
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 995 (2023) 116336
www.elsevier.com/locate/nuclphysb

Quantum Field Theory and Statistical Systems

Hom-Lie-Virasoro symmetries in Bloch electron 

systems and quantum plane in tight binding models

Naruhiko Aizawa a,∗, Haru-Tada Sato a,b

a Department of Physics, Graduate School of Science, Osaka Metropolitan University, Nakamozu Campus, Sakai, 
Osaka 599-8531, Japan

b Department of Data Science, i’s Factory Corporation, Ltd., Kanda-nishiki-cho 2-7-6, Tokyo 101-0054, Japan
Received 4 April 2023; received in revised form 17 August 2023; accepted 23 August 2023

Available online 29 August 2023
Editor: Hubert Saleur

Abstract

We discuss the Curtright-Zachos (CZ) deformation of the Virasoro algebra and its extensions in terms 
of magnetic translation (MT) group in a discrete Bloch electron system, so-called the tight binding model 
(TBM), as well as in its continuous system. We verify that the CZ generators are essentially composed of 
a specific combination of MT operators representing deformed and undeformed U(1) translational groups, 
which determine phase factors for a ∗-bracket commutator. The phase factors can be formulated as a ∗-
ordered product of the commutable U(1) operators by interpreting the AB phase factor of discrete MT 
action as fluctuation parameter q of a quantum plane. We also show that some sequences of TBM Hamilto-
nians are described by the CZ generators.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

1.1. FFZ and Moyal deformation

The Moyal sine algebra (FFZ algebra) [1] is related to the Moyal bracket deformation, which 
is well-known as a Lie-algebraic deformation of the Poisson brackets and has been applied to 
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describe noncommutative phenomena in various regions such as noncommutative geometry in 
string theories and quantum Hall physics.

The Moyal bracket and its star product are defined by [2]

{f (x,p), g(x,p)}∗ = 2

h̄
sin

(
h̄

2
θab∂a

1 ∂b
2

)
f (x,p)g(x,p) , (1.1)

f ∗ g = exp

{
i
h̄

2
θab∂a

1 ∂b
2

}
f (x,p)g(x,p) , (1.2)

where θxp = −θpx = θ , and ∂1 and ∂2 denote forward (left) and backward (right) derivative 
operations respectively. The Moyal commutator is related to the Moyal bracket

[f,g]∗ = f ∗ g − g ∗ f = ih̄{f,g}∗ (1.3)

and is often mentioned as Moyal deformation or Moyal quantization which can be regarded as a 
quantum deformation of the Dirac bracket

ih̄{f,g}∗ → [f,g] . (1.4)

It is known that this quantization leads to the SU(∞) Lie algebra, so-called the Moyal sine 
algebra, if one takes the bases τn,k = ei(nx+kp) of T 2 phase space [1]:

[τn,k, τm,l] = 2i sin(
h̄θ

2
(nl − mk))τn+m,k+l . (1.5)

In the context of deformation quantization one may keep the star product structure

[τn,k, τm,l]∗ = 2i sin(
h̄θ

2
(nl − mk))τn+m,k+l . (1.6)

What we call the FFZ algebra in this note is originally given by (1.5) with the introduction of 
deformation parameter q and the q-bracket for an arbitrary object A

q = eih̄θ , and [A] = qA − q−A

q − q−1 . (1.7)

Changing the normalization

T(n,k) = 1

q − q−1 τn,k (1.8)

we have the FFZ algebra

[T(n,k), T(m,l)] = [nl − mk

2
]T(n+m,k+l) , (1.9)

where we assume that τn,k is generalized to an arbitrary operator behaving like the Moyal star 
products [1]

τn,kτm,l = q
nl−mk

2 τn+m,k+l . (1.10)

It is well known that magnetic translation (MT) operators satisfy this fusion relation [3].
2



N. Aizawa and H.-T. Sato Nuclear Physics B 995 (2023) 116336
1.1.1. Noncommutative geometry
Quantum field theory on noncommutative spaces [4] is one of many applications of the Moyal 

brackets. The coordinates of the endpoints of open strings constrained to a D-brane in the pres-
ence of a constant Neveu-Schwarz B field are reported to be relevant to a noncommutative 
algebra [5]. The field theory on noncommutative boundary space (known as noncommutative 
field theory) has attracted much attention in string and M-theories, and the noncommutativ-
ity is expressed in the Moyal star bracket [xμ, xν]∗ = ih̄θμν . This noncommutative feature is 
understood to be originated from the same idea as noncommutative magnetic translations in two-
dimensional quantum mechanics in a constant magnetic field [3].

There is also an interesting topic in quantum gravity in a relevance to infinite dimensional 
symmetries. Moyal deformations of self-dual gravity have recently been studied in the context 
of noncommutativity and W1+∞ algebra [6], while the classical counterpart w1+∞ algebra [7] is 
related to soft graviton symmetries in asymptotically flat 4D quantum gravity [8]

[wp
n ,w

q
m] = (n(q − 1) − m(p − 1))wp+q−2

n+m . (1.11)

1.1.2. Quantum Hall effect
On the other hand, another type of W∞ algebra has been examined in quantum Hall physics [9,

10] and in the conformal field theory of edge excitations as well as in bulk physics extension [11]. 
It is also known that W∞ is associated to the area-preserving diffeomorphisms (for a review see 
[12]) of incompressible fluids. The generators w̃k

n satisfy [13]

[w̃k
n, w̃

l
m] = ((k + 1)(m + 1) − (n + 1)(l + 1))w̃k+l

n+m , (1.12)

and their generating functions ρ(k, k̄) consisting of w̃k
n as Fourier components [14] obey the 

Girvin-MacDonald-Platzman algebra [10]

[ρ(k, k̄), ρ(p, p̄)] = (epk̄/4 − ep̄k/4)ρ(k + p, k̄ + p̄) . (1.13)

Interestingly, this relation can be identified with the FFZ commutation relation (1.9) by changing 
the normalization

ρ(k, k̄) = e− kk̄
8 Wk,k̄ , (1.14)

which leads to [14]

[Wk,k̄,Wp,p̄] = 2 sinh

(
pk̄ − p̄k

8

)
Wk+p,k̄+p̄ . (1.15)

1.2. Quantum algebra and Hall effect

Another interesting aspect of quantum Hall effect is a certain relevance to integrable models 
in two-dimensional lattice systems. The algebraic approach of dynamical symmetries is useful 
when the Hamiltonian can be written in terms of the symmetry generators. The problem of Bloch 
electrons in a constant magnetic field can be solved by making use of a relation between the 
group of magnetic translations and Uq(sl2) quantum group [15] (strictly speaking the quantum 
algebra, which is a universal enveloping algebra with non-cocommutative Hopf algebra struc-
ture [15–18]). The Hamiltonian of a particle on a two-dimensional square lattice in the magnetic 
field (tight binding model) is composed of Uq(sl2) raising and lowering operators, which are ex-
pressed in N -dimensional Weyl bases X and Y with the commutation relation qXY = YX [19]. 
3
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The same approach on a triangular lattice is shown in [20] adding the 3rd basis Z satisfying 
qZX = XZ and qYZ = ZY . Spectra of these models can be represented by means of solutions 
of Bethe ansatz type algebraic equations [19–21]. The magnetic translations in the discretized 
systems are given by products of the Weyl base matrices, and their commutation relations are 
accompanied by a global phase factor such as q2TxTy = TyTx owing to the Weyl commutation 
relations.

While in a continuous coordinate system, magnetic translations are made of differential op-
erators, and their phase factors are no longer global but rather comprising local parameters as 
seen in (1.6), and the Hamiltonian cannot be written in terms of those quantum group generators. 
Nevertheless it is interesting that there exist the generators of quantum algebra Uq(sl2) expressed 
by magnetic translations [22] in somewhat parallel form to the cases of the lattice systems. Fur-
nished with the local parameters of Moyal type (1.6), the generators can further be extended to 
q-deformed Virasoro (super)algebras [23,24] which are studied in field theory context [25–30]. 
Although these deformed algebras are not a quantum algebra but infinite dimensional Lie al-
gebras, an interesting point is definitely an appearance of Moyal noncommutative feature of 
magnetic translations. Despite the clear correspondence of the tight binding Hamiltonian to the 
continuous system in a continuum limit, the inheritance of properties of magnetic translations 
such as quantum groups and the Weyl bases is still unclear. In other words, they are considered 
to disappear or not to be in the limit, regardless of having the similar characteristics mentioned 
above.

Related to the quantum Hall effects and q-deformed algebras, there is also an interesting 
approach using Tsallis statistics [31] to thermodynamic calculations [32–34].

1.3. Quantum space and CZ algebra

In order to reveal the truth and resolve such a conflicting situation, quantum groups and planes 
may help. Quantum groups [35] are another notion to describe noncommutative geometry, and 
they are formulated to be dual objects to quantum algebras [36,37]. They are deformations of 
matrix groups whose matrix entries obey certain commutation relations depending on a deforma-
tion parameter q . Quantum space possesses noncommuting coordinates Xi and their differentials 

∂i = ∂

∂Xi
which satisfy the relations

XiXj = B
ij
klX

kXl , ∂i∂j = F lk
ji ∂k∂l , ∂jX

i = δi
j + Cik

jl X
l∂k , (1.16)

where the coefficient matrices B , C and F satisfy certain Yang-Baxter relations [38]. This en-
sures that the coordinates and their derivatives behave covariantly under the action of quantum 
group matrix. One of intriguing and the simplest example is the bosonic part of GLq(1, 1) quan-
tum superspace

∂xx = 1+ q−2x∂x , (1.17)

since the Virasoro operators in this quantum space

Ln = −q−1xn+1∂x (1.18)

satisfy another version of q-deformed Virasoro algebra called the Curtright-Zachos (CZ) alge-
bra [39]

[Ln ,Lm ](m−n) = [n − m]Ln+m , (1.19)
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where the symbol [x] is defined in (1.7) and the bracket on LHS denotes the deformed com-
mutator [A, B](x) = qxAB − q−xBA. There are many results concerning representations of the 
CZ algebra such as: q-harmonic oscillators [40], central extensions [41,42] and operator product 
formula (OPE) [42], matrix representation [43], quantum space differential calculi [44–46], and 
fractional spin representation [47]. Multi-parameter deformations [48,49] and supersymmetric 
extensions [44,45,50] are also studied. Motivated by its application to physical systems, sev-
eral investigations have been made: deformation of soliton equations [51,52], transformation to 
commutator form [52], Jacobi consistency conditions [42,53], and so on.

