CP invariant sector where Sz = 0. First we note that the 
scaling limit of the eigenvalues of A+(ζ ) described by (11.1) involves the connection coefficients 
D+(μ | w, + 1 (n +2) w, s) and D+(μ̄ | w̄, − 1 (n +2) w, s), which do not depend on the sign of w. 
2 2
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Fig. 13. For fixed N = 100 and Sz = 0 the value of real b(N) is plotted on the number line for the class of Bethe states 
described in sec. 9. These states are such that all the corresponding Bethe roots are real, and are distinguished by the 
difference between the number of positive roots M+ and the number of negative roots M− , which for the 51 states used 
to produce the figure varies from M+ −M− =−50, −48, . . . , −2, 0, 2, . . . , 50. The parameter k was set to zero so that, 
since Sz = 0, the states have a definite C parity. The latter, computed from the Bethe roots using formula (17.49), is 
indicated by the solid fill for the C even states and no fill for the C odd ones. The number of C even (odd) states with 
b(N) ∈ (s, s +�s) ⊂ (−bmax, +bmax) is approximately 1

2 ρ
(0,0)
0,0 (s) �s with ρ(0,0)

p̄,p
being the density of primary Bethe 

states given in eq. (9.8). The anisotropy parameter was taken to be n = 2.93.

This can be seen from (17.48) and that D+(μ | w, + 1
2 (n + 2) w, s) =D−(μ | w, − 1

2 (n + 2) w, s). 
Thus in our prescription, the sign of the winding number w �= 0 for an RG trajectory �N remains 
undetermined when k = Sz = 0. Nevertheless we found that the pair of low energy states which 
become indistinguishable in the scaling limit have different energies for finite N . This allows 
one to set, by definition, that the state with −|w| and +|w| has the lower and higher value of |E |, 
respectively. Another way to resolve the ambiguity in the sign of the winding number is to start 
with the Bethe state with k �= 0 and consider the limit k → 0. It follows from the formula for the 
energy (8.1), (8.2a) that for small positive k and Sz = 0 the state with w > 0 will be of higher 
energy than the corresponding state having the opposite sign of w. In the limit k → 0+ the Bethe 
states with +|w| and −|w| would become the states with higher and lower energy, respectively, 
and the two ways of specifying the sign of the winding number turn out to be equivalent. Having 
resolved the issue with the sign, each of the spaces H(cont)

0,w , H(disc,+)
0,w and H(disc,−)

0,w occurring in 
the scaling limit become invariant w.r.t. the C conjugation.

Recall that the space H(cont)
0,w is formed by the scaling limit of the low energy Bethe states 

�N with Sz = 0, such that limN→∞�m(b(N)
)= 0. It turns out that for finite N the difference 

between the number of C even and C odd states that become part of H(cont)
0,w is an order one 

number as N →∞, see Fig. 13. For the low energy Bethe states with given C parity and fixed 
(L̄, L), the corresponding values of �e

(
b(N)

)
become densely distributed within the segment 

(−"N, "N) with limN→∞"N =∞, and the density of states for �e
(
b(N)

) ∈ (s, s +�s) turns 

out to be half the total density, ρ(L̄,L)
p̄,p (s), from eq. (10.12).

In the case of H(disc,+)
0,w = ⊕

σ=±1

(
H(1,+)

0,w,σ ⊕ H(2,+)
0,w,σ

)
our numerical work shows that the value 

of the C parity is the same for all the states in each component H(i,+)
0,w,σ with w �= 0. However, it 

depends on whether the scaling limit with N →∞ is taken such that N/2 is kept fixed to be 
even or odd:

Ĉ
(
H(i,+)

0,w,σ

)=−σN/2 sgn(w)H(i,+)
0,w,σ (i = 1,2) . (17.56)

Note that for w = 0 the space H(disc,+)
0,0 = 0 as follows from eqs. (17.4) and (17.6). For H(disc,−)

0,w

the subspaces H(i,−)
0,w,σ with i = 2, 3 are trivial since the summation index a runs over the empty 

sets !2(p) and !2(p̄) in (17.9). For similar reasons H(4,−)
0,w,σ and H(1,−)

0,w,σ are also trivial for w > 0
and w < 0, respectively. It is expected that

Ĉ
(
H(1,−)

0,w,σ

)=+ c(1)w σN/2 H(1,−)
0,w,σ , H(4,−)

0,w,σ = 0 (w> 0)
(17.57)

Ĉ
(
H(4,−))=− c(4)w σN/2 H(4,−)

, H(1,−) = 0 (w< 0) ,
0,w,σ 0,w,σ 0,w,σ
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where c(1)w and c(4)w are some signs that could depend on w. However the value of these sign factors 
is still unknown to us as their determination involves the analysis of the Bethe states, which are 
of rather high energy compared to the ground state. The subspace H(disc,−)

0,0 contains the two 

non-trivial components H(1,−)
0,0,σ and H(4,−)

0,0,σ , which are classified identically w.r.t. the algebra of 
extended conformal symmetry. In turn, there is an ambiguity in assigning a low energy Bethe 
state to either one of these components. However this can be resolved by making use of C parity 
for finite N and then taking the large N limit, so that by definition

Ĉ
(
H(1,−)

0,0,σ

)=+σN/2 H(1,−)
0,0,σ , Ĉ

(
H(4,−)

0,0,σ

)=−σN/2 H(4,−)
0,0,σ . (17.58)

This way each of the spaces H(cont) and H(disc,±) is splitted into two sectors characterized by 
the value of the C parity. The decompositions of the even and odd components into the highest 
weight irreps of the W∞ ⊗W∞ - algebra are identical. We’ll restrict our further discussion and 
only focus on the C even (or equivalently odd) sector of H(cont).

Let’s turn to formula (17.2), which describes the decomposition of H(cont)
Sz,w into the highest 

weight irreps for (n + 2) k /∈Z. Each of the chiral components in the integrand therein coincides 
with the Verma module, which is an irreducible representation of the chiral W∞ - algebra. How-
ever, as was discussed in sec. 16.2, for k = 0 some of these Verma modules become reducible. 
The degenerate Verma module, Verρ,s , splits into the two irreps

Verρ,s =Wρ,s ⊕Wρ+m(n+2),s , where ρ = 1
2

(
r −m(n+ 2)

)
, m, r = 1,2, . . .

(17.59)

and s is an arbitrary real number. With this in mind, it is straightforward to obtain from eq. (17.2)
the decomposition into the highest weight irreps of the C even sector of H(cont) for k = 0:

H(cont)
even = H̃(cont)

even ⊕H(null) . (17.60)

Here

H̃(cont)
even =

∞⊕
v=0

[ ∞⊕
w=−∞

H̃(cont)
v,w

]
(17.61)

with

H̃(cont)
v,w =

⊕∫
R

ds W ρ̄,s ⊗Wρ,s and
ρ = 1

2 v+ 1
2 (n+ 2)w

ρ̄ = 1
2 v− 1

2 (n+ 2)w
, (17.62)

while the space H(null) is a direct sum of two components,

H(null) =H(null)
+ ⊕H(null)

− , (17.63)

that are decomposed identically into the irreps of the algebra of extended conformal symmetry

H(null)
± =

+∞⊕
v,w=1

⊕∫
R

ds Wρ,s ⊗Wρ,s

(
ρ = 1

2 v+ 1
2 (n+ 2)w

)
. (17.64)

The superscript “null” emphasizes that the highest state in either one of the chiral irreps occurring 
in the decomposition of H(null)

± coincides with the null vector in the original Verma module (see 
(17.59)).
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Similar to H(null)
± the subspaces H̃(cont)

0,+w and H̃(cont)
0,−w also possess identical decompositions 

w.r.t. the W∞ ⊗ W∞ algebra. This way H(cont)
even contains degeneracies, which are not present 

in the C even sector of VN for any finite N . As a result, at least at the formal level, one can 
introduce two extra Z2 symmetry transformations in H(cont)

even , which commute with the algebra 
of extended conformal symmetry. The first one, X̂ (w), acts as the identity operator on all the 
subspaces appearing in the linear decompositions (17.60) and (17.61) except for H̃(cont)

0,w with 
w �= 0. In the latter case, it intertwines the subspaces with opposite signs of w:

X̂ (w)(H̃(cont)
v,w

)= H̃(cont)
v,w for v= w= 0 & v≥ 1, w ∈Z

X̂ (w)(H(null))=H(null) (17.65)

X̂ (w) : H̃(cont)
0,w �→ H̃(cont)

0,−w (w �= 0) .

The second Z2 transformation, X̂ (null), acts between the “±” components of the space H(null)

(17.63),

X̂ (null)(H̃(cont)
even

)= H̃(cont)
even , X̂ (null) : H(null)

± �→H(null)
∓ . (17.66)

For any values of the twist parameter k the lattice system possesses CP symmetry. Thus 
when k = 0 not only C, but also the P conjugation becomes a global symmetry of the model. 
The generator P̂ ∈ End(VN) can be chosen to be

(P̂)
bNbN−1...b1
aNaN−1...a1 = cN δb1

aN
δb2
aN−1

. . . δbNa1

N∏
J=1

η
aJ /2
J

(
ηJ = i (−1)J−1 ) , (17.67)

where aJ , bJ =±1 and cN is the same sign factor as in (17.52). Though P̂ commutes with the 
lattice Hamiltonian subject to periodic boundary conditions, in view of the relations (2.16) and 
(17.47), it does not commute with the transfer matrix. Instead,

P̂ T (ζ ) P̂ = ζN T
(
ζ−1) (k= 0) . (17.68)

Since [ Ĉ, P̂ ] = 0 the C even and odd components of the finite dimensional space VN are P
invariant. However it turns out that there are some subtleties in taking the scaling limit of the 
operator (17.67). Assuming that the limit exists, eqs. (17.21) and (17.53) would imply that

P̂ Wj(u)=Wj(u) P̂ (k= 0) . (17.69)

To determine the action of the parity conjugation in H(cont)
even , all that remains is to find how it 

acts on the W∞ ⊗W∞ primary states in the decompositions (17.62), (17.64). Without loss of 
generality, one can always set

P̂ ψ
(vac)
ρ̄,ρ,ν =+ψ

(vac)
ρ,ρ̄,ν for ρ �= ±ρ̄ . (17.70)

Otherwise, when |ρ̄| = |ρ|, the primary state ψ(vac)
ρ̄,ρ,ν is an eigenvector of P̂ ,12

12 Recall that the low energy Bethe states, which become the primary states ψ(vac)
ρ̄,ρ,ν

∈ H̃(cont)
even with v = 0 and having 

opposite signs of the winding number have different energies on the finite lattice. Thus, despite that such primary states 
correspond to equivalent irreps of the W∞ ⊗W∞ algebra, each of them is an eigenvector of P̂ . Similarly the primary 
states ψ(vac,±)

ρ,ρ,ν ∈H(null)
± are also eigenvectors of P̂ .
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P̂ ψ
(vac)
ρ̄,ρ,ν = σψ ψ

(vac)
ρ,ρ̄,ν (ρ =±ρ̄) . (17.71)

Here the sign factor σψ can not be eliminated by a change of the normalization of the state and 
its determination requires a numerical study of the lattice system. As it follows from the result 
quoted in (17.25), σψ =+1 for ρ =−ρ̄ = 1

2 (n +2) w. In sec. 9 the primary Bethe states �N with 
vanishing winding number and Sz ≥ 0 were discussed. The C even combination, �N + Ĉ�N , 
which has the same P parity as �N itself, in the scaling limit becomes the primary state in the 
sector H̃(cont)

v,0 . We found that the parity of �N is given by

P̂ �N = cN (−1)
1
2 (N/2−Sz+m) �N (w= 0) , (17.72)

where m is the integer that coincides with the difference between the number of negative and 
positive Bethe roots. This formula implies that as N � 1 the value of b(N) for the P even and 
odd low energy primary Bethe states is densely distributed within the segment (−"N, "N) with 
equal densities. A similar situation occurs for �N , which become the primary states in H(null)

± .

To summarize the space H(cont)
even possesses P , T and Z2 global symmetries while C, by defi-

nition, acts trivially inside it. Moreover, there is another Z2 symmetry U , which comes from the 
invariance of the C even sector of VN w.r.t. to the transformation (17.50). Being restricted to any 
irrep occurring in the decomposition of H(cont)

even , the U transformation acts as the identity modulo 
a sign factor:

Û
(
W ρ̄,s ⊗Wρ,s

)=±(−1)ρ+ρ̄ W ρ̄,s ⊗Wρ,s ⊂H(cont)
even . (17.73)

Here “±” depends on whether, for the construction of the RG trajectories �N , N/2 is kept to 
be an even or an odd integer. Finally, there are the two formal Z2 symmetries X (w) and X (null)

acting in H(cont)
even , which are broken in the lattice system.

18. Numerical work

Our analysis of the scaling limit is based on a definition of a low energy state which was 
referred to as a “working” one. This was to emphasize that it contains several non-trivial as-
sumptions regarding the spectrum of the Z2 invariant inhomogeneous six-vertex model. Among 
the strongest of them is that the pair of integers (L̄, L) in (8.2) may only take non-negative values. 
This would be natural to assume once that pair has been identified with the levels of the state in 
the highest weight irrep of the extended conformal symmetry algebra. However, as was pointed 
out in sec. 17.1, the space of states in the scaling limit contains the sector H(disc,−), where this 
identification does not hold true. The condition L̄, L ≥ 0 was motivated through a numerical 
study of the low energy spectrum of the lattice Hamiltonian.

A related question concerns the constraint 
∣∣�m(b(N)

)∣∣< n
4 . Recall that the latter was intro-

duced so that b(N), which is proportional to the logarithm of the eigenvalue of the quasi-shift 
operator (8.6), would be defined unambiguously and in a way that is consistent with the large 
N asymptotic formula for the low energy spectrum (8.2a). However it turns out that one can 
choose the branch of the logarithm in (8.6) differently, such that b(N) is continuous in N and 
(8.2a) is still valid. These two ways of specifying the branch are equivalent in the case of the 
continuous spectrum where limN→∞�m(b(N)

) = 0. However there exist RG trajectories with ∣∣�m(b(N)
)∣∣< n

4 for sufficiently small N , while if b(N) is defined to be continuous in N its lim-
iting value as N →∞ lies outside of this strip. An example is depicted in Fig. 14, where n = 3, 
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k = 0.099, w =−1, Sz = L = L̄= 0, while limN→∞�m(b(N)
)=− 3

2 − p = 0.7525 > n
4 . Re-

markably, the trajectory still fits within our working definition of the low energy state. This is 
due to the simple identity

p2 + p̄2

n+ 2
− 2 (p+ 1

2 + a)2

n
+ L+ L̄= p2+ + p̄2+

n+ 2
− 2 (p+ 1+n

2 + a)2

n
+ L+ + L̄+ (18.1)

with

p+ = p+ 1
2 (n+ 2) , p̄+ = p̄− 1

2 (n+ 2) , L+ = L+ a , L̄+ = L̄+ a + Sz .

(18.2)

Thus the RG trajectory from Fig. 14 may be equivalently assigned Sz = w = 0, L = L̄ = 1 and 
with the limiting value of b(N) belonging to the strip, limN→∞ b(N) = ( − 3

2 − p − n
2

)
i =

−0.7475 i. Notice that the levels L and L̄ have increased by one rather than becoming negative.
That every low energy state of the lattice Hamiltonian fits within the “working” definition is 

difficult to justify rigorously. The same can also be said for the conjectures from sec. 10 concern-
ing the space of low energy states of the lattice model with N � 1. Nevertheless the assumptions 
turn out to be in full accordance with the results of a numerical investigation of the low energy 
spectrum of H. The latter is based on the following procedure. First, for sufficiently small N we 
performed the numerical diagonalization of the Hamiltonian, the lattice translation, the quasi-
shift and other operators belonging to the commuting family in a sector with given 0 ≤ Sz �N . 
We consider only those states below a certain cutoff in the energy and lattice momentum. To 
each of them we tried to assign the winding number w and a pair of non-negative integers L, L̄
such that eq. (8.2) with |�m(b(N)

)| < n
4 approximately holds true. As will be discussed in a mo-

ment we found that practically the most effective way to make such an identification was using 
the subleading corrections to that formula. Once the main characteristics of a low energy state 
are specified, we try to match the value of b(N) with some solution of (9.11), considered as an 
equation for b(N) with the finite size correction terms ignored.13 Having a solution to (9.11) for 
given N , it can be continued for increasing values of N without numerical diagonalization of the 
lattice operators and the numerical solutions of the Bethe ansatz equations. Thus the properties 
of the space of states in the scaling limit may be determined from an analysis of eq. (9.11) alone. 
This was the way in which we arrived at the conjectures in sec. 10.

Let’s illustrate the above procedure on a concrete example. Among others we numerically 
analyzed the first 400 low energy eigenstates of the Hamiltonian H (7.6), (7.7) with

N = 22 , q = e
iπ
5 (n= 3) , k=−9/50 (18.3)

in the sector Sz = 1. The total number of states in this sector is over 6 × 105 so a brute force 
numerical diagonalization is not possible. However the Hamiltonian is a sparse matrix with a 
significant number of vanishing elements. This allows one to find the first few hundred low en-
ergy eigenvectors and eigenvalues using the Krylov-Arnoldi method [59,60] within a reasonable 
computer time. It turned out that among the first 400 eigenstates of H, ordered according to the 
real part of the energy, there were only four non-degenerate eigenstates, while the remaining 

13 For given p = 1
2

(
Sz + (n + 2)(k + w)

)
, p̄ = 1

2

(
Sz − (n + 2)(k + w)

)
, L and L̄, the number of solution sets w, w̄ of 

(10.3) (with s substituted by b(N)) is finite, so that there are a finite number of equations (9.11) with δ = δ(w̄, w | p̄, p, s)
to be checked. In fact, an analysis of the subleading corrections to the energy are typically enough to determine the sets 
w̄, w for a given low energy state.
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Fig. 14. The red crosses depict the imaginary part of b(N) = n
4π log(B), where B is the eigenvalue of the quasi-shift 

operator (8.4), for an RG trajectory �N with the parameters set to be n = 3, k = 0.099 and Sz = 0. For the left panel the 
logarithm was defined so that b(N) is a continuous function of N . As N increases b(N) leaves the strip 

∣∣�m(b(N)
)∣∣< n

4 , 
whose boundary is marked by the solid black line, and tends to the limiting value limN→∞ b(N) = 0.7525i correspond-
ing to the dashed line. It turns out that this way of specifying b(N) is consistent with the asymptotic formula (8.2a) for the 
energy provided that one takes w =−1 and L = L̄= 0. This is illustrated by the blue open circles, which correspond to 
b(N) obtained from the energy E by inverting eq. (8.2a) with the correction terms ignored. For the right panel, the branch 
of the logarithm for b(N) = n

4π log(B) (red crosses) was taken such that 
∣∣�m(b(N)

)∣∣< n
4 . The blue circles depict b(N)

calculated from the energy E , where in inverting eq. (8.2a) we set w = 0 and L = L̄= 1.

ones formed the Z2 doublets. Having at hand the eigenvectors of the Hamiltonian, the compu-
tation of the eigenvalues of A+(ζ ) becomes a relatively easy task. For the case of a doublet 
one needs to calculate two rows of the matrix A+(ζ ), contract them with the eigenvectors and 
then diagonalize the resulting 2 × 2 matrix. Note that, unlike the Hamiltonian, A+(ζ ) is a dense 
matrix having no vanishing entries. Thus even the calculation of all of its 4.1 × 1011 matrix ele-
ments in the Sz = 1 sector for N = 22 would be simply impossible. The same also applies to the 
transfer matrix T (ζ ). For the lattice model with N = 22 and Sz = 1 the eigenvalues of A+(ζ )
are tenth degree polynomials in ζ , whose zeroes solve the Bethe ansatz equations (2.10). This 
allows one to calculate the Bethe roots for all the 400 eigenstates. In turn, the eigenvalues of 
the lattice translation and quasi-shift operators are obtained from the Bethe roots using formulae 
(2.29) specialized to r = 2, ηJ = (−1)J+1 i and (8.5), respectively. Apart from these we also 
found it useful to consider the eigenvalues of the operators H(±). They belong to the commuting 
family, are related to each other through the Z2 transformation D and their sum is equal to the 
Hamiltonian:

H=H(+) +H(−) ,
[
H(±), H

]= 0 , H(∓) =D H(±)D . (18.4)

The explicit formula for the matrices H(±) is quoted in sec. 8.2 in the work [29]. Their eigenval-
ues are expressed in terms of the Bethe roots as

H(±) �
({ζm})= E (±) �

({ζm}) , E (±) =±
N/2−Sz∑
m=1

2 (q − q−1)

ζm − ζ−1
m ∓ i (q + q−1)

.

(18.5)

For the considered set of 400 eigenstates the absolute value of the scaled energy

δE = N

4πvF

(
E −N e∞

)
(18.6)

varies between 0 and |δEmax| ≈ 3.3. Therefore, in view of the large N asymptotic formula (8.2a)
our analysis could only apply to the case
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0≤ L+ L̄≤ 3 , L, L̄≥ 0 . (18.7)

For the low energy states the branch of the logarithm of the eigenvalues of the lattice translation 
operator (8.2b) can be chosen such that

N

4π i
log(K)− Sz k= L− L̄+ Sz w . (18.8)

The r.h.s. is an integer, which for N = 22 can take any values in the range −5 ≤ L − L̄+Sz w ≤ 5. 
However we imposed the momentum cut-off∣∣∣ N

4π i
log(K)− Sz k

∣∣∣≤ 3 (18.9)

since otherwise this would require considerations of the states with L, L̄ = 4, 5 which are ex-
cluded by the relation (18.7). Among the original 400 states, 338 of them satisfy this condition.

We now come up against the problem of assigning each of the 338 states the non-negative 
integers L and L̄ as well as the winding number w. For this purpose we used the finite size 
correction formulae to the eigenvalues of H(±) presented in the work [15]. In the scaling limit 
the low energy Bethe states �N take the form ψ̄ p̄,s (w̄) ⊗ ψp,s(w). As was already mentioned 
for L, L̄≤ 5 the chiral states ψp,s(w) and ψ̄ p̄,s (w̄) are completely determined by the eigenvalues 
of the local IM Im(w, p, s) and Im(w̄, p̄, s), respectively, with m = 1, 2, 3 (15.7). For finite N
the subleading correction to the scaled energy δE = N

4πvF

(
E −Ne∞

)
, corresponding to �N , is 

described by the formula

δE = I1,N + Ī1,N − 4n2

N2

(
2π2 g1 I1,N Ī1,N + g3

(
I3,N + Ī3,N

))+O
(
N−4,N−2n) .

(18.10)

Here g1, g3 stand for the numerical constants

g1 =−cot(π
n
)

2π n2 , g3 = π�( 7
2 + 3

n
)�3(1+ 1

n
)

18�( 3
n
)�3( 3

2 + 1
n
)

, (18.11)

while

Im,N = Im(w,p, s)
∣∣
s=b(N)

, Īm,N = Im(w̄, p̄, s)
∣∣
s=b(N)

(18.12)

and the sets w, w̄ solve the algebraic system (10.3) with s replaced by the “running coupling” 
b(N). In (18.10) the notation O

(
N−a, N−b

)
stands for o(N−c), where c = min(a, b) − ε for 

all ε > 0. It should be pointed out that the large N asymptotic formula for δE is not literally 
applicable when n ≤ 1. In this case the description of the finite size corrections is more involved 
and includes a contribution from the so-called dual non-local IM (see ref. [15] for a further 
discussion). As it follows from (18.4) the energy E coincides with the sum of the eigenvalues of 
H(+) and H(−). The finite size corrections for the difference E (+) − E (−) is expressed in terms 
of the eigenvalues of the local IM I2 and Ī2:

E (+) − E (−)

4πvF
=−2in3/2

N2 g2
(
I2,N − Ī2,N

)+ o
(
N−2) , (18.13)

where

g2 =
√
π �( 5

2 + 2
n
)�2(1+ 1

n
)

3�( 2 )�2( 3 + 1 )
.

n 2 n
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Table 1
A classification of the 338 lowest energy states, subject to the momentum cut-off 
(18.9), of the lattice Hamiltonian H with N = 22 in the sector Sz = 1. The states 
are assigned to H(cont)

N |Sz or H(disc,±)
N |Sz based on the predictions of the asymptotic 

formula (9.11), see also Figs. 8, 15 and those contained in Appendix C. In the 
case w = 1, L = 2, L̄= 0 the number of states that were delegated to H(disc,+)

N |Sz is 
six, which is less than what is predicted by eq. (10.28) (ten). Note that for these 
states |δE | (18.6) is close to |δEmax| ≈ 3.3. In all other cases the number of states 
in H(disc,±)

N |Sz agrees with (10.28). The parameters entering into the Hamiltonian 

were taken to be q = e
iπ
5 (n = 3) and k =−0.18.

w= 0 w= 1

(L, L̄) H(cont)
N |Sz H(disc,+)

N |Sz H(disc,−)
N |Sz (L, L̄) H(cont)

N |Sz H(disc,+)
N |Sz H(disc,−)

N |Sz

(0,0) 9 0 0 (0,0) 5 2 0
(1,0) 18 0 2 (1,0) 6 4 0
(0,1) 20 0 0 (0,1) 8 4 0
(1,1) 32 0 2 (2,0) 2 6 0

(2,0) 36 0 4
(0,2) 40 0 0
(1,2) 22 0 8
(2,1) 16 0 4
(3,0) 34 0 8
(0,3) 46 0 0

The procedure that we used for assigning the full set of RG invariants to the low energy Bethe 
states is the following. For a given state �N the eigenvalues E (±), K and B are calculated from 
the Bethe roots obtained via the diagonalization of H and A+(ζ ) described above. Then b(N) =
n

4π log(B) is used to compute the r.h.s. of (18.10) for all possible pairs (L, L̄) satisfying (18.7), 
with w determined through the relation (18.8). This involves solving the algebraic system (10.3), 
where p = 1

2

(
Sz+ (n +2)(k +w)

)
, p̄ = 1

2

(
Sz− (n +2)(k +w)

)
and s is swapped for b(N). The 

obtained values of the r.h.s. of (18.10) are then matched with δE = N
4πvF

(
E (+)+E (−)−Ne∞

)
. In 

almost all cases the procedure allows one to unambiguously determine the integers L, L̄, w as well 
as the sets w and w̄ associated to the state �N . It should be mentioned that we encountered about 
a half dozen cases, out of the 338, where we could not unambiguously identify the states with the 
help of (18.10) alone. In all these cases the issue was resolved by employing the relation (18.13)
and the product rule (11.20). The results of the above procedure are summarized in Table 1.

