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Abstract We use the Jordan frame–Einstein frame corre-
spondence to explore dual universes with contrasting cos-
mological evolutions. We study the mapping between Ein-
stein and Jordan frames where the Einstein frame universe
describes the late-time evolution of the physical universe,
which is driven by dark energy and non-relativistic matter.
The Brans–Dicke theory of gravity is considered to be the
dual scalar–tensor theory in the Jordan frame. We show that
an Einstein frame universe, with cosmological evolution of
the �CDM model, always corresponds to a bouncing Jordan
frame universe governed by a Brans–Dicke theory. On the
other hand, quintessence models of dark energy with non-
relativistic matter component are shown to be always dual
to a Brans–Dicke Jordan frame with a turn-around, i.e., a
bounce or a collapse. The evolution of the equation of state
of the quintessence field determines whether the turn-around
is a bounce or a collapse. The point of the Jordan frame turn-
around for all the cases can be tuned anywhere by choosing
an appropriate Brans–Dicke parameter. This essentially leads
to alternative descriptions of the late-time evolution of the
physical universe, in terms of bouncing or collapsing Brans–
Dicke universes in the Jordan frame. Therefore, the effect of
dark energy can equivalently be seen as collapse of space in a
conformally connected universe. We further study the stabil-
ity of such conformal maps against linear perturbations. The
effective bouncing and collapsing descriptions of the current
accelerating universe may have interesting implications for
the evolutions of perturbations and quantum fluctuations in
the cosmological background.
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1 Introduction

It is well-known that some classes of modified theories of
gravity, such as scalar–tensor theories [1–3] and f (R) theo-
ries [4–6], can be recast as Einstein gravity with a minimally
coupled scalar-field in a conformally connected frame. The
universe described by the modified gravity action is referred
to as the Jordan frame, whereas, the universe described by the
Einstein–Hilbert action in the conformally connected frame
is called the Einstein frame.
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Einstein and Jordan frames are mathematically equiva-
lent, they essentially describe the same theory in terms of
different dynamical variables [7,8]. However, the equations
of motion in these frames may lead to drastically different
evolutions of the corresponding universes. Recent studies
exploring conformally connected universes with contrasting
cosmological evolutions can be found in [9–22]. In [19], it
is demonstrated that a decelerating Einstein frame universe
can be conformally equivalent to accelerating Jordan frame
universes, governed by f (R) and scalar–tensor theories. The
duality between an expanding Einstein frame and a collaps-
ing Jordan frame is studied in [22]. It is shown that for some
viable quintessence models in the Einstein frame, the cor-
responding Jordan frame, governed by an f (R) gravity the-
ory, may have a collapsing description. A general condition
is derived to predict whether a quintessence model, with a
given time-dependent equation of state parameter, leads to
such an expansion-collapse duality between the conformally
connected frames. In [12] (also see [13]), a cosmological
model is introduced where the Jordan frame universe is col-
lapsing during the matter and radiation dominated eras. The
model maps to a standard quintessence field with exponential
potential in the Einstein frame. In [14], the authors introduced
“anamorphic cosmology”, which combines features of both
the inflationary and ekpyrotic models of the early universe.
The anamorphic universe behaves like an expanding infla-
tionary universe and a contracting ekpyrotic universe at the
same time, depending on different conformally invariant cri-
teria. The “conflation” model, introduced in [15], also com-
bines inflationary and ekpyrotic scenarios, where the universe
is contracting and expanding in different conformal frames.

In this paper, we explore the Einstein frame–Jordan frame
correspondence focusing on the late-time cosmology, where
the Jordan frame is governed by a scalar–tensor theory action.
We classify scalar–tensor theories based on whether they lead
to a collapsing Jordan frame, corresponding to an expanding
Einstein frame. The general condition for such expansion-
collapse duality is then applied to late-time cosmological
models, where the Jordan frame action is considered to be
the Brans–Dicke action, and the Einstein frame is modeled
to describe the physical universe in the current era.

The late-time acceleration of the physical universe is real-
ized in general relativity by introducing dark energy, an
exotic fluid that violates the strong energy condition [23–
25]. The �CDM (� + Cold Dark Matter) model of the cur-
rent universe, often referred to as the concordance model of
cosmology, interprets dark energy as the cosmological con-
stant (�) in the Einstein field equation [26–28]. We show
that an Einstein frame which effectively describes the evo-
lution of the concordance model of cosmology, always cor-
responds to a bouncing Jordan frame, governed by a Brans–
Dicke theory. The transition of the Einstein frame from a
dust-dominated phase to an accelerating phase can be asso-

ciated with the bounce in the Jordan frame. We also show that
quintessence models of dark energy [23,24,29] in the Ein-
stein frame are always dual to Brans–Dicke Jordan frames
with a turn-around, i.e., a bounce or a collapse. Whether
the Jordan frame turn-around is a bounce or a collapse is
determined by the evolution of the equation of state of the
quintessence field at the turn-around. Moreover, the point of
the Jordan frame turn-around for all these cases can be set up
anywhere by choosing an appropriate Brans–Dicke parame-
ter. As examples, we demonstrate bouncing and collapsing
behaviours in the Brans–Dicke Jordan frames, corresponding
to thawing and freezing types of quintessence models with a
non-relativistic matter component in the Einstein frame.

In general, bouncing models of cosmology are explored as
a theory of the early universe, alternative to the inflationary
scenario [30–33]. For example, bouncing scenarios are real-
ized using scalar–tensor theories in [6,34,35]. As for any the-
ory of the early universe, cosmological perturbations play an
important role in the bouncing models. The statistical prop-
erties of the large-scale structure and CMBR anisotropies as
observed today, must be explained from the primordial fluc-
tuation near the bouncing epoch (see, for example, [36–38]
and references therein). A viable bouncing scenario in the
early universe hence needs to be checked for stability under
perturbations.

In order to accommodate for cosmological perturbations
in the present bouncing model of the late-time universe,
the conformal correspondence between the physical Einstein
frame and the bouncing Jordan frame should be stable in the
perturbative regime. Previous studies have pointed out that
for early universe bouncing scenarios, the linear order con-
formal correspondence may become singular under certain
conditions, breaking the Einstein frame–Jordan frame dual-
ity (see, for example, [10,21]). We investigate the stability of
the conformal map in the present case, where the bounc-
ing and collapsing universes are dual to the concordance
and quintessence models in the Einstein frame. As an con-
crete example, we demonstrate the stability of the conformal
correspondence against linear perturbations for the concor-
dance model. For this case, the Jordan frame perturbations
are numerically solved, first via the Einstein frame using the
conformal map, then directly in the Jordan frame. The evo-
lution of Jordan frame scalar perturbations obtained in these
two ways are in good agreement. This explicitly shows that
the map between the linear order perturbations in the con-
formally connected frames remains valid, even through the
bounce in the Jordan frame. The duality between the bounc-
ing universe and the �CDM universe is hence shown to be
stable under linear perturbations.

This paper is organized in the following way. In Sect. 2,
we briefly introduce the Einstein frame–Jordan frame corre-
spondence, where the Jordan frame is governed by a scalar–
tensor theory action. The general condition for an expansion-
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collapse duality for scalar–tensor theories is obtained in
Sect. 3. In Sect. 4, we show that an Einstein frame, effec-
tively describing the evolution of the concordance model of
cosmology, always corresponds to a bouncing Jordan frame
which is governed by a Brans–Dicke theory. We discuss the
duality between Jordan frame universes with turn-arounds
and quintessence models in the Einstein frame in Sect. 5.
In Sect. 6, we briefly discuss an example of the expansion-
collapse duality where a de Sitter expansion in the Jordan
frame maps to a collapsing Einstein frame approaching the
singularity. A collapsing universe in a well-behaved gravity
theory typically supports the growth of perturbations as well
as the quantum effects. We investigate whether the duality
between a collapsing and an expanding universe survives as
the perturbations evolve. At first glance, it might appear that
the role of backreactions from the perturbations in an expand-
ing universe diminishes. However, since its dual universe is
collapsing where perturbations are expected to grow, it is
worthwhile to explore if such a map remains viable when
perturbations are included. This helps us understand if the
late-time accelerating universe has any appreciable features
from the growth of perturbations and quantum effects due to
the same being true for its dual universe. The effect of lin-
ear scalar perturbation in the conformal map is discussed in
Sect. 7. We conclude with summary and discussion in Sect. 8.

Throughout this paper Latin indices represent spacetime
components, Greek indices represent spatial components.
Metric signature is taken to be (−,+,+,+).

2 Jordan and Einstein frames

We begin with a brief review of Jordan and Einstein frames in
the context of scalar–tensor theories, for detailed discussion,
see [1–3,6].