1.4. Contents

The purpose of this paper is three fold: first one is to clarify a dynamical origin of the phase 
factors used in the commutator deformation of the algebra (1.19). Second is to clarify a rela-
tion between the phase factors and quantum plane picture which is relevant to physical models 
that possess a quantum algebra symmetry. Third is to present various ways of constructing the 
CZ generators. We investigate some properties of the CZ generators based on the algebras of 
MT and discrete magnetic translation (DMT), and discuss their relations to the Hamiltonian 
systems relevant to a tight binding model (TBM), which is a discrete model of a particle on a 
two-dimensional lattice in constant magnetic field. We expect to catch a glimpse of quantiza-
tion of space, or rather the quantum plane structure, as a natural effect of space discretization 
in TBM, in addition to which is known to possess the quantum algebra symmetry Uq(sl2) (see 
Appendix A).

In Section 2, reviewing some properties of CZ algebra, we explain mathematical settings and 
MT algebras as our basic tool. The magnetic translations in TBM are reviewed in Section 5. In 
Section 3, we consider MT realizations of CZ algebras starting from a q-derivative representation 
of the algebra. We present a generalized algebra CZ∗, which includes CZ algebra as a subalgebra 
of it. The generators of these algebras are composed of certain combinations of specific MT op-
erators, and all these algebras as well as MT algebra can be encapsulated into a single expression 
of deformed commutators with a ∗-product structure.1 The structure of CZ∗ generators consists 
of commutative MT and noncommutative MT parts. The commutative part plays the role of the 
fundamental CZ algebraic relation (structure constant of the algebra), and the noncommutative 
part plays the role of a nonlocal operator of ∗-commutative translation (deformed U(1)) and the 
role of defining a weight for ∗-product phase factors as well.

In Section 4, we construct a matrix representation of CZ∗ and verify the property of the 
representation given in Section 3 (we call the representation in Section 3 “commutative repre-
sentation”). We investigate a mechanism how quantum plane structure and the ∗-bracket structure 
arise in CZ∗ algebra. CZ∗ contains two subalgebras CZ±, and they correspond to two orthog-
onal directions on quantum plane in TBM. Section 4.2 outlines the role and significance of 
commutative representations. Section 4.3 defines the algebra family of CZ∗ representations that 
provide the TBM Hamiltonian sequences, in preliminary for the specific verification explained in 
Section 5. Section 4.4 presents another definition of our ∗-product. We first show that the com-
mutative representations are composed of composite operators of DMT units in two directions. 
Then making use of the commutative representations and introducing a concept of ∗-ordering 
product, we formulate the appearance of the phase factor of the CZ∗ commutators on basis of 

1 It is not clear that our ∗-product is the same as the Moyal ∗-product, however for convenience of terminology we 
adopt the same symbol without causing any serious confusion.
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the quantum plane picture of DMT in TBM. The derivation of the matrix representations of DMT 
is shown in Appendix B, where confirmation of their MT algebra is made as well.

In Section 5, we discuss the TBM Hamiltonian series universally represented by the matrix 
representations of CZ∗ algebras. In Section 5.1, we derive the DMT algebra (exchange, fusion 
and circulation rules) and observe the correspondence between the AB phase and the quantum 
plane fluctuations accompanied by the DMT movement. In Section 5.2, we describe the TBM 
Hamiltonian sequence Ȟk using the n = ±1 modes of CZ∗ family generators. Section 5.3 dis-
cusses extensions to general modes of CZ∗ family in accord to the Hamiltonian systems Ĥn

with the effective spacing of magnetic lattice extended from 1 to n. In Section 5.4, more generic 
sequence Ĥ(n,k) with the quantum plane fluctuation (power of q) extended from 1 to k is rep-
resented by the genuine CZ∗ generators. As an aid to understanding some formulae used in 
Section 5, we review the quantum group symmetry of the original TBM Hamiltonian, and add 
some remarks on q-inversion symmetry of the Hamiltonian in Appendix A.

2. Curtright-Zachos (CZ) algebra

We make a brief review of mathematical settings on the CZ algebra. There are two types 
of bracket deformation, and they differ in how they introduce their phase factors. The way of 
introducing the phase factors depends on explicit realizations of the generators of CZ algebra. 
Namely, there is no a priori way to determine how to introduce the phase factors and we have 
to start with a realization of the generators. However, the only known realization with physical 
implications is the deformation of harmonic oscillators, and we hence need other realizations 
to explore physical and mathematical properties of the CZ algebra. To this end, in Section 2.2, 
we introduce magnetic translation (MT) algebra, which is a typical realization of the Moyal sine 
algebra (FFZ algebra) in physical system. The property of generating phase factors when MT 
operators commute is compatible with the deformed commutation relation of the CZ algebra, and 
it is very convenient to investigate various features of the CZ algebra. Using MT representations 
in a later section, we will explain that there exists a larger algebra containing the CZ algebra, and 
investigate ∗-bracket formulation for these algebras altogether.

2.1. Bracket deformation

The CZ algebra is neither a standard Lie algebra nor a quantum algebra, but a Hom-Lie 
algebra [54–56], which is a deformed Lie algebra satisfying skew symmetry and Hom-Jacobi 
conditions [56]. The Hom-Lie algebras were originally introduced in [54] as motivated by ex-
amples of deformed Lie algebras derived from twisted discretization of vector fields. The skew 
symmetry is provided by the relation

[Ln,Lm](m−n) = −[Lm,Ln](n−m) . (2.1)

The Hom-Jacobi condition of the CZ algebra is expressed as

(qn + q−n)[Ln, [Lm,L�](�−m)](m+�−n) + cyc. perm. = 0 , (2.2)

and this condition consists of two parts. One is the Yang-Baxter associativity relation

[Ln, [Lm,L�](�−m)](m+�−2n) + cyc. perm. = 0 , (2.3)

and the other is the consistency condition [42]
6
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[Ln, [Lm,L�](�−m)](m+�) + cyc. perm. = 0 . (2.4)

Representations in q-harmonic oscillator and quantum superspace as well as (1.18) are known to 
satisfy these conditions [44,45,52].

Another feature that distinguishes it from the usual Virasoro algebra is the existence of the 
central element S0 [42]

S0 = 1+ (q − q−1)L0 , (2.5)

satisfying the commutation relations

Sk
0Ln = q−2nkLnS

k
0 , or [Sk

0 ,Ln](nk,−nk) = 0 . (2.6)

Unlike the standard quantum and Lie algebras, the CZ algebra is defined in terms of the 
deformed bracket. We have two options to express the CZ algebra (1.19) according to the way of 
defining deformed commutators: one is the exterior type

[A,B ](x,y) = qxAB − qyBA, (2.7)

[A,B](x) = [A,B](x,−x) = qxAB − q−xBA, (2.8)

and the other is the intrinsic type

[A,B]∗ = A ∗ B − B ∗ A. (2.9)

The phase factors qx attached to the products AB in Eqs. (2.7) and (2.8) are given by hand. 
On the other hand in (2.9) the factors are implicitly included in the definition of A ∗ B , which 
is supposed to give rise to phase factors according to a certain product mechanism determined 
based on a phase space structure2 similarly to the Moyal commutators. This does not necessarily 
mean to supply the Moyal star products.

For the time being leaving the question open why the products are given in the following form 
and what its essential origin is, we suppose that

Ln ∗ Lm = qm−nLnLm , (2.10)

Sk
0 ∗ Ln = qnkSk

0Ln , (2.11)

and we then have

[Ln,Lm]∗ = [Ln ,Lm ](m−n)

= qm−nLnLm − qn−mLmLn . (2.12)

In order to search for a certain origin of (2.10), we later investigate MT representations of CZ 
algebras in Section 3. In Section 4.4, we further explore mathematical features (quantum plane 
and ∗-ordered product) of discrete magnetic translations (DMTs) in tight binding model (TBM) 
on a two-dimensional square lattice as well.

2 We introduced the product as (AnBm)q = qm−nAnBm in the original paper [42].
7
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2.2. Magnetic translation algebra (MTA)

Magnetic translations τ̂R of a charged particle in a constant magnetic field on a continuous
coordinate surface are written in terms of differential operators in the following nonlocal way 
(choice of unit φ0 = hc/e = 1)

τ̂R = e2πiξ(x,R)TR , (2.13)

where TR is a translation by R, and ξ is a gauge function defined by

A(x + R) − A(x) = ∇ξ(x,R) . (2.14)

They satisfy the following algebraic relations (exchange and fusion rules):

τ̂R1 τ̂R2 = e2πiφτ̂R2 τ̂R1 , (2.15)

τ̂R1 τ̂R2 = e2πiξ(R1,R2)τ̂R2+R1 , (2.16)

from which the circulation algebra is derived [3]

τ̂−1
R1

τ̂−1
R2

τ̂R1
τ̂R2

= e2πiφ , (2.17)

where φ is a magnetic flux (proportional to the area |R1 × R2| enclosed by the end points of 
circular operations). It is given by the differences of gauge function between two points

φ = ξ(R1,R2) − ξ(R2,R1) , (2.18)

where we denote

R1 = (n1,m1) = (n, k) , R2 = (n2,m2) = (m, l) . (2.19)

In this paper we refer the set of exchange, fusion and circulation rules as MTA (magnetic trans-
lation algebra).

Introducing the q parameter with magnetic length lB = √
h̄c/eB , unit length a and magnetic 

field B ,

q = exp

(
2πi

Ba2

φ0

)
= exp

(
ia2l−2

B

)
, (2.20)

under the choice of symmetric gauge we have

τ̂R1 τ̂R2 = qnl−mkτ̂R2 τ̂R1 , (2.21)

τ̂R1 τ̂R2 = q
nl−mk

2 τ̂R1+R2 . (2.22)

τ̂−1
R1

τ̂−1
R2

τ̂R1
τ̂R2

= qnl−mk . (2.23)

Applying the change of normalization to (2.22)

τ̂Ri
= τ̂ (mi)

ni
= (q − q−1)T̂ (mi)

ni
, (2.24)

we have the realization (1.9) of FFZ algebra [1] by means of MTA

[T̂ (k)
n , T̂ (l)

m ] = [nl − mk

2
]T̂ (l+k)

n+m . (2.25)

As a simple example of τ̂ (k)
n let us have a look at angular momentum phase space (together 

with a spin value �) on a unit circle z = eiθ of cylinder coordinate w = ln z. Instead of the usual 
8
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form τ̂R = e
i
h̄
R·π described by the gauge covariant derivatives π̂i = p̂i + e

c
Ai , in this case we 

have

τ̂ (k)
n = exp

(
i

h̄
R · �

)
= znq−k(z∂+ n

2+�) , (2.26)

where

� = (
h̄

lB
θ,− 1

lB
J3 − h̄

lB
�) = (−i

h̄

lB
ln z,− h̄

lB
(z∂ + �)) , (2.27)

R = (nlB, k
a2

lB
) , J3 = −ih̄∂θ = −ih̄(x∂y − y∂x) . (2.28)

One can verify that (2.26) satisfies the MTA (2.21) (2.22) (2.23). (For simplicity, one may set 
a = lB = h̄ = 1.)

