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We present a detailed analysis of the effect of an observationally determined dark matter (DM) velocity
distribution function (VDF) of the Milky Way (MW) on DM direct detection rates. We go beyond local
kinematic tracers and use rotation curve data up to 200 kpc to construct a MW mass model and self-
consistently determine the local phase-space distribution of DM. This approach mitigates any incomplete
understanding of local dark matter-visible matter degeneracies that can affect the determination of the VDF.
Comparing with the oft used Standard Halo Model (SHM), which assumes an isothermal VDF, we look at
how the tail of the empirically determined VDF alters our interpretation of the present direct detection
WIMP DM cross section exclusion limits. While previous studies have suggested a very large difference
(of more than an order of magnitude) in the bounds at low DM masses, we show that accounting for
the detector response at low threshold energies, the difference is still significant although less extreme. The
change in the number of signal events, when using the empirically determined DM VDF in contrast to the
SHM VDF, is most prominent for low DM masses for which the shape of the recoil energy spectrum
depends sensitively on the detector threshold energy as well as detector response near the threshold. We
demonstrate that these trends carry over to the respective DM exclusion limits, modulo detailed
understanding of the experimental backgrounds. With the unprecedented precision of astrometric data
in the GAIA era, use of observationally determined DM phase space will become a critical and necessary
ingredient for DM searches. We provide an accurate fit to the current best observationally determined DM
VDF (and self-consistent local DM density) for use in analyzing current DM direct detection data by the
experimental community.
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I. INTRODUCTION

One of the most popular candidates for the dark matter
(DM) particle is the hypothetical weakly interacting mas-
sive particle (WIMP) [1–6]. The determination of the
density of these particles in the halo of the Milky Way
(MW) galaxy in general and the solar neighborhood in
particular is crucial for many direct detection experiments
which attempt to measure the rate of nuclear recoil events
caused by the WIMPs scattering off of the detector target
nuclei. The expected scattering behavior is strongly

dependent on the local astrophysical properties of DM.
In particular, the scattering rate is directly proportional to
the local DM density. In addition, the velocity distribution
function (VDF) of the DM crucially affects the shape of the
nuclear recoil energy spectrum. Thus, it is imperative to
have precise knowledge of the local phase-space distribu-
tion of DM from observations in order to set precise bounds
on the DM particle physics parameter space [7].
DM direct detection experiments usually assume the

simplest possible “Standard Halo Model” (SHM) for the
DM halo, in which the velocity distribution is Maxwellian.
This model assumes the halo to be an isotropic, isothermal
sphere—hypotheses that are unlikely to be valid in
reality. Moreover, N-body simulations produce halos with
velocity distributions which deviate systematically from a
Maxwellian [8–13]. One can also construct more realistic,
analytical VDFs that differ from the predictions of the SHM
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[14–17]. However, a self-consistent connection to obser-
vations is generally missing—for example, simulations
obtain a VDF of a Milky Way “like” halo identified inside
a simulation box using user defined criteria (such as halo
mass or circular velocity); on the other hand, analytic
models typically cannot incorporate the effect of the
baryonic mass component of the MW on the DM VDF.
In this work, we advocate for a more realistic,

observationally driven approach which follows a three step
procedure—(i) first, visible matter tracers in the MilkyWay
are used to map out the gravitational potential, ΦðrÞ, in the
region of interest, (ii) second, a multicomponent mass
density model, having both DM and visible matter (VM)
in various configurations is obtained consistent with the
observed gravitational potential, and (iii) finally, since the
density is an integral of the total phase-space distribution
function, one can invert the equation connecting the two to
obtain the VDF. A convenient way to get the inversion is to
use the Eddington formalism [15]. The full procedure results
in a self-consistent determination of both the DM density
and its velocity distribution. This was first done by
Bhattacharjee et al. [18]; this work is based on similar,
but more detailed, MW DM phase-space analysis using a
larger dataset [19].
Our approach, of using rotation curve (RC) data up to

∼200 kpc as the visible matter tracer, makes us sensitive to
the DM and VM distributions throughout the halo. In this
approach it is easier to separate the contributions of the
different components, modulo the analytic form of the DM
distribution that is assumed [20]. Estimates of the local DM
phase space based on local dynamics rely on the accuracy
of separating the VM contributions and are prone to
contaminations, viz. without the leverage of a large number
of Galactic radial bins, a Bayesian analysis marginalizing
over the VM contribution using only local data has large
degeneracies. Our method of using data at a large number
of radial points leads to substantially better breaking of the
degeneracy between the VM and DM distributions.
For simplicity, experimental DM direct detection exclu-

sion curves in the literature are almost always calculated by
assuming a naïve SHM expectation for the MW DM halo.
There have been a number of theory papers that have tried to
go beyond the SHM and assess the impact of astrophysical
uncertainties on DM direct detection experiments (for
example, see Refs. [22,23]). Some of these attempts have
examined the impact of an uncertain local dark matter
density (such asRef. [24]), which results in a trivial rescaling
of the exclusion curves. Others have attempted to look at the
effect of the DM velocities via changes in the local DM
escape speed and the local DM velocity dispersion (see
Ref. [25]). Studies that tried to incorporate the full local DM
VDF, other than SHM, have been mainly restricted to
ansatzes or VDFs extracted from simulations [22,25,26].
We claim that the right approach should be to use an

observationally inferred determination, along with the

related uncertainties, of the local DM phase space in a
self-consistentmanner (also see Ref. [27]). In this work, we
take a detailed look at this fundamentally important
element of DM detection results. The main result of our
work is the first re-estimation of the DM exclusion curves,
for some of the major DM direct detection experiments,
using observationally determined local DM phase space.

