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Superconducting cosmic strings can exhibit longitudinal, pinching instabilities in some regions of the
parameter space. We make predictions about the onset of this instability using the thin string approximation
(TSA) and develop an improved analysis that remains applicable for small wavelength perturbations, where
the TSA breaks down. We use simulations of perturbed strings to assess the accuracy of the TSA, test the
predictions of our new analysis and demonstrate an improvement over previous methods in the literature.
Notably, it appears that the instabilities are typically present for a larger range of magnetic strings than
previously expected, and we show examples of pinching instabilities also occurring in electric strings.
However, both our simulations and predictions agree that strings near the chiral limit are free from pinching
instabilities and in particular our results support our previously published claim that vortons can be stable to
all classical perturbations if they are sufficiently large.
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I. INTRODUCTION

Cosmic strings are a well-studied, one-dimensional
topological defect that often appear in models that attempt
to go beyond the Standard Model of particle physics, see
[1–3] for reviews. A path in space that encircles a string will
loop around the vacuum manifold n times, where n in
known as the winding number. Witten showed [4] that
strings can host superconducting currents in their cores
(and it has since been argued that strings are generically
current carrying [5]) which can cause high energy, poten-
tially observable events, for example see [6], and have
interesting cosmological consequences. In particular, the
formation of static loops supported by angular momentum
—known as vortons [7,8]—that can, depending on the
specific model, either overclose the Universe or contribute
to dark matter [9–11].
Under certain conditions, the current on the strings can

become unstable, leading to potentially observable radia-
tion and the likely destruction of vortons. This effect was
discussed in [12] where an analytical criterion was derived
for the onset of this pinching instability for magnetic
strings, that was based on perturbations to field theory
solutions. In an alternative approach, which we refer to as

the thin string approximation (TSA), the string is treated as
having negligible width and there can be a longitudinal
instability that occurs when the square of the longitudinal
sound speed becomes negative [13,14]. Dynamical simu-
lations have been performed using this formalism and
instabilities were found in the magnetic regime that
manifested themselves as shocks in the equation of state
parameter [15].
We recently presented evidence of a vorton that was fully

stable based on predictions from the TSA and supporting
numerical simulations [16,17]. However, small radii vortons
that were predicted to be stable suffered from an unexpected
pinching instability that disappeared as the radius of the
vorton was increased. In this paper, we strengthen our claim
that this instability is due to curvature effects (and will
therefore not be present in larger vortons once the effects of
curvature become negligible) by performing simulations of
straight superconducting strings in the same parameter set
and showing that they are stable near the chiral limit.
Notably, both of the previous methods for predicting the

onset of pinching instabilities integrate over the width of
the string, removing degrees of freedom from the system.
As such, one should expect these methods to break down
when the width of the string can no longer be treated as
negligible. We have developed an improved analysis for
dealing with these cases and assess the accuracy of all three
methods when compared with simulations.

II. STRING SOLUTIONS AND THE TSA

We will be using the neutral limit of a gauged Uð1Þ ×
Uð1Þ model with the Lagrangian density,
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where Dμ ¼ ∂μ − igAμ and Fμν ¼ ∂μAν − ∂νAμ. The
parameters are all real positive constants and are chosen
so that Uð1Þϕ is broken in the vacuum and Uð1Þσ is only
broken along the core of the string, where it condenses. We
will always use ηϕ ¼ λϕ ¼ 1 since all other systems can be
obtained simply by rescaling the other parameters and the
length scales—see [17] for more information. We also
parametrize the gauge coupling with G ¼ g=gBPS where
g2BPS ¼ λϕ=2 is the coupling required to set the length scales
of the vortex field and gauge field to be equal. For a string
lying along the z-axis, we can make the ansatz that ϕ ¼
jϕjðρÞ exp½inθ� (although we typically use n ¼ 1), σ ¼
jσjðρÞ exp½iðωtþ kzÞ� and Aθ ¼ AθðρÞ, with all other
gauge field components being zero everywhere, for which
static solutions satisfy,
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d2Aθ

dρ2
−
1

ρ

dAθ

dρ
þ 2gjϕj2ðn − gAθÞ ¼ 0; ð2:4Þ

with χ ¼ ω2 − k2. Strings are categorized based on the sign
of χ—electric strings have χ > 0, chiral strings have χ ¼ 0,
and magnetic strings have χ < 0. Due to the Lorentz
invariance of the string under boosts in the z direction,
one can shift to a frame in which ω ¼ 0 for magnetic
strings, or one where k ¼ 0 for electric strings, while χ
remains the same. We will call these frames the pure
magnetic or pure electric frames, respectively. There are
two conserved quantities that will be of interest—the
Noether charge associated with the Uð1Þσ symmetry, Q,
and the topological winding number of the condensate
along the string, N, defined as

Q ¼ 1

2i

Z
d3xðσ�∂tσ − σ∂tσ

�Þ ¼ 2πωL
Z

jσj2ρdρ

and N ¼ kL
2π

; ð2:5Þ

where L is the length of string.

One can solve these equations numerically for different
choices of χ, although not all values will produce a
condensate on the string, see [1,17] for detailed discus-
sions. Some values of χ in the electric regime can produce
two solutions and it is necessary to fix the charge per unit
length, q ¼ Q=L, rather then χ, to find these solutions. This
is because one of the solutions will have lower energy than
the other, which is preferred by the energy minimization
algorithms used to find the solutions, and methods based on
fixed χ can reduce the charge on the string in an unphysical
manner to access this lower energy state. We refer to these
two solutions as either being on the lower or higher-charge
branch with the expectation from the TSA being that lower-
charge branch strings will be stable to pinching instabilities
and higher-charge strings will not—see [17] for a more
detailed discussion. Figure 1 shows a couple of examples of
string solutions, that we will later show to be unstable to
pinching instabilities, one of which is a magnetic string and
the other is an electric string on the higher charge branch. For
electric strings, one can always transform into the framewith
k ¼ 0 and we make the choice to do this for our higher-
charge branch string solutions so that they can be distin-
guished by the charge per unit length in this particular
frame, qp.
We can use the TSA to predict whether a string will be

unstable to longitudinal instabilities from the equation of
state of the string.Wehave previously shown that thismethod
gives very accurate results when applied to the extrinsic
instabilities1 of vortons [16,17]. For the Lagrangian of
equation (2.1), the energy momentum tensor is,