3. ∗-bracket formulation and CZ∗ algebra

Starting from a q-differential operator expression of CZ generators, we present the realization 
of CZ algebra by MT operators, which leads to the idea of ∗-bracket formulation. In this section 
we discuss three types of CZ algebraic system CZ± and CZ∗.

Section 3.1 sets out the principle of giving rise to phase factors such that MT appears com-
mutative (i.e., deformed U(1)). Setting weights on MT operators and CZ generators (special 
combinations of MT), we show that the ∗-brackets are realized by certain rules. Two closed sub-
algebras of MT, T̂ (0)

n and T̂ (2)
n , play an important role in the construction of the CZ operators. 

The ordinary commutative operator T̂ (0)
n defines the structure constant of CZ algebra, and the 

other ∗-bracket commutative one T̂ (2)
n carries the weight of the CZ operators.

In Section 3.2, we show another special combination CZ−, which transforms into CZ+ mu-
tually with q-inversion. Both CZ± can be combined into one algebraic system CZ∗ in the 
framework of ∗-brackets.

3.1. q-derivative representation of CZ algebra

Let us consider the q-analogue of differential operators ∂q (called the q-derivatives) defined 
by

∂qf (z) = f (z) − f (zq−2)

(q − q−1)z
. (3.1)

This satisfies the following Leibniz rule and the formula

∂q(f (z)g(z)) = g(z)∂qf (z) + f (zq−2)∂qg(z) , (3.2)

∂qzn = q−n[n]zn−1 . (3.3)

Defining the analogue of ln = −zn+1∂z by replacing ∂z with ∂q ,

L̂n = −zn+1∂q (3.4)

we can verify that L̂n satisfy the CZ algebra eq. (1.19).

[ L̂n , L̂m ](m−n) = [n − m]L̂n+m . (3.5)
9
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Noticing eqs. (3.1) and (3.4), the q-derivative can be rewritten by nonlocal expression of 
ordinary derivative ∂z, and we have

L̂n = −zn 1− q−2z∂

q − q−1 . (3.6)

This is related to the q-harmonic oscillators

a†q = qz , aq = 1

qz
[z∂] , N = z∂ , (3.7)

which satisfy the following relations

aqa†q − qa†qaq = q−N , [N ] = a†qaq (3.8)

[N,aq ] = −aq , [N,a†q ] = a†q , (3.9)

L̂n = −q−N(a†q)n+1aq . (3.10)

Now, applying the magnetic translation (2.26) to (3.6) with the notation (2.24) we have another 
representation of the CZ generators

L̂n = −T̂ (0)
n + qn+2�T̂ (2)

n . (3.11)

To make a contact with ∗-bracket formulation, we consider deformed commutators of L̂n and 
T̂

(k)
m . The basic algebraic relations (2.21) and (2.22) allow us to calculate various deformed com-

mutators such as

[ L̂n , τ̂ (k)
m ](2m,nk) = −qm+ nk

2 [m]τ̂ (k)
n+m , (3.12)

[ L̂n , T̂ (k)
m ]

(m− nk
2 )

= −[m]T̂ (k)
n+m , (3.13)

[L̂n, T̂
(k)
m ] = −[nk

2
]T̂ (k)

n+m − [m − nk

2
]T̂ (k+2)

n+m (3.14)

which are verified easily by utilizing the exchange relation between ∂q and q−kz∂

q−kz∂∂q = qk∂qq−kz∂ . (3.15)

At this stage, there is no guideline for choosing one out of them. We hence need a limiting 
condition or a principle to constrain the form of phase factors to be attached to the commutator 
deformations.

One possible strategy is to follow the fact that magnetic translations should reduce to the usual 
translations when magnetic field vanishes. This naturally leads to the idea that T̂ (k)

n should satisfy 
a deformation of translational group U(1). The most likely deformation is hence to attach phase 
factors to (2.8) in a way to cancel the phase factors coming from the fusion rule (2.22), i.e.,

[ T̂ (k)
n , T̂ (l)

m ]
( mk−nl

2 )
= 0 . (3.16)

Let us refer the upper index k in T̂ (k)
n to “weight” and define the weight of L̂n to be 2. Considering 

the following set of operators for all integers n and k

M = { T̂ (k)
n , L̂n } (3.17)

and allowing only the same phase factors as (3.16) for L̂n as well as T̂ (k)
n , we thereby find the 

only three types of deformed commutators allowed
10
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[ T̂ (k)
n , T̂ (l)

m ]
( mk−nl

2 )
, [ L̂n , T̂ (l)

m ]
(m− nl

2 )
, [ L̂n , L̂m ](m−n) , (3.18)

where we have put k = 2 in the 2nd bracket reducing to (3.13), and k = l = 2 in the 3rd one 
reducing to (3.5). Note that we have omitted one type due to the skewness of the bracket (2.8)

[A,B ](x) = −[B ,A ](−x) . (3.19)

In this way we adopt eqs. (3.5), (3.13), (3.16) for the fundamental set of closed algebras of M , 
of which constituent (3.5) is the CZ algebra as a deformation of Virasoro algebra, and (3.16)
is a deformed U(1) algebra of magnetic translation group as a deformation of U(1) translation 
group.

In summary we confirm that ∗-bracket (2.9) can be defined for every element X(k)
n ∈ M of 

weight k by

X(k)
n ∗ X(l)

m = q−xX(k)
n X(l)

m , x = nl − mk

2
(3.20)

and we organize eqs. (3.5), (3.13), (3.16) into the single common bracket form

[T̂ (k)
n , T̂ (l)

m ]∗ = 0 , (3.21)

[L̂n, L̂m]∗ = [n − m]L̂n+m , (3.22)

[L̂n, T̂
(l)
m ]∗ = −[m]T̂ (l)

n+m . (3.23)

Note that the algebra of central element (2.6) reads

[Ŝk
0 , L̂n]∗ = 0 , where Ŝ0 = 1+ (q − q−1)L̂0 , (3.24)

if we regard the weight of Ŝk
0 as 2k in (3.20).

3.2. CZ± and CZ∗ algebra

Inspecting the constitution of the CZ operators L̂n in terms of subalgebras of T̂ (k)
n , we con-

sider q-inversion symmetry of M , since the algebra set (3.21)-(3.23) is not invariant under the 
exchange of q ↔ q−1.

In order to examine the structure of CZ algebra (3.22), let us set the same phase factor for 
T̂

(k)
n as for L̂n. Then we have

[ T̂ (k)
n , T̂ (l)

m ](m−n) = [n(l − 2) − m(k − 2)

2
]T̂ (k+l)

n+m . (3.25)

If we put k, l = 0, 2 in this equation, we obtain the following closed subalgebras on T̂ (k)
n with 

weight 0 and 2, which are the parts of L̂n defined in (3.11)

[ T̂ (2)
n , T̂ (2)

m ](m−n) = 0 , [ T̂ (0)
n , T̂ (0)

m ](m−n) = [m − n]T̂ (0)
n+m , (3.26)

[ T̂ (2)
n , T̂ (0)

m ](m−n) = [−n]T̂ (2)
n+m , [ T̂ (0)

n , T̂ (2)
m ](m−n) = [m]T̂ (2)

n+m . (3.27)

According to these algebras, [ L̂n , L̂m ](m−n) is verified to be closed without participations of 
any other weights:

[ L̂n , L̂m ](m−n) = (qn[n] − qm[m])q2�T̂
(2)
n+m + [m − n]T̂ (0)

n+m

= [n − m](qn+m+2�T̂
(2)
n+m − T̂

(0)
n+m)

= [n − m]L̂n+m .
11
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We should note that T̂ (0)
n is a commuting local operator which does not include a differential 

operator w.r.t. z, while T̂ (2)
n is a noncommuting nonlocal differential operator. However this non-

commutativity feature is reversed each other in the view of deformed commutator world as can 
be seen in eq. (3.26). If we find a set of subalgebras similar to eqs. (3.26) and (3.27), it is possible 
to find another set of operators similar to L̂n.

It is in fact easy to find such a combination of T̂ (k)
n by considering q-inverted version of (3.25)

[ T̂ (k)
n , T̂ (l)

m ](n−m) = [n(l + 2) − m(k + 2)

2
]T̂ (k+l)

n+m , (3.28)

and setting k, l = 0, −2 we find another subalgebras corresponding to eqs. (3.26) and (3.27)

[ T̂ (−2)
n , T̂ (−2)

m ](n−m) = 0 , [ T̂ (0)
n , T̂ (0)

m ](n−m) = [n − m]T̂ (0)
n+m , (3.29)

[ T̂ (−2)
n , T̂ (0)

m ](n−m) = [n]T̂ (−2)
n+m , [ T̂ (0)

n , T̂ (−2)
m ](m−n) = [−m]T̂ (−2)

n+m . (3.30)

Defining the q-inverted version of L̂n with the new notation L̂±
n

L̂+
n = L̂n , L̂−

n = T̂ (0)
n − q−n−2�T̂ (−2)

n , (3.31)

we obtain

[ L̂+
n , L̂+

m ](m−n) = [n − m]L̂+
n+m , [ L̂−

n , L̂−
m ](n−m) = [n − m]L̂−

n+m (3.32)

[ L̂±
n , T̂ (k)

m ]
(±m− nk

2 )
= −[m]T̂ (k)

n+m , (3.33)

where we denote the two algebras in (3.32) as CZ± respectively. We notice that the signs of 
phase factors for L̂±

n in (3.32) are completely opposite, while the phase factors in (3.33) are not 
symmetric w.r.t. the exchange of L̂±

n . This fact is originated in the q-inversion symmetry

ˆ̂
T (k)

n ↔ −T̂ (−k)
n , L̂+

n ↔ L̂−
n . (3.34)

However, this clumsy combination perfectly disappears if we incorporate L̂−
n into M assuming 

the weight of L̂−
n to be −2. Thus changing its notation from M to

M ∗ = { L̂±
n , T̂ (k)

n } , (3.35)

we can make the new elements L̂−
n participate in the following extended algebras including 

(3.21)-(3.23) with (3.20):

[L̂±
n , L̂±

m]∗ = [n − m]L̂±
n+m , (3.36)

[L̂±
n , T̂ (l)

m ]∗ = −[m]T̂ (l)
n+m . (3.37)

Although the two algebras CZ± are expressed in (3.36) respectively, the remaining intersecting 
algebra [L̂+

n , L̂−
m]∗ is yet open to incorporate into possible M ∗ algebra. Using (3.31) We then 

find

[ L̂+
n , L̂−

m ](n+m) = q−m[n]L̂+
n+m − qn[m]L̂−

n+m , (3.38)

and its phase factors are verified to certainly be given by (3.20) with the weights k = ±2 applied 
to X(k)

n = L̂±
n .