The table also contains a classification of the states according to whether they become part of 
the continuous or discrete spectrum in the scaling limit. This is achieved by matching b(N) with 
a certain solution of the equation(

N

2N0

)4ib

exp
( i

2 δ(w̄(b),w(b) | p̄,p, b)
)= (−1)N/2−Sz

, (18.14)

which comes from dropping the correction terms in the asymptotic formula (9.11). Here the phase 
shift depends on b explicitly as well as implicitly through the sets w(b) and w̄(b) which solve 
(10.3) with s substituted by b. For fixed L and L̄ there are par2(L) ×par2(L̄) pairs (w(b), w̄(b)) so 
that par2(L) ×par2(L̄) equations of the form (18.14) need to be considered. Among the solutions 
of all of these equations, one should choose the particular one, b∗, which is closest to the value 
of b(N) corresponding to the Bethe state �N . In practice this is not too difficult a task. The 
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Fig. 15. The open circles depict the distribution of b(N) = n
4π log(B) in the complex plane, where B is the eigenvalue of 

the quasi-shift operator, for the 42 = 34 + 8 states with L = 3, L̄= 0 and w = 0 as indicated in Table 1. The filled circles, 
squares and diamonds correspond to the solutions b∗ of eq. (18.14). For the circles limN→∞�m(b∗(N)

)= 0, while for 
the squares, b∗(N) →± 9i

20 as N →∞. The filled diamonds form two pairs which have the same value of �m(b∗(N)
)

and opposite real part. At large but finite N the diamonds from the upper pair collide at the imaginary axis at which point 
for one of the diamonds b∗(N) →+ 9i

20 while for the other one b∗(N) → 0. The N dependence of b∗(N) for the lower 
pair of diamonds is obtained from that of the upper pair via complex conjugation.

initial approximation for finding the solution b∗ may be taken to be bin = b(N) = n
4π log(B). 

The proper sets w∗(b), w̄∗(b), are the ones which at b = bin coincide with the w, w̄ that were 
assigned to the Bethe state �N through the examination of the finite size corrections. Once b∗
is determined its N dependence, with b∗ = b∗(N) being a continuous function, is obtained by 
means of varying N in eq. (18.14) with the sign factor (−1)N/2−Sz

kept fixed. Then the state �N

is delegated to H(cont)
N |Sz or H(disc)

N |Sz depending on whether or not limN→∞�m(b∗(N)
)

vanishes. 
Note that for any given Bethe state one can always verify through the explicit construction of the 
corresponding RG trajectory, by solving the Bethe ansatz equations, that b(N) asymptotically 
approaches b∗(N) as N →∞ see, e.g., Fig. 9.

For the 34 states in the sector L = L̄ = 1 and w = 0 the correspondence between b(N), ob-
tained via the numerical diagonalization of the lattice operators, and the solutions b∗ of eq. 
(18.14) has already been illustrated in Fig. 8. Of these states, 32 are predicted to form part of 
the continuous spectrum in the scaling limit, i.e., belong to H(cont)

N |Sz , while the two states which 

have been matched to b∗ depicted by the solid squares in the figure are part of H(disc)
N |Sz . We also 

confirmed this by explicitly constructing the RG trajectories corresponding to these two states 
and verifying that limN→∞�m(b(N)

) �= 0. The results of a similar analysis for the states in the 
sector with L = 3 and L̄= w = 0 are presented in Fig. 15. Note that in this case, since the sum 
L + L̄ reaches the upper bound in (18.7), for many of the solutions b∗ there is no corresponding 
lattice state among the 400 lowest energy states of H. An additional six figures that cover the 
remaining cases listed in Table 1 are contained in Appendix C.

Analogous computations were performed for the low energy states of the lattice Hamiltonian 

for different sectors Sz as well as various values of the anisotropy parameter q = e
iπ
n+2 and the 

twist parameter k.
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19. Hermitian structure of the space of states in the scaling limit

19.1. Hermitian versus integrable structure

Up till now we have been focused on describing the linear structure of the space of states 
occurring in the scaling limit of the Z2 invariant inhomogeneous six-vertex model. This was 
achieved through the decomposition of H into the highest weight irreps of the W∞ ⊗W∞ -
algebra, accounting for the superselection rules imposed by the global symmetries along the 
way. The space of states also possesses an integrable structure. It is inherited from the finite 
dimensional (pseudo-)Hilbert space of the lattice model, where there exists a basis of Bethe 
states diagonalizing the matrices A±(ζ ). The latter, in the scaling limit, become the operators 
a±(λ) and ā±(λ̄), while the scaling limit of the low energy Bethe states yields the states

ψ ρ̄,ρ,ν̄,ν(w̄,w)≡ ψ̄ ρ̄,ν̄ (w̄)⊗ψρ,ν(w) ∈ V̄ρ̄,ν̄ ⊗ Vρ,ν . (19.1)

In turn, these form a basis for H diagonalizing a±(λ), ā±(λ̄). Here we discuss the Hermitian 
structures consistent with the integrable one.

We’ll consider two types of sesquilinear forms in H. The first one, labeled by the subscript 
“+”, is such that the eigenstates ψ ρ̄,ρ,ν̄,ν(w̄, w) satisfy the condition14(

ψ ρ̄′,ρ′,ν̄′,ν′(w̄
′,w′),ψ ρ̄,ρ,ν̄,ν(w̄,w)

)
+ = 0 unless ψ ρ̄′,ρ′,ν̄′,ν′ = ĈP̂T̂ ψ ρ̄,ρ,ν̄,ν .

(19.2)

Recall that the CPT conjugation acts as

ĈP̂T̂ : V̄ρ̄,ν̄ ⊗ Vρ,ν �→ V̄ρ̄,ν̄∗ ⊗ Vρ,ν∗ . (19.3)

Hence for the continuous component of the space of states, H(cont), where ρ = p, ρ̄ = p̄ and 
ν = ν̄ = s are all real the states ψ ρ̄,ρ,ν̄,ν(w̄, w) and ψ ρ̄′,ρ′,ν̄′,ν′(w̄

′, w′) in (19.2) belong to the 
same irrep of the W∞ ⊗W∞ - algebra. On the other hand for the irreps from H(disc), where 
ν∗ = −ν and ν̄∗ = −ν̄, the CPT conjugated space, Vρ̄,−ν̄ ⊗ Vρ,−ν , does not coincide with the 
initial one Vρ̄,ν̄ ⊗ Vρ,ν . This makes it natural to introduce another sesquilinear form, using the 
Z2 symmetry, such that(

ψ ρ̄′,ρ′,ν̄′,ν′(w̄
′,w′),ψ ρ̄,ρ,ν̄,ν(w̄,w)

)
− = 0 unless ψ ρ̄′,ρ′,ν̄′,ν′ = D̂ĈP̂T̂ ψ ρ̄,ρ,ν̄,ν .

(19.4)

Since

D̂ĈP̂T̂ : V̄ρ̄,ν̄ ⊗ Vρ,ν �→ V̄ρ̄,−ν̄∗ ⊗ Vρ,−ν∗ (19.5)

any irrep of the W∞ ⊗W∞ - algebra occurring in the decomposition of H(disc) would coincide 
with its conjugate.

For each of the sesquilinear forms consistent with the integrable structure there is an evident 
candidate, which is defined through the conjugation conditions for the W currents:

14 Although the normalization for the eigenstates has yet to be fixed, in writing formulae (19.2) and (19.4) we as-
sume that ĈP̂T̂ ψ ρ̄,ρ,ν̄,ν (w̄, w) = ψ ρ̄,ρ,ν̄∗,ν∗ (−w̄∗, −w∗) and D̂ψ ρ̄,ρ,ν̄,ν (w̄, w) = ψ ρ̄,ρ,−ν̄,−ν(−w̄, −w) (see eq. 
(17.19)).
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(
χ2,Wj (u)χ1

)
± = (±1)j

(
Wj(u

∗)χ2,χ1
)
± (19.6a)(

χ2,Wj (ū)χ1
)
± = (±1)j

(
Wj(ū

∗)χ2,χ1
)
± , (19.6b)

where χ1 ∈ V̄ρ̄,ν̄ ⊗Vρ,ν and χ2 ∈ V̄ρ̄,±ν̄∗ ⊗Vρ,±ν∗ are arbitrary states. Indeed since the local IM 
are expressed as integrals over the local densities built from the W currents, the above conjuga-
tion conditions imply(

χ2, Imχ1
)
± = (±1)m+1 (Imχ2,χ1

)
± (19.7a)(

χ2, Īmχ1
)
± = (±1)m+1 (Īmχ2,χ1

)
± . (19.7b)

For generic values of the twist and anisotropy parameters k and n it is expected that the set of 
eigenvalues {Im}∞m=1 and {Īm}∞m=1 unambiguously specifies the states in H. Then (19.7) together 
with the commutation relations ĈP̂T̂ Im = Im ĈP̂T̂ , D̂ Im = (−1)m+1 Im D̂ and similarly for Īm
(see (17.12)) leads to the orthogonality condition (19.2) or (19.4).

The relations (19.6) do not define the sesquilinear forms unambiguously. They should be 
supplemented by the value of the forms on the W∞ ⊗W∞ primary states. Independently of this 
choice, the orthogonality condition (19.2) along with the commutation relations of ĈP̂T̂ , D̂ with 
a±(λ), τ (λ) (17.11) and ā±(λ̄), τ̄ (λ̄) imply that for the “+” form(

χ2,a±(λ)χ1
)
+ =

(
a±(λ∗)χ2,χ1

)
+ ,

(
χ2,τ (λ)χ1

)
+ =

(
τ (λ∗)χ2,χ1

)
+ (19.8a)(

χ2, ā±(λ̄)χ1
)
+ =

(
ā±(λ̄∗)χ2,χ1

)
+ ,

(
χ2, τ̄ (λ̄)χ1

)
+ =

(
τ̄ (λ̄∗)χ2,χ1

)
+ . (19.8b)

Similarly for the “−” sesquilinear form one has(
χ2,a±(λ)χ1

)
− =

(
a±(−λ∗)χ2,χ1

)
− ,

(
χ2,τ (λ)χ1

)
− =

(
τ (−λ∗)χ2,χ1

)
−

(19.9a)(
χ2, ā±(λ̄)χ1

)
− =

(
ā±(−λ̄∗)χ2,χ1

)
− ,

(
χ2, τ̄ (λ̄)χ1

)
− =

(
τ̄ (−λ̄∗)χ2,χ1

)
− .

(19.9b)

To establish the above formulae, it is sufficient to check them in the eigenbasis (19.1).
The sesquilinear forms allow one to introduce an inner product for the continuous and discrete 

components of H. For the case of H(cont) we take it to be〈
χ1, χ2

〉
cont =

(
χ1, χ2

)
+ , χ1, χ2 ∈H(cont) . (19.10)

As it follows from (19.6) the Hermitian conjugation for the Fourier coefficients of the W currents 
(16.20) corresponding to such an inner product is[

W̃j (m)
]
 = W̃j (−m) ,

[
W̃ j (m)

]
 = W̃ j (−m) . (19.11)

Once the norms of the highest states are specified, this condition allows one to calculate the 
inner product for any given states from the same irrep of the W∞ ⊗W∞ - algebra. Two states 
which belong to irreps that are not isomorphic to each other, are orthogonal. In the case under 
consideration with the central charge −1 < c < 2 the inner product is not positive definite so that 
H(cont) equipped with 

〈·, ·〉cont becomes a pseudo-Hilbert space.
The structure of the pseudo-Hilbert space for H(disc) can be introduced using the inner product〈

χ1, χ2
〉
disc =

(
χ1, χ2

)
− , χ1, χ2 ∈H(disc) . (19.12)

In this case the conjugation condition (19.11) is replaced by
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[
W̃j (m)

]
❉ = (−1)j W̃j (−m) ,

[
W̃ j (m)

]
❉ = (−1)j W̃ j (−m) . (19.13)

Likewise the inner product 
〈·, ·〉disc is not positive definite when c < 2.

19.2. Chiral sesquilinear forms

In the above discussion of the Hermitian structure for H it was sufficient to focus on an 
irrep occurring in the W∞ ⊗ W∞ decomposition of this space. Recall that the CPT and D
transformations, required for defining the conjugated irrep, can be introduced for each left and 
right chiral factor in V̄ρ̄,ν̄ ⊗ Vρ,ν separately (see sec. 17.2). This makes it possible to restrict the 
sesquilinear forms to the chiral components. For instance, for the “+” sesquilinear form on the 
right chiral spaces, relations (19.7a) and (19.8a) would continue to hold true with χ1 ∈ Vρ,ν , 
χ2 ∈ Vρ,ν∗ = ĈP̂T̂

(
Vρ,ν

)
and similarly for the left chiral ones.

The spaces Vρ,ν were originally realized in terms of the Fock spaces. For real ρ and ν, this 
irrep of the W∞ - algebra coincides as a linear space with FP, where P = ( ρ√

n+2
, ν√

n

)
. When ν

is pure imaginary and ρ + 1
2 ± iν ∈ Z, the corresponding Fock space becomes reducible w.r.t. 

the W∞ - algebra and Vρ,ν is obtained by factoring FP over the invariant subspace generated by 
the null vector as in eqs. (13.28) and (13.33). Despite this, the conjugation conditions (19.6a), 
combined with the bosonization formulae for the W currents (16.2), (16.8), allow one to lift the 
sesquilinear forms to the complex bilinear maps ĈP̂T̂

(
FP
) × FP �→ C for the “+” form and 

D̂ĈP̂T̂
(
FP
)×FP �→C in the case of the “−” one, for any P. Note that the action of the CPT

and D transformations in the Fock space can be defined through the relations

ĈP̂T̂ :FP �→FP∗ , ĈP̂T̂ am = am ĈP̂T̂ , ĈP̂T̂ bm = bm ĈP̂T̂

D̂ :FP �→FP′ , D̂ am = am D̂ , D̂ bm =−bm D̂
(19.14)

along with

ĈP̂T̂ |P〉 = |P∗〉 , D̂ |P〉 = |P′〉 , where
P∗ = ( ρ∗√

n+2
,+ ν∗√

n

)
P′ = ( ρ√

n+2
,− ν√

n

) . (19.15)

It is straightforward to check that ĈP̂T̂ a±(λ) = a±(λ∗) ĈP̂T̂ and D̂a±(λ) = a±(−λ) D̂
from the definition (13.9)-(13.10) of a±(λ) as an operator acting in the Fock space as well 
as ĈP̂T̂ Wj(u) =Wj(−u∗) ĈP̂T̂ , D̂Wj(u) = (−1)j Wj (u) D̂ using the bosonization formulae 
for Wj(u).

Remarkably there exists another pair of chiral sesquilinear forms for which relations (19.7a)
and (19.8a) remain true, while the conjugation condition for the W currents (19.6a) is no longer 
valid. This may be motivated through the following observation. A computation based on the 
explicit formulae (15.2) and (15.3) shows that the first three local IM can be written as [47]

I1 =
2π∫

0

du

2π

(
(∂ϑ)2 + T

)

I2 =
2π∫

du

2π

(
(∂ϑ)3 + 3 (n+ 2)

3n+ 4
(∂ϑ)T

)
(19.16)
0
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I3 =
2π∫

0

du

2π

(
(∂ϑ)4 − n2 − 2

5n+ 6
(∂2ϑ)2 + 6 (n+ 2)

5n+ 6
(∂ϑ)2 T + n+ 2

5n+ 6
T 2
)
,

where T (u) stands for the chiral field

T (u)= (∂ϕ)2 + i
n+ 1√
n+ 2

∂2ϕ . (19.17)

It turns out to be possible to choose the densities for all the Im to be a local field built from ∂ϑ(u)

and T (u). Since the latter satisfy the commutation relations

ĈP̂T̂ T (u)= T (−u∗) ĈP̂T̂ , ĈP̂T̂ ∂ϑ(u)=+∂ϑ(−u∗) ĈP̂T̂

D̂ĈP̂T̂ T (u)= T (−u∗) D̂ĈP̂T̂ , D̂ĈP̂T̂ ∂ϑ(u)=−∂ϑ(−u∗) D̂ĈP̂T̂
(19.18)

with the CPT and D transformations defined as in (19.14), one can introduce the sesquilinear 
forms through the relations((

χ2, T (u)χ1
))
± = ((T (u∗)χ2,χ1

))
± ,((

χ2, ∂ϑ(u)χ1
))
± =±

((
∂ϑ(u∗)χ2,χ1

))
± . (19.19)

Here χ1,χ2 are arbitrary states such that χ1 ∈ FP, while χ2 ∈ FP∗ for the “+” case and χ2 ∈
F(P′)∗ for the “−” one with (P′)∗ = ( ρ√

n+2
, − ν∗√

n

)
.

To see that (19.19) indeed defines the sesquilinear forms on the Fock spaces let’s introduce a 
suitable basis for FP. The coefficients {Lm} occurring in the expansion of T (u) in the Fourier 

series (6.6) generate the Virasoro algebra with central charge c = 1 − 6(n+1)2

n+2 . The number of 
states of the form

L−m1 . . .L−mj
b−m′

1
. . . b−m′

j ′
|P〉 ,

1≤m1 ≤m2 ≤ . . .≤mj , 1≤m′
1 ≤m′

2 ≤ . . .≤m′
j ′ (19.20)

with 
∑

j mj +∑j ′ m
′
j ′ = 	 is given by par2(	), so that they provide a basis in the level subspace 

of the Fock space F (	)
P . Then (19.19), together with the commutation relations for the Virasoro 

and Heisenberg algebra generators Lm and bm, determine the sesquilinear form in the basis 
(19.20) up to an overall multiplicative constant. The latter is fixed by specifying the form on the 
Fock highest states ψ(vac)

ρ,+ν ≡ |P〉. In view of what follows we’ll take it to be((
ψ

(vac)
ρ,+ν∗ ,ψ

(vac)
ρ,ν

))
+ =

((
ψ

(vac)
ρ,−ν∗ ,ψ

(vac)
ρ,ν

))
− = Z+

(
ρ√
n+2

∣∣√n+ 2
)
, (19.21)

where the function Z+(P | β) is given in eq. (6.17).
Let’s consider the chiral sesquilinear forms, defined through eqs. (19.19) and (19.21), in the 

eigenbasis of the operator a+(λ) ∈ End
(
FP
)
. The forms are constructed in such a way that the 

local IM satisfy the relations((
χ2, Imχ1

))
± = (±1)m+1 (( Imχ2,χ1

))
± . (19.22)

Then it follows that the eigenstates ψρ,ν(w) obey the orthogonality conditions((
ψρ,+ν∗(w2),ψρ,ν(w1)

))
+ =Uρ,ν(w1) δw2,−w∗

1((
ψ ∗(w ),ψ (w )

)) =U (w ) δ ∗ , (19.23)

ρ,−ν 2 ρ,ν 1 − ρ,ν 1 w2,+w1
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where we’ve taken into account formula (17.19) describing the action of the CPT and D trans-
formation on the eigenstates. The function Uρ,ν(w) depends on the normalization of ψρ,ν(w). 
The latter, up till now, have been considered as eigenstates of a+(λ) without reference to their 
overall normalization. It turns out to be convenient to set this using the basis (19.20). Namely 
we’ll take

ψρ,ν(w)= ((L−1)
	 + . . .

)
ψ (vac)

ρ,ν ∈F (	)
P

(
w = {wa}	a=1

)
, (19.24)

where the dots stand for the terms, which contain lower powers of L−1.
With the normalization of the states ψρ,ν(w) fixed, the functions Uρ,ν(w) in (19.23) are 

defined unambiguously. Here, as an illustration, we quote some explicit formulae for the basis 
states in the level subspace F (1)

P . Normalized as in (19.24), they are given by

ψρ,ν(w±)=
(
L−1 + 2i

√
n

n+ 2
w± b−1

)
ψ (vac)

ρ,ν (19.25)

with w± being the two solutions of (10.3a), which for L = 1 becomes a quadratic equation,

w± =−n+ 1

2n

(
2iν ±√n(n+ 2)

√
1− 4ρ2

(n+ 1)2 −
4ν2

n(n+ 2)

)
. (19.26)

It is simple to check that the orthogonality conditions (19.23) are satisfied and find

Uρ,ν(w) = Z+
(

ρ√
n+2

∣∣√n+ 2
) 2n

(n+ 2)2 ×
⎧⎨⎩w+ (w− −w+) , w = {w+}
w− (w+ −w−) , w = {w−}

.

(19.27)

As was pointed out in the work [47], the chiral sesquilinear forms 
(( ·, · ))± and 

(·, ·)± are related 
through the reflection operator:((

χ2,χ1
))
± = f (±)

ρ,ν × (χ2, Řχ1
)
± . (19.28)

Here χ1, χ2 are arbitrary states belonging to the Fock space and conjugated Fock space, respec-
tively, while the factor f (±)

ρ,ν is the same for all the states in FP. The reflection operator Ř was 
already discussed at the end of sec. 15. Its explicit construction as an operator in the Fock space 
is given in ref. [47].

Considering (19.28) in the eigenbasis of a±(λ), one obtains(
ψρ,±ν∗(w2),ψρ,ν(w1)

)
± = F (±)

ρ,ν (w1) δw2,∓w∗
1

(19.29)

with

F (±)
ρ,ν (w)= f (±)

ρ,ν Uρ,ν(w)/Řρ,ν(w) . (19.30)

Taking into account that Ř acts as the identity on the Fock highest states, the above equations 
imply that(

ψ
(vac)
ρ,±ν∗ , ψ (vac)

ρ,ν

)
± = F (±,vac)

ρ,ν = Z+
(

ρ√
n+2

∣∣√n+ 2
)
f (±)
ρ,ν . (19.31)

This way the functions f (±)
ρ,ν are determined once the value of the sesquilinear forms 

(·, ·)± are 
fixed on the Fock vacua. We’ll postpone making this choice till the next subsections.
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In practice the calculation of the chiral sesquilinear forms 
(( ·, · ))± on two given states is sig-

nificantly simpler than that of 
(·, ·)±. For instance expressing ψρ,ν(w±) (19.25) as states in the 

Verma module of the W∞ - algebra results in the more cumbersome formulae

ψρ,ν(w±)=
C2,± W̃2(−1) + 4

√
n C3,± W̃3(−1)

n (1+ n+ 2ρ) (1− 2ρ + 2iν) (1− 2ρ − 2iν)
ψ (vac)

ρ,ν (19.32)

with the coefficients

C2,± = (1+ n− 2ρ)
(
n (1− 2ρ) (1+ n+ 2ρ)− 4(3n+ 4) ν2 )+ 4inν (n+ 2− 4ρ)w±

C3,± = (n+ 2)(n+ 1− 2ρ)ν − in (1− 2ρ)w± . (19.33)

The functions F (±)
ρ,ν (w) in (19.29) may be computed directly from the definition (19.6a), (19.31)

or obtained via (19.30):

F (±)
ρ,ν

({w})= F (±,vac)
ρ,ν

2n

(n+ 2)2

(n+ 1− 2p− 2w)(n+ 1− 2p+ 2w)

(n+ 1+ 2p− 2w)(n+ 1+ 2p+ 2w)

×
⎧⎨⎩w+ (w− −w+) , w =w+

w− (w+ −w−) , w =w−
. (19.34)

19.3. Scaling limit of the Bethe states with real s and (n + 2) k /∈Z

The space of states of the Z2 invariant inhomogeneous six-vertex model, i.e., the finite dimen-
sional space VN =C2

N ⊗C2
N−1 ⊗ · · · ⊗C2

1 , admits a variety of Hermitian structures for which 

the Bethe states satisfy the orthogonality condition 
(
�

(2)
N , �(1)

N

) = 0 unless �(2)
N ∝ ĈP̂T̂ �

(1)
N . 

These are distinguished by the value of the “norms” (ĈP̂T̂ �N, �N). For the description of the 
Hermitian structures consistent with the integrable structure a fundamental rôle belongs to the 
sesquilinear form (·, ·)
, which was mentioned in the Preliminaries (see eq. (2.35)). Here we 
present the results of our numerical study of the norm (2.39) for the RG trajectories charac-
terized by the real RG invariant s. They enable one to establish a precise relation between the 
sesquilinear form (·, ·)
 and those that are induced in the space H(cont). This, in turn, completes 
our description of the scaling limit of the low energy Bethe states with real s.

We performed a numerical study of the norm (ĈP̂T̂ �N, �N)
 of the Bethe states (2.20) for 
a wide range of RG trajectories with Sz = 0, 1, 2, . . . , w = 0, ±1, ±2, . . . , L, L̄= 0, 1, 2, . . . . It 
was found that the combination

G[�N ] ≡
(
ĈP̂T̂ �N,�N

)


(N/2)−

1
3+f (p)+f (p̄)+4L+4L̄ e−

1
2A2N

2
, (19.35)

where p and p̄ are given by (8.1), satisfies the asymptotic condition

G[�N ] =O
(

log(N)
)

as N →∞ for real s . (19.36)

The constant A2 coincides with (6.20) upon the substitution β2 �→ 2
n+2 , i.e.,

A2 =
∞∫

dt

t

sinh( 2t
n
) sinh(t)

2 sinh
(
(1+ 2

n
) t
)

cosh2(t)
, (19.37)
0
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while

f (p)= 4p2

n+ 2
+ 1

6(n+ 2)
+ n+ 2

6
− 1

2
. (19.38)

To provide a more precise description of the asymptotic behaviour (19.36), introduce

gN

(
w̄,w | p̄,p, s)= 1

2π

[
4 log

(
N

2N0

)
− i

d

ds
log
(
Dp̄,s(w̄)Dp,s(w)

)]
(19.39)

with Dp,s(w) being given by (10.7). Then for the RG trajectory �N , which in the scaling limit 
becomes the state ψ̄ p̄,s (w̄) ⊗ ψp,s(w), our numerical study led us to the following asymptotic 
formula

G[�N ] �
(
C

(alt)
0

)2 ( C√
2

) 8s2
n
+f (p)+f (p̄)+4L+4L̄ (

2−1− 2
n

√
n+ 2N0

)− 8s2
n

× Up̄,s(w̄) Up,s(w)
(
gN(w̄,w | p̄,p, s)+ o(1)

)
. (19.40)

Here Up,s(w) is the same function as in (19.23). As was previously discussed, it is unambigu-
ously determined through relations (19.19), (19.21) specifying the chiral sesquilinear form 

(( ·, · ))+
and the normalization condition (19.24) for the chiral states ψp,s(w). Formula (19.40) also 

involves the positive constants C(alt)
0 and C depending only on n. Their numerical values at 

different n are presented in Appendix A. Note that the constant C is the same as C(β) from eq. 

(6.23) provided that β and n are identified as β =
√

2
n+2 .

It is possible to give a natural explanation of the asymptotic formula (19.40) if we make the 
following assumptions concerning the scaling limit of the Bethe states.