II. SELF-CONSISTENT DETERMINATION OF THE
DM PHASE-SPACE DISTRIBUTION

The rate of nuclear recoil events, in direct detection
searches, depends crucially on the local (i.e. solar neigh-
borhood) density and velocity distribution of the WIMPs in
the Galaxy, which are a priori unknown. In contrast to the
density, not much knowledge directly based on observa-
tional data is available on the likely form of the velocity
distribution function of the WIMPs in the Galaxy. The
standard practice is to use what is often referred to as the
Standard Halo Model, in which the DM halo of the Galaxy
is described as a single-component isothermal sphere, for
which the VDF is assumed to be isotropic and of the
Maxwell-Boltzmann form. High resolution cosmological
simulations of DM halos give strong indications of sig-
nificant departure of the VDF from the Maxwellian. On the
other hand, these cosmological simulations do not yet
satisfactorily include the gravitational effects of the visible
matter components of the real galaxy, namely, the central
bulge and the disk.
One approach to determining the local density of DM

is to use the rotation curve data to find the likelihood
of the parameters characterizing the density distributions of
the various mass components of the galaxy. In general, the
visible matter parameters are fixed (from observational
data) and the dark matter parameters are obtained from a
likelihood maximization. A full likelihood analysis (DM
and VM) was first done [18] by taking the Navarro-Frenk-
White (NFW) profile [21] for the DM halo, a spheroidal
bulge and an axisymmetric disk [30–34]. The NFW DM
density profile is given by ρDMðrÞ ¼ ρDM;⊙ðR⊙

r ÞðrsþR⊙
rsþr Þ2

where r is the distance from the Galactic center, ρDM;⊙ is
the local DM density, rs the scale radius of the halo, and R⊙
is the distance of the Sun from the Galactic center. The
bulge and disk density profiles are given respectively by

ρbðrÞ ¼ ρb0ð1þ r2

r2b
Þ−3

2 and ρdðR; zÞ ¼ Σ⊙
2zd

exp ð− R−R⊙
Rd

− jzj
zd
Þ

(in cylindrical coordinates), where ρb0 is the normalization
of the bulge density, Σ⊙ is the local disk surface density,
and rb and Rd are the scale radii of the bulge and the disk
respectively. The parameter zd is the scale height of the
disk. The visible matter parametrizations are based on fits
to local kinematical data. This fiducial model of the MW
consisting of a dark matter halo, visible matter bulge, and a
single disk is a minimal model of the mass distribution in
the MW [35].
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For a given choice of the density profiles of both DM and
VM, we can use the Poisson equation to obtain the total
gravitational potential ΦðRÞ at a given radius on the
Galactic plane, and thus we get the circular rotation speed
at R from the relation,

v2cðRÞ ¼ −R
∂
∂RΦðR; z ¼ 0Þ: ð1Þ

Next, a Markov chain Monte Carlo (MCMC) analysis is
carried out to determine the most likely values of the density
parameters (along with their 1σ uncertainties). In this work,
we adopt the Python framework COSMOHAMMER [36]
which embeds the EMCEE package by Foreman-Mackey
et al. [37] that is based on an improvedMCMCalgorithm by
Goodman and Weare [38]. The χ2 test statistic used within
the MCMC is χ2 ¼ P

N
i¼1 ðvobs;i−vtheo;iσi

Þ2, where vobs;i is the
observed circular velocity value, vtheo;i is the one theoreti-
cally calculated, σi the error in the observed velocity value,
and N is the total number of binned data points at different
distances from the Galactic center. The best fit density
parameters are used to estimate the full spatial density of the
DM particles ρDMðrÞ and the total gravitational poten-
tial ΦðrÞ.
Under isotropic conditions, the phase-space distribution

function F of the DM component, at a position r, depends
only on the total specific energy E ¼ 1

2
v2 þΦðrÞ, with

v ¼ jvj, r ¼ jrj. This function F can be uniquely deter-
mined using the Eddington formula [39],

F ðEÞ¼ 1
ffiffiffi
8

p
π2

�Z
E

0

dΨ
ffiffiffiffiffiffiffiffiffiffiffi
E−Ψ

p d2ρ
dΨ2

þ 1
ffiffiffi
E

p
�
dρ
dΨ

�

Ψ¼0

�

; ð2Þ

where ΨðrÞ≡−ΦðrÞþΦðr¼∞Þ, E ≡ −EþΦðr ¼ ∞Þ ¼
ΨðrÞ − 1

2
v2, and ρðrÞ is the total density. The VDF at a

radius r can be obtained as

frðvÞ ¼
F
ρðrÞ : ð3Þ

Also, for E > 0, F > 0, and for E < 0, F ¼ 0; this
ensures that the VDF truncates naturally at the escape
velocity vesc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jΨðrÞjp

. We work with the normalized,
one-dimensional velocity distribution function frðvÞ≡
4πv2frðvÞ, which satisfies

R vesc
0 frðvÞdv ¼ 1.

A key assumption in using Eddington’s method is that of
isotropy (i.e, the net potential has spherical symmetry). Due
to the axisymmetric nature of the VM disk, the total
potential in our MW mass model is nonspherical. In order
to use the Eddington approximation, we use a spherical
approximation [29] for the VM potential given by
ΦVMðrÞ ≃

R
r
0 MVMðr0Þ=r02dr0, where MVMðrÞ is the mass

of the VM within a radius r.