T μν ¼ 2ðDμϕÞðDνϕÞ� þ 2∂μσ∂νσ� −Fμ
αFνα − gμνL: ð2:6Þ

We can neglect the width of the string and calculate the
macroscopic energy-momentum tensor, Tab, with a; b ∈ t,
z, by integrating over the string cross-section. This results
in the four components,

Ttt ¼ 2ω2Σ2 þ μ −
1

4
λσΣ4; Ttz ¼ Tzt ¼ 2kωΣ2;

Tzz ¼ 2k2Σ2 − μþ 1

4
λσΣ4; ð2:7Þ

where we have defined the integrated quantities,
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Z
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1Extrinsic instabilities are growing oscillations in the position
of the string, as opposed to intrinsic instabilities which are
growing oscillations in the internal properties of the string—for
example the amplitude of the condensate.
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which can be calculated for any field profiles that are a
solution to Eqs. (2.2)–(2.4). The macroscopic energy-
momentum tensor can be made diagonal by transforming
to the purely magnetic or electric frame, which is achieved
by a Lorentz boost of velocity v ¼ ω=k in the magnetic
regime (ω is set to zero) or v ¼ k=ω in the electric regime
(k is set to zero). In this frame, the tension and energy per
unit length are given by T ¼ −Tzz and U ¼ Ttt respec-
tively, and therefore

T ¼
�
μ − 1

4
λσΣ4 if χ > 0;

2χΣ2 þ μ − 1
4
λσΣ4 if χ < 0;

U ¼
�
2χΣ2 þ μ − 1

4
λσΣ4 if χ > 0;

μ − 1
4
λσΣ4 if χ < 0:

ð2:9Þ

The characteristic sound speeds of transverse and longi-
tudinal perturbations are given by c2T ¼ T

U and c2L ¼ − dT
dU

respectively so that

c2T ¼
�
1þ 2χΣ2

μ− 1
4
λσΣ4

�
−sgnðχÞ

; c2L¼
�
1þ2χΣ0

2ðχÞ
Σ2

�
−sgnðχÞ

:

ð2:10Þ

The conditions c2T; c
2
L ≤ 1 are necessary for causality. For

all superconducting string solutions that we have found,
and in the literature, the longitudinal sound speeds are
smaller than or equal to the tranverse sound speeds—which
is the opposite of every day, nonrelativistic elastic strings

and leads to more complicated dynamics for loops of
string [13].
Longitudinal perturbations with wave number, p, propa-

gate along a straight string with frequency ν ¼ cLp (and
similarly for transverse perturbations). Thus if c2L < 0, ν is
imaginary and the perturbation is unstable. In particular, the
growth rate of the instability grows linearly with the wave
number, resulting in extreme instabilities in the short-
wavelength limit. However, it must be remembered that this
prediction comes from an analysis that neglects the width of
the string and should be expected to break down for short
wavelengths where the width is no longer negligible com-
pared to the wavelength of the perturbation. Instead, we
should expect a linear relationship between thewave number
and growth rate at small p (large wavelengths) that departs
from linearity as p grows larger. We will claim in this paper
that these instabilities are the same as the pinching insta-
bilities that we will observe in simulations.

III. STABILITY ANALYSIS

In principle, a more accurate analysis that takes into
account the width of the string, can be performed by
considering perturbations to the equations of motion,
although it will be much more complicated to determine
whether a particular string is unstable than using the TSA.
The ansatz used to derive the static equations (2.2)–(2.4) is
overly restrictive if we wish to understand the stability of
the string to z dependent perturbations. In Appendix A we
will show that we can use the self-consistent ansatz
ϕ ¼ ϕ1ðt; ρ; zÞeinθ, σ ¼ ½σ1ðt; ρ; zÞ þ iσ2ðt; ρ; zÞ�eiðωtþkzÞ,
and Aθ ¼ Aθðt; ρ; zÞ with the equations of motion

FIG. 1. Straight string profiles for two different parameter sets. Figure 1(a) is an example of a magnetic string and only has a small
amplitude condensate. In contrast, Fig. 1(b) is an electric string with a large amplitude condensate that has the effect of significantly
widening the core of the string. Additionally, the gauge field has double the length scale compared to Fig. 1(a), due to the reduction in
the gauge coupling.
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in the temporal gauge (At ¼ 0) and where ϕ1, σ1, σ2, and Aθ are all real.

We can nowperturb all of the fields around their respective
straight string solutions, ϕ1 → jϕj þ δϕ, σ1 → jσj þ δσ1,
σ2 → δσ2, and Aθ → Aθ þ δAθ, where it should be under-
stood that jϕj, jσj and Aθ now refer to solutions of
equations (2.2)–(2.4) and terms beyond first order in the

perturbed equations of motion have been ignored. Then by
writing each perturbation in terms of its Fourier transform,
δϕðt; ρ; zÞ ¼ R

δϕ̂ðρ; ν; pÞeiðνtþpzÞdνdp, and using the fact
that the perturbations are all real, the equations simplify into
an eigenvalue problem with each mode being independent,

−
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−
∂
2δσ̂1
∂ρ2

−
1

ρ

∂δσ̂1
∂ρ

þ
�
1

2
λσð3jσj2 − η2σÞ þ βjϕj2 − χ

�
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þ
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−
∂
2δÂθ

∂ρ2
þ 1

ρ

∂δÂθ

∂ρ
þ 2g2jϕj2δÂθ − 4gjϕjðn − gAθÞδϕ̂ ¼ ΛδÂθ; ð3:8Þ

wherewe have defined ξ ¼ ων − kp and, if a givenmode is a
solution, the eigenvalue must be Λ ¼ ν2 − p2. Note that the
Fourier transforms of the perturbation variables are now
complex functions in general and so is the frequency,
ν ¼ ν1 þ iν2, and wave number, p ¼ p1 þ ip2, with the
real parts corresponding to oscillations and the imaginary
parts causing exponential growth or decay. However, only
solutions with ν22 − p2