In scalar–tensor theories, the gravity sector is governed
by a scalar field (λ) along with the metric tensor field (gab).
The action of a general scalar–tensor theory can be written
as [1,3]

SJ =
∫

d4x
√−g

(
f (λ)R − 1

2
h(λ)gab∂aλ∂bλ −U (λ)

)
,

(1)

where f (λ), h(λ), U (λ) are arbitrary functions of the scalar
field λ. The universe described by this action is referred to as
the Jordan frame universe. Scalar–tensor theories belong to
a class of extended theories of gravity which can be recast as
general relativity, with a canonical scalar field, in a confor-
mally connected frame. With the following conformal trans-
formation [1,3]

g̃ab = �2(x)gab, (2a)

�2 = 16πG f (λ), (2b)

the action in Eq. (1) can be written as

SJ =
∫

d4x
√−g̃

[
1

16πG
R̃ − 1

2
K [λ]g̃ab∂aλ∂bλ

− U (λ)

(16πG f (λ))2

]
, (3)

where,

K [λ] = 1

16πG f 2(λ)

(
h(λ) f (λ) + 3 f 2

,λ

)
. (4)

The first term in Eq. (3) is the Einstein–Hilbert action with
respect to the metric g̃ab. The remaining terms describe a
minimally coupled scalar field, with non-canonical kinetic
term. One may define a new scalar field ϕ by

dϕ

dλ
= √

K [λ], K [λ] > 0, (5)

such that in terms of ϕ, the action in Eq. (3) becomes [1,3]

SE =
∫

d4x
√−g̃

[
1

16πG
R̃ − 1

2
g̃ab∂aϕ∂bϕ − V (ϕ)

]
,

(6)

where,

V (ϕ) = U (λ(ϕ))

(16πG f (λ(ϕ)))2 . (7)

Note that K [λ] > 0 is necessary for the field ϕ to be real.
The action (6) describes a minimally coupled canonical scalar
field ϕ, with potential V (ϕ), in Einstein’s gravity. The uni-
verse governed by this action is referred to as the Einstein
frame universe.

We now move on to the expansion-collapse duality
between the conformally connected frames.

3 Expansion-collapse duality between Einstein and
Jordan frames

As discussed above, a minimally-coupled scalar field in gen-
eral relativity can have an alternative description given by
a scalar–tensor theory in the Jordan frame. In this paper
we are interested in a scenario where the Einstein frame is
the physical universe, undergoing the dark energy-dominated
late time accelerating phase, with non-negligible subdomi-
nant presence of non-relativistic matter. Then corresponding
to this Einstein frame, we seek a class of scalar–tensor the-
ories leading to a collapsing Jordan frame universe. Such
a class of scalar–tensor theories, if exists, can provide an
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effective description of the expanding physical universe in
the Einstein frame, in terms of a collapsing one, in the Jor-
dan frame. In this section we find a general condition for
such an expansion-collapse duality between the conformal
frames.

Let us consider that both Jordan and Einstein frame space-
times are described by spatially flat FRW metrics, i.e.,

gab = diag
[
−1, a2(t), a2(t), a2(t)

]
and (8a)

g̃ab = diag
[
−1, ã2(t̃), ã2(t̃), ã2(t̃)

]
, (8b)

respectively. Then, according to the conformal transforma-
tion (2), Einstein and Jordan frame scale factors and coordi-
nate times are related by [1]

ã = �a = √
16πG f (λ)a (9a)

dt̃ = �dt = √
16πG f (λ)dt. (9b)

The Einstein frame action (6) leads to the usual Friedmann
equations

H̃2 =
(

1

ã

dã

dt̃

)2

= κ2

3
ρϕ(ã) (10a)

dH̃

dt̃
= −κ2

2

(
ρϕ + Pϕ

) = −κ2

2
ρϕ(1 + wϕ), (10b)

where κ2 = 8πG, ρϕ and Pϕ are the energy density and
pressure associated with the scalar field ϕ,

ρϕ = 1

2

(
dϕ

dt̃

)2

+ V (ϕ), (11a)

Pϕ = 1

2

(
dϕ

dt̃

)2

− V (ϕ), (11b)

H̃ is the Einstein frame Hubble parameter, and wϕ = Pϕ/ρϕ

is the equation of state parameter corresponding to the scalar
field ϕ. From the above relations, the time derivative of the
field can be written as

dϕ

dt̃
= √

ρϕ(1 + ωϕ). (12)

Starting with the relation between the scale factors in the two
conformal frames (9a) and using Eqs. (5) and (12), one can
find

da

dã
= 1√

16πG
f − 1

2

⎛
⎝1 − 1

2

f,λ
f
K− 1

2 [λ]
√

(1 + wϕ)ρϕ

H̃2

⎞
⎠ ,

(13)

where the subscript (, λ) represents derivative with respect
to the Jordan frame scalar field λ. The condition for the
expansion-collapse duality between Jordan and Einstein
frames is then obtained by setting

da

dã
< 0, (14)

leading to

1√
16πG

f − 1
2

⎛
⎝1 − 1

2

f,λ
f
K− 1

2 [λ]
√

(1 + wϕ)ρϕ

H̃2

⎞
⎠ < 0.

(15)

Note that f (λ) > 0 is required to ensure that the conformal
factor is real, i.e. �2 > 0. Let us further consider f,λ >

0, then using the Friedmann equation (10a) the expansion-
collapse condition can be put in the form

1 + wϕ >
2

3

(
f h

f 2
,λ

+ 3

)
. (16)

In general, both sides of the above inequality may evolve in
time. For a scalar field in the Einstein frame, with arbitrary
time-dependent wϕ(ã), and a scalar–tensor theory in the Jor-
dan frame, specified by the functions f (λ), h(λ) ( f,λ > 0),
there may exist periods of evolution when wϕ(ã) satisfies
the above inequality. During such a period, for an expand-
ing (collapsing) Einstein frame universe, the corresponding
Jordan frame collapses (expands).

Here we would like to mention that in a previous study
[22], we obtained a similar expansion-collapse duality condi-
tion between the conformal frames, where the Jordan frame
was governed by an f (R) theory. The expansion-collapse
condition in the case of f (R) theories is solely determined by
the Einstein frame quantities (wϕ, ρϕ, H̃), the Jordan frame
function f (R) does not appear explicitly in the condition.
However, in the present case, one requires the expressions for
the Jordan frame functions f (λ) and h(λ) in order to check
the validity of the condition (16). This additional require-
ment in the case of scalar–tensor theories is expected, simply
because the Jordan frame action has three unspecified func-
tions ( f, h,U ), whereas, the Jordan frame action for f (R)

theories has a single unspecified function, f (R).

We now explore the expansion-collapse duality between
an Einstein frame which describes the late-time evolution of
the physical universe, and a suitable scalar–tensor theory in
the Jordan frame. Previous studies have considered differ-
ent aspects of the duality between the standard universe and
conformally connected universes with bouncing/collapsing
behaviours, governed by scalar–tensor theories [12–15,17].
In the present work we show that the dual universes with turn-
arounds are not exclusive to specific cosmological models,
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they are, in fact, generic features of the concordance model
and quintessence models of dark energy.

4 Concordance model: bounce in the Jordan frame

The current accelerating expansion of the physical universe
is considered to be driven by a strong energy condition-
violating exotic dark energy [23–25]. The equation of state
parameter of dark energy wde must be smaller than −1/3
and the value wde ≈ −1 is favoured by observations [39].
The cosmological constant � is the simplest implementation
of dark energy within the framework of general relativity.
Although being consistent with observations, the cosmolog-
ical constant model suffers from several fine-tuning problems
[26,27]. A wide class of dynamical models of dark energy
has been explored as an alternative for the � model (see, for
example, [23–25] and references therein). A Quintessence
field, i.e. a canonical scalar field minimally coupled to grav-
ity with a suitable equation of state parameter, is the simplest
of such dynamical models of dark energy [25,29,40]. In the
following discussion, we will consider the cosmological con-
stant model of dark energy. Quintessence models of dark
energy in this context will be discussed in the next section.

4.1 Einstein frame: concordance model

We set up the Einstein frame for it to describe the current
accelerating epoch of the universe, consisting of the cosmo-
logical constant and a non-relativistic matter component or
dust, referred to as the concordance model (see, for example,
[28]). For a simple implementation of the concordance model
in the Einstein frame, we consider that the Einstein frame
scalar field effectively describes both dark energy and non-
relativistic matter in the field equation level. This is achieved
by taking the energy density of the scalar field, ρϕ, to be

ρϕ(ã) = ρ� + ρm = ρ� + ρm0ã
−3 (17a)

= ρc

(
�� + �m0ã

−3
)

, (17b)

where ρm0 is the energy density of dust at the current epoch
(ã = 1), ρc = 3H̃2

0 /κ2 is the critical density of the universe,
H̃0 = H̃(ã = 1), �� = ρ�/ρc, and �m0 = ρm0/ρc. With
this role of the Einstein frame scalar field, there is no need
to add an extra matter component in the Einstein frame, as
the single scalar field takes into account both dark energy,
implemented by the cosmological constant, and matter. Since
the scalar field is the sole component in the Einstein frame,
the Jordan frame action in this case remains a pure gravity
action, governed by only the metric gab and the Jordan frame
scalar field λ. The Einstein frame scalar field ϕ in this set up

Fig. 1 Equation of state parameter of the concordance field is plotted
with respect to the Einstein frame scale factor. At the early times ã → 0,

wϕ → 0, corresponds to the dust-dominated phase of the universe. In
the late times wϕ approaches −1, describing a �-dominated universe.
The vertical line represents the period of dust-dark energy equivalence

is hereafter referred to as the concordance field, in order to
distinguish it from a quintessence model.