The DM density ρDMðrÞ is obtained by integrating the
single-particle phase-space distribution function (which in
the simplest case is a function of total energy per unit
mass of a DM particle) over the velocities of the DM
particle. Under the spherical approximation, ρDMðrÞ ¼R
F ½E ¼ ð1=2Þv2 þΦðrÞ�4πv2dv where v is the DM

velocity and F is the phase-space distribution function,
which is inverted to give the DM VDF. Note that ρDM is
also implicitly present on the right-hand side of the above
equation in ΦðrÞ, and hence the equation demands a self-
consistent solution. For a given DM and VM distribution
that is consistent with the particularΦðrÞ “at all r,” a unique
solution for the VDF fðr; vÞ≡ F ðEÞ=ρDMðrÞ at all r exists
in the spherically symmetric case.
The VDF [in Eq. (3)] determined using the technique

outlined in the preceding discussion is completely empiri-
cal, without any reference to any simulations; it is con-
nected to the local DM density in a self-consistent manner
through the Eddington formula and we only need to model
the potential contribution from the disk as arising due to a
spherical mass distribution. We find that the spherical
approximation induces corrections of the order of ≈10%
in the value of v2ðR⊙Þ).
We stress that the arguments presented in this section

apply to virialized DM halos. Kinematic outliers associated
with local DM substructure such as streams or debris flows
[40–47] could also impact the interpretation of the exper-
imental results. Because the origin of these outliers is
unknown, however, we choose to not include them.
Additionally, recent mergers of satellite galaxies could
lead to spatial or kinematic substructure. We also ignore the
possibility of velocity spikes in the VDF due to local
substructure [8].

III. VELOCITY PROFILES

Many authors have determined the RC of the Galaxy,
using kinematical and positional information for some
tracer objects moving in the gravitational potential of the
galaxy. In general, one measures line-of-sight (LOS)
quantities (positional and kinematical data) and the RC
is derived from these. To determine the RC for the disk
region, one has to adopt a value for the local standard of rest
(LSR) which corresponds to the position (R0) and velocity
ðvc0Þ of the Sun with respect to the Galactic center, and
make the assumption that the tracer objects follow a circular
orbit around the Galactic center. From this, the positions and
velocities about the Galactic center can be obtained. The
choice of LSR plays a crucial role in determining the
parameters of the mass model of the MW—it affects
the value of local DM density and our estimation of other
MW properties, like the mass of the MW. For our analysis,
we follow Refs. [18,48], and pick two popular LSRs
used in MW studies: (i) R0 ¼ 8 kpc and vc0 ¼ 200 km=s
and (ii) R0 ¼ 8.5 kpc and vc0 ¼ 220 km=s.
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The various tracer objects used for constructing the RC
in Ref. [19] include HI and HII regions (CO emissions from
the latter), Cepheids, Planetary nebulae, etc. For regions
extending beyond the visible disk of the Galaxy, they look
at tracers distributed in the halo of the Milky Way (like
dwarf spheroidals, globular clusters, K-giant stars, etc.).
The latter tracers are of the nondisk kind, and their motion
around the Galactic center is typically unsystematic.
Under the assumption that these objects are isotropically
distributed in the halo, one can define an effective circular
velocity vc at a galactocentric distance r, and use the Jeans
equation to relate it to the observed number densities and
velocity dispersions [19,39]. One disadvantage of using
these nondisk tracers is that they can have non-negligible
velocity anisotropy. Currently, only the line-of-sight veloc-
ity dispersion is known to precision at large distances, the
velocity anisotropy cannot be well determined [49]. In this
work, we neglect the effect of any such anisotropy in the
RC data. For the effect of velocity anisotropy on the RC at
large distances, we refer the reader to Refs. [19,50,51].
After the raw RC is generated as above, it is suitably

radially binned and averaged. The binning strategy used by
Bhattacharjee et al. [19] is twofold. In the first step, they
average over each individual data set, choosing different
bin sizes at different radius ranges (smaller bins at low r
where there is more data, etc). These bin sizes are manually
optimized to best reflect the overall behavior of the raw
data points. Once these individual datasets are binned and
averaged, they are compiled into a larger dataset, and the
above process is repeated once again to arrive at the final
dataset.
We performed an MCMC analysis on the RC compiled

by Bhattacharjee et al. [19] following the detailed pro-
cedure described above, to obtain the best fitting DM plus
VM density distributions of our galaxy. There is a wealth of
knowledge available on the distribution of visible matter in
the MW based on decades of astrophysical observations,
and it is prudent to add some of this information in the form
of VM priors in our MCMC analysis. In this Bayesian
approach, the final best fit DM distribution depends
on the imposed priors on the VM distribution. Although,
we have focussed on RC, which gives us a estimate of the
gravitation potential over a large radial range, one can
consider other constraints such as the vertical force in the
solar neighborhood and the Oort constants in any disk-
bulge-halo models [52–54]. A detailed discussion of local
kinematics and comparison with RC inferred parameters is
presented elsewhere [48].
Using the Eddington formula, we estimated the local DM

VDF, which is self-consistently related to the DM and VM
mass distribution, and in particular to the DM local density.
Note, that the extracted DM VDF implicitly depends on the
choice of VM prior and LSR. Although flat priors give the
most “unbiased” best fit parameters, we use the wealth of
knowledge on the VM distribution to impose comparatively

tighter local VM priors. For all the results quoted in the rest
of the paper, we chose our priors based on observational
constraints on the local VM density [32,55–57], which can
be expressed in terms of constraints on the disk parameters
Σ⊙ and Rd. For our analysis, we adopt the following
Gaussian priors on the disk parameters: Σ⊙ ¼ 67�
8 M⊙ pc−2 and Rd ¼ 2.3� 0.6 kpc. Singh et al. [48] have
studied the impact of the choice of local VM prior and LSR
on the estimates of the MW DM distribution and, in this
work, we adopt their method and results.
Together with our choice of VM prior and two sets of

LSRs, we determine the corresponding local DM densities
and VDFs:
(1) B220-8.5-67: For the choice of LSR with R0 ¼

8.5 kpc and vc0 ¼ 220 km=s, we show the rotation
curve data from Ref. [19] along with the best fit total,
DM, bulge, and disc RC decomposition from our
MCMC analysis in Fig. 1(a). We find ρDM;⊙ ¼
0.29� 0.02 GeVcm−3. In Figs. 1(b) and 1(c), we
show two of the main MCMC correlations for the
local DM density ρDM;⊙,; viz. with the DM scale
radius rs and the local visible matter disk density Σ⊙,
respectively. The full set of MCMC correlations will
be presented in a forthcoming work [48] which will
more exhaustively examine multiple choices of VM
priors, LSRs, datasets (pre and post-GAIA RC and
local kinematics), etc. The corresponding VDF is
shown in Fig. 2 with the high velocity cutoff
corresponding to the local escape velocity which
we find to be vesc ¼ 475.00 km s−1.