2 > 0 are physically realistic instabil-
ities because therewill be a frame inwhichp2 ¼ 0; solutions
with ν22 − p2

2 < 0 are perfectly valid from a mathematical
point of view, but as there is no reference frame in which
p2 ¼ 0, there is no physical way to excite these solutions and
therefore they need not be considered.
Equations (3.5)–(3.8) can be solved numerically, if the

straight string solutions have been computed and a value is
chosen for ξ, by discretizing the radial direction with nρ
points and constructing a matrix which approximates the

differential equations using finite differences—with some
rows and columns extracted by enforcing boundary con-
ditions. The eigenvalues and eigenvectors of that matrix may
then be calculated. The eigenvector will have 4nρ compo-
nents, with the first nρ values giving an approximation to δϕ̂
and similarly for the other variables. After calculating an
eigenvalue, the frame dependent values of ν and p can be
determined by solving the simultaneous equations created
from the definition of ξ and setting Λ ¼ ν2 − p2, which are

ν ¼ 1

χ

h
ωξ� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − χΛ

q i
; p ¼ 1

k
ðων − ξÞ: ð3:9Þ

In Fig. 2 we show some examples of eigenvector
solutions and we give the frequency and wave number
that produces the correct associated eigenvalue. Figure 2(a)
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corresponds to an unstable perturbation of the string, while
Fig. 2(b) is a perturbation that is stable. An important point
is that, in both cases, δσ̂ is not the only non-negligible
component of the eigenvector and it does not have the same
radial profile as jσj (as seen in Fig. 1) which means that they
are not compatible with the assumptions made in [12].
In principle the stability of superconducting strings could

be predicted using the following procedure:
(i) The straight string solutions are calculated by

numerically solving Eqs. (2.2)–(2.4) for a particular
parameter set and choice of χ (or qp to access the
higher charge branch of solutions in the electric
regime).

(ii) A value for ξ is chosen and a matrix is constructed,
using the straight string solutions, which approx-
imates the left hand side of equations (3.5)–(3.8)
when it acts upon the vector formed by the concat-
enation of δϕ̂, δσ̂1, δσ̂2 and δÂ.

(iii) The eigenvalues and eigenvectors of thismatrix can be
calculated numerically, and the frequency ν and wave
number p can be determined using Eq. (3.9). Sol-
utions are unstable if either ν or p is complex, but are
only physically relevant instabilities if ν22 − p2

2 > 0.
This process is repeated for other values of ξ to scan
the whole parameter space for unstable solutions.

In practice, we will want to carefully choose values for ξ
because a brute force approach will have to search through
a two-dimensional parameter space, with unclear bounda-
ries, and it is very computationally expensive to compute
all of the eigenvalues for each value of ξ. We will usually be
interested in looking at specific values of p1 since that
corresponds to different wavelengths of perturbation along
the string. Unfortunately, in general, this does not directly
translate to a particular value of ξ, due to the remaining

freedom to vary ν1. This means that, for a particular choice
of ξ, the eigenvalues need to be calculated before we will
know the wavelength of the perturbation, which makes it
difficult to know how much of the ξ parameter space should
be searched in order to test the stability of the string.
Fortunately, by taking the complex conjugate of the

differential equations, we can deduce the symmetry proper-
ties that when ξ → ξ�, ðδϕ̂; δσ̂1; δσ̂2; δÂθ;ΛÞ → ðδϕ̂�; δσ̂�1;
−δσ̂�2; δÂ

�
θ;Λ�Þ is a solution and similarly when ξ → −ξ�,

ðδϕ̂;δσ̂1;δσ̂2;δÂθ;ΛÞ→ ðδϕ̂�;δσ̂�1;δσ̂
�
2;δÂ

�
θ;Λ�Þ. Therefore,

it is only necessary to consider one quadrant of the parameter
space as the rest can be inferred by reflections about the axes.
These symmetries also imply that the eigenvalues along the
axes must come in complex conjugate pairs.
In fact, by redefining δÂθ ¼

ffiffiffi
2

p
ρδÂ0

θ and δσ̂2 ¼ iδσ̂02,
the matrix formed by the discretization of equations (3.5)–
(3.8) is very nearly symmetric, with the only nonsymmetric
parts being caused by the first order derivatives. It can be
shown that, although this matrix is not symmetric, it is
similar (in the mathematical sense where two matrices, A
and B, are similar if B ¼ P−1AP for some change of basis
matrix P) to a symmetric matrix. As similar matrices share
the same eigenvalues and real, symmetric matrices have
real eigenvalues, this means that the eigenvalues will all be
real if ξ is real. Note that the condition that ν2 < 0 for a
solution to be exponentially growing rather than decaying
is no longer important because one can flip the sign by a
simple reflection.
This information is particularly useful for assessing the

stability of strings in either the purely electric or purely
magnetic frame. Although ξ, χ and Λ are all invariant to
Lorentz boosts along the string, these two frames are still
useful because they have ξ ¼ −kp or ξ ¼ ων, respectively.
Half of the information about the mode is, therefore, known

FIG. 2. Example eigenmodes of the strings shown in Figs. 1(a) and 1(b) respectively. Figure 2(a) represents an unstable perturbation to
the string, while Fig. 2(b) represents a perturbation that is stable.
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from the choice of ξ and the other half can be worked out
after the eigenvalues are calculated, partially solving the
problem of searching for instabilities in ξ space. In Sec. V
we discuss in more detail how the purely magnetic or
purely electric reference frames can be used to predict the
boundary between stable and unstable eigenmodes.
A similar analysis was performed in [12] for magnetic

strings where they found that strings should be expected to
be unstable, in the purely magnetic frame (ω ¼ 0), if
k2 > λσΣ4=ð4Σ2Þ. However, that analysis only allowed a
restricted set of perturbations, δϕ̂ ¼ δÂθ ¼ 0 and δσ̂i ¼
jσjai, where i ∈ ð1; 2Þ and the ai are independent of ρ. We
re-derive the results of [12] from Eqs. (3.5)–(3.8) using
these assumptions in Appendix B and will be comparing
the accuracy of our approach to [12] in Sec. V. Note that the
eigenmodes shown in Fig. 2 clearly violate these assump-
tions as there is a significant contribution from the vortex
field and the radial profile of the perturbations to the
condensate field is visually distinct from the underlying
condensate, as seen in Fig. 1.