Starting with the above ρϕ(ã), one can reconstruct the
action of the concordance field as follows. Using the Fried-
mann equations in the Einstein frame (10), the equation of
state wϕ, which is the effective equation of state of the
� CDM model, can be written as a function of the scale
factor as (see Fig. 1),

wϕ = −1 − 2

3

1

H̃2

dH̃

dt̃
= − ��ã3

1 − �� + ��ã3 . (18)

This, along with Eq. (12), leads to the concordance field
as a function of the scale factor,

κϕ(ã) = 1√
3

[
ln

(√
��

1 − ��

ã3 + 1 − 1

)

− ln

(√
��

1 − ��

ã3 + 1 + 1

)]
. (19)

Finally, from Eq. (11), the concordance potential

V = 1

2
(1 − wϕ(ã))ρϕ(ã) (20)

can be written as a function ϕ as

V (ϕ) = 3

8

H2
0

κ2 ��

(
6 + exp

(
−√

3κϕ
)

+ exp
(√

3κϕ
))

,

(21)

where ã is replaced with ϕ according to Eq. (19). In other
words, a canonical scalar field with the above potential in
the Einstein frame leads to equations of motion which are
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exactly the same as those of the �CDM or the concordance
cosmology. One can solve the Friedmann equation for the
concordance model to find the Einstein frame scale factor as

ã(t̃) =
(

1 − ��

��

) 1
3

sinh
2
3

(
3

2

√
��H0(t̃ − t̃i )

)
, (22)

where,

t̃i = 2

3H0
√

��

arcsinh

(
−
√

��

1 − ��

)
, (23)

which is, as expected, the scale factor of the �CDM model.
Note that the origin of the Einstein frame coordinate time is
chosen to be the current epoch t̃0, i.e. t̃0 = 0 and ã(t̃ = t̃0 =
0) = 1, whereas, at t̃ = t̃i the scale factor ã(t̃ = t̃i ) = 0.

Having set up the Einstein frame, we will now move on
to a suitable Jordan frame description of the universe.

4.2 Jordan frame: Brans–Dicke theory

The concordance scalar field in the Einstein frame, with
potential (21), can be mapped to a wide class of scalar–tensor
theories, depending on choices of the functions f (λ), h(λ) in
the Jordan frame action (1). This correspondence is given by
the relations (5) and (7), as discussed before. We are inter-
ested in an example of the scalar–tensor theories, dual to
the concordance model, such that the conformally connected
frames possess the expansion-collapse duality feature as dis-
cussed in Sect. 3.

The widely-studied Brans–Dicke theory of gravity is the
prototype of scalar–tensor theories [1,3,41–45]. A Brans–
Dicke theory dual to the concordance model may lead to the
expansion-collapse duality under certain conditions, as we
will see. Apart from this, the Brans–Dicke action is simple
enough for the equations of motion in the Jordan frame to
be solved analytically. For this reason, we will consider the
Brans–Dicke theory as an example of scalar–tensor theories
in the Jordan frame for the rest of the discussion.

With the following choice of the functions [1,3],

f (λ) = λ

16π
, (24a)

h(λ) = wBD

8πλ
, (24b)

the Jordan frame action (1) becomes the Brans–Dicke action

SBD
J =

∫
d4x

√−g

(
λ

16π
R − wBD

16πλ
gab∂aλ∂bλ −U (λ)

)
,

(25)

where wBD, the constant Brans–Dicke parameter, must sat-
isfy wBD > −3/2 in order for the concordance field ϕ to be

Fig. 2 Condition for a collapsing Brans–Dicke Jordan frame, dual to
the concordance model, determined by wBD and wϕ; where wBD is the
constant Brans–Dicke parameter specifying the Jordan frame, wϕ is the
dynamic equation of state of the concordance field. At a given instant,
if a pair (wϕ,wBD) lies in the shaded region, then the corresponding
Brans–Dicke universe is collapsing at that instant

real (see Eq. (5)). Note that f,λ = 1
16π

, f,λ > 0 is ensured for
all λ. One can then apply Eq. (16) to determine the condition
for a collapsing Jordan frame,

wϕ(ã) >
4

3
wBD + 1. (26)

For the Brans–Dicke model, the expansion-collapse dual-
ity condition becomes significantly simple, as it only requires
the knowledge of the equation of state wϕ(ã). Given the evo-
lution of wϕ(ã), the expanding and collapsing phases of the
Jordan frame, determined by the condition (26), can be visu-
alized in Fig. 2. The shaded region in the figure depicts the
domain in the (wϕ,wBD) space, where the condition (26) is
satisfied. That is, for a Brans–Dicke Jordan frame, specified
by wBD, at a given value of the Einstein frame scale factor
ã∗, if the pair (wϕ(ã∗), wBD) lies within the shaded region,
then we can conclude that the Jordan frame is collapsing at
ã = ã∗.

The Einstein frame is matter dominated at the early-times;
i.e. for ã → 0, the equation of state parameter of the con-
cordance field wϕ ≈ 0 (see Fig. 1). Eventually, as the scale
factor increases, wϕ decreases. In the late-time of the Einstein
frame, i.e., as ã → ∞, wϕ → −1 depicting the dark-energy
dominated era. We see from Fig. 2 that for wBD > −3/4, the
Jordan frame is never collapsing. For −3/2 < wBD < −3/4,

the points with wϕ = 0 always lie in the shaded region. This
implies that at the beginning of the matter-dominated era of
the Einstein frame (wϕ ≈ 0), the Jordan frame is collaps-
ing. For the same value of wBD, wϕ will then monotonically
decrease towards −1 with increasing ã. Thus, at some time,
the trajectory of the Einstein frame universe in the (wϕ,wBD)

space will inevitably come out of the shaded region and enter
the white region, where the Jordan frame is expanding. The
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transition of the trajectory from the shaded region (collapsing
Jordan frame) to the white region (expanding Jordan frame),
represents a bounce in the Jordan frame. The Einstein frame
scale factor at the point of the bounce, ãb, satisfies

wϕ(ãb) = 4

3
wBD + 1. (27)

For the concordance scalar field in the Einstein frame,
the equations of motion of the corresponding Jordan frame
can be solved analytically. Starting with Eq. (5) and using
Eq. (24), one can write the Brans–Dicke field λ as a function
of the concordance field as,

λ(ϕ) = λ0 exp

(√
2

�
κϕ

)
, (28)

where we define

� = 2wBD + 3, (29)

and λ0 is an integration constant such that λ(ϕ = 0) = λ0.

Given the concordance potential (21), one can obtain the
corresponding Brans–Dicke potential using Eqs. (7) and (28)
as

U (λ) = 3G

64π
H2

0 ��λ2

⎛
⎝6 +

(
λ

λ0

)√
3
2 �

+
(

λ

λ0

)−
√

3
2 �

⎞
⎠ .

(30)

Now, from Eq. (9a), the Brans–Dicke frame scale factor a is
related to the Einstein frame scale factor as

a = ã√
Gλ

. (31)

Using Eqs. (19) and (28), we replace λ with ã in the above
expression to write the Jordan frame scale factor as a function
of the Einstein frame scale factor,

a(ã) =
√

8π

κ2λ0
ã

⎛
⎝

√
��

1−��
ã3 + 1 + 1√

��

1−��
ã3 + 1 − 1

⎞
⎠

1√
6�

. (32)

Evolution of the Jordan frame scale factor a(ã) for differ-
ent values of wBD is shown in Fig. 3. For all the plots, the
Jordan frame universe is seen to be collapsing at the early
matter-dominated phase in the Einstein frame. Eventually,
the Jordan frame goes through a non-singular bounce and
starts expanding with the Einstein frame. One can find the

Fig. 3 Bouncing behaviour of the Brans–Dicke Jordan frame, dual
to the concordance model. Scale factors of different Jordan frames,
specified by different wBD values, are plotted with respect to the Einstein
frame scale factor. The gray plot below is the equation of state of the
concordance field wϕ, The Vertical gray line represents the epoch of
dust-� equivalence in the Einstein frame. The occurrence of the Jordan
frame bounce shifts towards future with decreasing wBD

Einstein frame scale factor at the point of bounce in the Jor-
dan frame to be

ãb =
(

1 − ��

2��

) 1
3
(

−3 + 4wBD

3 + 2wBD

) 1
3

, (33)

for − 3
2 < wBD < − 3

4 (see Fig. 2). We see, depending on
wBD, the Jordan frame bounce can occur corresponding to
a value of the Einstein frame scale factor anywhere within
ãb → 0 (for wBD → − 3

4 ) and ãb → ∞ (for wBD → − 3
2 ),

i.e., anywhere within the entire concordance model era. The
time of the Jordan frame bounce shifts to the future with
increasing value of wBD parameter, as it can be seen from
Fig. 4. For a given Brans–Dicke model (wBD), the size of
the Jordan frame universe at the point of the bounce depends
on the dark energy content in the Einstein frame universe
(��). Interestingly, even though the concordance model pos-
sesses a big bang-like cosmological singularity, i.e., the Ein-
stein frame scale factor ã → 0 at a finite coordinate time
(Eq. (23)), there is no such singularity in the dual bounc-
ing description, as it can be seen from Fig. 3. Therefore, the
appearance of the cosmological singularity can be attributed
to the choice of the conformal frame. The conformal frame-
dependence of cosmological singularities has been argued
in the literature previously, for example in [12], the present
result agrees with such a conjecture.

Note that, a similar result was obtained in [16], where,
the conformal duality was established between a bouncing
Jordan frame and an Einstein frame governed by a scalar field
with a quartic potential and a cosmological constant. In the
following section, we generalize this result by considering the
case of generic quintessence models with arbitrary potentials.

It is interesting to note that depending on the choice of
the constant λ0 in Eq. (32), the Jordan frame scale factor can
become arbitrarily small at the bounce. However, the bounce
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Fig. 4 Einstein frame scale factor at the point of the Jordan frame
bounce ãb is plotted with respect to the Brans–Dicke parameter wBD.