Now let us show that (3.36) and (3.38) can be organized into a closed algebra form. Introduc-
ing the notation ε, η to express the ± signs, (3.36) and (3.38) read
12
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[L̂ε
n, L̂

ε
m]∗ = [n − m]L̂ε

n+m , (3.39)

[L̂ε
n, L̂

η
m]∗ = qηm[n]L̂ε

n+m − qεn[m]L̂η
n+m . (ε 	= η) (3.40)

Furthermore using the formula

qεm[n] − qεn[m] = [n − m] , (3.41)

we can arrange the CZ± and their mixing algebras (3.39) and (3.40) in one final compact form

[Lε
n,L

η
m]∗ = qηm[n]Lε

n+m − qεn[m]Lη
n+m , (3.42)

which we shall denote the CZ∗ algebra.
In closing this section we put a brief remark on the q-derivative expression. (3.31) is equiva-

lent to another q-derivative representation (similarly to the equivalence between (3.6) and (3.11))

L̂−
n = −zn+1∂−

q = −zn q2z∂ − 1

q − q−1 , (3.43)

where

∂−
q f (z) = f (zq2) − f (z)

z(q − q−1)
. (3.44)

Together with (3.4), we have a q ↔ q−1 symmetric form of the standard q-derivative (with q
substituted by q2)

∂q2 := ∂+
q + ∂−

q

q + q−1 = − L̂+
−1 + L̂−

−1

q + q−1 = 1

z
[z∂]q2 . (3.45)

This type of q-derivative is used in operator product expansion form of CZ+ algebra [42,52].

4. Matrix representations of CZ∗

This section studies matrix representations of CZ∗ and its related algebras. We discuss the 
role of CZ± commutative representations and their connection to quantum plane and ∗-bracket 
structure. We also present preliminary results about relationship of CZ∗ related algebras with 
the TBM Hamiltonian series.

To begin with, we introduce the CZ± matrices in Section 4.1. The CZ± operator consists of 
a combination of commutative and non-commutative parts, as seen in the case of MT realization. 
Section 4.2 considers the meaning and role of commutative representations Xn and Yn, which 
play the same part as the MT operator T̂ (0)

n . The commutative representation shows its signifi-
cance in connection to quantum plane picture and the ∗-brackets. Concrete verification is done in 
Section 4.4. The matrix expression for CZ∗ is also given in Section 4.2. Section 4.3 defines the 
representation sequence CZ∗ family, which is the sequence obtained by the replacement q → qk . 
We introduce some matrix representations of CZ∗ family associated with the TBM Hamiltonian 
(concrete correspondence will be verified in Section 5).

In Section 4.4, considering a special combination of DMT that provides a commutative repre-
sentation of CZ±, we derive another definition of ∗-product based on the quantum plane picture 
of TBM. The AB phase (see Section 5.1) associated with the movement of particles by DMT cor-
responds to the fluctuation of the quantum plane, and the phase factor generated by the successive 
DMT operations is expressed by a certain ordered product to reproduce the ∗-bracket.
13
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4.1. Cyclic representation of CZ± algebra

In order to examine the CZ∗ algebra, we must first set up its generators. Matrix representa-
tions of CZ− are already known [43], but those of the other algebras are not. Thus we have to 
find a general expression for CZ+ generators satisfying (3.36). The general expression obtained 
in this subsection does not always satisfy the CZ∗ relation (3.38). This problem is solved by 
using an automorphism of CZ± in Section 4.2.

Let us follow the basic idea given in [43]. The cyclic matrix representation of CZ generators 
are given if q is a root of unity

q = exp

(
2πi

N

)
, N > 2 (4.1)

The minimal set of Ln elements are as follows depending on whether N is even or odd:

{L−m+1, · · · ,L−1,L0,L1, · · · ,Lm} for N = 2m (4.2)

{L−m, · · · ,L−1,L0,L1, · · · ,Lm} for N = 2m + 1 . (4.3)

The minimal set called the “fundamental cell” [43] and the translational group GN = {Gk
N :

n → n + kN; k ∈ Z} on a one-dimensional lattice of period N (> 2) gives rise to an algebra 
automorphism of CZ algebra

Ln → Ln+kN , k = 0,±1,±2, · · · (4.4)

These correspond to a magnetic unit cell and the magnetic translation group in a Bloch electron 
system respectively.

Introducing the N × N Wyle base matrices X and Y satisfying XN = YN = 1

X =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
: : : :
0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎜⎝

q 0 0 · · · 0
0 q2 0 · · · 0
0 0 q3 · · · 0
: : : :
0 0 0 · · · qN

⎞
⎟⎟⎟⎟⎠ (4.5)

or rather the component representation

(X)jk = δj,k+1 , (Y )jk = qj δjk , for j, k ∈ [1,N ] (modN) (4.6)

we find the cyclic matrix representation of CZ± algebra satisfying (3.36)

L±
n = ∓

(
1−Q±2

q − q−1 + A±
n Q

±2
)
Hn , A±

n = a± + b(q±2n − 1) , (4.7)

where a± and b are free parameters. H and Q are the matrices used in [43]. They are related to 
the Wyle base matrices through H = X−1 = XT and qQ = Y , where X and Y satisfy the relation

YmXn = qmnXnYm . (4.8)

4.2. Roles of trivial form and CZ±

We here deal with L±
n in parallel, in order to consider the extension of CZ± to CZ∗ later 

(see bottom of the subsection). As discussed later (Section 4.4) the phase factors of deformed 
14
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commutators for L±
n correspond to translations accompanied by phases q±1 in two orthogonal 

directions on a quantum plane. This is one of the reasons why we extend the CZ algebra to CZ±
in this paper.

Before discussing the CZ∗ extension, some remarks are in order. The first one is that the role 
of Q2 as a central element [43] can be extended to Q±2 for CZ± algebras as follows:

[Q2,L+
n ]∗ = [Q2,L+

n ](n,−n) = 0 , [Q−2,L−
n ]∗ = [Q−2,L−

n ](−n,n) = 0 , (4.9)

where these elements are related to the central elements S±
0 (S+

0 = S0)

S±
0 = 1± (q − q−1)L±

0 = {1− A±
0 (q − q−1)}Q±2 . (4.10)

In the form of unified expression (ε = ±), one may have the relations

[Qε2k,Lε
n](εnk,−εnk) = 0 , (4.11)

and

Sεk
0 Lε

n = q−2εnkLε
nS

εk
0 , or [Sεk

0 ,Lε
n]∗ = [Sεk

0 ,Lε
n](εnk,−εnk) = 0 . (4.12)

From these, we again recognize S±
0 ∝ Q±2.

The second remark is about trivial (commutative) representations

L′±
n = ∓gn

q − q−1 , gngm = gn+m . (4.13)

Two examples of gn are given in [43]

gn = cnHn , or gn = qcn2Q2cnHn . (for const. c) (4.14)

As can be seen in (4.7), L±
n is a linear combination of trivial part Hn and nontrivial part Q±2Hn. 

We now recall that L̂±
n is also composed of trivial (commutative) T̂ (0)

n and nontrivial (non-
commutative) T̂ (±2)

n parts as previously mentioned below (3.26). In this sense the commutative 
representation Hn (essentially X−n) plays a key role in CZ± algebras. It is also interesting to 
note that the substitution

T̂ (0)
n = qn

q − q−1 H
n , T̂ (±2)

n = q±2

q − q−1 H
nQ±2 , (4.15)

satisfy the same algebras as (3.26), (3.27) (3.29) and (3.30). Here we reverted the ordering of 
Q±2Hn due to (4.19).

There is another trivial representation in terms of Y

gn = cnY n (4.16)

and we further notice that Xn and Yn play an important role to understand a relation between 
quantum plane and the ∗-bracket (2.9) as shall be discussed in Section 4.4. There we show that 
the commutative representations are nontrivially realized by composite operators of DMT units 
in two directions on a magnetic lattice. Commuting operators again behave like noncommuting 
operators in the framework of quantum plane, which generates phase factors when operators are 
exchanged. It will turn out that the ∗-bracket for Xn and Yn fit perfectly with this quantum plane 
picture in the system of TBM.

To close this subsection, we present a matrix representation of CZ∗ algebra based on (4.7). In 
order to complete the set of algebras (3.42), eq. (3.38) the remaining algebra [L+

n , L−
n ]∗ should 

be satisfied in addition to CZ± algebras (3.36).
15
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If we choose b = 0 in the matrix representation (4.7) denoting L̃ ±
n , we have

L̃ ±
n = ∓

(
1−Q±2

q − q−1 + a±Q±2
)
Hn , (4.17)

and this does not satisfy (3.38) but a slightly different one

[ L̃ +
n , L̃ −

m ](n+m) = qm[n]L̃ +
n+m − q−n[m]L̃ −

n+m . (4.18)

However, applying the following transformation that keeps CZ± unchanged

L ±
n =HnL̃ ±

n H−n , (4.19)

we verify that (3.38) is certainly satisfied, i.e.,

[L +
n ,L −

m ](n+m) = q−m[n]L +
n+m − qn[m]L −

n+m . (4.20)

Since CZ± is preserved under the transformation (4.19), L ±
n also satisfy (3.36) and (3.42). 