(i) There exists the limit

slim
N→∞
b(N)→s

(
K(L̄)

N (p̄, s)K(L)
N (p, s)

)− 1
2

�N

= ψ̄ p̄,s (w̄)⊗ψp,s(w)≡ψ p̄,p,s(w̄,w) , (19.41)

where

K(L)
N (p, s)= C

(alt)
0

(
C√

2

) 4s2
n
+f (p)+4L (

2−1− 2
n

√
n+ 2N0

)− 4s2
n

× (N/2)
1
6−f (p)−4L e

1
4A2N

2
. (19.42)

For given Sz ≥ 0 the set of all possible states {ψ p̄,p,s(w̄, w)} form a basis in H(cont)
Sz .

(ii) The space H(cont)
Sz is equipped with the inner product 

〈〈·, ·〉〉cont, which in the basis
ψ p̄,p,s(w̄, w) is given by〈〈

ψ p̄′,p′,s′(w̄
′,w′), ψ p̄,p,s(w̄,w)

〉〉
cont = δw′,−w∗ δw̄′,−w̄∗ δp′,p δp̄′,p̄ δ(s′ − s)

×Up̄,s(w̄) Up,s(w) . (19.43)
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To describe how (19.40) arises from (i)-(ii), let’s for simplicity focus on the case of the primary 
Bethe states having L = L̄= 0. Since for fixed N and p̄, p these states are distinguished by the 
integer m entering into (9.2), we’ll denote them as �(m)

N . Taking an arbitrary linear combination,

�N =
∑
m

Cm�
(m)
N , (19.44)

consider the sesquilinear form (·, ·)
 of �N and the state �(m0)
N with given integer m0. The or-

thogonality condition (2.38) implies(
�N,�

(m0)
N

)


= Cm0

(
ĈP̂T̂ �

(m0)
N ,�

(m0)
N

)


. (19.45)

At large N it follows from (i) that the state �(m)
N is approximated by

�
(m)
N ≈

(
K(0)

N (p̄, s)K(0)
N (p, s)

) 1
2
ψ

(vac)
p̄,p,s . (19.46)

Moreover the sum in (19.44) may be replaced by the integral∑
m

�→
∫

ds ρ(s) , (19.47)

where the density of states ρ(s) comes from eq. (9.8). The latter coincides with gN (19.39)
specialized to the primary Bethe states. Evaluating the l.h.s. of (19.45) using eqs. (19.46) and 
(19.47) as well as (19.43) leads to the asymptotic formula (19.40).

The similar arguments may be applied for the Bethe states with L, L̄≥ 0. However, it should 
be pointed out that gN , in general, takes complex values. Therefore gN

(
w̄, w | p̄, p, s) �s can not 

be interpreted as the number of low energy Bethe states �N with fixed p, p̄, L, L̄, w and w̄ having 
�e
(
b(N)

)
belonging to the segment (s, s+�s). Nevertheless, the sum of gN

(
w̄, w | p̄, p, s) over 

all the par2(L) × par2(L̄) solutions sets w and w̄ with fixed L and L̄ turns out to be a real positive 
function of s that coincides with the density (10.12):

ρ
(L,L̄)
p̄,p (s)=

∑
(w̄,w)

L,L̄−fixed

gN(w̄,w | p̄,p, s) . (19.48)

The above analysis suggests that the sesquilinear form (·, ·)
 in the lattice model induces the 
inner product 

〈〈·, ·〉〉cont for the states in H(cont)
Sz with Sz ≥ 0. The latter is defined through (19.43)

in the eigenbasis diagonalizing the operators a±(λ) and ā±(λ̄). A basis independent description 
is provided by the relations (19.19) for the “+” case and the similar ones involving T , ∂ϑ̄ , along 
with the value of the inner product for the highest states:〈〈

ψ
(vac)
p̄′,p′,s ,ψ

(vac)
p̄,p,s

〉〉
cont = δp̄′,p̄ δp′,p δ(s′ − s) Z+

( p̄√
n+2

∣∣√n+ 2
)
Z+
( p√

n+2

∣∣√n+ 2
)
.

(19.49)

For the sectors H(cont)
Sz with Sz < 0, the inner product 

〈〈·, ·〉〉cont is defined using the CP invariance 

of the model. With the same line of arguments that led to (17.21) one can show that ĈP̂ T (u) =
T (u) ĈP̂ and ĈP̂ ∂ϑ(u) = ∂ϑ̄(u) ĈP̂ . Thus for the sectors with Sz < 0, the defining relations 
(19.19) for the case “+”, its barred counterpart and (19.49) remain valid. In turn, formula (19.43)
is applicable for any Sz = 0, ±1, ±2, . . . .

Eq. (19.41) describes a scaling limit of the Bethe states that leads to a Hermitian structure in 
the linear space H(cont) that is consistent with the integrable structure. However the inner product 
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〈〈·, ·〉〉cont (19.43) is not consistent with the natural conjugation (19.11) in the W∞⊗W∞ - algebra. 
It turns out to be possible to modify the definition of the scaling limit such that the inner product 〈·, ·〉cont (19.10) is induced in H(cont). This can be done in the following way.

Let’s change the normalization of the Bethe states prescribed by eq. (2.20) and introduce

�′
N

({ζm})= α(ζ1, . . . , ζM)�N

({ζm}) (19.50)

with

α(ζ1, . . . , ζM)= eiπk q−
N
2 +Sz

A
(∞)
+

[
A+(+iq)A+(−iq)

]−1

and

A+(±iq)=
M∏

m=1

(
1∓ iq/ζm

)
, A

(∞)
+ =

M∏
m=1

(−1/ζm) .

Recall that for given N the Bethe states as defined by (2.20) satisfy the condition
ĈP̂T̂ �N

({ζm})=�N

({ζ ∗m}). This is no longer true for �′
N . Instead, in view of formula (2.29)

for the eigenvalues of the lattice translation operator,

ĈP̂T̂ �′
N

({ζm})=K−1 �′
N

({ζ ∗m}) . (19.51)

The proportionality factor α in (19.50) has been chosen so that as N →∞,

α(ζ1, . . . , ζM)
(
α(ζ ∗1 , . . . , ζ ∗M)

)∗ � (Rp̄,s(w̄)Rp,s(w)
)−1 (19.52)

×
(

N

2N0

) n(p̄+p)
n+2

(
n+ 2

4n

)N (
1+ o(1)

)
.

This follows by considering the product of the “+” and “−” cases in (11.19) and taking into 
account eq. (11.23). Then combining (19.52) with (19.40) one obtains(

K ĈP̂T̂ �′
N,�′

N

)


� Up̄,s(w̄) Up,s(w)

(
Rp̄,s(w̄)Rp,s(w)

)−1 (19.53)

×N (L̄)
N (p̄, s) N (L)

N (p, s)
(
gN

(
w̄,w | p̄,p, s

)+ o(1)
)

with

N (L)
N (p, s)= C

(alt)
0

(
C√

2

) 4s2
n
+f (p)+4L (

2−
n+2
n

√
n+ 2N0

)− 4s2
n

× (N/2)
1
6−f (p)+ 2np

n+2−4L e
1
4A2N

2
(
n+ 2

4n

)N/2

. (19.54)

Similar arguments that lead us to (19.41) suggest that there exists the limit

slim
N→∞
b(N)→s

(
N (L̄)

N (p̄, s)N (L)
N (p, s)

)− 1
2

�′
N = ψ p̄,p,s(w̄,w) (19.55)

and the sesquilinear form for the lattice model induces an inner product in H(cont) such that
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〈
ψ p̄′,p′,s′(w̄

′,w′), ψ p̄,p,s(w̄,w)
〉
cont = δw̄′,−w̄∗ δw′,−w∗ δp̄′,p̄ δp′,p δ(s′ − s)

× F
(+)
p̄,s (w̄) F (+)

p,s (w) , (19.56)

where

F
(+)
p̄,s (w̄)=Up̄,s(w̄)/Rp̄,s(w̄) , F (+)

p,s (w)=Up,s(w)/Rp,s(w) . (19.57)

Notice that the states appearing in the scaling limit (19.55) satisfy the CPT conjugation condition 
ĈP̂T̂ ψ p̄,p,s(w̄, w) = ψ p̄,p,s(−w̄∗, −w∗). Though the action of the CPT transformation on the 
Bethe states �′

N involves a phase factor K−1 =K∗, as it follows from (8.2b), for any low energy 
Bethe state K tends to one as N →∞.

We now observe that, since Rp,s(w) = R
(0)
p,s Řp,s(w), the function F (+)

p,s (w) can be expressed 
as in (19.30) with f (+)

p,s = 1/R(0)
p,s . From the relation between the chiral sesquilinear forms 

(·, ·)+
and 

(( ·, · ))+, see eq. (19.28), one concludes that (19.56) defines an inner product in the space 

H(cont), which is consistent with the conjugation conditions (19.11). Furthermore, for the W∞⊗
W∞ primary states, in view of the explicit formula (11.26) for R(0)

p,s , one finds〈
ψ

(vac)
p̄′,p′,s′ , ψ

(vac)
p̄,p,s

〉
cont

= δp′,p δp̄′,p̄ δ(s′ − s)
�(1+ 2p̄

n+2 )�(1+ 2p
n+2 )

�(1+ 2p̄)�(1+ 2p)

∣∣Zp̄,s Zp,s

∣∣2 (19.58)

where

Zp,s = 2p

√
2π

(n+ 2)
1
4− p (n−1)

2 (n+2) �( 1
2 + p+ is) Z

( p√
n+2

∣∣√n+ 2
)
. (19.59)

Recall that Z(P | β) is defined by (6.33).
Thus, with a proper taking of the scaling limit, the conjugation conditions for the W currents[

Wj(u)
]
 =Wj(u

∗) ,
[
Wj(ū)

]
 =Wj(ū
∗) (19.60)

are induced by

Ô
 = X̂−1

 Ô† X̂
 , Ô ∈ End

(
VN

)
, (19.61)

where X̂
 = X̂ eiπ(Sz−N/2)A(∞)
+ and “†” stands for the standard matrix Hermitian conjugation 

(see formulae (2.30)-(2.35) in the Preliminaries). The matrix A(∞)
+ is diagonal in the basis of 

Bethe states and its eigenvalues are given by 
∏M

m=1(−1/ζm). For general values of the twist and 
anisotropy parameters k and n, A(∞)

+ is invertible. However for certain values of the parameters, 
some of the Bethe states �N

({ζm}) may be such that one of the Bethe roots become zero or 
infinity (in the last case the corresponding eigenvalue A+(ζ ) is a polynomial of order M − 1). 
Then A(∞)

+ is singular and special consideration is required to define the 
 - conjugation. Also 
the matrix X̂ (2.32) in the case of the Z2 invariant model may be expressed in terms of the 
generator of the Z2 symmetry (7.2), the total spin operator Sz and also !z = σz

N σ z
N−2 . . . σ

z
2 as 

X̂=!z D̂ e
iπ
2 (Sz−N/2). In turn X̂
 entering into the conjugation condition (19.61) can be written 

as

X̂
 = X̂†

 =!z D̂ e

iπ
2 (N/2−Sz)A(∞)

+ . (19.62)
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Finally note that w.r.t. the 
 - conjugation the Hamiltonian H and lattice translation operator K
satisfy the conditions

H
 =H , K
 =K−1 . (19.63)

To avoid confusion, let’s reiterate that this conjugation does not correspond to a positive definite 
inner product.

19.4. Comments on the case k = 0 with s real

Our considerations regarding the scaling limit of the Bethe states explicitly assumed that (n +
2) k is not an integer. However, for the later parts of this work, the case k = 0 and s a real number 
is of special interest. As was already pointed out in sec. 17.4, some of the Verma modules of the 
chiral W∞ - algebra, which appears in the decomposition of H(cont)

Sz,w (17.2), become reducible at 

k = 0. This way the space H(cont)
Sz,w splits into two sectors H(cont)

Sz,w = H̃(cont)
Sz,w ⊕H(null)

Sz,w similar to 

(17.60), where the W∞ ⊗W∞ decomposition of H(null)
Sz,w contains the irreps Wρ,s ⊗Wρ,s , for 

which the highest state of either Wρ,s or Wρ,s is a null vector in the Verma module. The two 
sectors H̃(cont)

Sz,w and H(null)
Sz,w are orthogonal w.r.t. the inner product 〈·, ·〉cont. Our analysis above is 

adapted most straightforwardly to those low energy Bethe states, which become part of H̃(cont)
Sz,w

in the scaling limit, and we’ll only comment on this case.
Assuming that n is generic, the relations (19.55)-(19.59) are applicable for describing the 

scaling limit of the low energy Bethe states forming the sector H̃(cont)
Sz,w for the case Sz = 1, 2, 3, . . .

as well as Sz = w = 0. However for Sz = 0 the product of the two �-functions in the numerator 
in eq. (19.58) becomes πw

sin(πw) , i.e., is singular for non-zero integer w. This is related to the 

fact, discussed in sec. 17.4, that the two states ψ p̄,p,s(w̄, w) with p = −p̄ = ± 1
2 (n + 2)|w|

are indistinguishable. Nevertheless, similar to the Bethe states for finite N , one can resolve the 
ambiguity by starting with ψ p̄,p,s(w̄, w) with non-zero k > 0 and then setting k → 0+. For 

taking this limit it is useful to change the normalization of the states and define ψ̃
(w)
s (w̄, w) =√

k ψ p̄,p,s(w̄, w) where p =−p̄ = 1
2 (n +2)(k +w). Then any inner product involving the states 

ψ̃
(w)
s (w̄, w) remains well defined as k → 0+. In particular for the primary W∞ ⊗W∞ states it 

follows from eq. (19.58) that

〈
ψ̃

(w′,vac)
s′ , ψ̃

(w,vac)
s

〉
cont = δw′,w δ(s′ − s) (−1)w

sin
(
π (n+ 2)w

)
π (n+ 2)

(19.64)

× ∣∣Zp,s Z−p,s

∣∣2 ∣∣∣
p= 1

2 (n+2)w
(Sz = k= 0, w �= 0) .

This way the subspaces H̃(cont)
0,w with w �= 0 become equipped with the inner product determined 

through (19.64) as well as the conjugation conditions (19.60) for the W currents.

19.5. Scaling limit of the Bethe states with pure imaginary s and (n + 2) k /∈Z

In sec. 19.1 we introduced two sesquilinear forms. For the form (·, ·)+ the irrep conjugated 
to Vρ̄,ν̄ ⊗ Vρ,ν coincides with Vρ̄,ν̄∗ ⊗ Vρ,ν∗ , while for (·, ·)− the conjugated irrep is Vρ̄−,ν̄∗ ⊗
Vρ,−ν∗ . Equipping the sector H(cont) with the “plus” form and H(disc) with the “minus” one, 
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each of the irreps occurring in their decomposition w.r.t. the W∞⊗W∞ - algebra would be self-
conjugated. The form (·, ·)+ is consistent with the formal anti-involution (19.60) in the W∞ ⊗
W∞ - algebra. For the other form, the corresponding conjugation reads as[

Wj(u)
]

❉ = (−1)j Wj (u
∗) ,

[
Wj(ū)

]
❉ = (−1)j Wj (ū

∗) . (19.65)

The two anti-involutions are related through the Z2 transformation:[
Wj(u)

]
❉ = D̂

[
Wj(u)

]
 D̂ ,
[
Wj(ū)

]
❉ = D̂

[
Wj(ū)

]
 D̂ . (19.66)

In the previous subsection it was pointed out that with a proper taking of the scaling limit the 

 - conjugation for the W currents is induced from the lattice one defined by eqs. (19.61) and 
(19.62). Therefore one might expect that the lattice version of (19.65) is given by

Ô❉ = D̂ Ô
 D̂ (19.67)

for an arbitrary operator Ô acting in the finite dimensional space VN . Since the lattice translation 
operator and Hamiltonian both commute with D̂, the relations (19.63) carry over to

H❉ =H , K❉ =K−1 . (19.68)

Combining formulae (19.67) with (19.61), (19.62) and using that D̂A(∞)
+ D̂ = eiπ(N/2−Sz)A(∞)

+
as well as D̂2 = 1 one finds

Ô❉ = X̂−1
❉

Ô† X̂
❉
, Ô ∈ End

(
VN

)
(19.69)

with

X̂
❉
= X̂†

❉
=!z e

iπ
2 (Sz−N/2)A(∞)

+ . (19.70)

Let (·, ·)❉ be the sesquilinear form in the finite dimensional space VN that is consistent with 
the conjugation (19.69) and such that its value on the pseudovacuum, | ↑〉 ⊗ | ↑〉 ⊗ . . .⊗ | ↑〉, is 
one. It is easy to see that the form in the basis of Bethe states is described via the relations(

�(2),�(1))
❉
= 0 unless �(2) = D̂ĈP̂T̂ �(1) , (19.71)

and (
D̂ĈP̂T̂ �,�

)
❉
= (ĈP̂T̂ �,�

)


. (19.72)

The r.h.s. in the last equation is given by (2.39).
The result of our numerical investigation of 

(
ĈP̂T̂ �N, �N

)



for the low energy Bethe states 
is summarized by the formulae (19.35)-(19.40). However a literal attempt to apply them for the 
RG trajectories characterized by pure imaginary s meets an immediate problem. In view of the 
condition (10.20) the function gN (19.39) develops a simple pole whenever s belongs to the 
admissible set of pure imaginary values. Nevertheless we checked that (19.40) remains valid 
for finite N � 1 provided s is substituted by the “running coupling” b(N). Then combining 
the relation with formula (9.11) that describes the large N asymptotics of b(N), one can obtain 
the large N asymptotic behaviour of (19.72) for a Bethe state that becomes part of the discrete 
spectrum in the scaling limit. The result may be formulated in the following way.

Let �N be the RG trajectory, which in the scaling limit becomes the state ψ ρ̄,ρ,ν̄,ν(w̄, w) from 

the space H(disc). To be precise, suppose that state belongs to the level subspace V(	̄)
ρ̄,ν̄ ⊗ V(	)

ρ,ν of 

a highest weight irrep which occurs in the W∞ ⊗ W∞ decomposition of H(disc,±) described 
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in sec. 17.1. The levels of the state in the irrep, 	̄ and 	, could be any one of L, L± and L̄, 
L̄±, respectively, depending on the situation at hand, see eq. (13.34). Then a straightforward 
calculation shows that as N →∞,(

D̂ĈP̂T̂ �N,�N

)
❉
�M(	̄)

N (ρ̄, ν̄) M(	)
N (ρ, ν)

(
1+ o(1)

)
(19.73)

× σ f
(−)
ρ̄,ν̄ f (−)

ρ,ν

(
Č

(Ā)
ρ̄,ν̄ (w̄)

)2 (
Č(A)

ρ,ν (w)
)2 Uρ̄,ν̄ (w̄)

Řρ̄,ν̄ (w̄)

Uρ,ν(w)

Řρ,ν(w)
,

where

A= sgn(iν) , Ā= sgn(iν̄) . (19.74)

All of the dependence on N is contained in the sign factor σ = (−1)N/2−Sz
, as well as the first 

line of this equation and

M(	)
N (ρ, ν)= C

(alt)
0

(
N

2

) 1
6
(√

2C

N

) 4ν2
n
+f (ρ)+4	 (2

2
n N

N0

) 2|ν|
n

(n−2|ν|)
e

1
4A2N

2
. (19.75)

The functions Č(±)
ρ,ν (w) and Řρ,ν(w) are the eigenvalues of the operator Č(±) (15.8) and the 

reflection operator Ř (15.9), respectively. Since the latter are operators acting in the Fock spaces, 
Vρ,ν should be understood as a subspace of the Fock space according to eqs. (13.28) and (13.33). 
Finally f (−)

ρ,ν in (19.73) does not depend on the chiral state in the irrep Vρ,ν and reads explicitly 
as

f (−)
ρ,ν =

�
( 1

2 + ρ − |ν|)
2π (n+ 2)2ν2/n

×

⎧⎪⎪⎨⎪⎪⎩
(−1)a a! if 1

2 + ρ + |ν| = −a = 0,−1,−2, . . .

2π

�( 1
2 + ρ + |ν|) otherwise

(19.76)

The same holds true for the barred counterparts.

The factor 
(
Č

(Ā)
ρ̄,ν̄ (w̄) 

)2 (
Č

(A)
ρ,ν (w) 

)2 prevents one from interpreting the second line of (19.73)

as the inner product 〈·, ·〉disc, consistent with the conjugation conditions (19.65) in the W∞⊗W∞
- algebra, evaluated on the eigenstate ψ ρ̄,ρ,ν̄,ν(w̄, w) and its DCPT conjugate. However, the 

eigenvalues of the operators Č(±) satisfy the relations(
Č(−)

ρ,ν (w)
)∗ = Č

(+)
ρ,ν∗(−w∗) , Č(+)

ρ,ν (w)= Č
(−)
ρ,−ν(−w) , (19.77)

which follow from (17.20) and (11.16). Hence 
(
Č

(±)
ρ,ν (w)

)∗ = Č
(±)
ρ,ν (w

∗) for pure imaginary ν. 
Introduce the inner product in H(disc) using the basis ψ ρ̄,ρ,ν̄,ν(w̄, w) ≡ ψ̄ ρ̄,ν̄ (w̄) ⊗ψρ,ν(w) with 
the chiral eigenstates normalized as in (19.24), via the formula〈

ψ ρ̄′,ρ′,ν̄′,ν′(w̄
′,w′), ψ ρ̄,ρ,ν̄,ν(w̄,w)

〉
disc = σ f

(−)
ρ̄,ν̄ f (−)

ρ,ν

Uρ̄,ν̄ (w̄)

Řρ̄,ν̄ (w̄)

Uρ,ν(w)

Řρ,ν(w)
(19.78)

× δw̄′,w̄∗ δw′,w∗ δρ̄′,ρ̄ δρ′,ρ δν̄′,ν̄ δν′,ν .

Then it is easy to see that the second line in (19.73) coincides with 
〈
D̂ĈP̂T̂ ψ ′̄

ρ,ρ,ν̄,ν , ψ
′̄
ρ,ρ,ν̄,ν

〉
disc

for the state
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ψ ′̄
ρ,ρ,ν̄,ν(w̄,w)= ( ˇ̄C(Ā) ⊗ Č(A)

)
ψ ρ̄,ρ,ν̄,ν(w̄,w)

(
A= sgn(iν) , Ā= sgn(iν̄)

)
.

(19.79)

This way we conclude that there exists the limit

slim
N→∞

(
M(	̄)

N (ρ̄, ν̄)M(	)
N (ρ, ν)

)− 1
2

�N = ψ ′̄
ρ,ρ,ν̄,ν(w̄,w) . (19.80)

As was already discussed, the inner product described in the eigenbasis by formula (19.78) may 
be equivalently introduced through the conjugation conditions (19.65) supplemented by its value 
on the primary W∞ ⊗W∞ states:〈

ψ
(vac)
ρ̄′,ρ′,ν̄′,ν′ , ψ

(vac)
ρ̄,ρ,ν̄,ν

〉
disc = σ f

(−)
ρ̄,ν̄ f (−)

ρ,ν Z+
(

ρ̄√
n+2

∣∣√n+ 2
)
Z+
(

ρ√
n+2

∣∣√n+ 2
)

× δρ̄′,ρ̄ δρ′,ρ δν̄′,ν̄ δν′,ν . (19.81)

Here f (−)
ρ,ν is given in (19.76), while Z+(P |β) was defined in (6.17). As for the sign factor 

σ = (−1)N/2−Sz
it depends on whether, in constructing the RG trajectories, we keep N/2 − Sz

to be an even or an odd number.
Let’s highlight an important point to take away from our investigation. We found that the scal-

ing limit should be defined differently for the low energy states, which become part of the spaces 
H(cont) and H(disc). These sectors are naturally equipped by different inner products, which are 
induced by different conjugation conditions for the operators in the Z2 invariant inhomogeneous 
six-vertex model. All this suggests that if a description of the critical behaviour of the lattice 
system within the framework of a local CFT exists, the states from H(cont) and H(disc) can not be 
interpreted simultaneously as normalizable states within a single field theory.

Part III. Towards the QFT

20. Integrable and Hermitian structures for c → 2−

The integrable structure which occurred in our study of the scaling limit of the inhomogeneous 
six - vertex model with Z2 symmetry, has a deep relation to the AKNS classical integrable 
hierarchy. The latter includes some famous classically integrable partial differential equations 
such as the non-linear Schrödinger and the Lund-Regge (complex sin(h)-Gordon I) equation. 
To explain this relation, one should consider the n →+∞ limit, which can be understood as a 
classical limit with

h̄= 2π

n
(20.1)

playing the rôle of the Planck constant.
Let us rescale the field ϕ (5.7) and introduce φ(u) = 1√

n
ϕ(u) as well as the similarly defined 

field

θ(u)= 1√
n

(
ϑ0 + b0 u+ i

∑
m �=0

bm

m
e−imu

)
(20.2)

with [ ϑ0, bm ] = i
2 δm,0. A simple calculation shows that

[φ(u1),φ(u2) ] = [ θ(u1), θ(u2) ] = −ih̄ 1 ε(u1 − u2) , [φ(u1), θ(u2) ] = 0 , (20.3)
4
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where ε(u) = 2m + 1 for 2πm < u < 2π(m + 1) (m ∈ Z). Applying the correspondence prin-
ciple, ih̄−1[·, ·] �→ {·, ·}, one concludes that φ and θ become classical fields in the large n limit 
subject to the Poisson Bracket (PB) relations

{φ(u1),φ(u2)} = {θ(u1), θ(u2)} = 1
4 ε(u1 − u2) , {φ(u1), θ(u2)} = 0 . (20.4)

For the Wj currents, the bosonization formulae (16.2), (16.8) imply that as n →∞ they become 
classical fields built form ∂φ and ∂θ :

Wj → nj/2 W
(cl)
j , (20.5)

where explicitly

W
(cl)
2 = (∂φ)2 + (∂θ)2 (20.6)

W
(cl)
3 = 2 (∂θ)3 + 2 (∂φ)2∂θ + i

(
∂2φ ∂θ − ∂φ ∂2θ

)
.

Recall that all the W currents can be generated from the parafermion fields. In turn, the fields 
W

(cl)
j are conveniently expressed in terms of the classical counterparts of (16.15)15:

ξ± = (∂θ ± i∂φ) e±2θ (n→∞) . (20.7)

In particular,

W
(cl)
2 = ξ+ ξ− , W

(cl)
3 = 1

2

(
ξ− ∂ξ+ − ξ+ ∂ξ−

)
(20.8)

W
(cl)
4 = 2

5

(
ξ+ ∂2ξ− + ξ− ∂2ξ+

)− 6
5 ∂ξ+∂ξ− .