Different plots are for �� = 0.6, 0.7, 0.8. ãb can take any possible
value depending on − 3

2 < wBD < − 3
4 . For smaller values of wBD, the

Jordan frame bounce occurs at later times in the Einstein frame

can be arranged near the current epoch in the Einstein frame,
when the Einstein fame scale factor remains ã ∼ 1. In this
scenario, if the Jordan frame scale factor decreases below
a sufficiently small scale near the bounce, one may specu-
late the quantum effects in the Jordan frame to become non-
trivial; for example, quantum fluctuations in relevant Jordan
frame cosmological operators may grow in this regime. At the
same time, the quantum effects in the corresponding Einstein
frame is expected to be suppressed due to its relatively large
scale. In this case, the conformal correspondence seems to
provide a map between a quantum-corrected universe and a
universe with negligible quantum effects. Alternatively, one
may find the classical conformal map to break down near
the bouncing phase [46–48]. For example, [48] shows that in
the absence of additional matter components, the conformal
correspondence between an expanding and collapsing uni-
verse survives at the quantum level. Interestingly, quantum
fluctuations in different cosmological operators increase both
in the collapsing and the expanding frame in similar ways,
regardless of the cosmological evolutions therein.

5 Quintessence models: turn-around in the Jordan
frame

In the previous section, we demonstrated the duality between
the physical universe and bouncing universes by considering
the example of the concordance scalar field in the Einstein
frame, i.e., a single canonical scalar field that reproduces the
background evolution of the �CDM cosmology. We now
extend the analysis to general quintessence models with other
matter components, such as non-relativistic matter and radi-
ation, added separately. As before, the Einstein frame repre-
sents the physical universe, therefore we wish these matter
components to be minimally coupled in the Einstein frame.
This can be achieved by considering the Jordan frame action

with the following form

SBD
J =

∫
d4x

√−g

(
λ

16π
R − wBD

16πλ
gab∂aλ∂bλ −U (λ)

)

+
∫

d4x
√−g�4(λ)LM

(
ψM ;�2(λ)gab

)
, (34)

where the first term is the Brans–Dicke action same as
before; in the second term we introduce the action of a non-
minimally coupled matter field ψM . The conformal transfor-
mation g̃ab = �2gab removes the λ dependency from the
matter action, leading to the Einstein frame action

SE =
∫

d4x
√−g̃

R̃

2κ2 −
∫

d4x
√−g̃

(
1

2
g̃ab∂aϕ∂bϕ + V (ϕ)

)

+
∫

d4x
√−g̃LM (ψM ; g̃ab) . (35)

That is, in this convention the matter field is minimally cou-
pled in the Einstein frame, as a consequence of which the mat-
ter energy–momentum tensor is conserved in this frame. Sim-
ilar approach for the Einstein frame can be found in [12,13].
The scalar field ϕ now takes the role of a quintessence field.
Note that, once the quintessence model is specified in the
Einstein frame, the Jordan frame action is fixed up to the
choice of the Brans–Dicke parameter wBD. The Brans–Dicke
potential is determined from the quintessence potential as in
Eq. (7), where the fields themselves are related via Eq. (28),
these relations are the same as in the case of the concordance
model.

Let us consider non-relativistic matter (dust) and radi-
ation components in the Einstein frame, along with the
quintessence field ϕ. The above action leads to the standard
Friedmann equation in the Einstein frame

H̃2 = κ2

3

(
ρϕ(ã) + ρM (ã) + ρR(ã)

)
, (36)

where ρϕ, ρM , and ρR are the energy densities correspond-
ing to the quintessence field, non-relativistic matter and radi-
ation, respectively. Starting with Eq. (13) for Brans–Dicke
theory (Eq. (24)) and using the above Friedmann equation
we find

da

dã
< 0 ⇐⇒ 1 + wϕ(ã) > C(ã;�)

⇐⇒ Collapsing Jordan frame (37a)
da

dã
> 0 ⇐⇒ 1 + wϕ(ã) < C(ã;�)

⇐⇒ Expanding Jordan frame (37b)
da

dã
= 0 ⇐⇒ 1 + wϕ(ã) = C(ã;�)

⇐⇒ Bounce/collapse in the Jordan frame, (37c)
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where

C(ã;�) = 2

3
�

(
1 + �M (ã)

�ϕ(ã)
+ �R(ã)

�ϕ(ã)

)
, (38)

�M,R(ã) = ρM,R/ρc are the time-dependant density param-
eters of dust and radiation in the Einstein frame. We see that
whether the Jordan frame with � is expanding or collapsing
is determined by the equation of state of the quintessence
field and energy densities of all the components present in
the Einstein frame. The Jordan frame goes through a ‘turn-
around’, i.e., a bounce or a collapse, when the equation of
state satisfies Eq. (37c). From this we define

�∗(ãTA) = 3

2

(
1 + wϕ(ãTA)

) (
1 + �M (ãTA)

�ϕ(ãTA)
+ �R(ãTA)

�ϕ(ãTA)

)−1

,

(39)

such that the Jordan frame with � = �∗(ãTA) corresponding
to the quintessence field goes through a turn-around at the
Einstein frame scale factor ã = ãTA. We see that �∗(ãTA) >

0 for all ãTA (as long as wϕ(ãTA) > −1, we will ignore
cases with wϕ < −1 as they lead to the phantom regime).
Therefore, a positive �∗(ãTA) always exists for any ãTA,

which is required for the quintessence field to be real (see
Eq. (5)). From these we can conclude the followings:

1. Quintessence models with standard matter components
in the Einstein frame always correspond to a Jordan
frame governed by a Brans–Dicke model where the Jor-
dan frame goes through a turn-around, i.e., a bounce or a
collapse.

2. The point of the Jordan frame turn-around, i.e., the value
of the Einstein frame scale factor at the time of the Jor-
dan frame bounce or collapse, can be arranged anywhere,
determined by the choice of the Brans–Dicke theory (�).

Therefore, the dual bouncing/contracting universe descrip-
tion is a feature generic to a variety of late-time cosmological
models, including the quintessence models and the concor-
dance model of the universe. It follows from above that one
value of � is somewhat spacial. All observationally consis-
tent quintessence models have a common attribute that all of
them lead to the same values of the equation of state parame-
ter and density parameter at the current epoch in the Einstein
frame, wϕ0, �ϕ0. Putting ã = 1 in (39) we define

�0 = �∗(ãTA = 1) = 3

2

(
1 + wϕ0

) (
1+�M0

�ϕ0
+�R0

�ϕ0

)−1

.

(40)

For any viable quintessence model, its corresponding Jor-
dan frame with � = �0 either goes through a bounce or a
collapse at the current epoch (ã = 1).

5.1 Turn-around in the Jordan frame: bounce or collapse?

Whether the Jordan frame turn-around is a bounce or a col-
lapse is determined by the conditions Eqs. (37a) and (37b).
At the point of the turn-around, when 1 + wϕ(ã) = C(ã;�)

is satisfied, if wϕ(ã) is decreasing (increasing) with respect
to ã, then the Jordan frame is collapsing (expanding) before
the turn-around and expanding (collapsing) after the turn-
around, or the Jordan frame goes through a bounce (col-
lapse). Thus, whether a quintessence model maps to bounc-
ing Jordan frame or a collapsing Jordan frame is determined
by whether the equation of state of the quintessence field is
decreasing or increasing function of the scale factor at the
point of the Jordan frame turn-around.

Quintessence models are categorized based on the nature
of the evolution of the field, into the freezing and thawing
types [23]. In the freezing quintessence models, the field
evolution slows down as time increases and it eventually
‘freezes’ in the late times, corresponding to a decreasing
equation of state parameter which approaches wϕ → −1
in the late times [23,29,49,50]. In the thawing quintessence
models, the field stays frozen in the early times due to the
Hubble friction, corresponding to wϕ → −1. In the late
times, the field overcomes the Hubble friction and starts to
evolve, resulting in increasing wϕ later on. Decreasing and
increasing equations of statewϕ are features generally associ-
ated with freezing and thawing quintessence models, respec-
tively. Therefore, taking into account the previous arguments,
we expect freezing and thawing quintessence models to be
dual to Brans–Dicke Jordan frames with bounce and col-
lapse, respectively. In the following section we demonstrate
these dualities for viable quintessence models.

5.2 Examples: freezing and thawing quintessence models
dual to Jordan frames with bounce and collapse

Here we consider examples of freezing and thawing quintess-
ence models and explicitly show the bouncing and collaps-
ing behaviours of their corresponding Jordan frames. For
both cases, the Jordan frame turn-arounds are arranged at
the current era in the Einstein frame (ã = 1). The condi-
tion for Jordan frame turn-around at the current epoch is
very weakly dependent on the radiation contribution, i.e.,
�R0/�ϕ0 ∼ 10−5 is negligible with respect to �M0/�ϕ0 in
Eq. (37). Therefore, we can safely ignore radiation and only
consider the contribution from non-relativistic matter in the
following examples.