Therefore the CZ∗ algebra is confirmed. Note that none of (4.18) and (4.20) holds for b 	= 0, and 
we only consider the b = 0 case hereafter.

4.3. Preliminary representations to TBM

This is a preliminary section to discuss connections between CZ∗ algebra and TBM (tight 
binding model) Hamiltonian (A.11). TBM is a two-dimensional lattice model which reproduces 
electron’s Schrödinger equation under static magnetic field in a continuum limit. Our goal (see 
Section 5) is to show that TBM Hamiltonians can be expressed in the CZ∗ generators L ±

±1
following the basic idea presented in Appendix A, however in order to get an overview at the 
moment we focus our attention to some representations derived from (4.17) and (4.19) prior to 
detailed investigation.

These representations are relevant to three methods of finding a relationship between CZ∗ al-
gebra and TBM: (i) modification of Schrödinger equations according to the structure of quantum 
planes, (ii) operator factorization, (iii) change of the parameter q in CZ∗ algebra. Modifications 
of the CZ∗ are necessary in the latter two cases.

The first representation is given by

L ±
n = ∓Hn 1∓ iq±2Q±2

q − q−1 = ∓X−n 1∓ iY±2

q − q−1 , (4.21)

with the choice

a± = 1∓ iq±2

q − q−1 . (4.22)

Since TBM Hamiltonian Ĥ is a linear combination in X±1 and Y±1 as seen in Appendix A

Ĥ (X,Y ;q) = iY−1(X−1 − X) + i((X−1 − X)Y . (4.23)

Y±2 in this representation is a bit inconvenient. In this case we have to consider a slightly modi-
fied Hamiltonian in accordance with a different Schrödinger equation on a quantum plane whose 
effective length and magnitude of phase fluctuation are doubled compared to the linear Hamilto-
nian system. (Section 5.4).
16
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The second type of representation is for example

L ±
n = ∓Hn 1− q±2Q±2

q − q−1 = X−nY±1[Z] , Y = qZ , (4.24)

with the choice

a± = 1+ q±2

q − q−1 . (4.25)

In this case we can extract the linear TBM Hamiltonian by factoring out the operator [Z] (for 
details see (5.24)). In order to see the factorization, we rather employ CZ∗′ the following algebra

[L′−
n ,L′−

m ](n−m) = [n − m]L′−
n+m , (4.26)

[L+
n ,L′−

m ](n+m) = [n]L+
n+m − [m]L′−

n+m , (4.27)

by introducing

L′−
n = qnL−

n (4.28)

where arbitrary representations can be applied.
The third type of candidates are not exactly the L ±

n but slightly modified operators Ľ ±
n , 

where we consider the algebra given by Y
1
2 instead of Y in the first representation (4.21);

Ľ ±
n = ∓Hn 1∓ iq±2

1 Q±1
1

q1 − q−1
1

= ∓X−n 1∓ iY±1
1

q1 − q−1
1

, Y 2
1 = Y . (4.29)

It is obtained by the replacement q → q1 = q
1
2 and by changing matrices {Y 2, Q2} to {Y1, Q1} in 

(4.21), where the condition qN = 1 should be changed to qN
1 = 1 as well as matrix entries q in 

Y1 to q1. Commutation relation qXY = YX is then changed to q1XY1 = Y1X. After all, except 
for the change of power in Y and Q, everything is understood as q → q1 = q

1
2 . For the sake of 

later conveniences, we introduce more general modification

Ľ ±
n = ∓X−n 1∓ iY±1

k

qk − q−1
k

, (4.30)

Yk = diag(qk, q
2
k , · · · , qN

k ) , qN
k = 1 , qkXYk = YkX . (4.31)

The modified algebra of Ľ ±
n is given by the replacement q → qk in CZ∗(q), that leads to a 

sequence of algebras CZ∗(qk), and we refer to it as CZ∗ family (algebras). We then have

[Ľ ±
n , Ľ ±

m ]∗k
= [n − m]kĽ ±

n+m , (4.32)

[Ľ +
n , Ľ −

m ]∗k
= q−m

k [n]kĽ +
n+m − qn

k [m]kĽ −
n+m , (4.33)

where

[n]k := qn
k − q−n

k

qk − q−1
k

, (4.34)

[Ľ +
n , Ľ −

m ]∗k
= [ Ľ +

n , Ľ −
m ](n+m)

∣∣∣
q→qk

. (4.35)

We assume Yk = Y k and qk = qk for k ≥ 2, and (4.21) multiplied by q + q−1 corresponds to 
the k = 2 case. (4.29) is regarded as an exceptional case k = 1 with Y 2

1 = Y (↔ q2
1 = q). This is 

the outlined strategy of how to obtain the TBM form Ĥ(X, Yk; qk) from Ľ ±
n by changing the q

parameter in CZ∗ representations. Details are explained in Section 5.2.
17
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q
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†
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Fig. 1. Translations on Yj line (j = m + n).

4.4. Quantum plane and ∗-bracket

We discuss quantum plane picture of CZ± algebra in the framework of discrete magnetic 
translations T̂x and T̂y in TBM. Relations between the discrete magnetic translations (DMT) and 
the Wyle base matrices X and Y are summarized in Appendix B for the convenience.

Let us consider the matrix expressions of DMT, for example given by (B.6):

T̂x = −iXY , T̂y = −iY−1X (4.36)

T̂ †
x = iY−1X−1 , T̂ †

y = iX−1Y (4.37)

As shown in Fig. 1, these DMT operators describe the translations on a two-dimensional lattice 
(m, n) in four directions, respectively.

Consider the points A, B, C and D on the line Yj for j = n + m fixed to a constant value, and 
a route of successive movements by DMTs from the point A. There are two shortest ways to get 
to B from A, namely via Yj−1 and via Yj+1. In the case of via Yj−1, we have

T̂ †
y T̂x = (X−1Y)(XY) = qY 2 , (4.38)

and we interpret this relation that Y 2 corresponds to a movement from A to B along Yj with 
a phase factor q caused by the fluctuation via Yj−1. If we go from A to C via Yj−1 twice, we 
understand that Y 4 is the moving operator along Yj , and q2 the fluctuation phase factor.

Similarly in the case of via Yj+1, we have

T̂x T̂
†
y = (XY)(X−1Y) = q−1Y 2 , (4.39)

and interpret that Y 2 corresponds to a movement from A to B along Yj with a phase factor q−1

caused by the fluctuation via Yj+1. As to the movements from A to D, which is in a opposite 
direction to B along Yj , we understand in a parallel way that Y−2 corresponds to the movements 
from A to D with a phase factor q±1 caused by the fluctuation via Yj±1.

Let us define a positive direction for Yj as the one with increasing n of the vertical axis, and 
denote the numbers of fluctuations via Yj+1 (resp. Yj−1) by k (resp. l) for positive direction 
along Yj (they are denoted by −k and −l for negative direction) when moving to an arbitrary 
18
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Fig. 2. Translations on Xr line (r = n − m).

point which is k+ l points away along Yj . Then we can express the translation operator composed 
of k + l translations along Yj in the following way with the total phase factor

q−k+lY 2(k+l) . (4.40)

For example, in the case of fluctuating once via Yj+1 and twice via Yj−1 when moving to C from 
D in Fig. 1, it reads qY 6 since we have k = 1 and l = 2.

We now define the ∗-product as an ordered product as follows: (i) first put the operators with 
fluctuations toward a positive direction (i.e., via Yj+1) in a leftward position, and those with 
negative fluctuations (via Yj−1) in a rightward position. (ii) Second attach phase factors q−1 for 
a positive fluctuation, and q for negative one.

Then we can express (4.40) using the ∗-product definition as

(Y 2kY 2l )∗ = ql−kY 2(k+l) . (4.41)

By the way, Y 2n is nothing but the trivial representation (4.13) with (4.16), and we therefore have 
the CZ+ algebra with the definition (4.41)

[L′+
n ,L′+

m ]∗ = [n − m]L′+
n+m , L′+

n = −Y 2n

q − q−1 . (4.42)

The commuting operator Y 2 on the line Yj acquires a nontrivial phase factor related to the ∗-
product (4.41) as an effect of fluctuations via Yj±1. The ∗-product plays the function of projecting 
a commuting operator product into a noncommuting one. We conclude that this fact is formulated 
by L′+, which is a trivial CZ+ representation. In other words, we have obtained the picture that 
commuting translation operators on a quantum line Yj (one-dimensional quantum plane) raise 
phase factors as an effect of quantum fluctuation of the quantum plane.

To complete the investigation, we have to consider another direction orthogonal to Yj . The 
argument is straightforward, but attention should be paid to matrix normalization in order to 
parallel the discussion above. We thus elaborate on the details with reference to Fig. 2. Let 
us consider the points A, B, C and D on the line Xr for r = n − m, and two-way successive 
movements by DMTs from A to B via Xr±1. In the case of via Xr−1, we have

T̂ †T̂ † = −(X−1Y)(Y−1X−1) = −X−2 = q−1X̃−2 , X̃ = iXq−1/2 , (4.43)
y x
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which means that X̃−2 corresponds to a movement from A to B along Xr with a phase factor 
q−1 caused by the fluctuation via Xr−1. If we go from A to C via Xr−1 twice, we thus have the 
moving operator X̃−4 along Xr giving rise to the factor q−2.

Similarly in the case of via Xr+1, we have

T̂ †
x T̂ †

y = −(Y−1X−1)(X−1Y) = −q2X−2 = qX̃−2 (4.44)

which means that X̃−2 corresponds to a movement from A to B along Xr with a phase factor q
caused by the fluctuation via Xr+1. The movements from A to D, which is in a opposite direction 
to B along Xr , are understood in a parallel way that X̃2 corresponds to the movements from A 
to D with the factor q±1 caused by the fluctuation via Xr±1.

Let us define a positive direction for Xr as the one with increasing n on the vertical axis, and 
denote the numbers of fluctuations via Xr+1 (resp. Xr−1) by k (resp. l) for positive directions 
along Xr (they are denoted by −k and −l for negative directions) when moving to an arbitrary 
point which is k + l points away along Xr . Then we can express the translation operator com-
posed of k + l translations along Xr in the following way with the total phase factor

qk−lX̃−2(k+l) . (4.45)

For example, in the case of fluctuating once via Xr+1 and twice via Xr−1 when moving to C 
from D in Fig. 2, it reads q−1X̃−6 since we have k = 1 and l = 2.