Using eqs. (20.7) and (20.4), it is straightforward to compute the PBs involving ξ+, ξ− and show 
that {

ξ±(u1), ξ±(u2)
}= ε(u1 − u2) ξ±(u1) ξ±(u2) (20.9){

ξ±(u1), ξ∓(u2)
}=−δ′(u1 − u2)− ε(u1 − u2) ξ±(u1) ξ∓(u2) .

The above relations combined with the formulae expressing W(cl)
j in terms of ξ± such as (20.8)

are sufficient for deriving the Poisson algebra for the classical W currents. They provide a short 
cut to this algebra automatically satisfying the Jacobi and skew symmetry conditions, that would 
otherwise need to be obtained from the c= 2 − 6

n+2 → 2− limit of the OPEs such as (16.12). In 
particular, it is straightforward to show that{

W
(cl)
2 (u1),W

(cl)
2 (u2)

}=−(W(cl)
2 (u1)+W

(cl)
2 (u2)

)
δ′(u1 − u2){

W
(cl)
3 (u1),W

(cl)
2 (u2)

}=−3 W
(cl)
3 (u1) δ

′(u1 − u2)− ∂W
(cl)
3 (u1)δ(u1 − u2) (20.10){

W
(cl)
3 (u1),W

(cl)
3 (u2)

}=− 1
4

(
W

(cl)
2 (u1)+W

(cl)
2 (u2)

)
δ′′′(u1 − u2)− δ′(u1 − u2)×(

W
(cl)
4 (u1)+W

(cl)
4 (u2)+ 2W

(cl)
2 (u1)W

(cl)
2 (u2)− 3

20

(
∂2 W

(cl)
2 (u1)+ ∂2 W

(cl)
2 (u2)

))
.

Taking into account that u = t + x and W(cl)
j (t, x) =W

(cl)
j (t + x), the latter may be understood 

as an infinite system of equal-time PB relations for the classical W currents.

15 We will use the same symbol for the quantum and classical fields ξ± , similar as with φ and θ .
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One should keep in mind that ξ±(u) are quasiperiodic fields contrary to the W(cl)
j (u), which 

are periodic:

W
(cl)
j (u+ 2π)=W

(cl)
j (u) , ξ±(u+ 2π)= B±1 ξ±(u) . (20.11)

Using the “bosonization” formulae (20.7) one finds

{B,ξ±(u)} = ±2B ξ±(u) , (20.12)

while {
B,W

(cl)
j (u)

}= 0 . (20.13)

From the definition of the quantum field θ (20.2) and eq. (20.7) it is easy to see that B is the 

classical counterpart of e
4π√
n
b0 , whose eigenvalues coincide with e

4πs
n (13.6). The latter is equal 

to the eigenvalues of the quasi-shift operator in the scaling limit (see eq. (8.6)). For this reason, 
with some abuse of notation, we use the same symbol B for the dynamical variable defined 
through (20.11) as the one denoting the eigenvalues of B.

Let’s turn to the classical limit of the local IM (16.11), (16.14). As it follows from (20.5),

Im → n(m+1)/2 I (cl)
m , (20.14)

where the explicit formula for the first few I (cl)
m , expressed in terms of ξ±, may be obtained from 

(20.8)

I
(cl)
1 =

2π∫
0

du

2π
ξ+ξ−

I
(cl)
2 = 1

4

2π∫
0

du

2π

(
ξ− ∂ξ+ − ξ+ ∂ξ−

)
(20.15)

I
(cl)
3 = 1

5

2π∫
0

du

2π

(
(ξ+ξ−)2 − ∂ξ+∂ξ−

)
.

In general I (cl)
m are given by an integral over a real local density built from ξ± and their 

derivatives. In this work, we always assumed that the quantum IM were normalized as Im =
n

m+1
2
∫ 2π

0
du
2π

(
(∂θ)m+1 + . . .

)
. One can show that this translates to

I (cl)
m = m �2(m2 )

2
√
π �( 1

2 +m)

2π∫
0

du

2π

((
ξ+ξ−

)m+1
2 + . . .

)
(m− odd) (20.16)

I (cl)
m = (m+ 1)�2( 1

2 + m
2 )

4
√
π �( 1

2 +m)

2π∫
0

du

2π

((
ξ+ξ−

)m
2 −1 (

ξ−∂ξ+ − ξ+ ∂ξ−
)+ . . .

)
(m− even) .
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Here the “. . .” stands for the monomials which are of lower power in ξ± and their derivatives. 
Of course, all the I (cl)

m mutually Poisson commute with each other. This set coincides with the 
commuting family of local IM for the AKNS integrable hierarchy.

The key ingredient in the theory of classically integrable partial differential equations is the 
zero curvature or Lax representation. In the case under consideration the auxiliary linear problem 
is given by(

∂ −A(u |λc)
)
�= 0 (20.17)

with

A(u |λc)= ξ− e− − ξ+ e+ + λc h . (20.18)

Here e± and h are the generators of the sl2 algebra, [h, e±] =±2e± and [e+, e−] = h, while 
λc is the auxiliary spectral parameter. We define the classical transfer matrix as the trace

τ (cl)(λc)= Tr 1
2

[
B− h

2
←
P exp

( 2π∫
0

duA(u |λc)
)]

(20.19)

taken over the fundamental representation, which is indicated by the subscript 1
2 . The factor B− h

2

is inserted to take into account that

A(u+ 2π |λc)= B
h
2 A(u |λc)B

− h
2 , (20.20)

which is a consequence of the quasiperiodicity condition (20.11). The classical transfer matrix 
(20.19) appears in the n →∞ limit of τ (λ) (14.7). The precise relation may be motivated via a 
comparison of their large λ asymptotic expansions. Representing τ (cl)(λc) in the form

τ (cl)(λc)= 2 cos
(
ν(λc)

)
, (20.21)

one can show (see, e.g., [63,66])

ν(λc)�−2π iλc + i
2 log(B)+ 2π i

∞∑
m=1

2m �( 1
2 +m)√

π (m+ 1)! I
(cl)
m λ−m

c (λc →∞) , (20.22)

where I (cl)
m are the classical local IM (20.16). The similar expansion for the quantum transfer 

matrix (15.1) involves the quantum IM. In view of the relation between Im and I (cl)
m (20.14), this 

suggests

τ (λ)→ τ (cl)(λc) as n→∞ with λc = (n+ 2) λ fixed . (20.23)

It is possible to justify the relation (20.23) by explicitly calculating the classical limit 
of τ (λ) order by order in λ following the lines of the work [46]. This requires a study of 
L 1

2
(λ) ≡ π 1

2

(
L(λ)

)
, entering into the definition of the transfer matrix (14.7), in the large n

limit. Eq. (14.3) gives L(λ) as a path ordered exponent, i.e., a series expansion in 
√
λ whose 

coefficients are ordered integrals over the vertex operators. However, as was already mentioned, 
the ordered integrals diverge for any n > 0 and hence (14.3) is not literally applicable for taking 
the classical limit. Instead, each coefficient of the formal series L(λ) should be understood via 
analytic continuation in complex n, which may be achieved by re-writing the ordered integrals 
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in terms of the contour integrals. In ref. [46] it was explained how to take the n →∞ limit of ex-
pressions involving the contour integrals. This results in the classical version of L(λ) as a series 
expansion in 

√
λ whose coefficients involve multifold integrals over the classical fields e±2iφ and 

∂θe−2iφ . To compare the Taylor series for the classical limit of τ(λ) obtained in this way with 
the r.h.s. of (20.23), one should apply a gauge transformation to the connection (20.18),

A �→G−1AG−G−1∂G , (20.24)

and rewrite τ (cl)(λc) in a way that is suitable for a small λc expansion. Using the matrix

G(u)= eθ(u)h e
π
4 (e+−e−) eiφ(u)h , (20.25)

a simple calculation shows that

B− h
2
←
P exp

( 2π∫
0

duA(u |λc)

)
=G(0) λ

− h
4

c

(
eiπPh L(cl)(λc)

)
λ
+ h

4
c G−1(0) (20.26)

with

L(cl)(λc)= λ
+ h

4
c eiπPh

←
P exp

( 2π∫
0

du
(
−2∂θ e−2iφ e++λc

(
e+2iφe−+e−2iφe+

)))
λ
− h

4
c

(20.27)

and P stands for the zero-mode momentum of the field φ:

P =
2π∫

0

du

2π
∂φ . (20.28)

This way one obtains

τ (cl)(λc)= Tr 1
2

[
eiπPh L(cl)(λc)

]
. (20.29)

Notice that formally setting n →∞ into the path-ordered exponential (14.3) would reproduce the 
r.h.s. of (20.27) without the last term in the exponent, λc e−2iφe+. However taking the classical 
limit of L(λ) as outlined above, with the ordered integrals being analytically regularized, we 
have checked that the first few terms in the Taylor series expansion of the classical limit of τ(λ)
reproduce the corresponding terms for τ (cl)(λc) extracted from eqs. (20.29) and (20.27).

The monodromy matrix in the gauge (20.27) possesses a remarkable property. Namely, it 
obeys the Sklyanin exchange relations [65,66]{

L(cl)(λc)⊗, L(cl)(λ′c)
}= [L(cl)(λc)⊗L(cl)(λ′c), r

(√
λc/λ′c

) ]
(20.30)

with the classical R-matrix

r(ρ)= 1

ρ − ρ−1

(
e+ ⊗ e− + e− ⊗ e+ + 1

4 (ρ + ρ−1)h⊗ h
)
. (20.31)

By expanding L(cl)(λc) and L(cl)(λ′c) as a series in 
√
λc and 

√
λ′c, respectively, and also 

r
(√

λc/λ′
)

say in the domain |λc| < |λ′ |, eq. (20.30) can be checked order by order in these 
c c
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two variables. Note that (20.30) does not assume any choice of representation for the sl2 gen-
erators. Specialized to the finite dimensional representation πj ⊗ πj ′ , it becomes the classical 
counterpart of the Yang-Baxter algebra (14.5) with L(cl)(λc) being the classical version of the 
operator (14.3), i.e.,

L(λ)→L(cl)(λc) (n→∞ with λc = (n+ 2) λ fixed) . (20.32)

In the above discussion of the classical limit, ξ± have been treated as unrelated complex fields. 
There are two natural reality constraints which can be imposed on them that are consistent with 
the Poisson algebra (20.9). Namely,

(I) : (
ξ±(u)

)∗ = ξ±(u∗) , B∗ = B (20.33)

(II) : (
ξ±(u)

)∗ = ξ∓(u∗) , B∗ = B−1 .

These imply the following reality conditions for the classical W -currents

(I) : (
W

(cl)
j (u)

)∗ =W
(cl)
j (u∗) (20.34)

(II) : (
W

(cl)
j (u)

)∗ = (−1)j W
(cl)
j (u∗)

and for the classical transfer matrix

(I) : (
τ (cl)(λc)

)∗ = τ (cl)(λ∗c ) (20.35)

(II) : (
τ (cl)(λc)

)∗ = τ (cl)(−λ∗c ) .

Several comments are in order here. The conjugation (I) in (20.34) corresponds to the clas-
sical limit of the conjugation condition 

[
Wj(u)

]
 = Wj(u
∗), which occurred in our study of 

the Hermitian structure for the space H(cont) (see eq. (19.60)). Similarly, conjugation (II) is the 
classical version of 

[
Wj(u)

]
❉ = (−1)j Wj (u

∗) (19.65) for the spaces H(disc,±). It should also be 
pointed out that for both reality conditions τ (cl)(0) is real. Furthermore, from (20.29) it follows 
that τ (cl)(0) = 2 cos(2πP ). In light of our previous discussion of the spectrum of the quantum 
transfer matrix τ (λ) in the spaces H(cont) and H(disc,±) we’ll take P to be real and assume that

−2 < τ(cl)(0) < 2 . (20.36)

The last comment serves to make a link to integrable partial differential equations. When reality 
condition (II) is imposed, i.e., ξ+ = ξ, ξ− = ξ∗, the Hamiltonian flow generated by the clas-
sical local IM I (cl)

2 = −(I (cl)
2

)∗ w.r.t. the Poisson structure (20.9) coincides with the nonlinear 
Schrödinger equation in the attractive (focusing) regime [64,66]:

i∂τ ξ = {ξ, I (cl)
2 } = −∂2ξ − |ξ |2 ξ . (20.37)

The repulsive regime, where the sign in front of the non-linear term is flipped, is related to the 
c→ 2+ limit of the W∞ - algebra.

The classical limit of the W∞ - algebra is described in the same way. In particular, for τ̄(λ̄)
(14.7), whose action is non-trivial on the left irrep of W∞ ⊗W∞, one has

τ̄ (λ̄)→ τ̄ (cl)(λ̄c) (n→∞ with λ̄c = (n+ 2) λ̄ fixed) . (20.38)

Here the classical transfer matrix reads as
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τ̄ (cl)(λ̄c)= Tr 1
2

[
L̄

(cl)
(λ̄c) e−iπP̄h

]
with P̄ =

2π∫
0

dū

2π
∂̄φ̄ , (20.39)

while L̄
(cl)

(λ̄c) stands for the path ordered exponent that appears in the classical limit of L̄(λ̄)

(14.3):

L̄
(cl)

(λ̄c)

= λ̄
+ h

4
c

'P exp

( 2π∫
0

dū
(
− 2∂̄ θ̄ e−2iφ̄ e+ + λ̄c

(
e+2iφ̄e− + e−2iφ̄e+

)))
e−iπP̄h λ̄

− h
4

c

(20.40)

It follows from the Yang-Baxter algebra (14.5), that L̄
(cl)

(λ̄c) satisfies the Sklyanin exchange 
relations{

L̄
(cl)

(λ̄c)⊗, L̄
(cl)

(λ̄′c)
}=−[ L̄(cl)

(λ̄c)⊗ L̄
(cl)

(λ̄′c), r
(√

λ̄c/λ̄′c
)]

(20.41)

with r(ρ) the same as in (20.31).
The classical transfer matrix may be expressed in terms of the quasiperiodic fields

ξ̄± = (∂̄ θ̄ ± i∂̄ φ̄) e±2θ̄ : ξ̄±(u+ 2π)= B̄±1 ξ̄±(u) . (20.42)

This is achieved through the relation similar to (20.26). Namely,

'P exp

( 2π∫
0

dū Ā(ū | λ̄c)

)
B̄+ h

2 = Ḡ(0) λ̄
− h

4
c

(
L̄

(cl)
(λ̄c) e−iπP̄h ) λ̄+ h

4
c Ḡ

−1
(0) (20.43)

with Ḡ(ū) = eθ̄h e− π
4 (e+−e−) eiφ̄h and

Ā(ū |λc)= ξ̄− e− − ξ̄+ e+ − λ̄c h . (20.44)

The above equations, together with (20.39), yield

τ̄ (cl)(λ̄c)= Tr 1
2

[ 'P exp
( 2π∫

0

dū Ā(ū | λ̄c)
)
B̄+ h

2

]
. (20.45)

Finally, for the left chirality the reality conditions are only notationally different from eqs. 
(20.33)-(20.35).

21. Lorentzian black hole NLSM

21.1. The classical field theory

Let’s consider anew the Poisson algebra, whose first few PBs are given in eq. (20.10) with the 
W

(cl)
j (u) being real classical fields. As it follows from the first two equations in (20.8) one can 

introduce, at least locally, the real fields ξ± through the relation

(
ξ±
)2 =W

(cl)
2 exp

(
± 2

u∫
du W

(cl)
3

/
W

(cl)
2

)
. (21.1)
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Together with W(cl)
2 and W(cl)

3 , the above formula involves a real integration constant. It can be 
interpreted as a dynamical variable conjugated to

log(B)=
∮

du W
(cl)
3

/
W

(cl)
2 . (21.2)

The latter belongs to the center of the classical W∞ algebra. Note that B must be real and, 
furthermore, we take it to be positive. Then the Poisson structure for the classical W currents is 
lifted to the Poisson algebra (20.9) for the real quasiperiodic fields ξ±. The center of (20.9) is 
generated by the real constant

τ (cl)(0)= Tr 1
2

[
B− h

2 �(2π)
]
: −2 < τ(cl)(0)= 2 cos(2πP ) < 2 , (21.3)

where we use the notation

�(u)=←
P exp

( u∫
0

du
(
ξ− e− − ξ+ e+

))
. (21.4)

All the above holds true for the left chirality. In particular, the fields ξ̄± satisfy the Poisson algebra 
similar to (20.9),{

ξ̄±(ū1), ξ̄±(ū2)
}= ε(ū1 − ū2) ξ̄±(ū1) ξ̄±(ū2) ,{

ξ̄±(ū1), ξ̄∓(ū2)
}=−δ′(ū1 − ū2)− ε(ū1 − ū2) ξ̄±(ū1) ξ̄∓(ū2) (21.5)

and Poisson commute with ξ±:{
ξ±(u1), ξ̄±(ū2)

}= {ξ±(u1), ξ̄∓(ū2)} = 0 . (21.6)

The center of the Poisson algebra for ξ±, ξ̄± is generated by τ (cl)(0) together with

τ̄ (cl)(0)= Tr 1
2

[
�̄(2π) B̄+ h

2

]
: −2 < τ̄ (cl)(0)= 2 cos(2πP̄ ) < 2 , (21.7)

where

�̄(ū)= 'P exp

( ū∫
0

dū
(
ξ̄− e− − ξ̄+ e+

))
. (21.8)

As with B we assume that B̄ is positive and, moreover, we’ll impose the constraint

B̄ = B > 0 . (21.9)

The above gives a sketch of the basic properties of the phase space (more precisely the algebra 
of functions on the phase space) for a class of dynamical systems. Having in mind our purpose 
of identifying the CFT governing the critical behaviour of the Z2 invariant inhomogeneous six-
vertex model, we take the classical Hamiltonian as

H(cl) =
2π∫

dx
(
W

(cl)
2 (x)+W

(cl)

2 (x)
)
. (21.10)
0
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An immediate question arises as to the possibility of a Lagrangian description of such a dynam-
ical system. In connection with this, it is useful to turn to the known classical Lagrangian field 
theory possessing the same type of Hamiltonian structure.

Consider the path ordered exponents �(u) (21.4) and �̄(ū) (21.8) with the sl2 generators 
specialized to be in the fundamental representation π 1

2
(e±) = σ± and π 1

2
(h) = σ 3. Since ξ±, ξ̄±

are real fields, the 2 × 2 matrices � 1
2
= π 1

2

(
�
)
, �̄ 1

2
= π 1

2

(
�̄
)

have real elements and their deter-

minants are equal to one. With g 1
2
(0) ∈ SL(2, R) being an arbitrary constant matrix, introduce 

g 1
2
(t, x) ∈ SL(2, R):

g 1
2
(t, x)=� 1

2
(t + x)g 1

2
(0) �̄ 1

2
(t − x) . (21.11)

Writing it in the form

g 1
2
=
(

A U

−V D

)
(21.12)

one finds via a straightforward computation that the real functions U =U(t, x) and V = V (t, x)
satisfy the closed system of partial differential equations

(1−UV )∂∂̄U =−V ∂U∂̄U , (1−UV )∂∂̄V =−U ∂V ∂̄V , (21.13)

where ∂ = 1
2 (∂t + ∂x) and ∂̄ = 1

2 (∂t − ∂x). The diagonal entries are determined through the 
relations

∂ log
(A
D

)
= U∂V − V ∂U

1−UV
, ∂̄ log

(A
D

)
=−U∂̄V − V ∂̄U

1−UV
, AD = 1−UV .(21.14)

The equations of motion (21.13) are the Euler-Lagrange equations corresponding to the La-
grangian density

L= 1

2

∂tU∂tV − ∂xV ∂xU

1−UV
(21.15)

and the fields satisfy the reality conditions(
U(t, x)

)∗ =U(t, x) ,
(
V (t, x)

)∗ = V (t, x) . (21.16)

The latter is the Lagrangian density for the Non-Linear Sigma Model (NLSM) whose target space 
coincides with the so-called Lorentzian black hole. In the work [20] this model was obtained by 
gauging a non-compact one dimensional subgroup of the classical SL(2, R) WZW model.

Let’s explain how the Lagrangian density (21.15) leads to the Poisson structure (20.9), (21.5)
and (21.6). As it follows from eq. (21.11) the fields ξ± and ξ̄± are given by

ξ−e− − ξ+e+ = ∂g g−1 , ξ̄−e− − ξ̄+e+ = g−1 ∂̄g . (21.17)

This allows one to express ξ±, ξ̄± in terms of U and V :

ξ+ =U ∂A−A∂U , ξ− = V ∂D −D∂V (21.18)

ξ̄+ =U ∂̄D −D ∂̄U , ξ̄− = V ∂̄A−A∂̄V

and the equations of motion (21.13) as well as (21.14) imply that ξ±, ξ̄± are chiral fields:

∂̄ξ± = 0 , ∂ξ̄± = 0 . (21.19)
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Note that in (21.17), we dropped the index 1
2 denoting the fundamental representation of sl2, 

since it remains valid as a relation in the Lie algebra without reference to a particular representa-
tion. The Lagrangian density (21.15) induces a canonical Poisson structure:{

�U(t, x1), U(t, x2)
}= δ(x1 − x2) ,

{
�V (t, x1), V (t, x2)

}= δ(x1 − x2) , (21.20)

where

�U = 1

2

∂tV

1−UV
, �V = 1

2

∂tU

1−UV
. (21.21)

Combining this with (21.18) we indeed obtain the PB relations (20.9), (21.5), (21.6), where 
u = t + x, ū= t − x and t is assumed to be fixed.

Having at hand the explicit formula (21.18) one can construct out of the fundamental fields U
and V the classical W currents. Clearly they are local chiral fields:

W
(cl)
j (t, x)=W

(cl)
j (t + x) , W

(cl)

j (t, x)=W
(cl)

j (t − x) . (21.22)

Since in all our previous discussions the W(cl)
j (u) were assumed to be periodic, we supplement 

(21.15) by the periodic boundary conditions

U(t, x + 2π)=U(t, x) , V (t, x + 2π)= V (t, x) (21.23)

and take the classical action to be

SLBH = 1

2h̄

∫
dt

2π∫
0

dx
∂tU∂tV − ∂xV ∂xU

1−UV

(
h̄= 2π/n→ 0+

)
. (21.24)

The Hamiltonian is then given by (21.10). That the fields U and V are real is consistent with the 
reality condition 

(
ξ±(u)

)∗ = ξ±(u∗), 
(
ξ̄±(ū)

)∗ = ξ̄±(ū∗) and, in turn,(
W

(cl)
j (t + x)

)∗ =W
(cl)
j (t + x) ,

(
W

(cl)

j (t − x)
)∗ =W

(cl)

j (t − x) . (21.25)

This way the classical field theory defined by the action (21.24) where U and V are real periodic 
fields reproduces the Poisson structure, Hamiltonian and reality conditions occurring in the scal-
ing limit of the lattice model in the sector H(cont) and with the central charge c= 2 − 6

n+2 → 2−
as n →+∞.

Our qualitative discussion of the Poisson structure suggests that the phase space for the 
Lorentzian black hole NLSM (21.24) is made up of the symplectic leaves, �P̄,P,B , labeled 
by the real numbers P , P̄ and B . On each leaf the symplectic form is non-degenerate. The 

algebra of functions on the leaf, �


P̄ ,P,B
, is generated by the currents W(cl)

j (u) and W
(cl)

j (ū), 
subject to the reality conditions (21.25), while the Poisson algebra on �


P̄ ,P,B
is fully specified 

by the PBs (20.10) for the W currents, the similar relations for the left chiral currents as well 

as {W(cl)
j (u), W

(cl)

j ′ (ū)} = 0. To get some insight into the global structure of the phase space of 
the model, it is useful to consider basic solutions of the classical equations of motion. These 
may be constructed using (21.11) and (21.12). First of all, in the “bosonization” formulae (20.7), 
(20.42) we set θ = θ̄ =− iπ

4 and ∂φ = P, ∂̄ φ̄ = P̄ . Then ξ± = P and ξ̄± = P̄ become space-time 
independent real constants. Eqs. (21.11), (21.12) with g 1

2
(0) =−1 yield

U(t, x)= V (t, x)= sin
(
(P + P̄ ) t + (P − P̄ ) x

)
(21.26)
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and one can easily see that the equations of motion (21.13) are indeed satisfied. The periodic 
boundary condition (21.23) requires that the difference P − P̄ be an integer. It hints that the real 
numbers P and P̄ labeling the symplectic leaves might not be arbitrary, but obey the condition:

P − P̄ = 0,±1,±2, . . . . (21.27)

Other hints provided by the explicit solutions (21.26) concern the action of the global symme-
tries of the classical field theory on its phase space. There are two evident space-time symmetry 
transformations, T and P , which are defined as

T : U(t, x) �→ U(−t, x) , V (t, x) �→ V (−t, x) (21.28)

P : U(t, x) �→ −U(t,−x) , V (t, x) �→ −V (t,−x) .

The extra sign in the definition of P is a matter of convention since the transformation

U : U �→ −U , V �→ −V (21.29)

also leaves the action (21.24) invariant. The basic solutions (21.26) are unchanged under the PT
transformation. More generally, we will assume that two solutions related via PT belong to the 
same symplectic leaf, i.e.,

PT : �P̄ ,P,B �→ �P̄ ,P,B . (21.30)

Since (21.29) does not affect the W currents, it will likewise be assumed that

U : �P̄ ,P,B �→ �P̄ ,P,B . (21.31)

The action of P and T on the fundamental fields, as described by formula (21.28), induces the 
action of these transformations on �P̄ ,P,B . We make the assumption that two solutions related 
through P or T separately belong to different symplectic leaves. A brief examination of (21.26)
motivates that

T : �P̄ ,P,B �→ �−P,−P̄ ,B

P : �P̄ ,P,B �→ �P,P̄ ,B . (21.32)

An immediate consequence is that PT maps �P̄ ,P,B to �−P̄ ,−P,B . Consistency with the condi-
tion (21.30) requires the following identification to be made

�P̄ ,P,B ≡ �−P̄ ,−P,B . (21.33)

With this important property one can always take

P + P̄ ≥ 0 (21.34)

without loss of generality. Formula (21.32) in addition implies that if the phase space contains 
the leaf �P̄ ,P,B it must also contain �P,P̄ ,B .

Another global symmetry of the action is the Z2 transformation which interchanges the fields 
U and V :

D : U �→ V , V �→U . (21.35)

In turn, ξ± �→ ξ∓ and taking into account eq. (20.11), its action on the symplectic leaves is given 
by
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Fig. 16. Space-time diagram for the Lorentzian black hole (21.39). The cross defined by the equation UV = 0 is a 
horizon, while the metric possesses a physical singularity on the hyperbola UV = 1.