As an example of the freezing quintessence models, we
consider the ‘double exponential’ potential of the form [23,
49]

V (ϕ) = V1 exp (−λ1κϕ) + V2 exp (−λ2κϕ) , (41)
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Fig. 5 Equation of state wϕ and energy contributions of the quintessence field and matter for the freezing quintessence model Eq. (42), with
wp = 0, w f = −1, ãT = 0.17, τ = 0.33. Initially wϕ(ã) ∼ 0; in the late times as dark energy contribution takes over matter contribution, wϕ

approaches −1 asymptotically

Fig. 6 Bouncing behaviour of the Jordan frame scale factor for freez-
ing quintessence model (42), with wp = 0, w f = −1, ãT = 0.17; the
bounce is arranged at the current epoch ã = 1. a Before the current era
1 + wϕ > C (collapsing Jordan frame) and 1 + wϕ < C (expanding

Jordan frame) after the current era, leading to the Jordan frame bounce
at the current era. bBouncing behaviour of the Jordan frame scale factor
a, a0 = a(ã = 1)

Fig. 7 Equation of state wϕ and energy contributions of the quintessence field and matter for the thawing quintessence model (44), with K = 2.88,

�ϕ0 = .7, w0 = −0.9. Initially wϕ(ã) ∼ 0; as the dark energy takes over in the late times, wϕ deviates from −1

123



Eur. Phys. J. C (2024) 84 :318 Page 11 of 22 318

with the parameters λ1 
 1 and λ2 � 2. The model leads
to an initial scaling matter era when dark energy is subdom-
inant (�ϕ = 3/λ2

1), followed by an accelerating dark energy
dominated era. The equation of state for this model can be
approximated using the following parameterization [49]

wϕ(ã) = w f + wp − w f

1 +
(

ã
ãT

)1/τ
, (42)

where the parameters wp and w f represent the initial and
final values of wϕ; ãT and τ determine the transition from
matter era to dark energy era in the Einstein frame. The evo-
lution of the equation of state parameter and energy contri-
bution of the field are shown in Fig. 5 for wp = 0, w f = −1.

We see that wϕ initially stays at 0 in the matter dominated era;
it decreases later on and eventually approaches −1 in the late
dark energy dominated era. In Fig. 6a, we plot the condition
for expanding and collapsing Jordan frame and Fig. 6b shows
the bouncing behaviour of the Jordan frame scale factor. In
this example, the Brans–Dicke parameter � is chosen such
that the Jordan frame bounce occurs at the current era, i.e.
at ã = 1. The plots show that before the current era wϕ sat-
isfies the condition for collapse, Eq. (37a), while it satisfies
the condition for expansion, Eq. (37b) after the current era,
thus leading to a bounce in the Jordan frame at the current
era.

We now move on to the case of thawing quintessence mod-
els. As an example, we consider the ‘hilltop’ quintessence
potential [23,49]

V (ϕ) = �4
(

1 + cos

(
ϕ

f

))
. (43)

The field evolution for this potential can approximately be
implemented with the following parameterization of the
equation of state [49]

wϕ(ã) = −1 + (1 + w0)ã
3(K−1)

⎡
⎢⎣ (K − F (ã)) (F (ã) + 1)K + (K + F (ã)) (F (ã) − 1)K(

K − �
−1/2
ϕ0

) (
�

−1/2
ϕ0 + 1

)K +
(
K − �

−1/2
ϕ0

) (
�

−1/2
ϕ0 + 1

)K

⎤
⎥⎦ , (44)

where

F(ã) =
√

1 +
(
�−1

ϕ0 − 1
)
ã−3, (45)

w0 = wϕ(ã = 1), and K is a constant parameter of the
model. The evolution of wϕ and energy contributions from
the quintessence field and matter are shown in Fig. 7a and
b, for w0 = −0.9, �ϕ0 = 0.7, and K = 2.88 [49]. The
equation of state remains close to −1 in the early times, cor-

responding to an almost frozen field ϕ. As dark energy con-
tribution takes over the matter contribution near the current
epoch, the field starts to evolve and wϕ increases slightly.
The conditions for expanding and collapsing Jordan frame
are plotted in Fig. 7a. We choose the Brans–Dicke parame-
ter � for the Jordan frame collapse to occur at the current
era. The plot shows that before the current era, wϕ satisfies
the condition for expansion, Eq. (37b), while it satisfies the
condition for collapse, Eq. (37a) after the current era, thus
leading to a collapse in the Jordan frame at the current era
(Fig. 8).

The duality between an indefinitely contracting Jordan
frame and the physical universe in the Einstein frame has
interesting consequence on the conformal correspondence
at the quantum level, similar to the expansion-bounce sce-
nario discussed in Sect. 4.2. Once the scale factor of the con-
tracting Jordan frame becomes sufficiently small, the Jordan
frame universe is expected to develop non-negligible quan-
tum characteristics. As the Jordan frame contracts further,
the quantum effects therein are expected to grow. While at
the same time, the Einstein frame keeps on expanding with
its scale factor becoming arbitrarily large. It is worth explor-
ing whether the quantum effects in the Einstein frame are
suppressed due to its large scale, or whether the quantum
characteristics are a frame independent effect – both the con-
formally connected universes develop increasing quantum
features regardless the cosmological expansions therein.

6 De Sitter expansion in the Jordan frame: collapsing
Einstein frame

In the previous sections, we have explored examples of the
expansion-collapse duality, where Einstein frames undergo-
ing accelerating expansion correspond to bouncing or col-
lapsing Jordan frames. It is, however, also possible to con-

struct an opposite scenario, where an expanding universe in
the Jordan frame can be described through a collapsing uni-
verse in the Einstein frame. In this section, we briefly discuss
an example where a de Sitter expansion in the Jordan frame
maps to a contracting Einstein frame.

Let us consider the prototype Brans–Dicke theory in the
Jordan frame, given by the action in Eq. (25) withU (λ) = 0.

One can show that for the Brans–Dicke parameter wBD =
− 4

3 , the Jordan frame equations of motion (see Appendix A)
admit de Sitter solution [1],
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Fig. 8 Collapsing behaviour of the Jordan frame scale factor for
the thawing quintessence model (44), with K = 2.88, �ϕ0 = .7,

w0 = −0.9; the collapse is arranged at the current epoch ã = 1.

a 1 + wϕ < C (expanding Jordan frame) before the current era and

1 + wϕ > C (collapsing Jordan frame) after the current era, leading to
the Jordan frame collapse at the current era. b Collapsing behaviour of
the Jordan frame scale factor a, a0 = a(ã = 1)

a(t) = a0 exp (H0t) , (46a)

λ(t) = λ0 exp (−3H0t) , (46b)

where t is the Jordan frame coordinate time, H0 is the con-
stant Hubble parameter in the Jordan frame, a0 = a(t = 0),

and λ0 = λ(t = 0). In this case, the Jordan frame uni-
verse mimics the late-time dark energy-dominated era of the
�CDM model, where, the effect of dark energy is produced
by the Brans–Dicke field instead of the cosmological con-
stant.

In the corresponding Einstein frame (Eq. (6)), the poten-
tial becomes V (φ) = 0 (from Eq. (7)) and the Einstein
frame scalar field describes a stiff fluid with equation of state
parameter wϕ = 1 (from Eq. (11)). With wBD = −4/3 and
wϕ = 1, the expansion-collapse duality condition in Eq. (26)
is always satisfied. Therefore, as the Jordan frame expands
exponentially, the corresponding Einstein frame contracts.
To see this explicitly, one can reconstruct the solution for the
Einstein frame scale factor through its Jordan frame coun-
terpart. Using Eq. (46) in Eq. (9), we find the Einstein frame
scale factor as

ã =
√

κ2

8π
λ0a3

0

(
1 −

√
8π

κ2λ0

3

2
H0 t̃

) 1
3

, (47)

where the Einstein frame coordinate time t̃ is related to the
Jordan frame coordinate time t as (see Eq. (9b))

t̃ = 2

3H0

√
κ2λ0

8π

[
1 − exp

(
−3

2
H0t

)]
. (48)

Note that we have chosen the origin of t̃(t) such that t̃(t =
0) = 0. In the late-time limit (t → ∞), the Jordan frame
scale factor a → ∞, while in this, limit the Einstein frame

coordinate time t̃ → 2
3H0

√
κ2λ0
8π

and the scale factor ã → 0.

Therefore, the de Sitter expansion in the Jordan frame can
alternatively be seen in the Einstein frame as a collapsing
universe, heading towards a big crunch-like singularity.

The duality between a de Sitter spacetime and a contract-
ing universe can be a helpful tool in further studies. For exam-
ple, quantum fluctuations in the de Sitter background have
been studied extensively as the generator of the large-scale
structure in the universe (see for example [51]). It is well-
known that quantum fluctuations of a massless scalar field in
a de Sitter cosmology show divergent behavior in the infrared
limit (see [52–54] and references therein). This peculiarity is
often associated with the non-existence of de Sitter invariant
vacuum state. It has also been shown that similar divergences
can arise in a universe with power-law expansion [53]. One
may address the issue of the diverging quantum fluctuations
in the de Sitter and power-law type expanding spacetimes
by posing the problem in a conformally connected frame
that is contracting. When the scale factor in the contracting
universe becomes sufficiently small and approaches the sin-
gularity, the classical description of the system is expected to
break down; one may speculate the universe to develop sig-
nificant quantum characteristics in this regime. Therefore,
the conformal frame with the contracting universe may pro-
vide a natural framework to study the quantum fluctuation,
which, in turn, can be imported to the conformally connected
expanding de Sitter spacetime. The study of quantum fluctu-
ations in the de Sitter universe through the contracting uni-
verse may provide new insights into the infrared divergence
issue, which may not be apparent otherwise.