IV. SIMULATIONS OF PINCHING INSTABILITIES

In this section we will perform dynamical simulations of
periodic straight superconducting strings to investigate how
pinching instabilities develop and the ultimate effect that
they have on the string. As previously stated this is
equivalent to a vorton in many ways but removes the effects
of curvature. We enforce axial symmetry and run two-
dimensional evolution algorithms (and occasional full 3D
simulations, to check that there is no difference with the 2D
case), using Eqs. (3.1)–(3.4), with periodic boundary con-
ditions along the z direction. Along the ρ direction, we apply

the boundary conditions ϕ1ðρ ¼ 0Þ ¼ 0, ϕ1ðρ → ∞Þ ¼ ηϕ,
∂ρσ1;2ðρ ¼ 0Þ ¼ 0, σ1;2ðρ → ∞Þ ¼ 0, Aθðρ ¼ 0Þ ¼ 0, and
Aθðρ → ∞Þ ¼ n=g. Note that the boundary conditions at
infinity are enforced at a finite radius—ρmax ¼ 40 for
parameter set G and ρmax ¼ 100 for parameter set E. We
set the initial conditions to be the solutions to the static
straight string equations with an applied perturbation
using σ1 → σ1ð1þ ϵ cosðp1zÞÞ.
Using this approach, we have evolved the string shown

in Fig. 1(a), in the purely magnetic frame, with an applied
perturbation that has a wavelength equal to the length of the
string and ϵ ¼ 0.01. Figure 3 shows isosurfaces of the
fields during the simulation at t ¼ 0, t ¼ 10.4, by which
point the instability has become clear, and at t ¼ 12 which
shows the string after unwinding has occurred. The con-
densate initially had a winding number of N ¼ 2 (and no
charge), which unwinds due to the instability and becomes
N ¼ 1. This causes the string to go from the state with
χ ¼ −3 to the less magnetic state with χ ¼ −3=4.
Simulations of the χ ¼ −3=4 string suggest that this state
is stable, but in this case the string unwinds a second time,
shortly after the first, due to the significant deviations from
the static solution created by the first unwinding event. It is
unclear to us how generic this cascade of unwinding
processes is (it may be that some strings do simply reduce
their winding number and subsequently stabilize), but it
would provide an efficient mechanism for unstable mag-
netic strings to become chiral, or at least significantly closer
to chiral, while skipping over intermediate, stable magnetic
strings.
We have also evolved the electric string shown in Fig. 1(b)

after applying a perturbation with a wavelength that is half
the length of the string and ϵ ¼ 0.01, observing qualitatively

FIG. 3. Snapshots of a perturbed straight string, with periodic boundary conditions, that show the pinching instability growing and
eventually causing the string to unwind. The mode being perturbed has a wavelength that is the same as the length of the string and an
amplitude of ϵ ¼ 0.01. The red surface is an isosurface of jϕj ¼ 3

5
while the yellow surface shows ReðσÞ ¼ 1

5
ησ . Note that this is a

relatively short section of string and that the z axis has been elongated compared to x and y to better illustrate the evolution. The
simulation was performed in the purely magnetic frame of the string shown in Fig. 1(a) (parameter set G). The stability analysis predicts
that the instability to this mode is driven by the eigenvector shown in Fig. 2(a).
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different behavior to the magnetic regime. In this case, we
have not performed the simulation in the purely electric
frame, insteadwehave used the frame inwhich the chargeper
unit length is q ¼ 43, k ¼ 0.3 and a length of string such that
the winding number is N ¼ 5, so that the results can be
directly compared with vorton simulations that will be
discussed in Sec. VI. In Fig. 4, we present snapshots of
the isosurfaces at t ¼ 0, t ¼ 630 and t ¼ 900 that clearly
display that the string is unstable, albeit in a very different
way to the magnetic string.
These two simulations illustrate the qualitative differences

between pinching instabilities in the magnetic and electric
regimes. The electric string exhibits distinctive changes in
width as the unstable mode grows, leading to a highly
distorted shape in Fig. 4(b) and implying that the vortex field
must play a large role in the dynamics—which is not as
obviously the case in the magnetic regime. However, the
most interesting difference is that, although there is a clear
instability in the electric string, it does not seem to ultimately
lead to either unwinding events or the emission of charge—
whereas in the magnetic regime it seems plausible that there
is a mechanism for the string to move toward a chiral state.
The difference between the two scenarios could be due to the
lack of a truly conserved quantity for the magnetic string—
since the topological winding number can dynamically
change if jσj → 0—whereas the electric string has a con-
served Noether charge which can only be reduced by
emission. While the long-term behavior of instabilities in
electric strings—for example whether it will continuously
oscillate, slowly emit charge, or relax into a new stationary
state—is an interesting question, we will not address it in
detail in this work. We focus instead on testing the accuracy
of our predictions for the onset of instabilities, which we
believe to be themore important issue and one that is easier to
resolve.

V. COMPARING THE STABILITY
ANALYSIS TO SIMULATIONS

We can test the accuracy of the stability analysis
developed in Sec. III by making comparisons between
its predictions and simulations. The most important pre-
diction to test is whether a given string is ultimately stable
(in other words, stable to all wavelengths of perturbations)
or not, but we can also make predictions for the critical
wave number that represents the boundary between stabil-
ity and instability, and also for the growth rate of unstable
modes. In the magnetic regime, we will compare our
simulations to predictions based on the analysis performed
in [12]. We will also make predictions, using the TSA, for
the onset of longitudinal instabilities, and ultimately make
the claim that they are the same as the pinching instabilities.
We are particularly interested in investigating the param-

eter set ησ ¼ 0.61, λσ ¼ 10, β ¼ 3 and G ¼ 0.5, which we
named parameter set B in [17] and constructed a close to
chiral vorton solution that we have claimed was fully stable
[16]. Pinching instabilities were present for small radii
vortons, but they disappeared at larger radii. Therefore,
determining whether chiral straight strings have pinching
instabilities in this parameter set has implications for the
stability of the vorton solution.
As our simulations have periodic boundary conditions,

there is an additional constraint imposed upon the stability
analysis that pmust be real (since e−p2z is not periodic). As
such, it is easiest to use our analysis to make predictions in
the frame where ω ¼ 0, as it is then trivial to force p to be
real by simply only investigating real values of ξ. As
previously explained, this has the additional benefit that the
eigenvalues will all be real, so unstable perturbations
simply correspond to Λ < −p2