In the same way as Y 2, we here define the ordered product for X̃ as well: (i) first put the 
operators with fluctuations toward a positive direction (i.e., via Xr+1) in a leftward position, 
and those with negative fluctuations (via Xr−1) in a rightward position. (ii) Second attach phase 
factors q for a positive fluctuation, and q−1 for negative one. Note that the phases are inversed 
compared to the previous Y 2 case.

Then we can express (4.45) using the ∗-product as
(X̃−2kX̃−2l)∗ = qk−lX̃−2(k+l) . (4.46)

Again, X̃2n is nothing but a trivial representation (4.13) with (4.14), and we have the CZ−
algebra with the definition (4.46)

[L′−
n ,L′−

m ]∗ = [n − m]L′−
n+m , L′−

n = X̃−2

q − q−1 (4.47)

We therefore verify that the same picture as CZ+ holds. Namely the commuting operator X̃2 on 
the quantum line Xr acquires a nontrivial phase factor related to the ∗-product (4.46) as an effect 
of quantum fluctuations via Xr±1. Since Xr is orthogonal to Yj , it can be said that L′±

n are the 
algebras belonging to directions orthogonal to each other.

We finally put a remark that X̃−2 increases the position j by 2 along Xr , and effective moving 
length of X̃−1 may thus amount to �j = 1 if one applies a dual lattice. Similarly Y 2 increases r
by 2 along Yj , and thus Y−1 may effectively increase by �r = 1.

5. CZ∗ and TBM Hamiltonians

In Section 5, we show that the matrix representation of TBM corresponds to the Wyle repre-
sentation of CZ∗, which describes the Hamiltonian sequence covering various magnetic lattices. 
In Section 5.1, deriving the DMT algebra (exchange, fusion and circulation rules) in TBM, we 
comment on its relation to the quantum plane picture. In Section 5.2, we show that the TBM 
20
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Hamiltonian sequence can be described using the ±1 modes of the matrix representation of the 
CZ∗ algebra family. Section 5.3 discusses extensions to general modes. The power of X cor-
responds to the Hamiltonian with the effective spacing of the magnetic lattice expanded from 1
to n. The power of Y corresponds to the Hamiltonian sequence that extends the quantum plane 
fluctuation (order of q) from 1 to k (Section 5.4). These Hamiltonians can be represented by the 
CZ∗ generators.

5.1. DMT and quantum plane in TBM

The purpose of this subsection is to verify the quantum plane picture of tight binding model 
(TBM) by showing that discrete magnetic translations (DMTs) satisfy the same properties as 
the MTA (exchange, fusion and circulation) of the continuous magnetic translations reviewed in 
Section 2.2. In contrast to the discussion in Section 4.4, we do not use the matrix representation 
of DMT. As a result of this picture, TBM can be regarded as a Hamiltonian system constructed 
on a quantum plane.

TBM Hamiltonian is given by DMT on a two-dimensional lattice as follows [19–21,57]:

H = T̂x + T̂y + T̂ †
x + T̂ †

y , (5.1)

T̂x =
∑
n,m

eiθx
mnc

†
m+1,ncm,n , T̂y =

∑
n,m

eiθ
y
mnc

†
m,n+1cm,n , (5.2)

where c†m,n and cm,n represent the creation/annihilation operators at each site of (m, n), and θx
mn

and θy
mn are the AB phase associated with the unit movement length a in each direction of x and 

y

θx
mn : (m,n) → (m + 1, n) , θ

y
mn : (m,n) → (m,n + 1) . (5.3)

Introducing the wave function

� =
∑
m,n

ψm,nc
†
m,n |0〉 =

∑
m,n

ψm,n

∣∣ψm,n

〉
, ψm,n ∈C , (5.4)

the eigenvalue equation H� = E� with (5.1) is known to reduce to the following Schrödinger 
equation [19,21]

e
iθx

m−1,nψm−1,n + e
iθ

y
m,n−1ψm,n−1 + e−iθx

m,nψm+1,n + e−iθ
y
m,nψm,n+1 = Eψm,n . (5.5)

Note that this reproduces the continuous Schrödinger equation for the Hamiltonian H ′ = −tH

at the order of O(a2),

1

2m
(p + e

c
A)2ψm,n = Eψm,n , E = h̄2

2ma2

E + 4t

t
, (5.6)

where O(a) vanishes in the continuum limit a → 0.
Having the formulae from (5.2) and (5.4),

T̂x T̂y

∣∣ψm,n

〉 = e
iθx

m,n+1+iθ
y
m,n

∣∣ψm+1,n+1
〉
, (5.7)

T̂y T̂x

∣∣ψm,n

〉 = e
iθ

y
m+1,n+iθx

m,n
∣∣ψm+1,n+1

〉
, (5.8)

we obtain the exchange and circulation algebras
21
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T̂y T̂x

∣∣ψm,n

〉 = e2πiφT̂x T̂y

∣∣ψm,n

〉
, (5.9)

T̂ †
y T̂ †

x T̂y T̂x

∣∣ψm,n

〉 = e2πiφ
∣∣ψm,n

〉
, (5.10)

where

2πφ = (θ
y

m+1,n − θ
y
m,n) − (θx

m,n+1 − θx
m,n) . (5.11)

Concerning the fusion algebra, we have to define new composite operator T̂x+y satisfying the 
following fusion relations with phase factor ξm,n, which will be determined later

T̂x T̂y

∣∣ψm,n

〉 := eiξm,n T̂x+y

∣∣ψm,n

〉
, (5.12)

T̂y T̂x

∣∣ψm,n

〉 := e−iξm,n T̂x+y

∣∣ψm,n

〉
. (5.13)

Together (5.7), (5.8) and these, we have

T̂x+y

∣∣ψm,n

〉 = e−iξm,ne
iθx

m,n+1+iθ
y
m,n

∣∣ψm+1,n+1
〉

(5.14)

= eiξm,ne
iθ

y
m+1,n+iθx

m,n
∣∣ψm+1,n+1

〉
. (5.15)

Using (5.11), the consistency condition of the r.h.s. of this equation reads

2πφ + 2ξm,n = 0 , (5.16)

and therefore we have the fusion algebra

T̂x T̂y

∣∣ψm,n

〉 := e−iπφT̂x+y

∣∣ψm,n

〉
, (5.17)

T̂y T̂x

∣∣ψm,n

〉 := eiπφT̂x+y

∣∣ψm,n

〉
. (5.18)

Introducing the parameter q as

q = e−iπφ , (5.19)

we summarize the exchange, fusion and circulation as follows

T̂x T̂y = q2T̂y T̂x , T̂x T̂y = qT̂x+y , T̂ †
y T̂ †

x T̂y T̂x = q−2 . (5.20)

If we combine the fusion and exchange rules into

T̂x+y = q−1T̂x T̂y = qT̂yT̂x , (5.21)

this equation can be interpreted as follows: the translation T̂x+y corresponds to the one along the 
line Xr defined in Section 4.4, and the first and second equalities imply mutually different phase 
factors q±1 in accordance with the fluctuations taking detours to adjacent Xr±1 and back to Xr , 
corresponding to different ordering of T̂x and T̂y operators. Note that the phase factor q given 
by (5.19) is not necessarily a constant because φ, given by (5.11), depends on its site (m, n). 
As discussed in Section 4.4, the q can be regarded as the fluctuation of quantum plane, and it is 
related to the AB phases as seen in (5.11).

This interpretation suggests that the ∗-products are generated by the quantization of space 
(quantum plane) in view of discretization. It is interesting that the quantum plane picture can be 
understood as the underlying structure before a periodic condition is taken into account.
22
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5.2. CZ∗ and TBM Hamiltonian family

Hereafter we discuss the relations between TBM Hamiltonian Ĥ and the CZ∗ matrix repre-
sentations L ±

±1 defined in (4.21)-(4.26). Since our three representations (4.21), (4.24) and (4.29)

have different Y -dependence from Ĥ (see (A.11)), it is not straightforward to find their rela-
tionships. For convenience of discussion, we explicitly show the dependence on deformation 
parameters q and matrix sizes N in CZ∗ and TBM Hamiltonian Ĥ , such as CZ∗(q, N) and 
Ĥ (q, N ′), where the latter TBM matrix sizes are given by N ′ = 2Q. Although the same symbols 
for q and N are employed in both CZ∗ and Ĥ , they are originally introduced independently, and 
hence generally different. Then denoting the deformation parameter of TBM by qk when both q
are related, we consider the situation that the Hamiltonian Ĥ (qk, Q) coincides with Ȟk which is 
a linear combination of CZ∗(qk, N) generators. Keeping the relation of CZ(qk, N) to its parent 
CZ(q, N), and providing a certain relation between N and Q, we are going to determine the 
values of q and qk in each case. (In the case of the factorization (4.24), we do not have to con-
sider this issue, because qk coincides with q , which is nothing but a matrix element of Y of size 
N = 2Q.)