7 Einstein frame-Jordan frame correspondence: effects
of linear perturbations

The Einstein and Jordan frame universes are connected via
conformal transformation of the metric. We have so far con-
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sidered that both the Einstein and Jordan frame metrics take
the form of the spatially flat FRW spacetime, as given in
Eq. (6). However, in general, both the conformally con-
nected universes can possess small perturbations on the back-
ground of FRW spacetime. A robust conformal correspon-
dence should provide a regular map between the perturba-
tions in the Einstein and Jordan frames as well.

The study of cosmological perturbations in several classes
of modified theories of gravity, particularly exploring the Ein-
stein frame-Jordan frame mapping, can be found in [55–61].
In [55–57] perturbations in generalized f (φ, R) theories are
studied using the Einstein frame description. Cosmological
perturbations in the early universe f (R) models is explored,
for example, in [58].

In this section we introduce linear scalar perturbations in
the background metrics of both the conformally connected
frames. Following the treatment in [55–58], we briefly review
the relation between metric perturbations in the Einstein and
Jordan frames.

7.1 Metric potentials in Einstein and Jordan frames

Let us consider scalar perturbations in the Jordan and Einstein
frame metrics. The line elements in the Jordan and Einstein
frames, written in the Newtonian gauge, are

ds2 = a2(η)
[
−(1 + 2�)dη2 + (1 − 2�)δαβdxαdxβ

]
,

(49a)

ds̃2 = ã2(η)
[
−(1 + 2�̃)dη2 + (1 − 2�̃)δαβdxαdxβ

]
,

(49b)

where (�,�) and (�̃, �̃) are the metric potentials in the
Jordan and Einstein frames, respectively. Note that we will
be using the conformal time (η) in this section, which is same
for both the frames.1 The above mentioned perturbed line
elements are related via the conformal transformation (2a)
as

ds̃2 = �2ds2, (50)

where the conformal parameter is perturbed as well

�(η, xα) = �̄(η) + δ�(η, xα). (51)

Comparing the first order terms in Eq. (50), one can relate
the metric potentials in the two frames as [55–58]

� = �̃ − δ�

�̄
, (52a)

1 As it can be seen from Eq. (9), dη = (1/ã(t̃))dt̃ = (1/a(t))dt.

� = �̃ + δ�

�̄
. (52b)

Let us now come to the example where the Einstein and
Jordan frames are governed by the concordance scalar field
(ϕ) and the Brans–Dicke field (λ), where the fields are now
perturbed,

λ
(
η, xα

) = λ̄(η) + δλ(η, xα), (53a)

ϕ
(
η, xα

) = ϕ̄(η) + δϕ(η, xα). (53b)

Since the Einstein frame is free from anisotropic stress, we
further take �̃ = �̃ [58]. The relations between the metric
potentials in the two frames then reduce to

� = �̃ − δλ

2λ̄
, (54a)

� = �̃ + δλ

2λ̄
, (54b)

whereas, the two potentials in the Jordan frame are related
by

� = � + δλ

λ̄
. (55)

This shows that unlike the Einstein frame, the two metric
potentials in the Jordan frame are not equal, which is a well-
known characteristic of modified theories of gravity [55,58].

We now replace the Brans–Dicke field terms (λ̄, δλ) in
Eq. (54) with those of the concordance field. Noting that ϕ

and λ are related as (see Eq. (5))

dϕ

dλ
= √

K [λ] = 1√
2κ2

√
�

λ
, (56)

we get

δλ

λ̄
=

√
2κ√
�

δϕ, (57a)

=
√

2√
�

2

κϕ̄′
(
�̃′ + H̃�̃

)
, (57b)

where the prime denotes derivative with respect to the con-
formal time η, H̃ = ã′/ã. The last line is derived using the
space-time component of the perturbed Einstein equation in
the Einstein frame [58],

�̃′ + H̃�̃ = κ2

2
ϕ̄′δϕ. (58)

Using Eq. (57b) in Eq. (54) we can write

� = �̃ −
√

2√
�

1

κϕ̄′
(
�̃′ + H̃�̃

)
(59a)
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� = �̃ +
√

2√
�

1

κϕ̄′
(
�̃′ + H̃�̃

)
. (59b)

These are the relations between the metric potentials in the
two conformal frames.2 Thus, once the evolution of the met-
ric potential in the Einstein frame is known, along with the
background quantities ã(η) and ϕ̄(η), one can obtain the
solutions for the metric potentials in the Jordan frame.

It is, however, possible that under certain circumstances
the above relations become singular, breaking the perturba-
tive map between the two conformal frames. This issue is
addressed, for example, in [10,21], in the context of early uni-
verse bouncing f (R) theories. It is shown that the relation
between the metric potentials can diverge when the back-
ground scalar field in the Einstein frame goes through an
extremum, i.e., ϕ̄′ → 0. The same issue can potentially
arise in the case of Brans–Dicke theory governed Jordan
frame. From the relations (59), we see that if the back-
ground concordance field goes through an extremum at an
instant, i.e. ϕ̄′ → 0, the Jordan frame potentials (�,�) can
diverge, even if the Einstein frame potential and its derivative
(�̃, �̃′) remain finite. This can cause the Einstein frame–
Jordan frame correspondence to break down in the perturba-
tive regime. We now check whether such a divergence occurs
in the present model of the bouncing universe dual to the
physical universe.

From Eq. (12), the conformal time derivative of the back-
ground field can be written as

ϕ̄′ = ã
√

(1 + wϕ(ã))ρ̄ϕ(ã). (60)

For the case of the concordance model in the Einstein frame,
this relation becomes

ϕ̄′ =
√

ρc
1 − ��

ã
, (61)

where we have used Eqs. (17b) and (18) to obtain Eq. (61).
This shows that ϕ̄′ is non-zero for any finite value of the
Einstein frame scale factor ã. Also from Eq. (22), ã is finite-
valued as long as the coordinate time t̃ is finite, hence ϕ̄′
never becomes 0 at an instant. Unlike the models explored
in [10,21], the issue of diverging metric potentials caused by
ϕ̄′ → 0 is not present in the current model.

For quintessence models of dark energy, ϕ̄ takes the role
of the background quintessence field. The relation in Eq. (60)
holds true for quintessence models as well, given wϕ, ρ̄ϕ are
the equation of state and background energy density associ-
ated with the quintessence field. As long as the quintessence
equation of state remains wϕ(ã) > −1 at any finite time,

2 See [58] for similar relations between metric potentials in the context
of f (R) theories.

ϕ̄′ remains non-zero and the relations Eq. (59) are non-
divergent. For example, for the thawing and freezing types of
quintessence models considered in the last section, Eqs. (42)
and (44), wϕ �= −1 for any finite value of the scale factor ã.

For the thawing model, wϕ approaches −1 in the asymptotic
future (ã → ∞); while for the freezing model, wϕ → −1 in
the asymptotic past (ã → 0) (see Figs. 5a and 7a). Therefore,
we expect the Jordan frame–Einstein frame map to behave
regularly in the perturbative regime for quintessence models
with wϕ > −1, even when the Jordan frame goes through
the turn-around.

In the following discussion, we mainly focus on the exam-
ple of the concordance model and explicitly verify the sta-
bility of the perturbative conformal map. To do this, we first
numerically solve the Einstein frame metric perturbation, the
result is then transported to the Jordan frame using the con-
formal correspondence. For the second case, we solve the
perturbations in the Jordan frame directly, the result is then
compared with those obtained via the Einstein frame. If the
conformal map is robust under perturbations, then the Jordan
frame metric potentials obtained in these two cases should
be in agreement.

7.1.1 Numerical results in the Einstein frame

Let us first consider the evolution of perturbations in the
Einstein frame. Cosmological perturbations in the presence
of a canonical scalar field has been studied broadly, both
in the context of inflationary models and dark energy mod-
els (see, for example, [58,62] and references therein). For
the perturbed Einstein frame metric (49b) and the perturbed
concordance field (53b), the Einstein field equation leads to
[58]

�̃′′ + 2
d

dη

(
ã

ϕ̄′
)(

ã

ϕ̄′
)−1

�̃′ − ∇2�̃ + 2ϕ̄′ d

dη

(
H̃
ϕ̄′

)
�̃ = 0,

(62)

where ∇2 is the spatial Laplacian. Following the treatment
of [58,63], the above equation for a Fourier mode k can be
put in a relatively simple form,

u′′(η) +
(
k2 − θ ′′(η)

θ(η)

)
u(η) = 0, (63)

where the first order quantity u and background quantity θ

are defined as

u(η) = ã(η)
�̃(η)

ϕ̄′(η)
, (64a)

θ(η) = H̃
ãϕ̄′ . (64b)
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Fig. 9 Numerical solution for Einstein frame metric perturbation �̃ is
plotted with respect to the conformal time η, for Fourier mode k = 15,

where the Einstein frame is governed by the concordance scalar field. η
is given in the unit of 13.5 Gy, η = 0 corresponds to the current Einstein
frame epoch, ã = 1

For small scale modes, or for large k (k2 
 θ ′′/θ), the con-
tribution from the θ ′′/θ term in Eq. (63) becomes minimal,
leading to an oscillatory solution for u. The Einstein frame
metric potential is then obtained using �̃ = (ϕ̄′/ã)u, where,
from Eq. (61), the factor (ϕ̄′/ã) can be shown to decay as

1/ã
3
2 . Hence, for k2 
 θ ′′/θ, we expect �̃ to have the pro-

file of a damped oscillator.
The background quantity θ(η) can be obtained analyti-

cally, from Eqs. (22) and (61). Using this, we numerically
solve the perturbation equation (63) for such a sufficiently
large k = 15, with initial conditions

�̃(η = 0) = 10−3, �̃′(η = 0) = 10−2. (65)

Other background parameters are taken to be �� =
0.7, H0 = 70 km s−1 Mpc−1. The origin of the confor-
mal time (η = ∫

dt̃/ã) is chosen such that η = 0 coincides
with the current epoch, i.e., ã(t̃ = t̃0 = 0) = ã(η = 0) = 1
in the Einstein frame. Figure 9 shows the numerical evolu-
tion of the Einstein frame perturbation with conformal time.
As discussed above, �̃ exhibits oscillation with decreasing
amplitude.