(2) B200-8.0-67: For the choice of LSR with R0 ¼
8 kpc and vc0 ¼ 200 km=s, we find the best fit
localDMdensity to beρDM;⊙¼0.18�0.02GeVcm−3.
Again, the VDF is shown in Fig. 2. The local escape
velocity with this LSR is found to be vesc ¼
536.83 km s−1.

In the rest of the paper, the observationally determined
VDF B220-8.5-67 is selected as our fiducial VDF and we
denote it as obs for the sake of brevity. From Fig. 2, we can
see that the VDF B200-8.0-67 is very close to our fiducial
VDF and the main difference between the expected DM
signal rates for the two choices of LSR enters through a
trivial rescaling of the rate due to the different best-fit local
DM densities.
The fractional uncertainty on the local DM density (as

listed above) is between 5%–10% irrespective of the
choice of LSR or any observational priors on the VM. In
contrast, estimates of ρDM;⊙, using local kinematics
typically has an uncertainty of ∼30% [58]. We attribute
this difference to our use of data at a larger number of
radial bins which leads to the breaking of any DM-VM
degeneracies. In the rest of the paper, we neglect this
small uncertainty on ρDM;⊙, since the VDF uncertainty
becomes the dominant astrophysical uncertainty for DM
direct detection searches.
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Note, that the VDF is determined from the mean values
of the determined model parameters, and the 1 − σ errors
on these parameters gives us an uncertainty band on the
VDF. The best fit parameters of the MW mass model have
correlated uncertainties and these correlations are naturally
computed in the MCMC analysis. These correlations lead
to correlations in errors on the VDF at different velocities
[59]. In our analysis, we use the above RC datasets with the
error bars on the velocities (a) having the reported values
(which we call current), and (b) reduced by 1=3 (which we
call third). The reduction of the error bars on the RC
unsurprisingly leads to the narrowing of the error bands on
the VDF. Our analysis with the reduced error bars models
upcoming data from the GAIA satellite [60]. Compared to
the ∼50 RC data points [19] that we have used in this work,
GAIA data will potentially have an order of magnitude
larger number of RC data points within 200 kpc which will
reduce the relative error on the velocity by a factor of
σv
v ∼ 1ffiffiffi

N
p ∼ 1

3
, where N ¼ 10 is a benchmark increase in the

number of tracers that we expect, thus giving tighter
constraints on the VDF and the local DM density.
As a benchmark for comparison, we introduce the SHM

which is conventionally used in all direct detection DM
experimental analyses. The VDF is assumed to be given by
a Maxwellian distribution. Note, that the corresponding
self-consistent DM density distribution assumes that the
DM halo is a singular isothermal sphere. Moreover, the
SHM assumes a single component halo mass model, an

FIG. 2. Plot of the observationally determined velocity profiles
in our local neighborhood. The solid red and dashed blue curves
correspond to the observationally determined VDFs with differ-
ent choices of the local standard of rest. The thick and thin error
bands around each show the error envelope assuming current
errors on the rotation curve data as well as projected third errors,
respectively. The canonical isothermal or Maxwellian VDF is
shown by the thin black dotted line (SHM). The two observa-
tionally inferred VDFs are non-Maxwellian in nature and differ
from the SHM VDF at both low and high velocity tails. The
departure of the observed VDFs at high velocity tails crucially
impacts the interpretation of low mass dark matter searches in
direct detection experiments.

Rotation curve data from Bhattacharjee et al. [19] along with
the MCMC best fit (blue). Also shown is the decomposition of the

RC into visible Disk + Bulge (green) and DM halo (orange)
components.

MCMC correlation between the DM
scale radius rs and the local DM density

ρDM,�, the shaded contours show the 1, 2
and 3-σ confidence regions.

MCMC correlation between the local
VM disk surface density Σ0 and the local
DM density ρDM,�, the shaded contours
show the 1, 2 and 3-σ confidence regions.

(a)

(b)

(c)

FIG. 1. Results for MCMC fit to the rotation curve data.
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assumption which breaks down in the presence of VM.
The isothermal velocity profile of dark matter as a function
of the dark matter velocity in the Galactic rest frame v is
given by

fisoðvÞ ¼ kiso exp ð−v2=v2dÞ; ð4Þ

where vd is the velocity dispersion taken to be 220 km=s,
and kiso is a numerically determined normalization
constant found by integrating the velocity profile
over d3v, with v < vesc. The canonical value of the
Galactic escape velocity vesc is taken to be 544 km=s.
We denote the SHM VDF with these parameters as iso.
The local DM density is conventionally chosen to be
ρDM;⊙ ¼ 0.3 GeVcm−3; however, this value is not self-
consistent with the assumed VDF parameters.

A. Analytic fits to the observational VDFs

Finally, for the sake of ease of use of our VDFs estimated
from MW observations, we fit the VDFs to the following
functional form

fobsðvÞ ≈ BðζðβÞ − ζðβmaxÞÞ; ð5Þ

where ζðxÞ ¼ ð1þ xÞk exp½−xð1−pÞ�, β ¼ v2=v2⋆ and
βmax ¼ v2esc=v2⋆. Here k, p, v⋆, and vesc are fit parameters
and B is an appropriate normalization factor. The best fit
parameters are given in Table I; the fit parameters for the
error envelopes are given in Appendix A. We show these
fits for the obs VDF in Fig 3. The analytic expression in
Eq. (5) fits the obs VDF to roughly 1% accuracy over most
of the velocity range, and is a better fit to the DM VDFs
over other fitting forms proposed in the literature by
Bhattacharjee et al. [18] and Mao et al. [26]. A table of
the VDFs along with the upper and lower uncertainty
envelopes can be found in Ref. [61].
One might also consider the possibility of fitting the obs

VDF with a Maxwellian profile with an alternate choice of
the dispersion velocity parameter vd. We have shown this as
the best-fit Maxwellian in Fig. 3 where vd ¼ 217.3 km s−1.
From the figure we can clearly see that the fit is poor, as the
Maxwellian VDF does not describe the MCMC determined
VDF well, especially so in the high-velocity tail region.