D : �P̄ ,P,B �→ �P̄ ,P,B−1 . (21.36)

Finally, there is one more evident symmetry. The classical action (21.24) remains unchanged 
under the transformation

Ra : U �→ a+1 U , V �→ a−1 V with a > 0 . (21.37)

This acts on the non-local fields as ξ± �→ a±1ξ±, ξ̄± �→ a±1ξ̄± and has no effect on the W
currents. The symmetry is a continuous one and, in view of the PB relations (20.12) and the 
constraint B = B̄ (see eq. (21.9)), the associated Noether charge may be identified with log(B).

Our intuition regarding the global properties of the field theory phase space was in a large part 
motivated through an examination of the basic solutions (21.26). These satisfy the inequality

0≤UV < 1 . (21.38)

In all likelihood, for the phase space made up from the symplectic leaves �P̄,P,B with P , P̄ and 
B subject to the conditions (21.27), (21.34) and B > 0 this constraint should be imposed on all 
the classical field configurations. In ref. [20] it was observed that the Lorentzian target space 
metric corresponding to the action (21.24),

(dσ)2 = dUdV

1−UV
, (21.39)

exhibits the characteristic features of a black hole geometry. In particular, as depicted in the 
space-time diagram in Fig. 16, it possesses a horizon at UV = 0 as well as a curvature singularity 
at UV = 1 just as the Schwarzschild black hole in terms of Kruskal coordinates. An important 
property of the metric is that there is no globally defined time coordinate. There is, however, a 
non-trivial Killing vector which is time-like only in regions I and II of Fig. 16 and space-like in 
regions III and IV. The restriction (21.38) means that we are focusing on the Lorentzian NLSM 
with the fields U and V taking values in the domain, which is the union of regions III and IV in 
Fig. 16.

21.2. Quantization

One can proceed with the study of the quantum NLSM through the quantization of the algebra 
of functions on the symplectic leaves. Identifying the Planck constant as h̄= 2π

n
, leads us to the 

quantum W∞ ⊗W∞ - algebra with central charge c = 2 − 6
n+2 < 2. The parameters (P̄ , P, B)

labeling the symplectic leaves are related to the highest weights of the irreducible representation 
of the quantum algebra. The highest weight of the W∞ - algebra, ω = (ω2, ω3), may be param-
eterized by (ρ, ν) as in (16.27) and similarly ω̄ is swapped for (ρ̄, ν̄). Based on the previous 
discussion, the following identification of the parameters can be made
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ρ = (n+ 2)P , ρ̄ = (n+ 2) P̄ , ν = ν̄ = n

4π
log(B) . (21.40)

Then formulae (21.27), (21.34) and B > 0 translate to the conditions

ρ + ρ̄ ≥ 0, ρ − ρ̄ = (n+ 2)w , −∞< ν = ν̄ <+∞ (21.41)

with w = 0, ±1, ±2, . . . . Recall that the components ω̄2 and ω2 of the highest weight labeling 
the W∞ ⊗W∞ irrep coincide with the conformal dimensions of the highest state, so that

�̄ρ̄,ν = ρ̄2 − 1
4

n+ 2
+ ν2

n
, �ρ,ν = ρ2 − 1

4

n+ 2
+ ν2

n
. (21.42)

Assuming that ρ + ρ̄ is a non-negative integer, the Lorentz spin of these states, �ρ,ν − �̄ρ̄,ν , 
would only take integer values. Then ρ and ρ̄ would have the form

ρ = 1
2 v+ 1

2 (n+ 2)w , ρ̄ = 1
2 v− 1

2 (n+ 2)w , (21.43)

where v = 0, 1, 2, . . . and w ∈ Z. This way we come to expect that the space of states of the 
Lorentzian black hole NLSM, HLBH, is decomposed into irreps of the W∞ ⊗W∞ algebra as

HLBH =
∞⊕
v=0

[ ∞⊕
w=−∞

⊕∫
R

dν W ρ̄,ν ⊗Wρ,ν

]
. (21.44)

The latter is identical to the linear decomposition (17.61) of the space H̃(cont)
even , which is a sector 

of H(cont)
even (17.60) – the space of states occurring in the scaling limit of the C even sector of the 

Z2 invariant inhomogeneous six-vertex model subject to periodic boundary conditions (k = 0).
The Hermitian structure in the space HLBH should be consistent with the Hermitian conju-

gation (19.60), which as was already mentioned is the quantum version of the classical reality 
condition (21.25) (see the comments below (20.35)). This leads us to propose that, not only the 
linear structure of the spaces HLBH and H̃(cont)

even coincide, but also their Hermitian structures. In 
particular the inner product of the W∞⊗W∞ primary states �v,w,ν of the irreps appearing in the 
decomposition (21.44), up to real positive constants that depend on the overall normalization of 
�v,w,ν , would be equal to 〈·, ·〉cont computed on the corresponding states from H̃(cont)

even . It follows 
from eqs. (19.58) and (19.64) that one can set〈

�v′,w′,ν′ ,�v,w,ν
〉= δv′,v δw′,w δ(ν′ − ν)Nv,w (21.45)

with

N0,0 = 1 , Nv,w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)w

sin(π(n+ 2)w)

π(n+ 2)
v= 0, w �= 0

�(1− w+ v
n+2 )�(1+ w+ v

n+2 )

�(1+ v− (n+ 2)w)�(1+ v+ (n+ 2)w)
v≥ 1, w ∈Z

(21.46)

Then HLBH is a pseudo-Hilbert space equipped with a non-positive definite inner product. This 
would reflect the fact that the target space for the NLSM (21.24) has Lorentzian signature.

The identification of the pseudo-Hilbert spaces HLBH and H̃(cont)
even turns out to be consistent 

with all the global symmetries. First of all, as was discussed in sec. 17.4, the full linear space 
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H(cont)
even admits the two formal Z2 symmetries, X (w) (17.65) and X (null) (17.66), having no coun-

terparts in the lattice system. The transformation X (null) acts trivially in H̃(cont)
even , or equivalently, 

HLBH and thus should be ignored. The other global symmetry X (w) arises due to the degen-
eracy in the decomposition (21.44) in which the irreps, whose highest states are �0,+w,ν and 
�0,−w,ν with w �= 0 are equivalent. However, formula (21.46) shows that the “norms” of these 
two primary states, N0,±w, differ in their sign, which can not be eliminated by a change of their 
normalization. Hence we conclude that the Z2 transformation X (w), in spite that it commutes 
with the generators of the W∞⊗W∞ - algebra, is not actually a symmetry of the pseudo-Hilbert 
space H̃(cont)

even
∼=HLBH. In connection to this, let’s mention that in all likelihood the states �0,±w,0

correspond to the solutions U = V = cos(wx) and U = V = sin(wx) of the classical equations 
of motion (21.13), (21.23). These are distinguished by their properties w.r.t. the parity transfor-
mation x→−x.

The classical NLSM possesses P invariance as well as the time-reversal symmetry. The action 
of the P and T transformations on the fundamental fields U and V is described by eq. (21.28). It 
is natural to expect that these global symmetries are present in the quantum NLSM as well. The 
corresponding generators would satisfy the following commutation relations with the W currents

P̂LBH Wj(u)=Wj(u) P̂LBH , T̂LBH Wj(u)=Wj(u) T̂LBH . (21.47)

Their action on the primary states, without loss of generality, can be chosen to be

P̂LBH �v,w,ν = T̂LBH �v,w,ν = σv,w �v,−w,ν (21.48)

with the sign factor being such that σv,w =+1 for v = w = 0 and v · w �= 0. For the case when 
v = 0 and w �= 0 or v ≥ 1 and w = 0, the states �v,w,ν are eigenstates of the parity generator and 
the corresponding sign factors σ0,w and σv,0 are as yet undetermined.

Finally it remains to discuss the Z2 symmetry D as well as the symmetry generated by Û
(17.50), which is a remnant of the broken U(1). In the previous subsection we described the 
manifestation of these global symmetries in the classical field theory, where they were denoted 
by the same symbols. Note that for the quantum NLSM, the generator Û acts on any state in 
the irrep W ρ̄,ν ⊗Wρ,ν via multiplication by the sign factor ±(−1)v. The extra sign “±” may 
be chosen at will as it remains the same for all the states in HLBH. The action of the global 
symmetries in HLBH is defined through the commutation relations of their generators with the W
currents supplemented by the action of the symmetries on the W∞⊗W∞ primary states. For the 
Z2 symmetry transformation D the relevant formulae are (17.13) and

D̂�v,w,ν =�v,w,−ν , (21.49)

while Û commutes with the W currents and

Û �v,w,ν = σ �v,w,ν with σ =± (−1)v . (21.50)

There is no apparent candidate for a non-trivial C conjugation for the classical action (21.24), 
which is consistent with the fact that, by construction, Ĉ = id for the space H̃(cont)

even .

21.3. Minisuperspace approximation

For a better qualitative understanding of the quantum NLSM it is useful to consider the model 
within the so-called minisuperspace approximation. This entails taking into account only those 
field configurations that do not depend on the space co-ordinate x, such as the classical solutions 
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(21.26) with P = P̄ . We still take U and V to satisfy the constraint 0 ≤ UV < 1 correspond-
ing to the union of regions III and IV in Fig. 16. For a preliminary analysis it is convenient to 
parameterize U, V from this domain as

U = e sin(�) , V = e− sin(�) ; � ∈ (−π
2 ,

π
2 ) ,  ∈ (−∞,∞) . (21.51)

Then the minisuperspace version of the classical action (21.24) reads as

S
(ms)
LBH = π

h̄

∫
dt
(
�̇2 − tan2(�) ̇2 ) . (21.52)

Since the generalized coordinate  is cyclic, its conjugate momentum � =− tan2(�) ̇ is an 
integral of motion. The effective Lagrangian (the Routhian) for the non-cyclic degree of freedom 
is given by

Leff = 1

2

(
�̇2 − Veff(�)

)
, Veff(�)=−�2

 cot2(�) . (21.53)

The latter describes a 1D particle falling to the origin � = 0. An elementary calculation shows 
that for any value � �= 0 the particle, starting its motion at t = 0, reaches the origin in a fi-
nite amount of time tfall <+∞. For t > tfall the motion remains undetermined. Thus the action 
(21.52) specifies the time evolution of the mechanical system only within a finite time interval 
(except for the trajectories with � = 0). To continue the classical trajectories for t > tfall the un-
bounded effective potential should be somehow regularized. There are of course numerous ways 
of doing this. A simple minded one is to replace Veff(�) =−�2

 cot2(�) by a smooth potential 

V
(reg)
eff (�), which together with its derivative is bounded from below within the infinitesimal in-

terval � ∈ (−ε, ε). Outside this interval V (reg)
eff (�) = Veff(�). To keep the original symmetry of 

the potential we assume that the regularized one is an even function:

V
(reg)
eff (�)= V

(reg)
eff (−�) . (21.54)

Then the motion of � becomes globally defined and periodic for any values of � �= 0.
With basic intuition from quantum mechanics, we can predict the symmetry properties of the 

minisuperspace stationary wave functions. First of all, that the regularized potential is an even 
function of � implies that the stationary states may be assigned a parity σ =±1,

Û �(σ)(U,V )≡�(σ)(−U,−V )= σ �(σ)(U,V ) , (21.55)

where we now switch to the original target space coordinates (U, V ). This relates the values 
of the wave function in the domains III and IV from Fig. 16. Next, �(σ) can be chosen to be 
an eigenfunction of the operator �̂ = h̄

i ∂ = h̄
i (U∂U − V ∂V ). Since �̂ is the infinitesimal 

generator of the continuous symmetry (21.37), its eigenvalue is related to the conserved charge 
ν (21.40):

�̂ �(σ)
ν = 2h̄ν �(σ)

ν . (21.56)

It follows that

�(σ)
ν (U,V )=

(
U

V

)iν

F (σ)
ν (UV ) . (21.57)

The minisuperspace approximation ignores the presence of the oscillatory modes so that the 
wave functions �(σ)

ν are expected to correspond to W∞ ⊗W∞ primary states, characterized by 
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ρ = ρ̄ and ν. In turn the minisuperspace energy becomes �ρ,ν +�ρ̄,ν = 2�ρ,ν in the leading 
non-vanishing order of h̄= 2π

n
(the approximation is reliable only in the limit n →∞). Namely,

E(ms) = h̄
π

(
ρ2 + ν2 − 1

4

)
. (21.58)

At this point, ρ can be thought of as a real number parameterizing the minisuperspace energy 
E(ms) and the corresponding wavefunction �(σ)

ρ,ν . Since the highest weight is an even function of 
ρ,

�
(σ)
−ρ,ν(U,V )=�(σ)

ρ,ν(U,V ) . (21.59)

As we mentioned before, one can assume that ρ = ρ̄ ≥ 0.
Though the highest weight of the W∞ irrep ω = (ω2, ω3) is not sensitive to the sign of ρ, as 

follows from (16.27) it does depend on the sign of ν: ω3(ρ, −ν) =−ω3(ρ, ν). Thus the primary 
states characterized by (ρ, ν) and (ρ, −ν) are distinguishable. They are related through the Z2
transformation, so that

D̂�(σ)
ρ,ν(U,V )=�

(σ)
ρ,−ν(U,V ) . (21.60)

On the other hand, by definition, this symmetry interchanges U and V :

D̂�(σ)
ρ,ν(U,V )≡�(σ)

ρ,ν(V ,U) . (21.61)

Combining the above two relations with (21.57) one concludes that

�(σ)
ρ,ν(U,V )=

(
U

V

)iν

F (σ)
ρ,ν (UV ) , where F (σ)

ρ,ν (z)= F
(σ)
−ρ,ν(z)= F

(σ)
ρ,−ν(z) . (21.62)

Having described the symmetry properties of the stationary wave functions, we turn to deriv-
ing them explicitly. In the work [21], a minisuperspace analysis was performed for the NLSM 
(21.24) with the fields U , V belonging to region I from Fig. 16 (or equivalently II). Though this 
is not the domain of interest, we can still follow the same line of arguments of that paper. In 
particular, up to a trivial factor, the minisuperspace Hamiltonian coincides with the “dilatonic” 
Laplacian:

Ĥ (ms) =− h̄

4π
*D , *D = 1

eD
√−G

∂i
(
eD
√−GGij ∂j

)
, (21.63)

where the metric is the one in (21.39) and the dilaton field is given by

D = log(1−UV ) . (21.64)

The stationary Schrödinger equation Ĥ (ms) � =E(ms) � reads explicitly as

−( (1−UV ) ∂U∂V − 1
2 (U∂U + V ∂V )

)
�= π

h̄
E(ms) � . (21.65)

Using the general form (21.62) for the stationary wave functions and parameterizing the energy as 
in (21.58), it is straightforward to show that F(z) = z−iν F

(σ)
ρ,ν (z) obeys the Gauss hypergeometric 

equation

z (1− z)F ′′ + (1+ 2iν − 2 (1+ iν) z
)
F ′ − ( 1

2 + iν + ρ
)( 1

2 + iν − ρ
)
F = 0 . (21.66)

Keeping in mind our preliminary analysis, the ODE (21.66) is applicable only in the domain 
ε2 < z < 1 with a small regularization parameter ε� 1 (recall that z=UV = sin2(�)).
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The function F (σ)
ρ,ν (z) is a certain linear combination of z±iν

2F1
( 1

2 ± iν + ρ, 12 ± iν − ρ, 1 ±
2iν, z), which can be specified as follows. Applying the elementary identity

eD
√−G

(
�∗

1 Ĥ (ms) �2 −�2 Ĥ
(ms) �∗

1

)
= h̄

4π
∂i

(
eD
√−GGij

(
�2∂j�

∗
1 −�∗

1∂j�2
))

(21.67)

to the pair of stationary wave functions �1, �2 corresponding to the energies E(ms)
1 , E(ms)

2 , and 
then integrating the result over the domain Bε : ε2 <UV < 1, one obtains(

E
(ms)
2 −E

(ms)
1

) ∫
Bε

dUdV eD
√−G �∗

1�2

= h̄

4π

∫
∂Bε

d	 eD
(
�2∂n�

∗
1 −�∗

1∂n�2
)
. (21.68)

Here the integral in the r.h.s. is taken over the boundary of Bε , which is the union of UV = ε2

and UV = 1. Also, ∂n stands for the normal derivative to ∂Bε . As was discussed before, the wave 
functions possess a definite parity. Due to this either the wave function or its normal derivative 
vanishes at UV = 0. Hence as ε→ 0 the horizon UV = 0 does not contribute to the r.h.s. of eq. 
(21.68). Further, since the dilaton factor eD vanishes at the black hole singularity UV = 1 one 
could make the whole boundary integral vanish by imposing that both the eigenfunctions and 
their normal derivatives remain finite at UV = 1. In this case the wave functions corresponding 
to different energies would be orthogonal w.r.t. the inner product〈

�1,�2
〉= ∫

0<UV<1

dUdV eD
√−G �∗

1�2 . (21.69)

This suggests to take F (σ)
ρ,ν (z) in (21.62) as

F (σ)
ρ,ν (z)= ziν

2F1
( 1

2 + iν + ρ, 1
2 + iν − ρ,1;1− z) (ε2 < z < 1) (21.70)

or, equivalently,

F (σ)
ρ,ν (z)=Aρ,+ν z+iν

2F1
( 1

2 + iν + ρ, 1
2 + iν − ρ,1+ 2iν; z) (21.71)

+Aρ,−ν z−iν
2F1
( 1

2 − iν + ρ, 1
2 − iν − ρ,1− 2iν; z) ,

where

Aρ,ν = �(−2iν)

�( 1
2 − iν − ρ)�( 1

2 − iν + ρ)
. (21.72)

For z� 1 it is convenient to use the variable y such that z = ey . Then F (σ)
ρ,ν asymptotically 

approaches to a superposition of two plane waves

F (σ)
ρ,ν � Aρ,+ν e+iνy +Aρ,−ν e−iνy (

1� (−y) < 2 log(1/ε)
)
. (21.73)

The regularized interaction discussed before in the domain (−y) > 2 log(1/ε) results in a quan-
tization condition for ν

ε−4iν e
i
2 δ

(ms)(ρ,ν) � σ . (21.74)
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The phase shift δ(ms) here depends on the precise form of the regularized potential. As ε → 0, 
the spectrum of ν becomes continuous and is characterized by the density of states

ρ(ms)(ν)= 2
π

log(1/ε)+ 1
4π ∂ν δ

(ms)(ρ, ν) . (21.75)

The corresponding minisuperspace wave functions would be orthogonal w.r.t. the inner product 
(21.69):〈

�
(σ ′)
ρ′,ν′ ,�

(σ)
ρ,ν

〉∝ δρ′,ρ δσ ′,σ δ(ν′ − ν) . (21.76)

Here we use the Dirac δ-function for ν since the latter can be any real number. At the same 
time the Kronecker symbol indicates that ρ belongs to some discrete set. The quantization of ρ
seems rather natural once we note that the term h̄

π
(ρ2− 1

4 ) in the formula for the minisuperspace 
energy (21.58) can be interpreted as the contribution of the non-cyclic degree of freedom �, 
which executes periodic motion in the regularized effective potential. This is consistent with our 
general discussion of the quantization of the Lorentzian black hole NLSM. Setting w = 0 in 
formula (21.43) for the admissible values of ρ and ρ̄, one has 2ρ = 2ρ̄ = v = 0, 1, 2, . . . . Also 
δσ ′,σ in (21.76) can be ignored – the sign factor σ is not an independent quantum number and is 
related to the parity of the integer v (see (21.50)).

Our analysis within the minisuperspace approximation is in agreement with the conjectured 
link between the Lorentzian black hole NLSM and the Z2 invariant inhomogeneous six-vertex 
model in the scaling limit. Moreover it elucidates the occurrence of the “quantization condition” 
(9.11), which plays a central rôle in the description of the critical behaviour of the lattice system. 
Namely, the density of states is not an immanent property of the CFT, but rather, a result of 
the regularization of the theory. The lattice model provides a particular integrable regularization, 
which yields a density of states as in eqs. (10.12), (9.8) with ε ∝ N−1 being the regularization 
parameter. Note that the spectrum of states with pure imaginary s depends on the precise form 
of the phase shift δ. We interpret them as non-normalizable virtual states appearing as a result 
of the regularization and not belonging to the set of normalizable states from the pseudo-Hilbert 
space of the Lorentzian black hole NLSM.

22. Partition function for the Euclidean black hole NLSM

In the work [11] the authors put forward the pioneering conjecture that the Euclidean black 
hole NLSM is the CFT governing the scaling limit of the Z2 invariant inhomogeneous six-vertex 
model in the domain of the anisotropy parameter arg(q2) ∈ (0, π). This is not quite in line with 
the results of our study. Here we’d like to critically re-examine the arguments from ref. [11].

Let’s recall the definition of the Euclidean black hole NLSM. The corresponding target space 
metric has Euclidean signature and is given by

(dσEBH)
2 = dUdU∗

1+UU∗ . (22.1)

It may be obtained from the metric (dσ)2 (21.39) in the following way. For the co-ordinates U
and V taking values in region I from Fig. 16, one performs the “Wick rotation” in the target 
space, which makes them satisfy the reality condition

V =−U∗ . (22.2)

Then ignoring the overall negative sign, the metric (21.39) becomes (dσEBH)
2. The classical ac-

tion for the NLSM is now given by
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SEBH = 1

2h̄

∫
dt

2π∫
0

dx
∂tU∂tU

∗ − ∂xU∂xU
∗

1+UU∗
(
h̄→ 0+

)
. (22.3)

In this case instead of imposing periodic boundary conditions, it is useful to consider the more 
general quasiperiodic ones

U(t, x + 2π)= e2π ik U(t, x) . (22.4)

The model (22.3) possesses U(1) symmetry and the Noether current is given by

Iμ = 1

2i

U∗∂μU −U∗∂μU
1+UU∗ . (22.5)

The Euclidean black hole NLSM has been well studied [18–27]. In particular, the classical 
field theory (22.3) still possesses an infinite set of chiral currents, which form the classical W∞⊗
W∞ Poisson algebra. The quantization of the latter leads to the algebra of extended conformal 
symmetry with central charge c > 2. The Hilbert space can be classified according to the highest 
weight irreps of the W∞⊗W∞ - algebra. It is convenient to parameterize the central charge and 
the highest weight of the irreps ω= (ω2, ω3) using n, s and p as

c= 2+ 6

n
> 2 (22.6)

and

ω2 = s2 + 1
4

n
+ p2

n+ 2
(22.7)

ω3 = 2p√
n+ 2

( s2

n
+ (2+ 3n)p2

3n (n+ 2)
− 2n+ 1

12n

)
.

To avoid confusion let us emphasize that in these relations n > 0, s and p are formal parameters, 
without the meaning that was assigned to them in the previous sections. The Hilbert space of the 
NLSM contains both a continuous H(cont)

EBH and a discrete component H(disc)
EBH . Let’s first focus on 

the continuous one. Its linear decomposition into the irreps of the W∞ ⊗W∞ - algebra is given 
by [21–27]

H(cont)
EBH =

+∞⊕
v,w=−∞

⊕∫
s>0

ds W(c>2)
p̄,s ⊗W(c>2)

p,s ,

where
p = 1

2 v+ 1
2 (n+ 2) (k+ w)

p̄ = 1
2 v− 1

2 (n+ 2) (k+ w)
(22.8)

Here v is the eigenvalue of the U(1) conserved charge h̄−1
∮

dxI0 associated with the Noether 
current (22.5). It takes integer values provided that the Planck constant is identified with n as

h̄= 2π

n+ 2
. (22.9)

The integer w may be interpreted as a winding number related to the fact that the boundary 
condition (22.4) is invariant w.r.t. the substitution k �→ k + w with w ∈ Z. Let us note that the 
highest weight (22.7) is not sensitive to the sign of s. Due to this the direct integral in (22.8) is 
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restricted to positive values of s. For the states at the level L̄ and L in the irrep W(c>2)
p̄,s ⊗W(c>2)

p,s , 
the corresponding energy E =� + �̄− c

12 in terms of the parameters n, s, p and p̄ reads as

E =−1

6
+ 2s2

n
+ p2 + p̄2

n+ 2
+ L+ L̄ . (22.10)

The study of the low energy spectrum of the Hamiltonian H (7.6) with arg(q2) ∈ (0, π) was 
initiated in the work [9]. Within the Bethe ansatz approach, the leading 1/N correction to the 
energy was considered. Formula (8.2a) was obtained, where p and p̄ are given in (8.1), while 
b(N) is the eigenvalue of the quasi-shift operator (8.6). Then it was understood in [10] that the 
scaling limit of the low energy states could be organized so that b(N) is replaced by the RG 
invariant s, which becomes a continuous parameter in the scaling limit (see also the discussion 
in sec. 9 from this paper). The observation that the universal correction term in (8.2a) coincides 
with (22.10) was among the original arguments that the critical behaviour of the lattice system 
is described by the Euclidean black hole NLSM. With such an identification the U(1) symmetry 
of the action (22.3) is interpreted as the counterpart of the lattice U(1) symmetry, so that the 
quantum number v coincides with Sz. Needless to say that k in the twisted boundary conditions 
(22.4) corresponds to the twist parameter k from (7.7) [14].

There are two immediate concerns to the above identification. The first is regarding the Z2
symmetry of the lattice model. In the scaling limit, the states related through the Z2 transforma-
tion are characterized by the RG invariant +s and −s and should be considered as distinct states 

in the Hilbert space of the CFT. On the other hand, the highest weight irrep W(c>2)
p̄,s ⊗W(c>2)

p,s is 

identical to W(c>2)
p̄,−s ⊗W(c>2)

p,−s and in the Euclidean black hole NLSM the states with ±s must be 
identified. For this reason the domain of integration in (22.8) is s > 0. The second concern is that 
the NLSM is a unitary field theory. Its Hilbert is equipped with a positive definite inner product 
[28] such that the Fourier modes of the W and W currents, generating the W∞ ⊗W∞ - algebra, 
satisfy the conjugation conditions[

W̃j (m)
]† = W̃j (−m) ,

[
W̃ j (m)

]† = W̃ j (−m) . (22.11)

Contrary to this, since the spectrum of the lattice Hamiltonian H is not real, there does not 
exist a positive definite inner product for the lattice system w.r.t. which the matrix H would be 
Hermitian.

In principle, the objections may be addressed as follows. Instead of considering the full Hilbert 
space H occurring in the scaling limit of the spin chain, one could focus on its Z2 invariant sector 
and identify this with the space of states of the Euclidean black hole NLSM. Also, it is a rather 
common situation when the lattice (regularized) system is equipped with a non-positive definite 
inner product, but unitary is restored in the scaling limit.