1 along this axis. The critical

FIG. 4. Snapshots of a perturbed, electric, straight string [the one shown in Fig. 1(b)] with periodic boundary conditions that show the
pinching instability growing and causing the string to become highly distorted, although it later returns to a similar state to the one it
started in. The instability is first evident at t ∼ 400 and is at its most distorted by t ∼ 630, as shown in the central plot. The perturbed
mode has a wavelength that is half the length of the string and an amplitude of ϵ ¼ 0.01. The red surface is an isosurface of jϕj ¼ 3

5
while

the yellow surface shows ReðσÞ ¼ 1
5
ησ .
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wave number is, therefore, given by the point along the ξ
axis where −p2

1 is equal to the smallest possible eigenvalue.
In Fig. 5(a) we show the regions of the parameter space

for which the condensates unwind by t ¼ 1000 in our
simulations of magnetic strings, after initially perturbing
the mode with wave number p1, and we compare this to the
analytic prediction made in [12], our generalized analysis
described in Sec. III and the expectation from the TSA. Our
simulations suggest that the strings are unstable to much
larger values of p1 than would be expected from our
analysis, although the range of χ for which there are
unstable strings is well predicted and is also more important
because it determines the overall stability of the string. The
sudden increase in the unstable region when moving further
into the magnetic regime is a strange and unexpected
feature that may indicate an issue with the simulations, or
our method of determining whether the string is unstable.
In particular, our criteria for detecting an instability—when
jσj2 drops below 1

10
η2σ at the centre of the string—probably

does not work as well for highly magnetic strings since the
magnitude of the condensate is smaller at the core. We
speculate that this is probably what causes the conflict
between the simulations and the predictions in the highly
magnetic regime, but is resolved in the electric and mildly
magnetic regimes—although more investigation will be
needed to confirm this. The onset of longitudinal insta-
bilities predicted by the TSA is close to what we see in the
simulations, and also the predictions from our stability
analysis. The previous analysis, on the other hand, typically

overestimates the range of χ for which there are stable
strings.
Transforming to the frame in which ω ¼ 0 is only

possible in the magnetic regime. In the electric regime,
we can transform instead to the frame in which k ¼ 0,
which makes simulations easier, but the stability analysis
harder. The simulations are easier because only one wave-
length of the perturbation needs to be simulated, which is
not the case for magnetic strings where the length of the
string must be a common multiple of the wavelength
associated with the winding and the wavelength of the
perturbation, and the resolution must be sufficient to
resolve the smaller of the two. Simulations of electric
strings are, therefore, less computationally expensive,
which allows us to run them over longer timescales. In
particular, it is significantly easier to run simulations with
long wavelength perturbations, allowing for more stringent
testing of the TSA in precisely the regime in which it
should be expected to work well.
Unfortunately, it is slightly more complicated to make

predictions from our analysis in the electric case, as the
wavelength of the mode is not known until after the
eigenvalues are calculated, since only ν is specified by
choosing a value for ξ. Additionally, the constraint that
p2 ¼ 0 must still be satisfied due to the periodic bounda-
ries. However, we know that real values of ξ correspond to
real eigenvalues, so we can find all modes with ν2¼p2 ¼ 0
simply by searching along the real ξ axis. A sensible criteria
for the critical wave number would be when −p2

1 is equal to

FIG. 5. These plots compare the region of instability from both simulations and the predictions of various methods. The blue region
shows the unstable region found by simulation—the top of the error bars indicate simulations in which the string was determined to be
stable—and the orange dotted line is the prediction of the critical value of p1 from the method outlined in Sec. III, below which there are
expected to be instabilities. The magenta dotted line is an equivalent prediction, but using the method in [12]—note that it only applies in
the magnetic regime so it is only shown in Fig. 5(b). The black dotted line shows the prediction of a critical χ or qp, with smaller values
of χ or larger values of qp predicted to be unstable to longitudinal perturbations by the TSA. A mode is deemed to be “stable” in our
simulations if jσðρ ¼ 0Þj2 remains above 1

10
η2σ by the end of the simulation. Simulations of magnetic strings are run until t ¼ 1000 and

t ¼ 104 for electric strings, because those simulations are less computationally expensive.
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the smallest possible eigenvalue, as in the magnetic case
and this can only happen at ξ ¼ 0 in the purely electric
frame. Although we have not ruled out the possibility for
there to be unstable modes with larger p1 elsewhere in the
parameter space, we have not found any examples where
this is the case, so we choose to define the critical wave
number using the smallest eigenvalue at ξ ¼ 0.
Figure 5(b) shows a comparison between the predictions

of our analysis and the results of simulations of electric
strings (the method used in [12] is not shown here as it only
applies to magnetic strings). We detect instabilities in the
simulations if the magnitude of the condensate falls below
some specified value (here we have used jσj2 < 1

10
η2σ)

before the end of the simulation at t ¼ 104. The TSA
predicts that all strings to the right of the black dotted line
should be unstable and our analysis predicts that strings are
unstable to perturbations with wave numbers below the
orange dotted line. The two methods are in good agreement
with each other and with the simulations. In particular, all
three agree well, with only minor discrepancies, on the
critical value of qp, the charge per unit length in the purely
electric frame, which is the most important feature as it
determines whether each string will ultimately be stable or
unstable.
Although there is moderate disagreement between the

simulations and our analysis about the critical wave
number, the crucial point is that, for both of the cases
we have presented here, the stability analysis, simulations
and prediction from the TSA are all in good agreement
about which strings will ultimately be stable or unstable—
corresponding to the intersection of the curves in Fig. 5
with the horizontal axis. This supports our claim that the
pinching instabilities and longitudinal instabilities expected
from the TSA are related. The TSA predicts that strings
close to the chiral limit will not have longitudinal insta-
bilities and our simulations and stability analysis also
support this prediction for the parameter sets that we have
tested. Vortons constructed from strings that are almost
chiral, and are large enough for the effects of curvature to
be negligible, should therefore also be stable to longitudinal
perturbations.