IV. DIRECT DETECTION RATE

Wewill now examine the effect of the difference between
the observationally determined velocity profile and the
canonical isothermal SHM profile that we have considered
in the previous section on the dark matter direct detection
rate. We will consider here only elastic scattering of DM
with a target nucleus. Assuming isotropic scattering in the
center-of-mass frame of the DM-nucleus system, the rate of
direct detection signal events per unit recoil energy ðERÞ,
per unit detector mass, is given by [62]

dR
dER

¼ R0

E0r
IðERÞF2ðERÞϵðERÞ: ð6Þ

The nominal rate R0 is given by

R0¼
320

mDmT

�
σ0
1 pb

��
ρDM;⊙

0.3GeV=c2

��
v0

220 km=s

�

tru; ð7Þ

where 1 tru is 1 count=kg=day. Here, the dark matter mass
mD and target nucleus mass mT are expressed in GeV=c2,
σ0 is the DM-target nucleus cross section, ρDM⊙, is the local
dark matter density, and v0 is a “typical relative velocity”
parameter which is representative of the dark matter
velocity in the detector rest frame. The factor of v0 is
introduced only for dimensional convenience and cancels
out in the full expression for the rate.
An explanation of the other factors in Eq. (6) is in order

here. In accordance with Ref. [62], E0 ¼ 1
2
mDv20 is the

characteristic recoil energy of the nucleus (typically of the
order of a few keV for a 100 GeV dark matter particle) and
r ¼ 4mDmT=ðmD þmTÞ2. F2ðERÞ is the nuclear form

FIG. 3. The obs VDF (solid red line) is shown along with the
best fit (thick black dashed line) using the fitting function in
Eq. (5). The fit agrees to within 1% over almost the entire velocity
range. For comparison the best fit using the fitting function given
in Ref. [18] (thin black dashed line), and the SHM iso VDF
(dotted black line) are also shown. We have also shown the best
fit Maxwellian to the obs VDF (dash-dot blue line).

TABLE I. Best fit parameters for Eq. (5) for the empirically
obtained VDFs. We recommend use of the obs VDF which is
based on the IAU preferred LSR.

VDF k p v⋆ (km s−1) vesc (km s−1)
B200-8.0-67 0.44 −0.45 262.99 536.83
B220-8.5-67 (obs) −2.48 −1.69 372.25 475.00
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factor which is target dependent, here we use the Helm
form factor from Ref. [62]. ϵðERÞ is the detector efficiency
as a function of recoil energy.
For spin-independent (and isospin independent) scatter-

ing the WIMP-nucleus cross section σ0 can be expressed
in terms of the DM-nucleon cross section σn by, σ0 ¼
ðμD;N

μD;n
Þ2A2σn, where A is the nucleon number of the target,

μD;N (μD;n) is the reduced mass of the DM particle and the
nucleus (nucleon). We will only consider spin-independent
interactions in this work. The case of spin-dependent
scattering is a trivial extension.
In Eq. (6), the factor IðERÞ is a dimensionless velocity

averaged integral given by,

IðERÞ ¼
Z

vr>vmin

v0
vr

fðvr þ veÞd3vr: ð8Þ

Here, the integrand is evaluated over the relative velocity of
a DM particle and the detector vr ¼ vgal þ ve, where vgal is
the DM velocity in the Galactic rest frame and ve is Earth’s
velocity. Since we will only focus on the time integrated
recoil signal in this work [63], we take Earth’s velocity to
be a constant with magnitude ve ¼ 240 km=s. Demanding
that the dark matter particle should have a large enough
relative velocity to be able to cause a recoil energy ER in
the detector gives us the lower bound on the relative
velocity, vmin ¼ ð2ER=ðrmDÞÞ1=2. This introduces an
explicit dependence of I on the recoil energy as well as
the DM mass.
The velocity integral fully captures the way that the VDF

of the dark matter affects the detection rate. Our VDFs by
definition are cutoff above the Galactic escape velocity.
Thus, when vmin exceeds vesc þ ve, no recoils should occur.
For a fixed DM mass, this implies that there is a maximum
nuclear recoil energy given by Emax

R ¼ 1
2
rmDðvesc þ veÞ2

above which no signal is expected in the detector. We note
that since the obs VDF has a lower escape velocity
compared to the isothermal VDF, we expect lower recoil
energy cutoffs for a fixed DM mass when using the obs
velocity profile.
Conversely, for a fixed recoil energy, ifmD is sufficiently

large, then the velocity integral receives contributions from
all possible relative velocities. In the absence of the factor
v0=vr in the integrand, the integral would evaluate to unity,
independent of the velocity profile. Thus, for large DM
masses, the distinction between the various VDFs arises
mainly from the spread of DM relative velocities. However,
for low DM masses, the support of the velocity integral
shrinks and the rate becomes highly sensitive to the
differences between the high velocity tails of the VDFs.
We can see from Fig. 2 that the obs and isothermal VDFs

have similar widths but the obs velocity profile has a more
suppressed high velocity tail. Thus, for a fixed recoil
energy, we expect that the difference between the direct

detection rates for the obs and isothermal VDFs will be
most dramatic for low dark matter masses.
We define ζ≡ Iobs=I iso as the ratio of I factors for the