Once the evolution of �̃ is known, one can obtain the
Jordan frame metric perturbations �, �, from the rela-
tions (59). For the numerical results, we choose the Jordan
frame with Brans–Dicke parameter wBD = − 3

4 (1 + ��) .

For this choice of wBD, the Jordan frame bounce occurs
exactly at the current epoch of the Einstein frame, i.e., at
ã = 1. The numerical evolutions of � and � are plotted in
Fig. 11a and b.

Fig. 10 Jordan frame scale factor a is plotted with respect to the Jordan
frame coordinate time t, dual to the concordance model in the Einstein
frame. Here wBD = − 3

4 (1 + ��) , t is given in the unit of 13.5 Gy.
The Jordan frame bounce occurs at t = 0. The blue plot is the numerical
solution obtained directly in the Jordan frame, whereas, the black dashed
plot is the analytical results obtained via the Einstein frame. The Einstein
and Jordan frame results are shown to be in agreement

7.1.2 Numerical results in the Jordan frame

Having solved the Jordan frame perturbations using the con-
formal correspondence, we now study the evolution of per-
turbations directly in the Jordan frame. We then compare
these results with those obtained via the Einstein frame in
the previous section. If the Einstein frame–Jordan frame cor-
respondence remains valid in the linear perturbation regime,
then the solutions obtained for the two cases are expected to
be in agreement.

Let us first consider the background evolution of the
Brans–Dicke Jordan frame. Starting with the action (25) and
using the background metric (8b), one can obtain the back-
ground equations of motion for the Brans–Dicke field and
the Jordan frame scale factor as (see Appendix A)

Ḣ = −wBD

2

( ˙̄λ
λ̄

)2

+ 2H
˙̄λ
λ̄

+ 1

2�λ̄
16π

[
λ̄U,λ(λ̄) − 2U (λ̄)

]
, (66a)

¨̄λ + 3H ˙̄λ = −16π

�

[
λ̄U,λ(λ̄) − 2U (λ̄)

]
, (66b)

where the overdots represent derivatives with respect to the
Jordan frame coordinate time t, H = ȧ/a is Jordan frame
Hubble parameter. The Brans–Dicke potential U (λ), dual
to the concordance potential, is given in Eq. (30). Using
this, we numerically solve the coupled Eqs. (66a) and (66b)
simultaneously to obtained a(t) and λ̄(t). For this and all
following numerical calculations, the origin of the Jordan
frame coordinate time (t) is taken such that it coincides
with the Einstein frame coordinate time at the current epoch,
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Fig. 11 Jordan frame metric potentials � and � are plotted with
respect to the conformal time η (in the unit of 13.5 Gy), where Ein-
stein frame is governed by the concordance field. Here η = 0 is the
point of the bounce. In both the figures, the blue plots show numerical
solutions of the metric potentials obtained directly in the Jordan frame,

whereas, the black dashed plots are the corresponding results obtained
from Einstein frame, using the conformal correspondence. The Jordan
and Einstein frame solutions are in good agreement throughout the evo-
lution

i.e., t̃0 = 0, t (t̃ = t̃0) = 0, η(t̃ = t̃0) = 0. The initial
conditions are fixed it t = 0 such that they coincide with
the Einstein frame solutions. Figure 10 shows the evolution
of the Jordan frame scale factor with respect to the Jordan
frame coordinate time t. For the chosen Brans–Dicke theory,
wBD = − 3

4 (1 + ��) , the Jordan frame bounce occurs at
t = 0, which corresponds to the current epoch in the physi-
cal universe. The same plot also shows the analytical solution
for a(t) obtained using the Einstein frame (from Eq. (32),
using Eqs. (9b) and (22)). We see that the numerical solution
obtained directly in the Jordan frame is in agreement with its
counterpart, analytically obtained in the Einstein frame.

Having obtained the background evolution in the Jordan
frame, we now move on to the perturbations. For the per-
turbed Brans–Dicke field

λ = λ̄(t) + δλ(t, xα), (67)

and the perturbed Jordan frame metric in the Newtonian
gauge (written in terms of the coordinate time t),

ds2 = −dt2(1 + 2�) + a2(t)(1 − 2�)δαβdxαdxβ, (68)

the linear order equations of motions, governing δλ and �,

can be written for Fourier mode k as (see Appendix A)

δ̈λ + δ̇λ

(
3H +

˙̄λ
λ̄

)

+ δλ

(
k2

a2 + 6H ˙̄λ
λ̄

−
˙̄λ2

λ̄2
+ 2 ¨̄λ

λ̄
+ 16πλ̄U,λλ

�
− 16πUλ

�

)

− 6H ˙̄λ� − 2� ¨̄λ − 4 ˙̄λ�̇ = 0, (69)

and

− 6λ̄��̈ − 30H λ̄�̇�

+ �

⎛
⎝−2k2λ̄�

a2 − 24H2λ̄� − 12Ḣ λ̄� − 2 ˙̄λ2
w�

λ̄

⎞
⎠

+ δλ

(
−2k2�

a2 + 36H2� − 6H ˙̄λ�

λ̄

+18Ḣ� − 48πλ̄U,λλ − 48πU,λ − 64πwU,λ +
˙̄λ2

w�

λ̄2

⎞
⎠

+ δ̇λ

(
6H� + 2 ˙̄λw�

λ̄

)
= 0. (70)

For the Fourier mode k = 15, the coupled Eqs. (69) and (70)
are numerically solved together to obtain �(t) and δλ(t). We
choose the following initial conditions at t = 0,

�(0) = 0.0263, �̇(0) = −0.1623, δλ(0) = 0.1130,

δ̇λ(0) = −0.6745, (71)

such that they coincide with the Einstein frame initial con-
ditions (65) at η = t = 0. Using the solutions of �(t) and
δλ(t), the other Jordan frame metric potential �(t) can be
obtained from Eq. (55). Figure 11a and b show the evolution
of the Jordan frame metric perturbations (�,�), together
with their counterparts obtained from the Einstein frame.
Note that the Jordan frame solutions �(t), �(t) are con-
verted to functions of the conformal time η, in order to com-
pare them with the Einstein frame solutions. We see that
for both the metric potentials, the Jordan and Einstein frame
solutions are in good agreement.
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The Einstein frame solutions behave regularly through out
the evolution, including the point of the Jordan frame bounce
at η = 0. The conformal map between the Einstein and Jor-
dan frames is thus able to accommodate for cosmological per-
turbations present in the two frames. Therefore, the bouncing
universe description of the concordance model of cosmology
is shown to be stable against linear perturbations.

As the final example, we carry out the same analysis for a
collapsing Jordan frame (see Fig. 12). For this, we consider
a quintessence field in the Einstein frame with logarithmic
equation of state parameter,

wϕ(ã) = w0 − w′ ln ã, (72)

where (w0, w
′) are constant parameters of the model [64–

66]. We ignore the contribution from the ordinary matter
component in this example. For w′ < 0, the equation of
state is an increasing function of the scale factor, therefore
the corresponding Jordan frame undergoes a collapse. After
the collapse, the Jordan frame scale factor continues to con-
tract indefinitely (Fig. 12b), while the Einstein frame expands
(Fig. 12a). We perform the same numerical analysis as before
and show that the map between the Einstein and Jordan frame
perturbations remains well-behaved at the point of the turn-
around, and even as the Jordan frame scale factor a → 0
(Fig. 12c and d).

8 Summary and discussion

The scalar–tensor theories belong to a class of modified the-
ories of gravity, which can be mapped to Einstein’s gravity
using the Jordan frame–Einstein frame duality. The Einstein
and Jordan frame descriptions are mathematically equiva-
lent, it is, however, possible that the Jordan frame universe
goes through a quite distinct cosmological evolution in com-
parison with its Einstein frame counterpart [9–15,17–22]. In
this paper, we study a class of dual universes with contrasting
nature of evolutions. We consider an Einstein frame where
the universe goes though the standard late-time cosmological
evolution, driven by dark energy and non-relativistic matter.
Dual to this, we find a class of scalar–tensor theories which
may lead to a collapsing Jordan frame. A general condition
for such an expansion-collapse duality is obtained to predict
whether, for a given scalar–tensor theory, the Jordan frame
is collapsing during a period of evolution.