From the stability analysis, we can additionally predict
the growth rate of unstable modes, which can be compared
to the simulations by estimating how long it will take for
the perturbation to grow large enough to cause the con-
densate to unwind. We will only make this comparison for
magnetic strings in parameter set B, as it is much harder to
get a prediction for the growth rate in the electric regime.
The reason for that is that in the magnetic regime, we can
simply solve the eigenvalue problem of Eqs. (3.5)–(3.8)
with ξ ¼ −kp1, and predict the growth rate in the purely
magnetic frame from the most negative eigenvalue. In the
electric regime however, we set ξ ¼ ων and then need to
look for eigenvalues that satisfy Λ ¼ ν2 − p2, with p2 ¼ 0
and p1 given by the mode that we will be perturbing in
simulations (performed in the purely electric frame). In
order to get a prediction for the growth rate, this process
must be repeated with different choices of ξ until we find
the largest ν2 for which this is possible.
In order to make the comparison as simple as possible,

we perturb the string with the normalized eigenvector
solutions, which are multiplied by ϵ to control the magni-
tude of the perturbation. It is difficult to accurately predict
when the condensate will unwind because nonlinear effects
kick in once the perturbation grows large enough.
Nevertheless, we can make a simplistic estimate by setting
σ2 ¼ 0 and calculating the time at which δσ1 grows large
enough that it reaches a fraction, α, of the size of jσj at the
core of the string. The requirement that σ2ðρ ¼ 0Þ ¼ 0
implies that

δσ̂1ðρ¼ 0Þcosðp1zþ ν1tÞ− δσ̂2ðρ¼ 0Þsinðp1zþ ν1tÞ ¼ 0;

ð5:1Þ

which gives

φ ¼ ν1tþ p1z ¼ tan−1
�
Re½δσ̂2ðρ ¼ 0Þ�
Im½δσ̂2ðρ ¼ 0Þ�

�
: ð5:2Þ

The perturbation to σ1 will then be equal to αjσj at ρ ¼
0 when

tc ¼
ln ϵ
ν2

−
ln α
ν2

−
1

ν2
ln

� jσjðρ ¼ 0Þ
2ðRe½δσ̂1ðρ ¼ 0Þ� cosφ − Im½δσ̂1ðρ ¼ 0Þ� sinφÞ

�
; ð5:3Þ

which we take as our prediction of the unwinding time.
Although this is quite a crude estimate, with a parameter, α,
that must be fit to the simulation data, it allows the
prediction of the growth rate to be well tested by examining
the gradient of tc as a function of ln ϵ.
We present a plot of the unwinding time as a function of

ϵ in Fig. 6(a), both from the theoretical predictions with
α ¼ 0.2 and from the time taken until the condensate

unwinds during simulations, for a string in parameter set B
with χ ¼ −0.09. The simulations are performed by per-
turbing the straight string solutions with the eigenvectors
that were calculated by the stability analysis, for the most
unstable (largest ν2) solution with p1 ¼ k=2, and the
unwinding time was measured by detecting when jσj2 <
η2σ=10 somewhere along the string core. The value of α has
simply been chosen to visually match the data, but it does
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take a reasonable value as it is large enough that second-
order effects cannot be ignored. More importantly, the
gradients of the lines are in very good agreement—with the
simulations suggesting that ν2 ≈ −0.0364 and the stability
analysis predicting that ν2 ¼ −0.0355.
In Fig. 6(b) we show how the time taken until the string

unwinds varies with the wave number of the perturbation
applied at χ ¼ −0.09, in parameter set B. We plot the
inverse of the time taken because this will be roughly
proportional to the growth rate of the mode and makes it
clear that the expectation from the TSA that the growth rate
should grow linearly with p1 when it is small, is broadly
correct. However, as the wavelength of the perturbation
becomes comparable to the length scale of the string width,
the growth rate breaks away from linear growth. In all of the
simulations we have performed this has a stabilizing effect
on the string and our stability analysis predicts the same
effect for all of the string solutions that we have checked.

VI. VORTONS

The results from our analysis should naturally apply to
vortons as long as the radius is large enough that curvature
effects can be ignored. We have already discussed that this
seems to be true for the vorton we presented in [16], which
does not exhibit pinching instabilities if the vorton is large
enough that the effects of curvature are negligible. We have

also previously presented an electric vorton solution [17],
constructed from a string on the higher charge branch, that
the TSA predicts should be unstable to both extrinsic and
pinching instabilities. In this case, simulations of the
corresponding straight string did show signs of pinching
instabilities—this is the simulation shown in Fig. 4. In
contrast to the previous example, we should expect to see
these pinching instabilities in simulations regardless of the
size of the vorton.
Unfortunately, as this vorton is also unstable to extrinsic

perturbations, this can interfere by destroying the vorton
before the pinching instability becomes evident. There are
two ways to make the effect more clear. Either perturb the
vorton with a mode to which it is not extrinsically unstable,
which may not always be practical depending upon the
vorton in question, or use the fact that the growth rate of the
extrinsic instability is inversely proportional to the vorton
radius, while the growth rate of the pinching instability
should not change (although probably will, to a small
degree, due to curvature effects). In this case, from the
simulations presented in Fig. 4, we should expect that the
pinching instability will be evident by t ∼ 400 and show
the most dramatic effects by t ∼ 600.
In Fig. 7 we show isosurface snapshots from three

different simulations of vortons that all have the same
Q=L and N=L as the straight string from Fig. 4. The top
row shows a vorton with Q ¼ 9000 and N ¼ 10 while the