In the consequent work [11] an additional argument was presented in support of the relation 
between the lattice model and the quantum Euclidean black hole NLSM. It uses the results of 
refs. [24,25]. In these papers an explicit formula was presented for the partition function of the 
black hole NLSM with periodic boundary conditions (k = 0) and the Euclidean world-sheet 
compactified on the torus. It was argued that the contribution of the continuous spectrum to the 
partition function takes the from (see formula (4.17) from ref. [25])

Z
(k=0)
EBH =

∞∑
v,w=−∞

∞∫
ds ρ(s) chp̄,s (q̄) chp,s(q) + . . . , (22.12)
0
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where the contribution of the discrete spectrum is denoted by the ellipsis. The product 

chp̄,s (q̄) chp,s(q) is the character of the highest weight irrep W(c>2)
p̄,s ⊗W(c>2)

p,s appearing in 
the decomposition (22.8) and explicitly

chp,s(q)= q−
1
12+ s2

n
+ p2

n+2 (q,q)−2∞ . (22.13)

The density of states reads as

ρ(s)= 2

π
log(1/ε)+ 1

2π i
∂s log

[
�( 1

2 + p− is)�( 1
2 + p̄− is)

�( 1
2 + p+ is)�( 1

2 + p̄+ is)

]
+ o(1) , (22.14)

where ε−1 � 1 is a regularization parameter (for an explanation see the original work [24]).
Based on a numerical study of the Bethe ansatz equations, the observation was made in 

ref. [11] that with a proper understanding of the scaling limit, the density of primary Bethe 
states is given by the function (22.14). The rôle of the regularization parameter is played by the 
number of lattice sites, i.e., ε−1 ∝N . Our interest in the Z2 invariant inhomogeneous six-vertex 
model was inspired by this remarkable observation.

The arguments for formula (22.12) rely essentially on the minisuperspace approximation. We 
didn’t find compelling reasons in the papers [24,25] as to why the density of states remains the 
same for the excited states with L, L̄> 0. At best, one might expect that formula (22.12) should 
be replaced by

ZEBH = 1

2

√
n

�m(τ)

log(1/ε)

π(q̄, q̄)2∞(q,q)2∞

∞∑
v,w=−∞

q̄−
1
12+ p̄2

n+2 q−
1
12+ p2

n+2 (22.15)

+
∑
v,w∈Z

∞∫
0

ds
∑
L,L̄≥0

ρ
(L̄,L)
EBH (s | p̄,p) q̄−

1
12+ s2

n
+ p̄2

n+2+L̄ q−
1
12+ s2

n
+ p2

n+2+L +Z
(disc)
EBH .

The divergent term in (22.15) admits a simple interpretation that has to do with the geometry 
of the target space of the NLSM. The manifold equipped with the metric (dσEBH)

2 (22.1) may 
be embedded into three dimensional Euclidean space and visualized as a half-infinite cigar. The 
tip is located at U = 0 while in the domain |U | � 1, where the metric becomes flat, the target 
manifold resembles a half-infinite cylinder. The first term in (22.15) is the partition function of 
two free bosons. One of them, arg(U), takes values in the interval [−π, π], and satisfies the 
quasiperiodic (if k �= 0) boundary conditions. The other Bose field, log |U |, takes values in a 
segment of length ∝ log(1/ε) →∞ as ε→ 0.

While the divergent term is somewhat universal the density matrix, whose matrix elements 
essentially coincide with ρ(L̄,L)

EBH (s | p̄, p) in (22.15), depends on the IR regularization of the target 
manifold. In the works [23–25] the Euclidean black hole NLSM occurs in the context of bosonic 
string theory on AdS3. This provides a particular “integrable” IR regularization for which the 
NLSM partition function in the case of periodic boundary conditions reads explicitly as16

16 Formula (3.9) in [25] for the partition function contains an additional factor of 2. This is related to the fact that 
the corresponding NLSM was obtained by gauging the U(1) symmetry, g �→ h g h (h = e

iα
2 σy

), of the SL(2, R) WZW 
model. This results in two copies of the Euclidean black hole NLSM (see also the discussion in sec. 23.1).
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Z
(k=0)
EBH =

√
n(n+ 2)

�m(τ)

∑
a,b∈Z

∫
Dε

d2z e−
π(n+2)
�m(τ)

|z+a+bτ |2+ 2π
�m(τ)

(�m(z))2
∣∣∣∣ η(τ)

ϑ1(z|τ)
∣∣∣∣2 . (22.16)

Here ϑ1 and η are the standard elliptic theta and Dedekind eta functions:

ϑ1(u|τ)= 2q
1
8 sin(πu) (e2π iu q,q)∞ (e−2π iu q,q)∞ (q,q)∞ (22.17)

η(τ)= q
1
24 (q,q)∞ (q= e2π iτ ) .

The integral in (22.16) is taken over the parallelogram D in the complex z plane with vertices at 
z =± 1

2 ± 1
2 τ . However since the integrand is singular at z= 0, a small neighbourhood around 

the origin, whose size is controlled by the parameter ε, should be excluded from the integration 
domain. For instance if one chooses

Dε =D/{z : |z|< 1
2π e−γE ε } , (22.18)

where γE denotes the Euler constant, then for |q| → 0

Z
(k=0)
EBH = 1

2π

√
n

�m(τ)
|q|− 1

6

(
log(4eγE/ε)+ o

(|q|0)) . (22.19)

This is consistent with formulae (22.12) and (22.14). We define the regularized partition function 
of the Euclidean black hole NLSM as

Z
(k=0)
EBH,reg = lim

ε→0

(
Z

(k=0)
EBH −Z

(sing)
ε

)
(22.20)

with

Z
(sing)
ε =

√
n

�m(τ)

log(4eγE/ε)+ 1
2 log

(�m(τ)
)

2π (q̄, q̄)2∞(q,q)2∞

∑
v,w∈Z

q̄−
1
12+ p̄2

n+2 q−
1
12+ p2

n+2 (22.21)

and recall that q = e2π iτ , q̄= e−2π iτ∗ . Here an extra term ∝ log
(�m(τ)

)
was included into the 

definition of Z(sing)
ε in order to ensure that the regularized partition function, Z(k=0)

EBH,reg, is modular 
invariant.

Now that the partition function has been specified, the finite part in (22.15) is defined unam-
biguously. The explicit formula for Z(disc)

EBH , which accounts for the contribution of the discrete 
spectrum in the black hole NLSM, was presented in ref. [26]. It appears to be identical with 
1
2 Z(disc) from (17.36) specialized to k = 0.17 Then one may guess that

ZEBH = 1
2 Z(scl) (22.22)

provided the regularization parameter ε is related to N as

ε−1 = 2
n+2
n �

( 3
2 + 1

n

)
√
π �
(
1+ 1

n

) N (22.23)

(here we use the explicit expression (9.5) for the constant N0). The relation (22.22) was con-
firmed numerically. Table 2 compares numerical data for 2Z(k=0)

EBH,reg with Z(cont)
reg +Z(disc), where 

the NLSM partition function is regularized as in (22.20), while

17 Apart from an obvious typo, formulae (2.5) and (2.10) from ref. [26] do not quite correctly take into account the 
contribution of the states to Z(disc)

EBH with j =− n+1
2 , − 1

2 corresponding to the boundary of the interval in the set J(v, u)
(17.35).
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Table 2
A comparison of the numerical data for n = 3 of twice the regularized partition function of the Euclidean black hole 
NLSM (22.20) with Z(cont)

reg + Z(disc) for the lattice model with periodic boundary conditions (k = 0). Here Z(disc) is 
given by eqs. (17.35)-(17.37), while Z(cont)

reg is defined by (22.24). The table also illustrates modular invariance of the 
regularized partition function for k = 0. Note that in order to achieve good accuracy for decreasing values of �m(τ) one 
must take into account an increasing number of terms in the sum over Sz , w for Z(cont) as well as a, b in eq. (22.16). 
This significantly increases the computer time.

τ Z
(cont)
reg Z(disc) Z

(cont)
reg +Z(disc) 2Z(k=0)

EBH,reg

τ = .9i −3.9509313 0.0210525 −3.9298787 −3.9298786
−1/τ −3.9358543 0.0059766 −3.9298776 −3.9298787
τ + 1 −3.9509313 0.0210525 −3.9298787 −3.9298786

τ = .2+ .9i −3.8983544 0.0065418 −3.8918125 −3.8918125
−1/τ −3.8925978 0.0007853 −3.8918125 −3.8918124
τ + 1 −3.8983544 0.0065418 −3.8918125 −3.8918124

τ = .66i −4.4682528 0.0943594 −4.3738934 −4.3738934
−1/τ −4.3744476 0.0005542 −4.3738934 −4.3738933
τ + 1 −4.4682528 0.0943594 −4.3738934 −4.3738933

τ = .5i −5.7668560 0.2960118 −5.4708441 −5.4708421
−1/τ −5.4708761 0.0000322 −5.4708439 −5.4708437
τ + 1 −5.7668560 0.2960118 −5.4708441 −5.4708421

τ = .33i −12.070612 1.5569389 −10.513673 −10.5129976
−1/τ −10.513561 7.662 · 10−8 −10.513561 −10.5135606
τ + 1 −12.070612 1.5569389 −10.513673 −10.5129975

Z(cont)
reg = second line of eq. (17.38) (22.24)

−
√

n

�m(τ)

log(4eγE)+ 1
2 log

(�m(τ)
)

π (q̄, q̄)2∞(q,q)2∞

∑
Sz,w∈Z

q̄−
1
12+ p̄2

n+2 q−
1
12+ p2

n+2 .

We also performed a numerical study of Z(scl) for k �= 0. It was found that the relation similar 
to (22.22) holds, but with a simple modification of the formula (22.16):

Z(k) =
√
n(n+ 2)

�m(τ)

∑
a,b∈Z

∫
Dε

d2z e−
π(n+2)
�m(τ)

|z+a+(k+b) τ |2+ 2π
�m(τ)

(�m(z))2
∣∣∣∣ η(τ)

ϑ1(z|τ)
∣∣∣∣2 . (22.25)

This is illustrated in Table 3. Thus we expect that with a proper regularization of the Euclidean 
black hole NLSM, (22.22) holds true for any values of the twist parameter k and furthermore

ZEBH = Z(k) = 1
2 Z(scl) . (22.26)

A one - loop calculation, which is almost identical to that from [24], supports that ZEBH for 
twisted boundary conditions indeed coincides with (22.25).

The highly non-trivial formula (22.22) is in full agreement with the original observation of 
ref. [11]. However, let’s emphasize that in order to state that the Euclidean black hole NLSM 
governs the critical behaviour of the Z2 invariant inhomogeneous six-vertex model, this relation 
is insufficient. Our numerical study of the finite size corrections to the CFT Hamiltonian, which 
are controlled by irrelevant perturbations (see eqs. (18.10) and (18.13)), shows that the extended 
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Table 3
The last column contains numerical data for 2Z(k)

reg , where Z(k)
reg = limε→0

(
Z(k) − Z

(sing)
ε

)
. Here Z(k) is given by 

(22.25), while Z(sing)
ε is defined in (22.21) with p, p̄ taken to be as in (22.8). This is compared to the numerical values 

for Z(cont)
reg + Z(disc) , where Z(disc) was computed using eqs. (17.35)-(17.37) and Z(cont)

reg via (22.24). The parameters 
were set to be k =−0.1 and n = 3.

τ Z
(cont)
reg Z(disc) Z

(cont)
reg +Z(disc) 2Z(k)

reg

0.9 i −3.1430392 0.0233941 −3.1196452 −3.1196450
0.2+ 0.9 i −3.0646040 0.0099983 −3.0546057 −3.0546064
0.66 i −3.7836669 0.1033699 −3.6802970 −3.6802972
0.2+ 0.66 i −3.5074556 0.0418838 −3.4655718 −3.4655717
0.50 i −5.1054421 0.3209649 −4.7844771 −4.7844724
0.33 i −11.2855973 1.6391928 −9.6464045 −9.646289
0.25 i −26.5761236 5.4010183 −21.1751053 −21.171536

conformal symmetry algebra is the W∞ ⊗W∞ - algebra with c < 2. Accepting the latter also 
naturally resolves the issues with the Z2 symmetry and unitarity mentioned above.

23. Gauged SL(2, R) WZW model

One should keep in mind the different status of the Euclidean and Lorentzian black hole 
NLSMs. The former is a well defined quantum theory, and there are many ways to check its 
consistency, including at the level of the conformal bootstrap [21–27]. Contrary to this the status 
of the quantum Lorentzian NLSM is rather tentative. Our conjecture is an attempt at assigning a 
meaning to the NLSM, which goes beyond the scope of the classical field theory. It also provides 
one with a handle on how to proceed with the quantization of some closely related models.

23.1. The classical field theory

As was already mentioned the Lorentzian black hole NLSM can be obtained by gauging a non-
compact one dimensional subgroup of the classical SL(2, R) WZW model [20,67]. Following the 
work [20] consider the classical action

S = 1

h̄

∫
dt

2π∫
0

dx
[
∂U∂̄V + ∂̄U∂V + ∂X∂̄Y + ∂̄X∂Y + log(X/Y )

(
∂U∂̄V − ∂̄U∂V

)
+ ā

(
Y∂X−X∂Y −U∂V + V ∂U

)
+ a

(
Y ∂̄X−X∂̄Y +U∂̄V − V ∂̄U

)− 2aā (1−UV )
]
. (23.1)

Here the integrand in the first line is just the classical Lagrangian density of the usual WZW 
model [68], LWZW[g], expressed via the matrix entries of the fundamental WZW field

g=
(

X U

−V Y

)
. (23.2)

Note that the term involving log(X/Y ) comes from the Wess-Zumino term and, up to a total 
derivative, can be rewritten in various ways by employing the constraint

XY +UV = 1 . (23.3)
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The second line in (23.1) contains the fields a and ā, which are the chiral components of the 
gauge potential aμ. The action is invariant w.r.t. the infinitesimal gauge transformation of the 
form

δX = δωX , δY =−δωY , δU = δV = 0 ; δaμ = ∂μ(δω) . (23.4)

This can be seen by rewriting the Lagrangian density corresponding to the action (23.1) as

L= 1

2

[
∂μU∂μV

1−UV
− (1−UV ) fμf

μ + εμν∂μCν

]
(23.5)

with

fμ = aμ − 1
2 ∂μ log(X/Y )− εμν J

ν , Cμ = 1
2 log(X/Y ) (U∂μV − V ∂μU) (23.6)

and

Jμ = 1

2

U∂μV − V ∂μU

1−UV
(23.7)

(here J 0 = J0, J 1 = −J1 while the Levi-Civita symbol εμν = −εμν is defined to be ε01 =
−ε10 = 1). The extremum condition δ

δaμ
S = 0 leads to the equation

aμ = 1
2 ∂μ log(X/Y )+ εμν J

ν . (23.8)

The field strength corresponding to this vector potential is given by

∂μaν − ∂νaμ = ∂σ J
σ εμν . (23.9)

It vanishes for any solution of the classical equations of motion, which includes the continuity 
equation ∂μJμ = 0.

In the orthodox formulation of the gauged SL(2, R) WZW model, the matrix valued field g is 
assumed to be periodic:

g(t, x + 2π)= g(t, x) . (23.10)

If we take U and V from the domain

0≤UV < 1 , (23.11)

it is natural to fix the gauge by setting X = Y [20] which, in view of eq. (23.8), results in aμ =
εμν J

ν . Then, after eliminating the auxiliary field aμ, the action S (23.1) becomes that of the 
Lorentzian black hole NLSM (21.24). Note that, as was also pointed out in [20], if we take the 
SL(2, R) picture literally the full target space of the Lorentzian black hole NLSM would contain 
two copies of the regions III and IV in Fig. 16 corresponding to the cases X, Y > 0 and X, Y < 0. 
In what follows we’ll consider the same field theory, but with more general boundary conditions 
than (23.10). It is expected to be applicable for the description of the critical behaviour of the Z2
invariant inhomogeneous six-vertex model with twisted boundary conditions.

The gauged SL(2, R) WZW model possesses an alternative formulation [21,67]. Consider the 
Lagrange density which is just the sum of that of the WZW model and the massless Gaussian 
theory:

L̃= LWZW[G] + 2 ∂η∂̄η . (23.12)

The interaction is introduced through the constraints
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ϒ≡ 1
2 Tr

[
σz ∂G G−1

]− ∂η= 0 , ϒ̄≡ 1
2 Tr

[
σz G−1 ∂̄G

]+ ∂̄η= 0 . (23.13)

If the infinitesimal gauge transformation of the WZW field and the massless Gaussian field is 
defined as

δG= 1
2

(
σzG+Gσz

)
δω , ∂μδη= εμν∂

ν (δω) , (23.14)

then δL̃ turns out to be a total derivative provided the constraints (23.13) are imposed. The 
classical field theory, thus defined, is equivalent to the gauged WZW model governed by the 
action (23.1). In particular, for any field configuration satisfying the equations of motion for 
(23.12), (23.13),

g= e
1
2 ωσz

G e
1
2ωσz

, aμ =−εμν∂
νη+ ∂μω (23.15)

would be a solution of the Euler-Lagrange equations associated with the action (23.1). Here ω
is an arbitrary periodic function ω(t, x + 2π) = ω(t, x), which appears as a manifestation of the 
gauge invariance of the model.

To specify the boundary conditions, let us first recall some basic facts concerning the phase 
space of the WZW model (see, e.g., [66,68,69]). The latter is conveniently described in terms of 
the left and right WZW currents,18

∂GG−1 = LAtA , G−1∂̄G= R̄AtA , (23.16)

which satisfy the closed set of equal-time Poisson bracket relations:{
LA(t, x),LB(t, y)

}=− 1
2 κAB δ′(x − y)− 1

2 f AB
C LC(t, x) δ(x − y){

R̄A(t, x), R̄B(t, y)
}=+ 1

2 κAB δ′(x − y)+ 1
2 f AB

C R̄C(t, x) δ(x − y) (23.17){
LA(t, x),RB(t, y)

}= 0 .

Assuming that the currents are periodic fields,

LA(t, x + 2π)= LA(t, x) , R̄A(t, x + 2π)= R̄A(t, x) , (23.18)

the center of the Poisson algebra is generated by two elements

C= Tr

[←−P exp

(
+

x0+2π∫
x0

dx LA tA

)]
, C̄= Tr

[−→P exp

(
−

−x0−2π∫
−x0

dx R̄A tA

)]
.

(23.19)

We will focus on the field configurations such that the values of the central elements are restricted 
by the inequalities

18 Here and below we use the notation tA for the 2 × 2 real traceless matrices,

t3 =
(

1 0
0 −1

)
, t+ =

(
0 1
0 0

)
, t− =

(
0 0
1 0

)
: [tA, tB ] = fAB

C tC .

Indices are raised and lowered via the Killing form defined as

κAB = 1
2 Tr[ tAtB ] , κAC κCB = δB

A
.
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−2 < C, C̄< 2 (23.20)

and use the parameterization

C= 2 cos(2πP ) , C̄= 2 cos(2πP̄ ) (23.21)

with real P and P̄ . In this case the path ordered exponentials inside the traces in (23.19) may be 
expressed as

←−P exp

(
+

x0+2π∫
x0

dx LA tA

)
= � e+2π iPσy

�−1 (23.22)

−→P exp

(
−

−x0−2π∫
−x0

dx R̄A tA

)
= �̄ e−2π iP̄ σ y

�̄
−1

,

where the 2 × 2 real non-degenerate matrices � and �̄ depend on the initial integration point x0. 
If we require them to be SL(2, R) matrices, then e+2π iPσy

and e−2π iP̄ σ y
are uniquely defined. 

At the same time there is an ambiguity in � and �̄ of the form � �→ ±� eiγ σy
and �̄ �→ ±�̄ eiγ̄ σ y

with arbitrary real γ and γ̄ . This can be fixed using the Iwasawa decomposition for SL(2, R)

matrices, which allows one to specify that

�=
(
d 0
0 d−1

) (
1 b

0 1

)
, �̄=

(
d̄ 0
0 d̄−1

) (
1 b̄

0 1

)
with d, d̄ > 0 . (23.23)

The values of the currents at t = 0 are not enough to fully define the time dependence of the 
matrix valued field G(t, x). Indeed the equations of motion in the WZW model are given by

∂̄LA = 0 , ∂R̄A = 0 . (23.24)

This implies that

G(t, x)=�(t + x)G(0, x0) �̄(t − x) , (23.25)

where

�(u)=←−P exp

(
+

u∫
x0

dx LA tA

)
(23.26)

�̄(ū)=−→P exp

(
−

ū∫
−x0

dx R̄A tA

)
,

while G(0, x0) is an arbitrary SL(2, R) matrix. Its entries, together with the initial values of the 
currents, constitute the full set of the initial data. We consider the field configurations at t = 0 to 
be such that

G(0, x0)= � eiασy

�̄
−1

, (23.27)

where �, �̄ are the same as in (23.22), (23.23) and α is some real number. This is motivated 
through the following arguments. Assuming LA are given, the path ordered exponent �(u)

(23.26) solves the linear differential equation
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∂�= LA tA � . (23.28)

However �(u), apart from the WZW currents, also depends on an arbitrarily chosen initial inte-
gration point x0 at which it becomes the identity matrix. At the same time �P = �(u) � is the 
Floquet solution of the matrix ODE (23.28), which is fixed unambiguously provided � is taken 
to be of the form (23.23). A change in the initial integration point x0 to x′0 would result in the 
transformation �P �→�P eiα0σ

y
, where α0 = α0(x0, x′0). The solutions of the ODE with periodic 

coefficients possess the band structure. Thus the parameter P labeling the Floquet solutions �P

can be defined such that P ∈ R and 2P /∈ Z, where the band number coincides with the great-

est integer less than P + 1
2 . The above carries over to the Floquet solution �P̄ = �̄

−1
�̄(ū) of 

the barred counterpart of the ODE (23.28). This way the construction of the WZW field G(t, x)
given by eqs. (23.25), (23.27) involves the Floquet solutions as well as an additional variable 
α ∼ α+ 2π . Thus the algebra of functions on the phase space of the WZW model, generated by 
the currents LA and R̄A subject to the periodic boundary conditions (23.18), should be extended 
by the inclusion of the compact generalized coordinate α. The latter can be viewed as a dynam-
ical variable canonically conjugated to the sum 2π(P + P̄ ). As for their difference, having in 
mind the study of the lattice model, we assume that e2π i(P−P̄ ) = e2π ik, with 1

2 < k ≤ 1
2 being a 

fixed parameter. Equivalently,

P − P̄ = k+ w (w ∈Z) (23.29)

and the integer w labels different disjoint components of the phase space.
The boundary values of the WZW field at t = 0, defined by the formulae (23.25) and (23.27), 

satisfy the relations

G(0, x0 + 2π)= � e2π ikσy

�−1 G(0, x0)=G(0, x0) �̄ e2π ikσy

�̄
−1

. (23.30)

This implies

Tr
[

G(t, x + 2π)
(
G(t, x)

)−1
]
= 2 cos(2πk) , (23.31)

which should be imposed along with the periodicity condition for the currents (23.18). In fact 
there is an extra condition that needs be taken into account. Substituting the matrix � (23.23)
into eq. (23.30), one finds

Tr
[
(−iσy) G(0, x0 + 2π)

(
G(0, x0)

)−1
]
= sin(2πk)

(
d2 + d−2 + d2b2) . (23.32)

This results in the inequality

Tr
[
(−iσy) G(t, x + 2π)

(
G(t, x)

)−1
]/

sin(2πk) > 0 . (23.33)

The constraints (23.13) will only make sense when both derivatives ∂η and ∂̄η are periodic:

∂η(t, x + 2π)= ∂η(t, x) , ∂̄η(t, x + 2π)= ∂̄η(t, x) . (23.34)

In view of the relation (23.15), the gauge field aμ(x, t) in the original formulation of the gauged 
WZW model is also periodic,

aμ(t, x + 2π)= aμ(t, x) , (23.35)

as was implicitly assumed in our initial analysis of the model. The boundary condition (23.31)
as well as the inequality (23.33) are invariant under the gauge transformation and therefore the 
field g satisfies the similar relations
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Tr
[

g(t, x + 2π)
(
g(t, x)

)−1
]
= 2 cos(2πk) (23.36a)

Tr
[
(−iσy)g(t, x + 2π)

(
g(t, x)

)−1
]/

sin(2πk) > 0 . (23.36b)

Let us make the following important point. In the case of the gauged SL(2, R) WZW model 
with k = 0, the condition (23.36) yields g(t, x + 2π) = g(t, x), i.e., periodicity of all the matrix 
elements X, Y, U, V . In turn one can use the gauge fixing condition X= Y . However for k �= 0, 
since X and Y are no longer periodic fields, the same gauge fixing condition is not applicable. 
This makes the model with k = 0 (which is equivalent to the Lorentzian black hole NLSM) a 
very special one that is not obtainable literally through a naive k → 0 limit.

The Poisson structure of the massless Gaussian model, whose Lagrange density is given by 
the second term in the r.h.s. of (23.12), reads as

{∂η(t, x), ∂η(t, y)} = −{∂̄η(t, x), ∂̄η(t, y)} = 1
2 δ′(x − y) , {∂η(t, x), ∂̄η(t, y)} = 0 .

(23.37)

With the boundary conditions (23.34) imposed, the center of this Poisson algebra is generated by

Pη =
2π∫

0

dx

2π
∂η , P̄η =

2π∫
0

dx

2π
∂̄η . (23.38)

The general solution of the equation of motion ∂∂̄η= 0 is

η(t, x)= 1
2

(
f (t + x)− f̄ (t − x)

)
(23.39)

where, in view of the boundary conditions, the arbitrary functions f and f̄ are quasiperiodic:

f (u+ 2π)= f (u)+ Pη , f̄ (ū+ 2π)= f̄ (ū)+ P̄η . (23.40)

The constraints (23.13) imposed on the WZW field G and the Gaussian field, combined with 
(23.39), yield the relations

L3 =− 1
2 ∂f , R̄3 =− 1

2 ∂̄ f̄ . (23.41)

It is easy to see now that the matrix G, satisfying the equations of motion, can be brought to the 
form

G(t, x)= e−
1
2 f (t+x)σ z

g 1
2
(t, x) e−

1
2 f̄ (t−x)σ z

, (23.42)

where g 1
2

is defined as in eq. (21.17) specialized to the fundamental representation of sl2. 
Namely,

∂g 1
2

g 1
2

−1 = ξ−t− − ξ+t+ , g 1
2

−1 ∂̄g 1
2
= ξ̄−t− − ξ̄+t+ (23.43)

with

ξ− = e−f L− , ξ+ =−e+f L+

ξ̄− = e+f̄ R̄− , ξ̄+ =−e−f̄ R̄+ . (23.44)

The latter are real chiral fields, ∂̄ξ± = ∂ξ̄± = 0, subject to the quasiperiodic boundary conditions
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ξ±(u+ 2π)= B±1 ξ±(u) , ξ̄±(ū+ 2π)= B̄±1 ξ̄±(ū) , (23.45)

where B = e2πPη and B̄ = e2πP̄η . Making contact with our analysis of the lattice model, we set 
B = B̄ or, equivalently, Pη = P̄η (assuming that Pη and P̄η are real). In this case, as it follows 
from eqs. (23.39) and (23.40), the field η is periodic:

η(t, x + 2π)= η(t, x) . (23.46)

Note that the on-shell gauge potential aμ, entering into the initial formulation of the SL(2, R)

gauged WZW model, satisfies the condition

B = B̄ = exp

(∮
dxμ aμ

)
. (23.47)

Consider now the classical W currents defined through the relations

W
(cl)
2 = ξ+ ξ− , W

(cl)
3 = 1

2

(
ξ− ∂ξ+ − ξ+ ∂ξ−

)
, . . .