Let us first consider the second type representation, that is the factorized form (4.24), where 
the powers of Y coincide with those in Ĥ up to the factorization of [Z]. In this case the CZ∗
algebra is slightly modified to the CZ∗′

algebra, which is given by L +
n and L ′−

1

L ′−
n = qnL −

n , (5.22)

satisfying (3.36), (4.26), (4.27). It is convenient to define ĤZ by using the CZ∗′
generators as

ĤZ = i(L +
1 − L +

−1) + i(L ′−
1 − L ′−

−1 ) . (5.23)

Using the relation qXY = YX, we find that [Z] is factorized from ĤZ as

ĤZ = i(X−1 − X)Y [Z] + iY−1(X−1 − X)[Z] = Ĥ [Z] (5.24)

and the TBM Hamiltonian (A.11) is therefore related to the CZ∗ generators in the following 
form

Ĥ = ĤZ[Z]−1 . (5.25)

This means that eigenvalues of ĤZ are given by the product of the TBM eigenvalues (A.10) and 
the phase factor matrix [Z],

ĤZψ̃ = E[Z]ψ̃ , ψ̃ = [Z]−1ψ . (5.26)

Next, let us consider the case (4.29), which is one of the third types and its corresponding 
algebra is CZ∗(q1) defined in (4.32) and (4.33). Defining Ȟ1 in terms of the CZ∗(q1) generators 
Ľ ±

±1

Ȟ1 = i(q1 − q−1
1 )(Ľ +

1 − Ľ +
−1) + i(q1 − q−1

1 )(Ľ −
1 − Ľ −

−1) , (5.27)

and substituting (4.29) on the r.h.s. of this, we obtain the same form as the TBM Hamiltonian Ĥ

Ȟ1 = i(X−1 − X)Y1 + iY−1
1 (X−1 − X) = Ĥ (X,Y1;q1) , (5.28)

where Y1 and q1 are substituted for Y and q in (4.23). In this representation we have the con-
ditions XN = YN = 1 as well as YN = 1. Both should be satisfied, and it is realized in the 
1
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following way: Y1 with the relation q = q2
1 is related to Y set in the CZ∗ representation (4.21)

by the relation Y 2
1 = Y . Notice that it does not mean that (4.21) coincides with (4.29). If we 

choose N = 2Q remembering that 2Q is the matrix size of Ĥ , we have

Y
2Q
1 = 1 , q

2Q
1 = 1 , ∴ q1 = e±iπφ , (5.29)

as well as for Y and q

YQ = 1 , qQ = 1 , ∴ q = e±2πiφ , (5.30)

where the double sign ± is introduced for a complex conjugation system. Thus we have

(Y1)jk = q
j

1 δjk , (Y )jk = qj δjk , YN
1 = Y

N
2 = 1 . (5.31)

The matrix representation (4.29) describes the TBM Hamiltonian Ȟ1 given by (5.28) not with 
q = e−iπφ but with

q = e±2πiφ , or q1 = e±iπφ . (5.32)

This adjustment corresponds to the manipulation to replace q by q1 in (A.9) adopting q = e−2πiφ , 
instead of using parametrization (A.8) when driving the Schrödinger equation (A.9).

Finally we deal with the rest of all, the first type (4.21) and the third type (4.30) in the same 
formalism CZ∗(qk), since (4.21) is a special case of the third type with k = 2. Defining Ȟk as

Ȟk = i(qk − q−1
k )(Ľ +

1 − Ľ +
−1) + i(qk − q−1

k )(Ľ −
1 − Ľ −

−1) , (5.33)

and substituting (4.30) on the r.h.s., we obtain for k = 2

Ȟ2 = i(X−1 − X)Y2 + iY−1
2 (X−1 − X) = Ĥ (X,Y2;q2) , (5.34)

where q2 = q2. In this representation we have the condition XN = YN
2 = 1. Note that YN 	= 1

this time. Y2 with the relation q2 = q2 is related to Y in the CZ∗ representation (4.21) by the 
relation Y2 = Y 2. If we choose N = Q, we have

Y
Q
2 = 1 , q

Q
2 = 1 , ∴ q2 = e±2πiφ , (5.35)

as well as for Y

Y 2Q = 1 , q2Q = 1 , ∴ q = e±πiφ . (5.36)

Thus we have

(Y2)jk = q
j
2 δjk , (Y )jk = qj δjk , YN

2 = Y 2N = 1 , (5.37)

and the matrix representation (4.21) hence describes the TBM Hamiltonian Ȟ2 with q given by

q = e±iπφ . (5.38)

As to the third representation (4.30), considering CZ∗ family for k ≥ 3 in the same way as 
above, we verify that the matrix (4.30) describes the TBM Hamiltonian family Ȟk given by (5.33)

Ȟk = i(X−1 − X)Yk + iY−1
k (X−1 − X) = Ĥ (X,Yk;qk) , (5.39)

where Yk and qk are given by

Yk = Y k , qk = qk = e±kπiφ . (5.40)
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5.3. Generalization of Ľ ±
n to other modes n 	= ±1

As discussed in Section 4, X±2 have the effect of increasing or decreasing j by 2 (�j =
2) along the quantum line Xr . Reflecting this feature, Ĥ (X2, Y ; q) is deduced to describe the 
system of which effective interval �j is twice that of Ĥ (X, Y ; q). Then denoting another TBM 
Hamiltonian Ĥ (X2, Y ; q) by Ĥ2,

Ĥ2 = i(X−2 − X2)Y + iY−1(X−2 − X2) , (5.41)

we can derive the Schrödinger equation

i(qj+2 + q−j )ψj+2 − i(q−j + qj−2)ψj−2 = Eψj (5.42)

by applying �j = 2 to the original equation (A.9).
The new Hamiltonian Ĥ2 possesses Uq(sl2) symmetry:

Ĥ2 = (q2 − q−1
2 )(E+ + E−) , q2 = q2 , (5.43)

E+ = i

q2 − q−1
2

(X−2 − X2)Y , E− = i

q2 − q−1
2

Y−1(X−2 − X2) , (5.44)

K = q2X
−4 (5.45)

[E+,E−] = K −K−1

q2 − q−1
2

, KE±K−1 = q±2
2 E± . (5.46)

However it is rather convenient to regard this symmetry as the n = ±2 parts of CZ∗ representa-
tion family (4.30) when considering the following Hamiltonian series

Ĥn = i(X−n − Xn)Y + iY−1(X−n − Xn) , (5.47)

which gives the Schrödinger equation with the effective interval �j = n = 2ν

i(qj+2ν + q−j )ψj+2ν − i(q−j + qj−2ν)ψj−2ν = Eψj . (5.48)

Namely, as a generalization of Section 5.2, defining Ȟ(n,k) in terms of the representation (4.30)
of the CZ∗ family

Ȟ(n,k) = i(qk − q−1
k )(Ľ +

n − Ľ +−n) + i(qk − q−1
k )(Ľ −

n − Ľ −−n) , (5.49)

= Ĥn(X,Yk;qk) , (5.50)

we thus find the connection of the Hamiltonian series Ĥn to the CZ∗ family operators Ľ ±
n , 

which are extended from the n = ±1 modes Ľ ±
±1.

Note that the previous cases Ȟ1 and Ȟ2 discussed in Section 5.2 belong to the n = 1 series of 
Ȟ(n,k)

Ȟk = Ȟ(1,k) = Ĥ (X,Yk;qk) , Ĥ1 = Ĥ , k = 1,2 . (5.51)
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5.4. Hamiltonian series with Y±k family

Regarding the first type representation (4.21), it may be more convenient to consider the 
Hamiltonian Ĥ (X, Y 2; q), instead of the original Ĥ (X, Y ; q). In this way, one may anticipate 
the avoidance of the complicated discussion in the previous subsection and a more direct corre-
spondence between (4.21) and Ĥ (X, Y 2; q).

Let us consider the following Hamiltonian family

Ĥ(n,k) = i(X−n − Xn)Y k + iY−k(X−n − Xn) , (5.52)

and first we set n = k = 2

Ĥ(2,2) = i(X−2 − X2)Y 2 + iY−2(X−2 − X2) . (5.53)

This leads to the following Schrödinger equation

i(q2j+4 + q−2j )ψj+2 − i(q−2j + q2j−4)ψj−2 = Eψj , (5.54)

and it corresponds to a system whose effective interval �j and the size of quantum fluctuation 
q (see §4) are twice those of the original system (A.9), since (5.54) coincides with the equation 
obtained from (A.9) by the replacements �j = 1 → 2 and q → q2. It is straightforward to verify 
that the Hamiltonian (5.52) describes the quantum plane system with the effective interval n and 
the fluctuation size qk .

If we introduce the following Hn operator composed of the generators L ±
n given in the CZ∗

representation (4.21)

Hn = i(q − q−1)(L +
n − L +−n) + i(q − q−1)(L −

n − L −−n) , (5.55)

we find the relation

H2 = Ĥ(2,2) = Ĥ (X2, Y2;q2) . (5.56)

The Hamiltonian Ĥ(2,2) is also given by a combination of the generators of the quantum algebra 
Uq(sl2)

Ĥ(2,2) = (q4 − q−1
4 )(E ′+ + E ′−) , q4 = q4 , (5.57)

E ′+ = i

q4 − q−1
4

(X−2 − X2)Y 2 , E ′− = i

q4 − q−1
4

Y−2(X−2 − X2) , (5.58)

K′ = q4X
−4 (5.59)

[E ′+,E ′−] = K′ −K′−1

q4 − q−1
4

, K′E ′±K′−1 = q±2
4 E ′± . (5.60)

Needless to say, the CZ∗ representation (4.21) is again suitable to describe the relation between 
Hn and the Hamiltonian series Ĥ(n,2)

Hn = Ĥ(n,2) = Ĥ (Xn,Y2;q2) . (5.61)

We also have its generalization as

Ĥ(n,k) = Ĥ (Xn,Yk;qk) . (5.62)

As seen above, Ĥ(n,k) expresses a variety of Hamiltonians designated by combinations of 
effective interval of magnetic lattice �j and quantum plane fluctuation qk . There exists a Uq(sl2)
26
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symmetry in the Ĥ(n,k) system for each n and k, for example, (5.57) for Ĥ(2,2), (5.43) for Ĥ(2,1), 
and (A.15) for Ĥ(1,1). On the other hand, it is possible to express the Hamiltonian series in a 
unified manner such as (5.50), (5.61) and (5.62), if we employ one of the closed algebra systems 
CZ∗ or CZ∗ family as observed in (5.49) and (5.55).

6. Conclusions and discussions

In this paper we have focused on the relations between CZ algebras and the quantum plane 
picture using algebraic properties of DMT as well as MT. The mechanism of generating phase 
factors is found to be compatible with the ∗-bracket feature of CZ algebras, and it is very con-
venient to investigate various properties of CZ algebras. As a result, we have clarified some 
properties that could not be obtained from the q-harmonic oscillators representation (3.10). They 
are what mechanism determines the phase factor in (2.10), that it is related to fluctuations on the 
quantum plane, and that there is a certain rule in the method of constructing the CZ generators.