FIG. 6. These plots display how the time taken until the condensate unwinds changes with the amplitude of the perturbation and the
wave number of the perturbations, respectively, for a string in parameter set B with χ ¼ −0.09 in the purely magnetic frame. This is
marginally into the regime expected to be unstable. Figure 6(a) compares the predicted unwinding time from Eq. (5.3) with α ¼ 0.2, to
the unwinding time determined by simulations. The value of αmay be chosen to match the data, since it relates to the specific unwinding
criteria chosen, but the gradient of the line is a direct prediction from the stability analysis and clearly agrees well with the simulations.
Figure 6(b) shows how the inverse of the unwinding time (approximately proportional to the growth rate) changes with p1. The growth
rate grows roughly linearly with p1 when it is small, as predicted by the TSA. The linear relationship predicted by the TSA is
exemplified by the black dotted line, although it should be noted that this is for illustrative purposes only and is not calculated directly
from the longitudinal sound speed due to the uncertainty in predicting the unwinding time from the growth rate. Smaller wavelength
modes, where the TSA should not be expected to work well, break away from this trend and appear to be generally more stable than
expected.
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FIG. 7. Snapshots of vorton simulations that show the development of both extrinsic and pinching instabilities. All vortons shown
have approximately the same Q=L and N=L and, therefore, the TSA predicts that they should have approximately the same stability
properties. The top row shows a vorton with Q ¼ 9000 and N ¼ 10 that has an obvious extrinsic instability to the m ¼ 4 mode that
completely destroys the vorton by t ¼ 460. There are some possible signs of pinching instabilities at t ¼ 300, but it is not completely
clear and the extrinsic instability is the dominating effect. As we do not expect the timescale of the pinching instability to be affected by
the size of the vorton, but the growth rate of the extrinsic instability is predicted to scale with L−1, we can attempt to make the pinching
instability dominate by simulating a larger vorton. To this end, both the middle and bottom rows show a larger vorton with Q ¼ 18000
and N ¼ 20, but the middle row shows a simulation where an m ¼ 4 mode (the same extrinsic instability as the top row) has been
perturbed while anm ¼ 8mode (the same intrinsic instability as the top row, since p1 ¼ 2πm=L) has been perturbed in the bottom row.
The middle row snapshots do display clear effects of a pinching instability at t ¼ 600, but the vorton is still ultimately destroyed in a
similar way to the top row. In contrast, the bottom row shows dramatic signs of a pinching instability at t ¼ 500 and, just like in our
simulations of straight electric strings (see Fig. 4), the vorton is not destroyed by these large distortions and returns to the calmer state
seen at t ¼ 1000.

PINCHING INSTABILITIES IN SUPERCONDUCTING COSMIC … PHYS. REV. D 107, 063534 (2023)

063534-11



middle and bottom rows show a vorton with Q ¼ 18000
and N ¼ 20. The top and middle rows both show simu-
lations in which an m ¼ 4 mode has been excited, and
therefore we should expect to see similar effects from the
extrinsic instabilities (albeit with a longer timescale for the
larger vorton) while the bottom row shows a vorton with
an excited m ¼ 8 mode and should show similar effects
from the pinching instabilities as the top row because
p1 ¼ 2πm=L. The two upper rows both show some signs
of pinching instabilities, but are ultimately dominated by
the extrinsic instability which causes the vorton to be
destroyed. However, the isosurfaces shown in the bottom
row are very similar to what was seen in the straight string
simulation, with the perturbations becoming clear by t ∼
400 and the distortions reaching their greatest by t ∼ 500.
The vorton is not destroyed by the end of our simulation but
instead returns back to a less disrupted state—in agreement
with the expectations from Fig. 4.

VII. CONCLUSIONS

We have presented a new analysis of pinching insta-
bilities that takes the width of the string into account and
predicts which wavelengths (if any) a given string will be
unstable to. This appears to work very well in the electric
regime, but underestimates the range of unstable p1 in the
magnetic regime. It does, however, make good predictions
about which strings will ultimately be unstable, and also
makes connections with longitudinal perturbations in the
TSA, which is clearly more important.
There are still some remaining unanswered questions

about the implications of pinching instabilities for the
ultimate fate of the string. In the magnetic case, we
observed a cascade of unwinding events which resulted
in a strongly magnetic string ultimately becoming chiral,
even though there were stable magnetic states in between.
We have not established whether this was a special case or
if it is a general feature of pinching instabilities. If it is
general, it would allow chiral strings to be easily produced.

On the other hand, electric strings with pinching instabil-
ities do not seem to resolve the problem of having too much
charge and we instead see them simply oscillate between
the unexcited string and a highly distorted shape, rather
than emitting charge and relaxing to a less electric string.
There are many possibilities for the long term dynamics of
these strings that our simulations are not sufficient to
distinguish between, for example charge could be emitted
very slowly from the string or the oscillation could indicate
a new stationary state that looks like a Q-ball attached to a
string (so that all the charge has clumped in one place).
More simulations, particularly ones over longer time
periods and for different parameter sets, will be required
to better understand this issue and we leave this open for
future work.
We emphasize that the most important result obtained in

this paper is that the TSA makes reasonably accurate
predictions about the onset of pinching instabilities (as long
as the curvature can be neglected) and that small wavelength
perturbations, where the TSA should not be relied upon due
to the non-negligible width of the string, are typically stable.
Althoughwe cannot say for certain that this is always the case
for different sets of parameters, it has been the case in all sets
that we have checked and is certainly the case for the stable
vorton solution, discovered in parameter set B, that we
discussed in [16,17]. More generally, as the TSA predicts
stability to both extrinsic and intrinsic types of perturbations
to vortons in the chiral limit, we expect that if a given
parameter set allows for chiral superconducting strings to
exist, then it will contain stable vortons.