W
(cl)

2 = ξ̄+ ξ̄− , W
(cl)

3 = 1
2

(
ξ̄− ∂ξ̄+ − ξ̄+ ∂ξ̄−

)
, . . .

. (23.48)

Using (23.44) they can be rewritten in terms of the WZW currents along with ∂η and ∂̄η:

W
(cl)
2 = (∂η)2 − ((L3)2 +L+L−

)
,

W
(cl)
3 = 2 ∂ηL+L− + 1

2 (L+∂L− −L−∂L+)
W

(cl)

2 = (∂̄η)2 − ((R̄3)2 + R̄+R̄−
)
,

W
(cl)

3 = 2 ∂̄η R̄+R̄− + 1
2 (R̄+∂R̄− − R̄−∂̄R̄+)

. (23.49)

These formulae show that the W currents are real, chiral and periodic fields. Furthermore it 
is straightforward to check using the PB relations (23.17) and (23.37) that all the W currents 
Poisson commute (in a weak sense) with the constraints ϒ̄ and ϒ (23.13),{

W
(cl)
j (t, x),ϒ(t, y)

}∣∣
ϒ=0 =

{
W

(cl)
j (t, x), ϒ̄(t, y)

}= 0

{
W

(cl)

j (t, x), ϒ̄(t, y)
}∣∣

ϒ̄=0 =
{
W

(cl)

j (t, x),ϒ(t, y)
}= 0

. (23.50)

Since the fields W(cl)
2 and W

(cl)

2 coincide with the nonvanishing components of the stress energy 
tensor, the Hamiltonian Poisson commutes with ϒ̄ and ϒ. Also it is easy to see that{

ϒ(t, x),ϒ(t, y)
}= {ϒ̄(t, x), ϒ̄(t, y)

}= {ϒ(t, x), ϒ̄(t, y)
}= 0 (23.51)

and, hence, the constraints (23.13) are of the first class. The W currents are “classical observ-
ables” and additional straightforward calculations show that they form the closed Poisson algebra 
which occurs in the n →∞ limit of the algebra of extended conformal symmetry of the lattice 
model.

23.2. BRST quantization

Once the gauged SL(2, R) WZW model is formulated as a classical dynamical system pos-
sessing constraints of the first class one can consider the problem of its quantization within the 
BRST approach. Here we briefly sketch the algebraic procedure for the construction of the chiral 
component of the space of states.
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The chiral component of the energy momentum tensor of the quantum theory is split into three 
terms:

Ttotal = TWZW + TGauss + Tghost . (23.52)

The first one is [70]

TWZW =− n2

n+CV
κAB LALB . (23.53)

It is built from the left currents of the WZW model

LA(u)= n−1
∞∑

m=−∞
jA
m e−imu (A= 3,±) (23.54)

whose Fourier coefficients obey the commutation relations[
jA
m, jB

r

]=−n κAB m
2 δm+r,0 − i

2 f AB
C jC

m+r . (23.55)

Here the level (central element) of the Kac-Moody algebra has been denoted by n. It is related to 
the Plank constant as h̄= 2π

n
. The constant CV entering into (23.53) stands for the so-called dual 

Coxeter number:

CV κ
AB = 1

4 f AC
D f BD

C (23.56)

and in the case under consideration CV = 2. The second term in (23.52) represents the contribu-
tion of the massless Gaussian field,

TGauss = n (∂η)2 (23.57)

with

∂η(u)= n−
1
2

∞∑
m=−∞

dm e−imu : [
dm,dr

]= m
2 δm+r,0 . (23.58)

Finally Tghost is the chiral component of the energy momentum tensor for the bc - system:

Tghost = ib∂c . (23.59)

The ghost fields have conformal dimensions (�b, �c) = (1, 0) and, as with the chiral fields LA

and ∂η, can also be expanded in the Fourier series

b(u)=
∞∑

m=−∞
bm e−imu , c(u)=

∞∑
m=−∞

cm e−imu , (23.60)

where{
bm, cr

}= δm+r,0 ,
{
bm,br

}= {cm, cr
}= 0 .

The Virasoro central charge of the bc - system is equal to (−2), so that the total central charge 
associated with the energy momentum tensor (23.52) is given by

ctotal = cWZW + cGauss + cghost = 3n

n+ 2
+ 1− 2= 2− 6

n+ 2
. (23.61)

The highest weight representation for the combined chiral algebra generated by the Fourier 
coefficients jA, dm, bm, cm is constructed in the usual manner. First of all one requires that the 
m
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highest state is annihilated by all the positive frequency modes with m > 0. Since the zero modes 
of the WZW currents satisfy the commutation relations[

jA
0 , jB

0

]=− i
2 f AB

C jC
0 , (23.62)

the highest states form a representation of the sl2 algebra. It makes sense to require that it is an 
irreducible one, characterized by the value of the Casimir operator

ĈG =−κAB jA
0 jB

0 , (23.63)

which in the sl2 case is usually denoted as 	(	 + 1). In order to make a link with our previous 
notations we will employ the parameter p = 	 − 1

2 . Together with this quantum number the 
highest states can be labeled by the eigenvalues of the zero modes j3

0 and d0:

ĈG |p,μ, s〉 = (p2 − 1
4

) |p,μ, s〉 , j3
0 |p,μ, s〉 = μ |p,μ, s〉 ,

d0 |p,μ, s〉 = s√
n
|p,μ, s〉 . (23.64)

The highest states form a representation not only of the sl2 algebra but also the simple fermionic 
one

{b0, c0} = 1 , b2
0 = c2

0 = 0 . (23.65)

Thus we supplement the set of conditions defining them with

c0 |p,μ, s〉+ = 0 , |p,μ, s〉− ≡ b0 |p,μ, s〉+ . (23.66)

The highest weight representation is built by the action of the negative frequency modes 
jA
m, dm, bm, cm with m < 0 on the highest state multiplet. The corresponding linear space will 

be denoted by Ap,s . The latter possesses a grading induced by the Virasoro algebra generator 
L

(total)
0 . For given L = 0, 1, 2, . . . , the level subspace A(L)

p,s is finite dimensional and all its states 
have the same conformal dimension �p,s + L with

�p,s = p2 − 1
4

n+ 2
+ s2

n
. (23.67)

Note that the conformal dimensions of the primary states do not depend on the quantum num-
ber μ.

The parameter p and its barred counterpart p̄ are related to the central elements
(23.19)-(23.21) of the Poisson algebra of the WZW currents. In particular, the sum p+ p̄ can be 
identified with the eigenvalues of the operator −i ∂

∂α
with α being the dynamical variable from 

(23.27). Then the compactness condition α ∼ α + 2π yields the quantization rule p + p̄ ∈ Z. 
This, in view of the classical relation (23.29), leads to

p = 1
2

(
u+ (n+ 2) (k+ w)

)
, p̄ = 1

2

(
u− (n+ 2) (k+ w)

) (
u,w ∈Z

)
. (23.68)

At the same time s may take any real value,

s ∈R . (23.69)

The central rôle in the BRST approach belongs to the BRST charge and the ghost number 
operator. These obey the relations

Q̂2
BRST = 0 ,

[
q̂ghost, Q̂BRST

]= Q̂BRST . (23.70)
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In the case at hand they read explicitly as

Q̂BRST = 1

h̄

2π∫
0

du
(
L3 − ∂η

)
c(u)= (j3

0 −
√
nd0

)
c0 +

∑
m �=0

(
j3
m −

√
ndm

)
c−m (23.71)

q̂ghost =
2π∫

0

du

2π
bc(u)= b0c0 +

∞∑
m=1

(
b−mcm − c−mbm

)
.

It is easy to see that both operators commute with the zero mode of the current L3(u):[
j3

0 , Q̂BRST

]= [j3
0 , q̂ghost

]= 0 . (23.72)

The dimensions of the level subspaces Ã(L)
p,μ,s depend essentially on whether or not μ − s van-

ishes. This difference is the coefficient in front of the ghost zero mode c0 in (23.71) when the 
action of the BRST charge is restricted to the eigenspace Ap,μ,s . Consider the highest states 
|p, μ, s〉±. If μ �= s, then the state |p, μ, s〉+ is annihilated by the BRST charge. On the other 
hand Q̂BRST|p, μ, s〉− �= 0 and is proportional to |p, μ, s〉+. This implies that the level subspace 
Ã(0)

p,μ,s with μ �= s is trivial. In the case when μ = s both highest states are annihilated by the 
BRST charge. However only |p, s, s〉+ has zero ghost number so that dim

(
Ã(0)

p,s,s

) = 1. Re-
call that |p, s, s〉+ is a state from a sl2 irrep characterized by p. The eigenvalues of j3

0 for the 
other highest states from the multiplet are given by μ = s + i m, where m is a nonzero integer, 
and hence the difference μ − s for these states would be nonvanishing. Proceeding further, it is 
straightforward to check at least for small values of L = 0, 1, 2, . . . , that all the spaces Ã(L)

p,μ,s

are trivial for μ �= s, while the dimensions of Ã(L)
p,s,s with generic p is equal to the number of 

bipartitions of L.
Perhaps the easiest way to explore the linear structure of the factor space Ãp,μ,s is to bosonize 

the ŝl(2, R) current algebra [50–52]. This allows one to isolate the physical states in Ap,s and 
to show that dim

(
Ã(L)

p,s,s

)
coincides with the corresponding dimensions of the level subspaces of 

the highest weight representation of the W∞ - algebra.
All the above leads us to the conjecture that the space

H(cont) =
⊕
u,w∈Z

⊕∫
R

ds W p̄,s ⊗Wp,s with
p = 1

2 u+ 1
2 (n+ 2) (k+ w)

p̄ = 1
2 u− 1

2 (n+ 2) (k+ w)
, (23.73)

that appears in the scaling limit of the lattice model with twisted boundary conditions, is the 
pseudo-Hilbert space which arises in the quantization of the classical field theory (23.12), (23.13)
subject to the boundary conditions (23.18), (23.31), (23.33) and (23.46).

Our study of the Hermitian structures in the lattice model led us to conclude that the spaces 
H(cont) and H(disc) should be understood as a result of two differently defined scaling limits. 
In all likelihood the states from H(disc) and H(cont) can not be interpreted simultaneously as 
normalizable states within a single CFT. Perhaps the simplest idea for the field theory, whose 
quantization results in the pseudo-Hilbert space H(disc), is the model described by the same 
Lagrangian density and constraints (23.12), (23.13) as well as the boundary conditions (23.18)
for the WZW currents and (23.34) for ∂μη. However the fields now are subject to different reality 
conditions. The classical W currents should satisfy
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(
W

(cl)
j

)∗ = (−1)j W
(cl)
j ,

(
W

(cl)

j

)∗ = (−1)j W
(cl)

j . (23.74)

In view of eq. (23.49) this would follow from the reality conditions(
L3)∗ = −L3 ,

(
L±
)∗ = L∓ ,

(
R3)∗ = −R3 ,

(
R±
)∗ =R∓ (23.75)

imposed on the classical WZW currents and(
∂η
)∗ = −∂η ,

(
∂̄η
)∗ = −∂̄η (23.76)

for the Gaussian field. Furthermore iη is expected to be a real and compactified field,

iη∼ iη+ 2π . (23.77)

The latter implies that the zero mode momenta Pη and P̄η (23.38) are no longer equal, but instead

i (Pη − P̄η) ∈Z . (23.78)

Notice that B = e2πPη and B̄ = e2πP̄η appearing in the boundary conditions (23.45) still coincide. 
Such reality and boundary conditions for the currents correspond to the SU(2) WZW model 
gauged over the compact subgroup. However, they are not enough to fully specify the field theory. 
In the SL(2, R) case there were the additional constraints (23.31) and (23.33), whose motivation 
relied on the fact that the WZW field G ∈ SL(2, R). At the moment, it is not clear to us what 
extra conditions need to imposed for the SU(2) case.

24. Lund-Regge model

The Yang-Baxter integrability of the Z2 invariant inhomogeneous six-vertex model made pos-
sible a detailed numerical study of its critical behaviour. On the basis of this we formulated our 
central conjecture in sec. 21.2 regarding the space of states occurring in the scaling limit and 
made the identification of the sector H̃(cont)

even with the pseudo-Hilbert space of the Lorentzian 
black hole NLSM. However the CFT itself does not assume any integrable structures and its 
space of states was described in terms of the representations of the algebra of extended con-
formal symmetry without reference to integrability. Nevertheless we believe that, finishing the 
paper, it would be instructive to discuss the integrable structure in the NLSM, inherited from the 
lattice system, within the context of the theory of partial differential equations solvable by the 
inverse scattering method.

24.1. Sklyanin exchange relations for the Lund-Regge model

Consider the Lagrangian density

Lε = 1

2

∂tU∂tV − ∂xV ∂xU

1−UV
− ε2

2
UV , (24.1)

which is a perturbation of that for the Lorentzian black hole NLSM (21.15) controlled by the 
parameter ε. We take the fields U and V to satisfy the periodic boundary conditions as in (21.23). 
The perturbation does not break the invariance w.r.t. the transformation (21.37) so that Jμ from 
(23.7) is still a Noether current. The continuity equation ∂μJμ = 0 allows one to introduce the 
dual field

̃(x)=−
∫

dxμ εμνJ
ν . (24.2)
Cx

136



V.V. Bazhanov, G.A. Kotousov, S.M. Koval et al. Nuclear Physics B 965 (2021) 115337
Here Cx denotes an open integration contour which starts at an arbitrary chosen initial point and 
ends up at x = (t, x). Then in the co-ordinate frame (�, ) (21.51) the SL(2, R) matrix (21.12), 
whose matrix entries satisfy the conditions (21.14), has the form

g 1
2
=
(
± cos(�) e+̃ sin(�) e+

− sin(�) e− ± cos(�) e−̃

)
. (24.3)

Since U and V take values in regions III and IV from Fig. 16, the coordinate � was restricted to 
the interval (−π

2 , 
π
2 ). In this domain cos(�) is positive so that the different signs “±” in (24.3)

must be treated separately. However, one can take into account both cases at once if the domain 
of � is extended to the segment [−π, π]. Then the regions III and IV in Fig. 16 would be double 
covered. In fact, for the purposes of this subsection one can assume that the field � takes all 
possible real values, corresponding to a universal cover of SL(2, R).

One may still use eq. (21.17) to introduce the non-local fields ξ±. The formal Lie group 
element, which appears in that relation, coincides with g 1

2
when specialized to the fundamental 

representation. It can be written in the form of the Euler decomposition as

g = e
1
2 (̃+)h e�(e+−e−) e

1
2 (̃−)h . (24.4)

The fields ξ± are no longer chiral. Instead, the Euler-Lagrange equations corresponding to Lε

imply

∂̄ξ± = ε2

8
sin(2�) e±(+̃) , ∂ξ̄± = ε2

8
sin(2�) e±(−̃) . (24.5)

The perturbation does not change the canonical momenta (21.21) and the Poisson bracket rela-
tions (21.20) continue to hold true. Hence ξ± and ξ̄± still satisfy the PBs (20.9), (21.5) and (21.6)
provided they are understood as equal-time relations.

Let Aμ be a space-time 1-form which takes values in the Lie algebra sl2 and whose light-cone 
components, A= 1

2 (A0 +A1) and Ā= 1
2 (A0 −A1), are defined as

∂ −A= ∂ − ξ− e− + ξ+ e+ − λh

∂̄ − Ā= g
(
∂̄ + ξ̄− e− − ξ̄+ e+ − λ̄h

)
g−1 . (24.6)

It is straightforward to check using (24.5) that if the equations of motion are satisfied, then the 
connection ∂μ −Aμ is flat, i.e.,

[ ∂ −A , ∂̄ − Ā ] = 0 (24.7)

provided the auxiliary spectral parameters λ and λ̄ are related as

λ λ̄=− ε2

16
. (24.8)

The connection is not single valued on the space-time cylinder even when periodic boundary 
conditions are imposed on the fields U and V . Indeed as it follows from the definition of the dual 
field ̃,

exp
(
̃(t, x + 2π)− ̃(t, x)

)= exp

( x+2π∫
dx′ J0

)
= B , (24.9)
x
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Fig. 17. The integration along the time slice t = t0 (the segment 'ab) for the path ordered exponent M in eq. (24.12)
can be replaced by an integration along the characteristics: u = t0 with t0 < ū < t0 − 2π ( 'ac) and ū = t0 − 2π with 
t0 < u < t0 + 2π ( 'cb).

and therefore

g(t, x + 2π)= B
h
2 g(t, x)B

h
2 . (24.10)

In turn, Aμ obeys the quasiperiodicity condition

Aμ(t, x + 2π)= B
h
2 Aμ(t, x) B

− h
2 . (24.11)

Choosing some representation of sl2, one can define the classical transfer matrix:

Tj = Trj [M] , M = B− h
2
←
P exp

( 2π∫
0

dxA1

)
. (24.12)

The zero curvature relation (24.7) implies that Tj does not depend on the time slice at which the 
path ordered integration is taken, i.e., it is an Integral of Motion. In fact, Tj is a one parameter 
family of IM, since the connection Aμ depends on λ, λ̄ satisfying the constraint (24.8). The latter 
may be resolved by means of a single complex parameter β:

λ= i
4 ε e2β , λ̄= i

4 ε e−2β . (24.13)

An immediate question arises as to the mutual Poisson commutativity of Tj(β) for different 
values of the spectral parameter. This may be addressed by directly following the line of argu-
ments which were developed in the context of the sine-Gordon model in the work [71]. Since 
the connection is flat, the path ordered exponent in (24.12) is unchanged under deformations of 
the integration contour that keep the endpoints fixed. It is useful to swap the integration over the 
time slice to the one over the light-cone pieces as depicted in Fig. 17. The contribution of the 
integration along each of the characteristics ū ≡ t − x = const and u ≡ t + x = const is taken 
into account by the two path ordered exponents L(cl)

ε and L̄
(cl)

ε , respectively:

L(cl)
ε (λ)= λ−

h
4 e

i
2�cbh Gb

←
P exp

( t0+2π∫
du
(
ξ−e− − ξ+e+ + λh

))∣∣∣∣
ū

G−1
c λ+

h
4

t0
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L̄
(cl)

ε (λ̄)= λ̄+
h
4 Ḡc 'P exp

( t0∫
t0−2π

dū
(
ξ̄−e− − ξ̄+e+ − λ̄h

))∣∣∣∣
u

Ḡ
−1
a e

i
2�cah λ̄−

h
4 . (24.14)

Here �xy ≡�x−�y and we use the shortcut notation �x to denote the value of the field �(x) at 
either one of the space-time points x=a, b, c indicated in Fig. 17. Also Gx and Ḡx read explicitly 
as

Gx = e−
iπ
4 (e++e−) e−

1
2 (̃x+x)h ,

Ḡx = e−
iπ
4 (e++e−) e

1
2 (̃x−x)h (x=a,b, c) . (24.15)

The above formulae should be compared with eqs. (20.26) and (20.43) involving the path ordered 
exponents L(cl) and L̄

(cl)
. In fact, the definition (24.14) has been arranged in such a way so that 

L
(cl)
ε and L̄

(cl)

ε satisfy the same Poisson algebra as in (20.30) and (20.41). Namely, one can show 
that {

L(cl)
ε (λ)⊗, L(cl)

ε (λ′)
}=+[L(cl)

ε (λ)⊗L(cl)
ε (λ′), r

(√
λ/λ′

) ]
{
L̄

(cl)

ε (λ̄)⊗, L̄
(cl)

ε (λ̄′)
}=−[ L̄(cl)

ε (λ̄)⊗ L̄
(cl)

ε (λ̄′), r
(√

λ̄/λ̄′
) ]

(24.16)

{
L(cl)

ε (λ)⊗, L̄
(cl)

ε (λ̄)
}= 0

with r being the classical R-matrix (20.31).
A straightforward calculation yields that the monodromy matrix (24.12) may be brought to 

the form

M =C M̃ C−1 (24.17)

with

M̃ = ( iε
4

) h
2 L(cl)

ε

( iε
4

)− h
2 ei�ch L̄

(cl)

ε e−i�ch . (24.18)

The matrix C has no effect on the value of the trace in (24.12) and is given by

C = e
1
2 (̃a+a)h e

iπ
4 (e++e−) e

i
2 �ach λ̄−

h
4 . (24.19)

Generally speaking �c, i.e., the value of the field � at the space-time point c, as well as the 
difference �ab =�a −�b are dynamical variables. However, in order for the transfer matrix to 
be an IM, apart from the zero curvature relation (24.7), the connection must satisfy the quasiperi-
odic boundary condition (24.11) which, itself, requires � to be a periodic field. Due to this we 
need to impose �ab = 0. The latter is a first class constraint and the corresponding gauge fixing 
condition can be achieved by assigning �c a certain value, say zero. Then in view of (24.18), 
(24.16) the matrix entries of M̃ , considered as a function of the spectral parameter β (24.13), 
turn out to satisfy the Sklyanin exchange relations{

M̃(β)⊗, M̃(β ′)
}= [M̃(β)⊗M̃(β ′), r

(
eβ−β ′ ) ] . (24.20)

Consequently,{
Tj ′(β

′), Tj (β)
}= 0 . (24.21)
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We have the following comments to make at this point. For the derivation of the Sklyanin 
exchange relations the model was considered, which is a deformation of the Lorentzian black 
hole NLSM. In this case the fundamental fields U and V are real. In fact, the reality conditions 
do not come into play and the same arguments may be applied when these fields are complex 
conjugate to each other, V = U∗ (the fields  and ̃ are then pure imaginary so that g 1

2
from 

(24.3) is a SU(2) matrix). With this reality condition imposed the model is usually referred to 
as the complex sine-Gordon I, or Lund-Regge model. The zero curvature relation, which is also 
insensitive to the reality conditions, was proposed in the works [72–74] for a connection in a 
gauge different to (24.6).

The Lund-Regge model attracted a great deal of attention in the context of the so-called non-
ultralocality problem. In the ultralocal case the x-component of the flat connection satisfies the 
equal-time Poisson bracket relations of the form{

A1(x|λ1)⊗, A1(y|λ2)
}= [A1(x|λ1)⊗ 1+ 1⊗A1(y|λ2), r(λ1/λ2)

]
δ(x − y) . (24.22)

Then the Sklyanin exchange relations for the monodromy matrix are easily derived and the mu-
tual Poisson commutativity condition for the transfer matrix for different values of the spectral 
parameter follows. The ultralocality condition, of course, depends on the gauge of Aμ. Consider-
able effort was made to find an “ultralocal” flat connection for the Lund-Regge model. However, 
as with many other interesting field theories admitting the zero curvature relation, the attempts 
were met with failure. This motivated the development of the so-called “canonical r − s matrix” 
approach for integrable two dimensional models of non-ultralocal type [75].

Inspired by the observation that the quantum monodromy matrix is somehow better behaved 
than its classical limit, in the work [46] it was proposed to tackle the non-ultralocality problem by 
starting with the quantum counterpart of the Sklyanin exchange relations – the Yang-Baxter al-
gebra. It was demonstrated on a specific example that by taking the classical limit of the quantum 
algebra one could recover the Sklyanin exchange relations for the classical monodromy matrix 
without reference to an ultralocal gauge. Here another illustration of this approach is given for 
the case of the Lund-Regge model. Indeed, the starting point was the Yang-Baxter algebra (14.5)

which in the classical limit becomes the Sklyanin exchange relations for L(cl) and L̄
(cl)

. Then 
the derivation outlined above, which led to (24.20), is straightforward and almost identical to that 
of the work [71] for the sine-Gordon model.