fiducial obs velocity profile and the isothermal profile. In
Fig. 4, we plot ζ as a function of the dark matter mass, for
several different target nuclei, for a fixed recoil energy
ER ¼ 5 keV. For low DM masses compared to the target
mass, ðvmin → ðERmT=2ðmDÞ2Þ1=2Þ. Thus, for a given target
and a fixed recoil energy, the I factor is sensitive to the tail of
the VDF. The tail of the obs VDF falls below that of the
isothermal profile at a Galactic velocity vdev ≃ 330 km s−1
(see Fig. 2).Hence, theI ratio drops belowunity for lowDM
masses, mD → ðERmT=2ðvdev þ veÞ2Þ1=2.
In Fig. 5, we show how ζ varies as a function of dark

matter mass for a Si target at various recoil energies. We can
see from the figure that at higher recoil energies the
deviation of ζ from unity occurs for correspondingly higher
values of the dark matter mass. The error bands in both
Figs. 4 and 5 reflect the propagation of the current and third
VDF uncertainty envelopes of Fig. 2 into the corresponding
velocity integral, Iobs.
For a given recoil energy it thus seems that the I factors

can vary by several orders of magnitude for low dark matter
masses. We would thus expect a large change in the total
direct detection signal rates and consequently the exclusion
bounds for low dark matter masses if we used the obs VDF
rather than the canonical isothermal profile. However, as
we shall see next this expectation is tempered by the fact
that at low recoil energies we actually get a small
contribution to the overall rate due to the low detector
efficiency at these energies.

FIG. 4. Plot of ζ ≡ Iobs=I iso the velocity integral ratio as a
function of dark matter mass, for various target elements (solid
lines) at a recoil energy of ER ¼ 5 keV. The current and future
experiments where these targets are in use are also given in the
annotations. Significant deviations from the isothermal velocity
profile are observed for low dark matter masses. The thick and
thin envelopes indicate the uncertainty on ζ estimated by a
propagation of the current and third velocity envelopes respec-
tively, of the obs VDF (see Fig. 2).
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V. RESULTS

In this section we would like to see whether our
expectation of the strong sensitivity of the recoil rate to
the VDF continues to hold upon including detector effi-
ciency effects. In Fig. 6 we plot the detector efficiency for
several existing experiments CRESSTII [66], LUX [64],
and PICO [65]. We also show the efficiencies for the
proposed SuperCDMS experiment using published projec-
tions for the Silicon and Germanium High Voltage (HV)
detectors [67–69]. Each efficiency function can be char-
acterized by a threshold energy, ðETÞ which can be defined
as the recoil energy for which the efficiency drops to 50%

of maximum efficiency, and the width of the detector
response near the threshold (conventionally defined by
parametrizing the response as an error function; see
discussion on detector specifications in Appendix B).
Using these efficiencies, we can now compute the recoil

energy spectra for different detectors for the obs and SHM
VDFs using Eq. (6). Note that we need to choose the
appropriate value of the local DM density corresponding to
the VDF that we are using, which changes the overall
normalization of the rate for different VDFs. It is the strength
of our present approach, as detailed in previous sections, that
we have self-consistent pairs of local DMdensity andVDFs.
In Fig. 7 we plot the recoil spectra due to DM-nucleus
interactions for the SuperCDMS Silicon detector and the
LUX detector for DM masses of 6 and 10 GeV, assuming a
WIMP-nucleon cross section σn ¼ 10−40 cm2.
We note a few interesting features of the recoil spectra.

The high energy tail of the recoil spectra is sensitive to the
tail of theVDFs.However, at low recoil energies the shape of
the recoil spectrum is determined by the threshold energy
and efficiency of the detector near the threshold.Wenote that
each detector has a minimum dark matter mass belowwhich
no events are seen in the detector. This minimum mass is
given by ðmmin

D ≃ ðEmin
R mT=2ðvesc þ veÞ2Þ1=2Þ, where vesc is

the local escape velocity andEmin
R is the minimum deposited

energy that can be detected. Since CRESST and
SuperCDMS are low threshold experiments, they are sensi-
tive to much lower recoil energies and hence to much lower
dark matter masses.
In Fig. 8 we show the differential recoil rate dR=dvgal as

a function of the magnitude of the dark matter velocity in

FIG. 7. Plot of the recoil energy spectrum (solid lines) for dark
matter particles with masses 6 and 10 GeV scattering off of a Si
target (SuperCDMS) and Xe target (LUX) for the obs velocity
profile. The corresponding spectra with the isothermal (SHM)
VDF are shown with dotted lines. Here, we have assumed a
WIMP-nucleon scattering cross section σn ¼ 10−40 cm2. The
thick and thin envelopes indicate the uncertainty on the recoil
spectra estimated by a propagation of the current and third
velocity envelopes respectively, of the obs VDF.

FIG. 6. Plot of detector efficiencies as a function of recoil
energy for LUX [64], PICO [65], CRESSTII [66], and the
proposed SuperCDMS Si and Ge High Voltage detectors
[67–69].