We first set up the Einstein frame scalar field for it to
provide an effective description of the �CDM or the con-
cordance model of cosmology. As an example of the scalar–
tensor theories, we consider the Brans–Dicke model in the
Jordan frame. Using the general condition for the expansion-
collapse duality, we show that concordance model of cos-
mology can always be mapped to a bouncing Brans–Dicke

Jordan frame. This implies that the �CDM model of the
late-time universe can have an effective description in terms
of the dynamics of a bouncing universe. In the second case,
the Einstein frame scalar field is treated as a quintessence
field and a non-relativistic matter component is added sepa-
rately in the Einstein frame. Quintessence models are shown
to be always dual to Brans–Dicke Jordan frames with turn-
arounds, i.e., a bounce or a collapse. The nature of evolution
of the equation of state of the quintessence field at the turn-
around determines whether the turn-around is a bounce or a
collapse. These results indicate that the effect of dark energy
can alternatively be realized as collapse of space in a confor-
mally connected universe, at least classically.

We have also discussed an example of the expansion-
collapse duality where a de Sitter expansion in the Jordan
frame maps to a collapsing Einstein frame heading towards
singularity. The dual description of a de Sitter spacetime
through a collapsing universe has potential applications. For
example, one may study the infrared divergence of quantum
fluctuations in the de Sitter background [52–54] by posing the
problem in a collapsing universe where the quantum effects
are better understood.

Previous studies have explored the expansion-collapse
duality between conformal frames in different scenarios [12–
15,17]. For example, in [12] (also see [13]), the Jordan
frame universe is contracting in the radiation and matter
dominated phases, while it is expanding in the dark energy
era. In the “anamorphic” model, the universe undergoes an
initial anamorphic phase, which exhibits features of both
contracting (ekpyrotic) and expanding (inflationary) mod-
els [14,17]. After the end of the anamorphic phase the uni-
verse enters into the standard hot expanding phase, consistent
with general relativity. In the present work, we explore the
expansion-collapse duality in the context of late-time cos-
mology. We show that dual universes with bounce or col-
lapse are not exclusive to specific dark energy models; in
fact, quintessence models, in general, can always be mapped
to Jordan frames with turn-arounds. Moreover, the expand-
ing and contracting phases in the Jordan frame need not be
corresponding to certain eras in the Einstein frame. The Jor-
dan frame can always be tuned to arrange the turn-around
anywhere in the Einstein frame.

A robust conformal correspondence between the Einstein
and Jordan frames should provide a regular map between
cosmological perturbations therein. We investigate whether
the dual bouncing and collapsing universe description of the
standard cosmology is robust against linear perturbations.
The conformal correspondence is found to be stable as long
as the Einstein frame scalar field’s equation of state satisfies
wϕ > −1.

To see this explicitly, we primarily consider the example
of the concordance field in the Einstein frame. We numer-
ically solve scalar metric perturbations in both the confor-
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Fig. 12 Conformal duality at the perturbative regime between the Ein-
stein frame with a quintessence field (without matter) and its dual
collapsing Jordan frame with a Brans–Dicke theory. The equation
of state of the quintessence field is wϕ(ã) = w0 − w′ ln ã, where
(w0, w

′) = (−0.87,−0.48) [64]. All the plots are with respect to the
conformal time η (in the unit of 13.5 Gy). The Brans–Dicke parame-
ter is chosen such that the Jordan frame turn-around occurs at η = 0,

ã = 1. In a and b, the Einstein and Jordan frame scale factors (ã and

a) are plotted with respect to the conformal time. Jordan frame metric
potentials � and � are plotted for k = 10 in c and d. In both the fig-
ures, the blue plots show numerical solutions of the metric potentials
obtained directly in the Jordan frame, whereas, the black dashed plots
are the corresponding results obtained from Einstein frame, using the
conformal correspondence. The Jordan and Einstein frame solutions are
in good agreement throughout the evolution, even as a → 0

mal frames. The Einstein frame solutions are then trans-
ported to the Jordan frame, using the linear order confor-
mal map. These are compared with the Jordan frame per-
turbations, directly obtained in the Jordan frame. The solu-
tions of the Jordan frame perturbations in these two cases
are in agreement. Therefore, in this case the conformal dual-
ity between the late-time physical universe and the bouncing
Brans–Dicke Jordan frame universe is shown to be stable
under linear perturbations. The same analysis is performed
for another example, where the Einstein frame is governed
by a quintessence field with logarithmic equation of state.
The corresponding Jordan frame undergoes a collapse and
then contracts indefinitely. The results here also indicate that

the conformal correspondence between the perturbations in
the two frames behave regularly, even as the Jordan frame
scale factor a → 0.

Bouncing scenarios, in general, have been explored in the
literature as a candidate for the early universe model, alter-
native to the inflationary theory. In this paper we show that a
perturbatively stable, effective bouncing description is also
possible for the standard late-time evolution of the universe.
This may have interesting implications. As we have seen, the
nature of the cosmological evolution depends on the confor-
mal frame, however, it is shown in the literature that physical
observables, such as the redshift, galaxy number count [20],
Sachs–Wolfe effect, curvature perturbation (see [67,68] and
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references therein) are independent of the choice of the con-
formal frame. One can use these frame invariant observables
in the current model to find a map between the late-time
cosmological perturbations and fluctuations in a bouncing
model. Typically, small perturbations on a collapsing cos-
mological background tend to grow, whereas the growth of
perturbations is suppressed in an expanding space. There-
fore, one can speculate that the perturbations in the bouncing
universe will grow up to the point of the bounce. On the other
hand, the point of the Jordan frame bounce can be arranged at
the onset of the cosmological constant dominated era in the
Einstein frame. The interpretation of the evolution of per-
turbations in the bouncing universe may reveal interesting
features regarding how dark energy affects the evolution of
cosmological perturbations in the standard cosmology, which
may not be apparent otherwise. Also, since the Jordan frame
scale factor at the point of bounce is sensitive to the dark
energy content in the Einstein frame, such a duality may
help in a better understanding of the concordance model of
cosmology.

The status of the conformal correspondence at the quan-
tum level is explored in the literature in several contexts (see,
for example [47,69–76] and references therein). The duality
between the physical universe and bouncing and collapsing
universe presented in this paper may provide further insights
into the topic. In the bouncing and collapsing descriptions
of the late-time cosmological models, the scale factor can
become arbitrarily small at a time when the dual universe
represents the accelerating and expanding physical universe.
As the collapsing universe reaches a sufficiently small scale,
it is expected to develop quantum characteristics; for exam-
ple, the quantum variance in cosmological quantities may
become large in these regions. However, the expanding uni-
verse is expected to behave classically at this point.

It is shown in [48] that the conformal map between a con-
tracting Brans–Dicke Jordan frame and an expanding Ein-
stein frame holds at the quantum level. Interestingly, the rise
in quantum fluctuations is found to be conformally invariant;
they take the same value in both frames regardless of the dif-
ferent cosmological evolutions. Given that the effect of dark
energy can alternatively be realized as collapse of space, as
shown in the present work, the results may indicate that a
dark energy-driven large expanding universe can also harbor
non-trivial quantum features [77–79].
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Appendix A: Field equations in the Jordan frame

Here we summarize the derivations of the Brans–Dicke the-
ory equations of motion in the Jordan frame, Eqs. (66), (69)
and (70). For detailed derivation see, for example [1].

The variation of the Brans–Dicke action (25) with respect
to the metric gab leads to the field equation

λGab = wBD

λ

(
∇aλ∇bλ − 1

2
gab∇cλ∇cλ

)

+ (∇a∇bλ − gab�λ) − 8πUgab, (73)

the trace of which is

λR = wBD

λ
∇cλ∇cλ + 3�λ + 32πU. (74)

The equation of motion of the Brans–Dicke field λ can be
derived as

2wBD�λ + λR − wBD

λ
∇cλ∇cλ − 16πλU,λ = 0. (75)

Using Eqs. (74) and (75), one can find the following dynam-
ical equations for the metric and for λ,

�λR = �
wBD

λ
∇cλ∇cλ + 16π

(
3λU,λ + 4wBDU

)
. (76a)

��λ = 16π (λU,λ −2U ) . (76b)

For the homogeneous background field λ(t) and spatially
flat FRW line element (written in the coordinate time) in the
Jordan frame,

ds2 = −dt2 + a2(t)δαβdxαdxβ, (77)

the above equations lead to

Ḣ = −wBD

2

(
λ̇

λ

)2

+ 2H
λ̇

λ
+ 1

2�λ
16π

[
λU,λ − 2U

]
(78a)
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λ̈ + 3H λ̇ = −16π

�

[
λU,λ − 2U

]
. (78b)

Similarly, using the perturbed metric (68) and perturbed
field (67) in Eqs. (76a) and (76b), one can find the linear
order equation

− 6λ̄��̈ − 30H λ̄�̇�

+ �

⎛
⎝−2k2λ̄�

a2 − 24H2λ̄� − 12Ḣ λ̄� − 2 ˙̄λ2
w�

λ̄

⎞
⎠

+ δλ

(
−2k2�

a2 + 36H2� − 6H ˙̄λ�

λ̄
+ 18Ḣ�

−48πλ̄U,λλ − 48πU,λ − 64πwUλ +
˙̄λ2

w�

λ̄2

⎞
⎠

+ δ̇λ

(
6H� + 2 ˙̄λw�

λ̄

)
= 0 (79)

and

δ̈λ + δ̇λ

(
3H +

˙̄λ
λ̄

)

+ δλ

(
k2

a2 + 6H ˙̄λ
λ̄

−
˙̄λ2

λ̄2
+ 2 ¨̄λ

λ̄
+ 16πλ̄U,λλ

�
− 16πUλ

�

)

− 6H ˙̄λ� − 2� ¨̄λ − 4 ˙̄λ�̇ = 0, (80)

where all the terms involving � are replaced with � using
Eq. (55).
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