24.2. UV limit of the quantum complex sinh-Gordon I model

Not much is known about the QFT corresponding to the classical Lagrangian density (24.1)
with real fields U and V as well as the quantum complex sine-Gordon I model, where U = V ∗. 
However the variant of the Lund-Regge model, which is sometimes referred to as the complex 
sinh-Gordon I model, is a well understood QFT now [62]. It is an integrable deformation of the 
Euclidean black hole NLSM (22.3), whose classical action is given by

ScshG = n+ 2

4π

∫
dt

2π∫
0

dx

[
∂tU∂tU

∗ − ∂xU∂xU
∗

1+UU∗ − ε2 UU∗
] (

n→+∞)
(24.23)

and the complex field U is subject to the quasiperiodic boundary conditions (22.4).
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The IR behaviour of the QFT is described in terms of the factorizable scattering theory. The 
particle content of the complex sinh-Gordon I model consists of a doublet of the same mass m
having opposite U(1) charges. The two particle S-matrix is diagonal (reflectionless). Notice that 
in the action (24.23), t and x are assumed to be dimensionless world-sheet co-ordinates, and x
has been brought to the standard segment x ∈ [0, 2π]. If one were to restore the dimensions, 
x would belong to the interval [0, R] with R having units of length. Then the parameter ε is 
identified as

ε = mR

2π
. (24.24)

To study the UV limit it is convenient to make use of the dual description of the model. The 
latter is based on the remarkable proposal originally put forward by Al. B. Zamolodchikov [22], 
that the so-called sine-Liouville theory provides a dual description of the quantum Euclidean 
black hole NLSM (see also [76]). The duality relation is easily extended to the deformed model 
(24.23) and the dual action reads as [62]

S
(dual)
cshG =

∫
dt

R∫
0

dx
(

1
4π

[
(∂μϕ)

2 + (∂μϑ)2 ]− 2g e−
√
nϕ cos

(√
n+ 2ϑ

)− g′ e
2ϕ√
n

)
(24.25)

(the fields ϕ and ϑ should not be confused with the chiral Bose fields used in the main body of 
this work). Despite that the action (24.25) formally depends on three parameters, one of these 
may be eliminated by a constant shift of the field ϕ. This way the relevant coupling constant in 
the theory is the combination g

2
n g′. It turns out that the particle mass m in (24.24) is related to 

the parameters in (24.25) as

(Cm)
2(n+2)

n =
(π
n

) 2
n π �( 1

n
)

�(1− 1
n
)
g

2
n g′ ,

where C = (2n)−
2

n+2
�( 1

n+2 )�( 3
2 − 1

n+2 )√
π

. (24.26)

The existence of the dual description (24.25) allows one to adapt the arguments of the work 
[77], which were applied for the quantum sinh-Gordon model. Namely, one starts with the Eu-
clidean black hole NLSM, corresponding to the situation when the correlation length is infinite, 
i.e., m = 0. As was already mentioned, the space of states of this CFT is classified according to 
the highest weight irreps of the W∞⊗W∞ - algebra with the central charge c > 2. In particular, 
the decomposition of the continuous component of the Hilbert space is given in (22.8). Each 
state in the irrep is characterized by the values of s, p, p̄, parameterizing the highest weight 
(22.7) as well as their levels L, L̄. To resolve the degeneracy in the level subspaces, one can use 
the eigenbasis of the mutually commuting set of local IM. Then for fixed s, p, p̄, L and L̄ the 
states would be specified by two sets w = {w}La=1 and w̄ = {w̄}L̄a=1 solving a certain algebraic 
system. The latter coincides with (10.3), where n is substituted by −n − 2, while the pair (s, p)

is swapped for (ip, is) in (10.3a) and (s, p̄) �→ (ip̄, is) in (10.3b). Following ref. [77], when the 
correlation length m−1 is much larger than R but finite, the UV behaviour of the energy of a state 
from the eigenbasis is described by the formula

EcshG(R)= 2π (− 1 + 2s2

+ p2 + p̄2

+ L+ L̄+O
(
(log ε)−∞

))
. (24.27)
R 6 n n+ 2
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Here s = s(R) and the R dependence, up to power law corrections, is determined through the 
quantization condition

(Cε)−
4is
n

(n+2) e
i
2 δcshG = 1+O

(
(log ε)−∞

)
(24.28)

with δcshG = δcshG(w̄, w | p̄, p, s). There are strong similarities between (24.27), (24.28) and 
the formulae (8.2a), (9.11) describing the scaling behaviour of the energy for the Bethe states 
in the Z2 invariant inhomogeneous six-vertex model. However in the lattice system the phase 
shift is related to the eigenvalue of the reflection operator Ď considered in the parametric domain 
corresponding to c < 2. Contrary to this, δcshG is expressed in terms of another reflection operator 
in the domain c > 2:

e
i
2 δschG = �( 1

2 + p− is)�( 1
2 + p̄− is)�2(1+ 2is)�2(1+ 2is

n
)

�( 1
2 + p+ is)�( 1

2 + p̄+ is)�2(1− 2is)�2(1− 2is
n
)
Ř

(c>2)
p̄,s (w̄) Ř(c>2)

p,s (w) ,

(24.29)

where it is assumed that the constant C in (24.28) is the same as in (24.26). Recall, the check 
notation means the reflection operators have been normalized so that their eigenvalue for the 
highest state is one. An explicit formula for Ř(c>2)

p,s (w) was obtained in ref. [47].19 In the case 
p = p̄ = L = L̄ = 0, the quantization condition (24.28) reduces to the one from [77], for the 

ground state of the sinh-Gordon model with the sinh-Gordon coupling constant b=
√

2
n

. This is 
related to the fact that the system of coupled thermodynamic Bethe ansatz equations describing 
the ground state energy of the complex sinh-Gordon I model with periodic boundary conditions 
(k = 0), boils down to a single integral equation which is identical to the one describing the 
vacuum energy of the sinh-Gordon model.

Formulae (24.27) and (24.28) afford an interpretation that sheds some light on an important 
previously made point. They define a particular integrable IR regularization for the target space 
manifold of the Euclidean black hole NLSM, which is different to the one discussed in refs. [24,
25]. To illustrate, consider the form of the dual action (24.25). Setting g′ = 0 therein, one obtains 
the dual action for the NLSM. In this case, in the domain of the configuration space with ϕ→
+∞ the dual Lagrange density becomes that of two non-interacting Bose fields. This corresponds 
to the asymptotically flat domain for the target space manifold. The addition of the Liouville 

wall potential ∝ g′ e
2ϕ√
n into (24.25) works as an IR regularization for the NLSM target space. It 

effectively restricts the value of the non-compact field ϕ to the finite interval ∝ log(1/ε), which 
results in the quantization of its zero-mode momentum according to (24.29). Taking the limit 
ε→ 0 the continuous spectrum is restored but with a certain density of states, similar to as in the 
lattice model. The latter comes up, for instance, in the computation of the partition function for 
the Euclidean black hole NLSM, see eq. (22.15). The explicit formula for the density of states 
can be obtained using the identity

19 The eigenvalues Ř(c>2)
p,s (w) coincide with those of the reflection operator Ř(AKNS) defined by (3.36) in ref. [47]

provided the parameters are identified as P1 = s√
n

, P2 = p√
n+2

and 
√
k = √

n. Note that Řp,s (w), which is given 

explicitly in Appendix B, corresponds to the case c < 2 and coincides with the eigenvalues of Ř(AKNS) with the different 
identification of the parameters: P1 = p√ , P2 = s√ , 

√
k =−i

√
n+ 2.
n+2 n
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∏
w

L−fixed

Ř(c>2)
p,s (w)=

∏
1≤j,m
jm≤L

[
nj +m− 2is

nj +m+ 2is

]2 par2(L−mj)

(24.30)

×
L−1∏
a=0

[( 1
2 + a + p− is

) ( 1
2 + a − p− is

)( 1
2 + a + p+ is

) ( 1
2 + a − p+ is

)]par2(L)−da(L)

,

where the integers da(L) are defined via (10.25). The above relation is similar to (10.24), which 
was used in the derivation of the density of states (10.12). Thus apart from the regularization of 
the Euclidean black hole considered in [24,25], there is another integrable IR regularization of 
the target manifold, which yields a different density of states for the continuous spectrum. This 
illustrates the statement made at the end of sec. 21.3, that the density of states is not an intrinsic 
property of the CFT but depends on the (IR) regularization of the model.

25. Summary

The work contains a detailed study of the scaling limit of the critical Z2 invariant inhomoge-
neous six-vertex model in the parametric domain where arg(q2) ∈ (0, π) and subject to twisted 
boundary conditions. The Yang-Baxter integrability implies the set of Bethe ansatz equations 
characterizing the Bethe states. These form a basis in the 2N dimensional space of states of the 
model defined on the lattice with N columns. On the one hand, our analysis was based on a 
numerical study of the Bethe ansatz equations at large N . On the other, we used the powerful 
analytical technique of the ODE/IQFT correspondence. The combination of numerical and ana-
lytical methods allows one to investigate in detail the scaling behaviour of not only the vacuum 
state in each sector with fixed value of Sz, but also the excited states as well. Below is a summary 
of the main outcomes of our work.

• The linear space of states H occurring in the scaling limit of the low energy states of the 
lattice system is classified w.r.t. the highest weight irreps of the W∞ ⊗W∞ - algebra with 
central charge −1 < c < 2. The space splits into two components H(cont) and H(disc) de-
pending on whether the spectrum of the highest weights is continuous or discrete. The linear 
decomposition of both these components into the irreps is provided in sections 17.1 and 17.2
for generic values of the twist parameter k.

• The scaling limit of the lattice model yields a certain density of states for the sector H(cont). 
With this at hand, an expression was obtained in sec. 17.3 for the scaling limit of the partition 
function Z(scl) in the form of a series expansion in the modular nome(s), which is applicable 
for numerical study.

• We confirmed the remarkable proposal of the work [11], that one half of the partition func-
tion Z(scl) for the case of periodic boundary conditions (k = 0) coincides with the partition 
function ZEBH of the Euclidean black hole Non-Linear Sigma Model, which was obtained in 
refs. [24,25] assuming a certain IR regularization of the target manifold. For generic k we 
checked that 1

2 Z(scl) likewise coincides with the partition function of the properly regular-
ized Euclidean black hole NLSM with twisted boundary conditions.

• The finite dimensional space of states of the lattice possesses a variety of Hermitian struc-
tures with the inner product being such that the Bethe states obey a certain orthogonality 
condition. In sections 19.3 and 19.5 the Hermitian structures were identified, which in the 
scaling limit induces the inner products in H(cont) and H(disc) that are consistent with the nat-
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ural conjugation conditions in the W∞ ⊗W∞ - algebra. Since the central charge c < 2, the 
inner products are not positive definite ones, so that H(cont) and H(disc) possess the structure 
of the pseudo-Hilbert space. We were led to conclude that the states from H(cont) and H(disc)

can not be interpreted simultaneously as normalizable states within a single CFT. We believe 
that these two spaces should be considered as being the result of different scaling limits.

• The algebra of extended conformal symmetry of the Euclidean black hole NLSM is the 
W∞ ⊗ W∞ - algebra but with the central charge c > 2. Moreover, the Hilbert space is 
equipped with a positive definite inner product and the QFT is unitary. For these reasons 
we reject the proposal that the Euclidean black hole NLSM underlies the critical behaviour 
of the Z2 invariant inhomogeneous six-vertex model, despite the spectacular coincidence of 
the partition functions ZEBH and 1

2 Z(scl).
• We revised the original conjecture of [11] in the following way. In the case of periodic 

boundary conditions (k = 0) the lattice model possesses an additional global symmetry, 
that of C conjugation which, in turn, is inherited by the space H. The C-even sector of 
H(cont) contains the subspace H̃(cont)

even and we propose that it coincides with the pseudo-
Hilbert space of the Lorentzian black hole NLSM for the space-like domain of the target 
manifold. Since the status of the Lorentzian black hole NLSM is tentative, our conjecture 
is essentially an attempt to assign a meaning to the QFT that goes beyond the classical 
limit and minisuperspace approximation. In sec. 23 some proposals are made concerning the 
field theory interpretation for the case of twisted boundary conditions with k �= 0. The local 
CFT, if it exists, whose pseudo-Hilbert space coincides with H(cont), in the classical limit 
with c→ 2− is described by the gauged SL(2, R) WZW model subject to certain boundary 
conditions imposed on the fields.

• Among the numerous offshoots of our study, of special mention is the solution of the long 
standing non-ultralocality problem for the complex sine-Gordon I (Lund-Regge) model. 
Adapting the ideas developed in ref. [46], we traced the appearance of the classical Sklyanin 
exchange relations in this model (see sec. 24.1 for details).
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Appendix A

Formula (6.23) involved in the description of the norms of the Bethe states in the homoge-
neous six-vertex model contains the constants C and C0. These depend only on the anisotropy 
parameter β2 entering into the Hamiltonian HXXZ (3.1). Though the analytical form of this 
dependence is not yet known, it is straightforward to obtain C and C0 numerically for any 
0 < β2 < 1. Here we present the corresponding numerical data, which was already quoted in 
sec.11.2 from ref. [37]. We also provide similar data for C(alt)

0 appearing in eqs. (19.40), (19.42), 
(19.54) and (19.75), that enter into the description of the scaling limit of the Bethe states in the 
Z2 invariant inhomogeneous six-vertex model.

Using the fact that for β2 = 1
2 the homogeneous six-vertex model can be reformulated as a 

non-interacting system of 1D lattice fermions, it is possible to show that

βC
∣∣
β2= 1

2
= π and C0

∣∣
β2= 1

2
= (πe)−

1
12 AG = 1.07254 (A.1)

with AG being the Glaisher constant. From the numerical data, one expects

lim
β→0

βC = e , lim
β→1

βC =
(π

2

)3
, (A.2)

whereas

C0
∣∣
β=1 = C2

0 |β2= 1
2
= 1.15034 . (A.3)

A plot of log(βC) as a function of β2 is given in Fig. 18 and some numerical values are provided 
in Table 4. As for C0, following ref. [37], it is convenient to re-write it in the form

C0 = β−
1
3 e−

1
6 (β−1−β)2

(
eγE+1

4π

) 1
12 (

e−
1
6 (γE+1) A2

G

)β2
C̃0 , (A.4)

where for the free fermion case C̃0|β2= 1
2
= 1. More generally |C̃0−1| < 0.003 within the domain 

0 ≤ β2 ≤ 0.85. Fig. 18 includes a plot of C̃0, while some of its numerical values are quoted in 
Table 4.

The values of C entering into eqs. (19.40), (19.42), (19.54) and (19.75) for the description 
of the norms of the Bethe states in the Z2 invariant inhomogeneous six-vertex model, are the 
same as those given above provided one sets β2 = 2

n+2 . These formulae in addition contain the 

n dependent constant C(alt)
0 . It turns out that X, defined through(

C
(alt)
0

)2 = 2X(βC)−1+ 1
2 β

2
C4

0

(
β =

√
2

n+2

)
(A.5)

is well approximated by a linear function of β2, as shown in Fig. 19. Some numerics for X is 
contained in Table 5.

Appendix B

In this appendix we explain the assumptions and fill some gaps in the derivation that lead to 
conjectures (A) and (B) from sec. 10.2. As before we will always take L and L̄ to be some fixed 
non-negative integers; p and p̄ to be real numbers such that p + p̄ = Sz = 0, 1, 2, . . . ; and s to 
belong to the strip 0 < �m(s) ≤ n .
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Fig. 18. Numerical data for log(βC) and C̃0 (for C̃0 see definition (A.4)) was interpolated and the result is plotted in the 
left and right panels, respectively, as a function of the parameter β2. Some of the values from which the interpolation 
was obtained are listed in Table 4.

Table 4
Numerical data for log(βC) and C̃0 (the latter is defined via (A.4)). The expected ac-
curacy is indicated by the number of digits that are presented. Note that for β2 = 0.5, 
corresponding to the free fermion case, C̃0 = 1 and log(βC) = log(π). The values of C̃0
and log(βC) at β2 = 0 given in the table are the result of interpolation, while for β2 = 1
they follow from (A.2) and (A.3).

β2 log(βC) C̃0

0.0 1.00000 1.00250
0.1 1.02434 1.00148
0.2 1.05074 1.00077
0.3 1.07945 1.00033
0.4 1.11070 1.00011
0.5 1.14473 1.00000
0.6 1.18178 0.99985
0.7 1.22201 0.99942
0.8 1.26541 0.99834
0.9 1.31023 0.99572
1.0 1.35475 0.98501

Fig. 19. A plot of X from (A.5) as a function of β2 = 2
n+2 . The crosses correspond to the numerical data, a portion 

of which can be found in Table 5, while the dashed line represents the linear fit 0.991951 − 0.94084 β2. Notice that 
X
∣∣
β2=1 = 0.0391.
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Table 5
Some numerical values for the constant X, defined through (A.5).

n X n X

2.0 0.521203985 4.0 0.676335763
2.5 0.572499215 5.0 0.721418356
3.0 0.613818210 6.0 0.755474688
3.5 0.647834794 7.0 0.782110959

The function Dp,s(w) entering into (10.20) reads as

Dp,s(w)= 2
2i(n+2)s

n
�( 1

2 + p− is)

�( 1
2 + p+ is)

Ďp,s(w) , (B.1)

where the explicit analytical expression for Ďp,s(w) in terms of p, s and the solution set w =
{wa}La=1 was obtained in ref. [47]. Formula (3.11) from that work gives

Ďp,s(w)= (−1)L
L∏

a=1

p+ a − 1
2 − is

p+ a − 1
2 + is

det
(
wb−1

a V
(+)
a (b)

)
det
(
wb−1

a V
(−)
a (b)

) , (B.2)

where

V (±)
a (D)= (D − 1)2 −

(
2p+ 2+ n∓ 2wa +

L∑
b �=a

4wa

wa −wb

)
(D − 1)

+ 1
2 n2 + (p+ 3

2

)
n∓ (n+ 1+ 2p± 2is) wa + 2p+ 1 (B.3)

+
( L∑

b �=a

2wa

wa −wb

)2

+ (4p+ 2∓ 4wa + n
) L∑

b �=a

wa

wa −wb

.

Note that there exists a similar expression for Rp,s(w) – the coefficient which appears in the 
asymptotic formula (11.24) for a product over the Bethe roots. Namely Rp,s(w) =R

(0)
p,s Řp,s(w)

with R(0)
p,s from (11.26) and Řp,s(w), instead of a ratio of two determinants as in (B.2), is given 

by

Řp,s(w)= (−1)L∏L
a=1 w

2
a

det
(
wb−1

a V
(+)
a (b)

)
det
(
wb−1

a V
(−)
a (b)

)∏
b>a(wb −wa)2

∏L
a=1(2p+ 2a − 1+ 2is

)(
2p+ 2a − 1− 2is

) .

(B.4)

It was pointed out in ref. [47] that the product of Ďp,s(w) over all the par2(L) solutions sets 
w of (10.3a) with fixed L admits a simple form. According to formula (5.23) from that work one 
has ∏

w
L−fixed

Ďp,s(w)

=
L∏

m=1

∏
1≤j,k

[
(2p− 2is + 2k − j) (2p+ 2is − 2k+ j)

(2p− 2is − 2k + j) (2p+ 2is + 2k− j)

]par1(m−kj)par1(L−m)

. (B.5)
jk≤m
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This expression can be rewritten in a way which is more convenient for an analysis of the condi-
tion (10.20). First one should split the r.h.s. of (B.5) into two terms, where the index j runs over 
even numbers j = 2	 and odd numbers j = 2	 − 1, respectively:

∏
w

L−fixed

Ďp,s (w)=
L∏

m=1

∏
1≤	,k
2	k≤m

[
(2p− 2is + 2k − 2	) (2p+ 2is − 2k+ 2	)

(2p− 2is − 2k + 2	) (2p+ 2is + 2k− 2	)

]par1(m−2	k)par1(L−m)

×
L∏

m=1

∏
1≤	,k

(2	−1)k≤m

[
(2p− 2is + 2k − 2	+ 1) (2p+ 2is − 2k+ 2	− 1)

(2p− 2is − 2k + 2	− 1) (2p+ 2is + 2k− 2	+ 1)

]par1(m−(2	−1)k)par1(L−m)

.

(B.6)

The first line in the r.h.s. of the above equation is one since the numerator coincides with the 
denominator when the dummy variables are swapped k↔ 	. As for the second line, it contains 
poles and zeroes at s = ±i (p + 1

2 + a) with integer a = −L, −L + 1, . . . , L. To compute their 
multiplicity consider, for instance, the zero at s = i (p + 1

2 + a) with a ≥ 0. The relevant terms 
are the first factor in the numerator with k = a + 	 and the first factor of the denominator, where 
	 = a + k + 1. Counting the number of times they occur in the product leads to the following 
expression for the multiplicity of the zero

L∑
m=1

par1(L−m)
∑
j≥1

par1
(
m− (2j − 1)(j + a)

)− par1
(
m− j (2j + 2a + 1)

)

=
L∑

m=1

par1(L−m)
∑
j≥1

(−1)j+1 par1
(
m− j (a + j+1

2 )
)
.

This way, and using the identity par2(L) =
∑L

m=0 par1(L −m) par1(m), one arrives at

∏
w

L−fixed

Ďp,s(w)=
L−1∏
a=0

[( 1
2 + a + p− is

) ( 1
2 + a − p− is

)( 1
2 + a + p+ is

) ( 1
2 + a − p+ is

)]par2(L)−da(L)

(B.7)

with

da(L)=
L∑

m=0

par1(L−m)
∑
j≥0

(−1)j par1
(
m− j (a + j+1

2 )
)
. (B.8)

A direct computation yields that the generating function for the integers (B.8) is χa(q) from 
(10.25).

Conjecture (A) concerns the possible positions of the singularities of Dp̄,s(w̄) Dp,s(w) as a 
function of s, where w and w̄ solve the algebraic system (10.3) that contains s as a parameter. 
It is instructive to consider first the simplest case that is not the vacuum with L = 1 and L̄= 0. 
When L is set to one eq. (10.3a) becomes a quadratic for w≡w1, whose two solutions are:

w± =−n+ 1

2n

(
2i s ±√n(n+ 2)

√
1− 4p2

(n+ 1)2 −
4s2

n(n+ 2)

)
. (B.9)

In turn
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Dp̄,s (w̄)Dp,s(w)
∣∣
L̄=0,L=1 = 2

4i(n+2)s
n

�( 1
2 + p− is)�( 1

2 + p̄− is)

�( 1
2 + p+ is)�( 1

2 + p̄+ is)
Ďp,s(w) (B.10)

with

Ďp,s(w)= (1+ 2p− 2is)(1− 2p− 2is)

(1+ 2p+ 2is)(1− 2p+ 2is)

2nw− (n+ 2)(n− 2is)

2nw+ (n+ 2)(n+ 2is)
(w =w±)

(B.11)

(see also eq. (48) in [15]). One can check that the singularities of (B.11) are simple poles located 
at s = i (p+ 1

2 ) and s =−i (p− 1
2 ), while its zeroes occur at s =−i (p+ 1

2 ) and s = i (p− 1
2 ) also 

with multiplicity one. Conjecture (A) is based on the assumption that for given L = 0, 1, 2, . . .
and any set w all the singularities of Ďp,s(w) as a function of s are poles and furthermore, no 
pole of Ďp,s(w) coincides with a zero of another Ďp,s(w

′). Then eqs. (B.1) and (B.7) imply that 
the possible values of s at which the product Dp̄,s(w̄) Dp,s(w) is singular is given by

s =+i (p+ 1
2 + a),+i (p̄+ 1

2 + a) with a ≥ 0

(corresponding to the poles of the � - function) and

s =−i (p+ 1
2 + a),−i (p̄+ 1

2 + a),

where a is any integer. Since the parameters p and p̄ are related as p+ p̄ = Sz = 0, 1, 2, . . . , one 
has i (p+ 1

2 + a) = i (−p̄− 1
2 − a′) and i (p̄+ 1

2 + a) = i (−p− 1
2 − a′) with a′ = −a− Sz− 1. 

Thus it is sufficient to focus on the cases

s = iqa ≡ i (−p− 1
2 − a)

and

s = iq̄a ≡ i (−p̄− 1
2 − a).

The additional requirement 0 < qa, ̄qa ≤ n
4 yields the inequality (10.27) on the values of the 

integer a.
Making a further assumption that all the poles of Ďp,s(w) are simple, the number of solution 

sets w such that Ďp,s(w) is singular at s = iqa or iq̄a may be determined by counting the mul-
tiplicity of that pole occurring in the product 

∏
w Ďp,s(w) (B.7). Notice that, due to the relation 

Ďp,s(w) = (Ďp,−s(−w)
)−1, it would also follow that the zeroes of Ďp,s(w) are simple as well. 

For the case L = 1 the assumption can be checked using the explicit formula (B.11), while for 
L = 2, 3 it has been numerically verified. Once accepted, conjecture (B) in sec. 10.2, regarding 
the number of solutions N (L̄,L)

a and N̄ (L̄,L)
a of the joint system (10.3) for which Dp̄,s(w̄) Dp,s(w)

is singular at s = iqa and s = iq̄a , respectively, follows.
As an illustration, let’s consider the case s = iqa =−i (p + 1

2 + a), where a ∈ Z. The multi-
plicity of the corresponding pole in the product 

∏
w Dp,s(w) follows from (B.1) and (B.7). It is 

given by da(L) provided that the definition (B.8) is extended to the case of negative a as

d−a−1(L)= par2(L)− da(L) (B.12)
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(see footnote 3). It is important to keep in mind that Dp̄,s(w̄) could possess a simple zero at 
s = iqa that would cancel the pole of Dp,s(w) and render the product Dp̄,s(w̄) Dp,s(w) finite. 
The barred version of (B.1), (B.7) with p and L replaced by p̄ = Sz − p and L̄, respectively, 
yields that the number of solution sets w̄ for which Dp̄,s(w̄) vanishes at s = iqa is d−1−a−Sz(L̄) =
par2(L̄) − da+Sz(L̄). This way one obtains N (L̄,L)

a = da+Sz(L̄) da(L). For the case s = iq̄a one 
should simply interchange L ↔ L̄ in the r.h.s. of this relation, see eq. (10.28).

Appendix C. Supplementary figures

Figs. 20–26 below, together with Figs. 8 and 15 from the main body of the text, present numer-

ical data for the low energy states of the Hamiltonian H (7.6), (7.7) with N = 22, q = e
iπ
5 (n = 3), 

k =−0.18 and in the sector Sz = 1. This was used to perform the classification of the low energy 
states quoted in Table 1. The states are grouped according to their value of the winding number 
w as well as the levels L and L̄, which were assigned to them using the procedure described 
in sec. 18. In all the figures the open circles depict the distribution of b(N) = n

4π log(B) in the 
complex plane, where B is the eigenvalue of the quasi-shift operator B (8.4) that was obtained in 
the course of the numerical diagonalization of the Hamiltonian H. The filled circles and squares 
correspond to the solutions b∗ of eq. (18.14), where for the circles limN→∞�m(b∗(N)

) = 0, 
while for the squares limN→∞�m(b∗(N)

) �= 0 and limN→∞�e
(
b∗(N)

)= 0.
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Fig. 20. The value of b(N) for the 40 = 38 + 2 states (open circles) having w = 0 and (L, ̄L) = (1, 0), (0, 1). The 12
states with �e

(
b(N)

)≥ 0 and �m(b(N)
)≥ 0 are numbered consistently with Fig. 9, where the N dependence of b(N)

for the corresponding RG trajectories is plotted.
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Fig. 21. The value of b(N) for the 40= 36+ 4 states (open circles) having w= 0 and (L, L̄)= (2,0).

Fig. 22. The value of b(N) for the 40= 40+ 0 states (open circles) having w= 0 and (L, L̄)= (0,2).
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Fig. 23. The value of b(N) for the 20= 16+ 4 states (open circles) having w= 0 and (L, L̄)= (2,1).

Fig. 24. The value of b(N) for the 30 = 22 + 8 states (open circles) having w = 0 and (L, ̄L) = (1, 2). As with the filled 
circles and squares, the filled diamonds correspond to solutions b∗(N) of eq. (18.14). These form two pairs which have 
the same value of �m(b∗(N)

)
and opposite real part. At large but finite N the diamonds from the upper pair collide at 

the imaginary axis at which point for one of the diamonds b∗(N) →+ 9i
20 while for the other one b∗(N) → 0. The N

dependence of b∗(N) for the lower pair of diamonds is obtained from that of the upper pair via complex conjugation.
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Fig. 25. The value of b(N) for the 46= 46+ 0 states (open circles) having w= 0 and (L, L̄)= (0,3).

Fig. 26. The value of b(N) for the 37= 21+ 16 states (open circles) with w= 1 and any values of L and L̄.
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