APPENDIX A: ANSATZ

Assuming nothing but axial symmetry in the fields,
except for a phase winding of n in the ϕ field, and
using the temporal gauge so thatAt ¼ 0, we have the general
ansatz ϕ¼ðϕ1ðt;ρ;zÞþ iϕ2ðt;ρ;zÞÞeinθ, σ ¼ ðσ1ðt; ρ; zÞ þ
iσ2ðt; ρ; zÞÞeiðωtþkzÞ and Ai ¼ Aiðt; ρ; zÞ, for which the
equations of motion are

∂
2ϕ1

∂t2
−
∂
2ϕ1

∂ρ2
−
1

ρ

∂ϕ1

∂ρ
−
∂
2ϕ1

∂z2
− 2g

�
Aρ

∂ϕ2

∂ρ
þ Az

∂ϕ2

∂z

�
− gϕ2

�
∂Aρ

∂ρ
þ Aρ

ρ
þ ∂Az

∂z

�

þ
�
1

2
λϕðϕ2

1 þ ϕ2
2 − η2ϕÞ þ βðσ21 þ σ22Þ þ

�
n − gAθ

ρ

�
2

þ g2ðA2
ρ þ A2

zÞ
�
ϕ1 ¼ 0; ðA1Þ

∂
2ϕ2

∂t2
−
∂
2ϕ2

∂ρ2
−
1

ρ

∂ϕ2

∂ρ
−
∂
2ϕ2

∂z2
þ 2g

�
Aρ

∂ϕ1

∂ρ
þ Az

∂ϕ1

∂z

�
þ gϕ1

�
∂Aρ

∂ρ
þ Aρ

ρ
þ ∂Az

∂z

�

þ
�
1

2
λϕðϕ2

1 þ ϕ2
2 − η2ϕÞ þ βðσ21 þ σ22Þ þ

�
n − gAθ

ρ

�
2

þ g2ðA2
ρ þ A2

zÞ
�
ϕ2 ¼ 0; ðA2Þ

∂
2σ1
∂t2

−
∂
2σ1
∂ρ2

−
1

ρ

∂σ1
∂ρ

−
∂
2σ1
∂z2

− 2ω
∂σ2
∂t

þ 2k
∂σ2
∂z

þ
�
1

2
λσðσ21 þ σ22 − η2σÞ þ βðϕ2

1 þ ϕ2
2Þ − ω2 þ k2

�
σ1 ¼ 0; ðA3Þ
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∂
2σ2
∂t2

−
∂
2σ2
∂ρ2

−
1

ρ

∂σ2
∂ρ

−
∂
2σ2
∂z2

þ 2ω
∂σ1
∂t

− 2k
∂σ1
∂z

þ
�
1

2
λσðσ21 þ σ22 − η2σÞ þ βðϕ2

1 þ ϕ2
2Þ − ω2 þ k2

�
σ2 ¼ 0; ðA4Þ

∂
2Aρ

∂t2
−
∂
2Aρ

∂z2
þ ∂

2Az

∂ρ∂z
þ 2g

�
ϕ2

∂ϕ1

∂ρ
− ϕ1

∂ϕ2

∂ρ

�
þ 2g2Aρðϕ2

1 þ ϕ2
2Þ ¼ 0; ðA5Þ

∂
2Aθ

∂t2
−
∂
2Aθ

∂ρ2
þ 1

ρ

∂Aθ

∂ρ
−
∂
2Aθ

∂z2
− 2gðn − gAθÞðϕ2

1 þ ϕ2
2Þ ¼ 0; ðA6Þ

∂
2Az

∂t2
−
∂
2Az

∂ρ2
−
1

ρ

∂Az

∂ρ
þ ∂

2Aρ

∂ρ∂z
þ 1

ρ

∂Aρ

∂z
þ 2g

�
ϕ2

∂ϕ1

∂z
− ϕ1

∂ϕ2

∂z

�
þ 2g2Azðϕ2

1 þ ϕ2
2Þ ¼ 0: ðA7Þ

By inspecting these equations, it becomes clear that
ϕ2 ¼ Aρ ¼ Az ≡ 0 is a self-consistent solution and there-
fore perturbations to any of the other fields will not induce
any changes in these field components. The straight string
static solutions have no t or z dependence and so setting
these derivatives to zero allows for σ2 to also be consis-
tently set to zero and the one dimensional equations of
motion (2.2)—(2.4) are recovered. However, σ2 will be
perturbed away from zero if there are t or z dependent
perturbations in σ1, which are exactly the type that we

would like to investigate. The equations of interest are
therefore those given by Eqs. (3.1)–(3.4).

APPENDIX B: DERIVATION OF RESULTS IN [12]

In order to derive the results of [12] from our analysis,
we can set δϕ̂ ¼ δÂθ ¼ 0, δσ̂1 ¼ jσja1 and δσ̂2 ¼ jσja2
where a1 and a2 are complex constants and jσj ¼ jσjðρÞ
satisfies the straight string equations. The perturbation
equations become

−
d2jσj
dρ2

a1 −
1

ρ

djσj
dρ

a1 þ
�
1

2
λσð3jσj2 − η2σÞ þ βjϕj2 − χ

�
jσja1 − 2iξjσja2 ¼ Λjσja1; ðB1Þ

−
d2jσj
dρ2

a2 −
1

ρ

djσj
dρ

a2 þ
�
1

2
λσðjσj2 − η2σÞ þ βjϕj2 − χ

�
jσja2 þ 2iξjσja1 ¼ Λjσja2; ðB2Þ

and now substituting Eq. (2.3) into these expressions,
multiplying through by jσj and integrating over the radial
direction yields the matrix equation,

�
λσΣ4 − ΛΣ2 −2iξΣ2

2iξΣ2 −ΛΣ2

��
a1
a2

�
¼ 0; ðB3Þ

There are only nontrivial eigenvector solutions to this
equation when the determinant is zero. For magnetic strings
in the frame with ω ¼ 0, this can be achieved by setting

ν2 ¼ λσΣ4

2Σ2

þ p2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λσΣ4

2Σ2

�
2

þ 4k2p2
1

s
: ðB4Þ

Unstable modes have complex ν which leads to the
instability condition

p2
1 < 4k2 −

λσΣ4

Σ2

; ðB5Þ

and therefore, this analysis suggests that the pinching
instability only exists when

k2 >
λσΣ4

4Σ2

: ðB6Þ

From our simulations (see Sec. IV), we have found that this
expression is not very accurate at predicting the onset of
instabilities, although we did find it useful for ball-park
estimates since it is very easy to calculate. The assumptions
made are overly restrictive, which can be made very clear
by examining Eqs. (B1) and (B2) in more detail. The
substitution of Eq. (B3) results in the two equations,

½λσjσj3 − Λjσj�a1 − 2iξjσja2 ¼ 0; ðB7Þ

−Λjσja2 þ 2iξjσja1 ¼ 0; ðB8Þ

that only have a solution if jσjðρÞ is a constant, which does
not occur except in the trivial case of a nonsuperconducting
string with jσjðρÞ ¼ 0.
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