FIG. 5. Plot of ζ ≡ Iobs=I iso the velocity integral ratio as a
function of dark matter mass, for a silicon target at various recoil
energies (solid lines). The thick and thin envelopes indicate the
uncertainty on ζ estimated by a propagation of the current and
third velocity envelopes respectively, of the obs VDF.
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the Galactic rest frame ðvgal ¼ vr þ veÞ for DM particles
scattering in LUX and SuperCDMS with the same
benchmark cross section. Comparing this plot with the
VDFs in Fig. 2 allows us to visualize the contribution to
the total recoil signal for different ranges of DM Galactic
velocities. From the figure, we can clearly see the recoils
of low mass DM probe the high velocity tail of
the VDFs.
Finally, we can examine the difference between the

fully integrated signal rates for the obs and isothermal
VDFs. In Fig. 9, we plot as a function of dark matter
mass the relative difference (in percent) of the expected
number of signal events using the observationally deter-
mined VDFs and the expected number obtained by using
the SHM.
To derive a realistic upper bound on the DM-nucleon

cross section (σn) from experiment requires an under-
standing of the detector background recoil spectra shape
and corresponding systematic uncertainties, understanding
of the detector efficiency and threshold, as well as knowl-
edge of the detector exposure. A detailed study of these
effects is typically possible only within each experimental
collaboration. Here, we have estimated a simple bound on
σn for the LUX, PICO, and CRESSTII [66] experiments.
We have also computed an expected exclusion limit for
the SuperCDMS Silicon and Germanium high-voltage
detectors.
Our procedure was as follows: We first assumed

detector exposures and efficiencies for several detectors
based on their published results where applicable.
These exposures and efficiencies are summarized in

the appendix, along with the references from which
they were obtained. For all experiments we assumed a
background rate of 1 dru≡ 1 count=keV=kg=day which
is constant over recoil energies from 0–200 keV. We then
calculated a simple median 90% C.L. estimated bound
on the dark matter nucleon cross section σn by doing a
simple counting pseudoexperiment over the entire recoil
energy range from 0–200 keV, assuming that only
background is observed.
The upper end of the recoil energy range of 200 keV is an

arbitrary choice. This value is much higher than the
maximum recoil energy expected for low DM masses.
We are unable to perform a profile likelihood analysis [70],
which would take into account shape differences between
the signal and background without a detailed understanding
of the detector backgrounds, but a detailed experimental
analysis would optimize the choice of this upper cutoff for
every candidate DM mass. We assumed a simple flat
background spectrum, and therefore our choice of the
upper recoil energy cutoff of 200 keVadded a fixed amount
of background that could realistically be reduced.
We plot our estimated upper bound on σn for the obs

and SHM velocity profiles for the selected experiments
in the upper panel of Fig. 10. Note that it is important to
use appropriate choice of local DM density correspond-
ing to the selected VDF when computing the exclusion
curves. We also show the uncertainty bands around the
exclusion curves for the obs VDF corresponding to a
straight forward propagation of the third VDF uncer-
tainty envelope from Fig. 2. The lower panel of Fig. 10
shows the percentage difference between the exclusion
bounds set by assuming the obs and SHM local DM
phase space.

FIG. 8. Plot of the contribution to total direct detection rate
(solid lines) for a 6 and 10 GeV dark matter particle scattering in
LUX and SuperCDMS (Si) as a function of vgal (the speed of DM
in the Galactic rest frame). We have assumed a WIMP-nucleon
scattering cross section σn ¼ 10−40 cm2. The thick and thin
envelopes indicate the uncertainty on the recoil rate estimated
by a propagation of the current and third velocity envelopes
respectively, of the obs VDF. The dashed lines show the
corresponding rate assuming the iso VDF.

FIG. 9. Plot of the change (in percent) of the expected number
of signal events assuming the obs VDF as opposed to the
canonical SHM VDF, as a function of dark matter mass for
the SuperCDMS (Si) and LUX detectors (solid lines). The thick
and thin envelopes indicate the uncertainty on this difference
estimated by a propagation of the current and third velocity
envelopes respectively, of the obs VDF.
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There are several interesting features in Fig. 10. We
note that there is a few percent normalization difference
in the bounds for the different velocity profiles, which is
apparent at high DM masses, due to the difference in the
local DM density for each profile choice. In addition to
the density effect, the estimated bounds on σn differ in
shape, at low dark matter masses, due to impact of the
different velocity profiles. This difference is most stark
at the threshold mass mmin

D of each detector where
mmin

D ≃ ðETmT=2Þ1=2=ðvesc þ veÞ and ET is the detector
threshold energy. The exact value of mmin

D , as well as the
shape of the exclusion curve near mmin

D , depend on the
tails of the VDFs. Additionally, they also depend on the
detector sensitivity near the detector threshold, which is
different for each detector.
For example, taking the case for LUX, which has

mmin
D ≃ 4 GeV, the exclusion limit obtained by assuming

the obs VDF profile as opposed to the SHM VDF yields
> 200% difference near threshold, i.e. the constraints are

weakened by a factor of 3. Similarly, for PICO,mmin
D ≃3GeV,

and the exclusion limit differs by> 150% near threshold. For
the lower threshold experiments, such as CRESSTII and the
near future SuperCDMS experiments, mmin

D < 1 GeV, and
the difference in the exclusions are ≲50%.
In order to judge whether these differences in the

exclusion curves when using the obs versus iso VDFs
are significant, we need to consider the uncertainty on the
obs VDF profile. Given the current errors, the difference
between the central values of the exclusion curves is well
within the VDF uncertainty. However, assuming the same
central values of the VDFs but with errors reduced (by
future astrophysical measurements) to third errors, we find
that for LUX and PICO, this difference could be ∼5σ
significant.
In a direct detection experiment, there are four main

sources of systematic errors: (i) astrophysical uncertain-
ties on the local DM density and the VDF, (ii) detector
response uncertainty, (iii) uncertainty of the nuclear
form factors, and (iv) uncertainty on the detector back-
ground. In this work, we have discussed the uncertainty
on the local DM density and VDF and argued that
the VDF uncertainty is the dominant astrophysical
unknown. To assess the impact of other uncertainties
on the DM exclusion bound requires a careful under-
standing of the detector and is beyond the scope of
this work.
To get an idea of the relative importance of the

astrophysical vs detector uncertainties, we use the
published uncertainties on the LUX exclusion [64] as
a benchmark. An examination of their bounds indicate
∼50% detector related uncertainties, at all candidate DM
masses. Note, that they do not include astrophysical
uncertainties in their exclusion limits. In contrast,
expected uncertainties in the mean DM exclusion curve
due to third errors on the obs VDFs are ∼30% and,
hence, it is expected to be subdominant to detector
systematics once precision astrophysics results are used
to determine the DM VDF.
Given that the application of the central obs VDF results

in a systematic deviation of up to 200% in the mean DM
exclusion curve, along with an estimate of the combined
expected uncertainty from astrophysics as well the cur-
rently known experimental systematics of ∼60%, it is
clearly important to use the best available observationally
determined VDF when presenting the results of DM direct
detection experiments.