Commutative representation is especially important, and we need a specific pair of commut-
ing and noncommuting operators. In the MT representation, by introducing]the weight of MT 
and CZ operators, we have presented the definition of ∗-bracket (3.20) that can express the three 
types of CZ algebras, CZ± and CZ∗, in the unified form. The CZ± operator (3.31) is a linear 
combination of commutative T̂ (0)

n and noncommutative T̂ (±2)
n operators, and the same structure 

is also found for the DMT matrix representation (4.7). We in fact observed in Section 4.2 that 
the commutative representations Xn and Yn play the same role as the MT operator T̂ (0)

n as seen 
in (4.15). The commutative representation shows its significance in connection to the ∗-brackets 
and the quantum plane picture. The (non)commutativity of the local operator T̂ (0)

n and the non-
local operator T̂ (±2)

n is flipped in the ∗-bracket commutator as seen in (3.26). The commutative 
operator carries the essential role of noncommuting CZ± algebraic relations, while the noncom-
muting operator does the role of deformed U(1) translational group and thereby determines the 
weight for the ∗-bracket (3.20). The operators X−n and X−nY±2 perform the same functions as 
T̂

(0)
n and T̂ (±2)

n as mentioned in (4.15).
The property that commutative operators behave as non-commutative ones (and vice versa) 

matches the phase fluctuation of the quantum plane, and by considering the commutative DMT 
representations (4.42) and (4.47), we recognize that the CZ± algebras can be described by the 
∗-ordered products (4.40) and (4.45) in Section 4.4. In this way, we have provided another defini-
tion of ∗-product by the ordered product that counts the number of fluctuations in the positive and 
negative directions based on the quantum plane picture of TBM. The AB phase (5.11) associated 
with the movement of particles by DMT is interpreted as the fluctuation of the quantum plane 
(5.19), and the phase factor generated by the successive operations of DMT is then expressed by 
a certain ordered product to reproduce the ∗-bracket.

As a glimpse of the quantum plane picture, we have discussed the relations between CZ∗ al-
gebra and TBM Hamiltonian series in Section 5. It has been shown that the matrix representation 
of TBM corresponds to the Wyle representation of CZ∗, which describes a sequence of Hamil-
tonians covering various magnetic lattices. Each Hamiltonian in the sequence is parameterized 
by two integers n and k which are the power of the Wyle base X and Y . The parameters n and 
k correspond to the effective spacing of the magnetic lattice and the fluctuation size of quantum 
plane (power of q), respectively. All the Hamiltonians can be represented in a unified manner 
by the CZ∗ generators without introducing additional multiple copies of Uq(sl2) or CZ∗ family. 
(Recall that in Section 4.3 we have introduced the representation sequence of the CZ∗ family in 
27
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order to express the TBM Hamiltonian of quantum fluctuation size of k. The sequence is gen-
erated by successively replacing q → qk . However, considering a single CZ∗ algebra with a 
sequence of Hamiltonians rather than the CZ∗ algebra family is physically easier to understand.) 
In this way, the CZ∗ algebra may be regarded as a universal algebra to describe the Hamiltonian 
series in accordance to various quantum plane settings of n and k.

The similarities between MT and DMT representations found in this paper may suggest a 
universal property common to various CZ∗ representations. The correspondence between the q-
differential representation (3.6) and the MT representation (3.11) may reveal a physical meaning 
of q-differential operators in lattice systems with CZ∗ algebraic structure. The matrix represen-
tation of TBM Hamiltonian series by Wyle base implies the existence of quantum plane behind 
the physical systems. All these observations are related to the representations of CZ∗ algebra, 
and we therefore believe that significance of CZ∗ algebra has been increased by this paper. We 
will be able to clarify unsolved issues and universal properties of CZ∗ algebra from some prop-
erties common to multiple representations including MT and DMT representations as we have 
done for the question in (2.10).
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Appendix A. Quantum group symmetry in TBM

In this appendix, we review the quantum algebra symmetry in TBM, that is, the TBM Hamil-
tonian is written by Uq(sl2) raising-lowering operators [19]. We also put a remark on q-inversion 
symmetry of the Hamiltonian. In order to see the Uq(sl2) structure, we impose a periodic condi-
tion on the Schrödinger equation (5.5), and we then transform (5.5) into a matrix form in use of 
the Wyle base matrices X and Y .

Let us choose the factors of hopping terms as in [57] so that the gauge invariant condition 
(5.11) is satisfied

θx
m,n = −(n + m)πφ , θ

y
m,n = (m + n + 1)πφ , (A.1)

and set periodic condition

ψm,n = ψm+Q,n+Q (A.2)

with co-prime integers P, Q and the ratio φ

φ = P
. (A.3)
Q
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Under these conditions, (5.5) is invariant under the transformation (m, n) → (m + Q, n + Q). 
According to the Bloch theorem, we have

ψm,n = eimkx einky um,n , um,n = um+Q,n+Q . (A.4)

Using magnetic momenta k± = 1
2 (kx ± ky) and reflecting the exchange symmetry k− ↔ −k− in 

n ↔ m with

um,n = un,m := ψn+m , (A.5)

we have

ψm,n = eik+(m+n)eik−(m−n)ψm+n , ψm+n = ψm+n+2Q . (A.6)

Reducing a degree of freedom with choosing mid band spectrum for k± [57,58]

j = m + n , (k+, k−) = (
π

2
,0) , (A.7)

and making q related with φ by

q = e−iπφ , (A.8)

(5.5) becomes the following equation [21]

−i(qj−1 + q−j )ψj−1 + i(q−j + qj+1)ψj+1 = Eψj . (A.9)

This is a component expression of 2Q-dimensional matrix representation of the Schrödinger 
equation

Ĥψ = Eψ , ψ = (ψ1,ψ2, · · · ,ψ2Q)T (A.10)

and the Hamiltonian Ĥ can be written by the matrices X and Y of size N = 2Q defined in (4.5)

Ĥ = iY−1(X−1 − X) + i(X−1 − X)Y . (A.11)

This is known to be written in the Uq(sl2) generators E± and K±1

E+ = i

q − q−1 (X−1 − X)Y , E− = i

q − q−1 Y−1(X−1 − X) , (A.12)

K = qX−2 , (A.13)

which satisfy the Uq(sl2) algebraic relations

[E+,E−] = K − K−1

q − q−1 , KE±K−1 = q±2E± . (A.14)

One can check these relations by using YX = qXY , and the Hamiltonian reads [19,57]

Ĥ = (q − q−1)(E+ + E−) . (A.15)

Now, let us put some remarks on q-inversion symmetry of the Hamiltonian. We use the in-
verted q = eiπφ till the end of this Appendix. Considering complex conjugation of (5.5), we have 
the Hamiltonian

Ĥ ′ = YĤY−1 = iY (X−1 − X) + i(X−1 − X)Y−1 (A.16)
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which looks different from Ĥ . Of course, Ĥ and Ĥ ′ describe the same physics because Ĥ ′ is 
obtained by the replacement of q in (A.11) with q−1 (recall that Y(q−1) = Y−1(q)). We then 
notice that for each expression

Ĥ † = Ĥ , Ĥ ′† = Ĥ ′ . (A.17)

Transformation of any operator O to that of q-inverted system O′ is similarly given by

O′ = YOY−1 , (A.18)

and operator relations are identical each other. For example, the Uq(sl2) generators transform as

E′± = YE±Y−1 , K ′ = YKY−1 (A.19)

and they satisfy the same relations as (A.14). The inverted Hamiltonian is thus given by the 
identical form to Ĥ

Ĥ ′ = (q − q−1)(E′+ + E′−) , (A.20)

which is written as the sum of E′± the raising and lowering operators of Uq(sl2).

Appendix B. Matrix representations of DMT

In Appendix A, we have the matrix representation Ĥ (see (A.11)) of the TBM Hamiltonian H
given in (5.1). This implies that there is a correspondence between the operators T̂x , T̂y in (5.1)
and the matrices X, Y in (A.11). In this appendix, we clarify the correspondence and then we 
verify the q-inversion symmetry (A.18) and the DMT algebras (5.20) in matrix representation.

In order to see the correspondence, let us consider the j -th component of matrix actions of X
and Y on ψ

(X±1ψ)j = ψj∓1 , (Y±1ψ)j = q±jψj . (B.1)

These relations mean that X shifts the coordinate j by 1 and Y generates a phase factor qj .
For all possible products of X and Y appeared in Ĥ (A.11) and Ĥ ′ (A.16), we have

(X±1Yψ)j = qj∓1ψj∓1 , (Y−1X±1ψ)j = q−jψj∓1 , (B.2)

(YX±1ψ)j = qjψj∓1 , (X±1Y−1ψ)j = q−j±1ψj∓1 . (B.3)

On the other hand, acting DMT operators (5.2) on the wave function (5.4), for example

T̂x� =
∑
m,n

e
iθx

m−1,nψm−1,n
∣∣ψm,n

〉
(B.4)

and extracting the coefficient of ei π
2 (m+n)

∣∣ψm,n

〉
(since the overall factor eij π

2 is excluded when 
deriving (A.9)), we obtain

T̂x� ∼ e−i π
2 (m+n)e

iθx
m−1,nψm−1,n

= −iqj−1ψj−1 = −i(XYψ)j . (B.5)

Repeating the same process for the rest of DMT operators, we have the following correspon-
dence, namely the matrix representation

T̂x ↔ −iXY , T̂y ↔ −iY−1X , T̂ † ↔ iY−1X−1 , T̂ † ↔ iX−1Y . (B.6)
x y
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Also for the complex conjugate system (q = eiπφ) with changing the mid band condition k+ ↔
−k+ and denoting the DMT operators by T̂ ′

x, T̂
′
y etc., we have

T̂ ′
x ↔ −iXY−1 , T̂ ′

y ↔ −iYX , T̂ ′
x
† ↔ iYX−1 , T̂ ′

y
† ↔ iX−1Y−1 . (B.7)

This representation is identical to (B.6) under the exchange Y ↔ Y−1 and related to (B.6) by the 
q-inversion (A.18)

T̂ ′
y = Y T̂xY

−1 , T̂ ′
x = Y T̂yY

−1 , etc. (B.8)

This transformation is consistent with the Hamiltonian given by (A.16)

Ĥ ′ = T̂ ′
x + T̂ ′

y + T̂ ′†
x + T̂ ′†

y . (B.9)

Finally we check the DMT algebras (5.20). We have the correspondence of the exchange (5.9)
and circulation (5.10) rules using the matrix representation (B.6)

T̂y T̂x = q−2T̂x T̂y , T̂ †
y T̂ †

x T̂y T̂x = q−2 , (B.10)

and these coincide with (5.9) and (5.10) if we remember that q is given by (A.8). The fusion rule 
(5.17)

T̂x T̂y = qT̂x+y (B.11)

can also be reproduced from the Hermitian conjugate of (4.43)

T̂x T̂y = −X2 = qX̃2 (B.12)

and

T̂x+y = X̃2 . (B.13)
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