VI. DISCUSSION AND CONCLUSIONS

We have constructed an observationally driven determi-
nation of the local DM density and velocity distribution and
used this to interpret the null results of DM direct detection
experiments. Milky Way astrophysical data is poised for
unprecedented precision measurements with the release of
GAIA data and can be used to get precise estimates of the

FIG. 10. Estimated median 90% C.L. upper bound on spin-
independent DM nucleon scattering cross section σn for several
experiments. The top panel shows the estimated bound using the
obs VDF (solid lines) along with the third uncertainty envelope.
The thicker current uncertainty envelope is omitted for clarity.
The estimated bounds for the isothermal VDF are shown with
dashed lines. The differences between the obs and isothermal
bounds are shown in the lower panel. We can see that the
difference is most significant for masses close to the detector
threshold mass mmin

D . This difference is significant when VDF
errors improve to third errors (shown); with current errors (not
shown) the difference cannot be resolved.
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MW (and in particular the local) DM phase-space distri-
bution. This approach goes beyond the simplistic, and
incorrect, isothermal VDF in the so-called SHM of the
MW. Previous attempts to go beyond the SHM have mainly
relied on simulations of a MW-like DM halo. These
simulations, although state of the art, are not guaranteed
to describe exactly our MW. Despite the promise shown by
these simulation results, it is prudent to use observationally
inferred DM phase-space distributions. Our work is unique
among other attempts in modeling the local DM phase
space in that it goes beyond just local kinematic data (prone
to large DM-VM degeneracies) and uses rotation curve data
up to ∼200 kpc for a full Bayesian reconstruction of the
MWmass model and its corresponding self-consistent local
DM density and VDF.
The mean observational VDF that we have determined

differs from the SHM isothermal VDF in that it has a lower
escape velocity and is significantly non-Maxwellian espe-
cially at the tails. Current RC data have large error bars for
the majority of radial bins and results in a large current
error band around the mean VDF. However, even with this
large error bar, the obs VDF clearly differs from the
isothermal VDF, in particular, at the high velocity tail. A
similar determination of the DM VDF from the GAIA
astrometric observations [71] is expected to reduce the error
on VDF significantly, thus potentially differentiating the
obs VDF from the isothermal VDF over most of the DM
velocity range.
Low mass (∼ few GeV) DM has received considerable

interest due to claims of a long-standing detection of an
annual modulation signal by DAMA [72], as well as
claims of excess events seen in other direct detection
experiments such as CDMS-II [73], COGENT [74], and
CRESST-II [75]. In addition, the observed excess of
gamma rays from the Galactic center could also be
explained by the annihilation of a low mass DM species
[76,77]. Although the DM origin of these anomalies is far
from certain, these results are indicative of the need to
precisely interpret the results of direct detection experi-
ments for low DM masses.
In this work, we have shown that the difference between

the observationally determined VDFs and the convention-
ally used isothermal VDF can yield very different inter-
pretations of direct detection experiments for low candidate
DM masses. Using the right DM VDF becomes especially
pertinent when using VDFs inferred from future measure-
ments from the GAIA telescope (where for simplicity we
assume in this work that the mean obs VDF remains the
same whereas the uncertainty around the mean reduces).
For example, in such a scenario, for DM experiments like
LUX or PICO, the DM exclusion limit using the obs DM
VDF is expected to deviate by up to 5σ from the limit
inferred from the SHM VDF at the detector threshold DM
mass sensitivity. For future low threshold experiments, like
SuperCDMS, accurate knowledge of the shape of the

detector response is crucial to compute the impact of using
the observationally determined DM VDF.
We emphasize that it is imperative that DM experiments

use the best observationally estimated DM VDF when
setting exclusion limits. For this purpose we have provided
an accurate analytic fit to the obs VDF given in Eq. (5) and
a github link to the tables of the actual VDFs.
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APPENDIX A: FIT TO VDF ENVELOPES

We provide the best fit parameters for the upper and
lower edges of the error envelope for the VDFs shown in
Fig. 2 in Tables II and III. Note that we have used the same
parametrizations as Eq. (5) although the fitting function is
ideal for the mean VDF.

APPENDIX B: DETECTOR SPECIFICATIONS

For experiments other than LUX, the detector response
function was taken to have the parametric form,

ϵðERÞ ¼
1

2

�

1þ Erf

�
ER − ETffiffiffi

2
p

σ

��

ðB1Þ

in terms of the error function. Here ET is the detector
threshold energy at which the efficiency drops to 50% and
σ is the width of the efficiency near threshold. For the LUX

TABLE II. Best fit parameters for Eq. (5) for the upper envelope
of the empirically obtained VDFs.

VDF k p v⋆ (km s−1) vesc (km s−1)
B200-8.0-67 −0.22 −0.26 275.86 500.32
B220-8.5-67 (obs) −4.89 −4.25 455.03 444.41

TABLE III. Best fit parameters for Eq. (5) for the lower
envelope of the empirically obtained VDFs.

VDF k p v⋆ (km s−1) vesc (km s−1)
B200-8.0-67 0.52 −0.99 288.29 601.05
B220-8.5-67 (obs) −0.99 −1.84 332.32 518.57
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experiment we used the efficiency curve given in Fig. 1 of
Ref. [64] with a hard low energy cutoff of 1.1 keV. We
present for completeness in Table IVa listing of the detector

properties for the experiments used in the results presented
in the main text. We also list the references from which
these specifications were extracted.
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