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Color-kinematics relation from the Feynman diagram perspective
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Feynman diagrams for gluon tree amplitudes are studied in the Feynman gauge and in any number of
spacetime dimensions. The color-kinematics combinations A = n, — n, — n,, of numerators are explicitly
calculated for N = 4, 5, 6 gluons to see whether the color-kinematics relation A = 0 is satisfied. This is a
tedious task because of the presence of four-gluon vertices, and the large number of Feynman
diagrams, numerators, and A combinations involved, especially when N = 6. For on-shell amplitudes,
it is found that A = 0 for N = 4, but A # 0 for N = 5 and N = 6 owing to the presence of the four-gluon
vertex. However, a local generalized gauge transformation can bring about A = 0 for N = 5, but not for
N = 6. This raises the question whether gluon amplitudes satisfying the color-kinematics relation contain

nonlocal interactions.
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I. INTRODUCTION

The color-kinematics (CK) duality is a remarkable
relation that allows graviton amplitudes to be expressed
as a double copy of gluon amplitudes [1], thereby opening
up a new way to study gravity. It was discovered for N = 4
gluons long ago [2], but it was Bern, Carrasco, and
Johansson (BCJ) [3] who generalized it to all N and made
the double copy connection. There are many interesting
developments and further generalizations since then that
can be found in the comprehensive review in Ref. [4],
especially when supersymmetry is invoked, and there is
also a recent reformulation [5]. This article is confined to
the narrow objective of studying the CK relation for pure
gluon amplitudes from the Feynman diagram perspective.

Much is known about the CK relation for the gluon
amplitude, but its ramification on Feynman diagrams with
more than four external legs seems not to have been
thoroughly studied. This is partly due to the difficulty of
including the four-gluon vertex systematically, and partly
because of the large number of Feynman diagrams and
partial amplitudes involved. In this article we try to fill in
this gap by carrying out these detailed investigations.

The CK relation relies on the fact that the numerator
factors n, in an N-point gluon amplitude >, ¢,n,/Q, are
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not unique. There are many ways to change from one set of
n, to another set 71, = n, — én that can keep all the partial
amplitudes the same. Such a change is known as a
generalized gauge transformation, or gauge transforma-
tion for short. In this expression, ¢, is the color factor and
0, is the propagator factor in the Feynman gauge. Certain
triplets of ¢, are related by the Jacobi identity, say in the
form ¢, — ¢, — ¢, = 0. The CK relation asserts that suitable
gauges can be found so that the same relation ng, — n, —
n, = 0 holds also for the numerator factors. Following [6],
those n, satisfying the CK relation are said to be in the BCJ
representation.

The existence of BCJ representation is guaranteed by a
general formula relating such 7, to the partial amplitudes.
Unfortunately the n, so obtained are highly nonlocal.
Since locality is a fundamental attribute of quantum field
theory, it is important to find out whether locality can be
preserved in a BCJ representation. A necessary condition to
be local is for every n, to be a polynomial function of the
polarization vectors ¢; and the external momenta k;. The n,
obtained from the general formula are given by rational
functions, not polynomials, hence nonlocal. However, the
numerators n, in the Cachazo-He-Yuan (CHY) gluon
amplitude [7-9] are polynomial functions that also
satisfy the CK relation, so according to this criterion local
BClJ representation does exist. However, that may no longer
be true when a more stringent criterion of locality is
imposed.

There are actually several versions of CHY gluon numer-
ators [10-14], all yielding the same partial amplitudes. They
will be collectively denoted as n),. A Mathematica programis
given in Ref. [14] to calculate n/, in one of these versions, for
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the coupling constant g = — % All explicit calculations of n,
in this article are done using this program.

A more stringent condition for locality is to start from the
numerator factors 7, computed from Feynman rules
and Feynman diagrams. Their direct connection to the
Yang-Mills field theory makes 71, strictly local. The more
stringent criterion for n, to be local is to ask én, = i, — n,
to be local, i.e., given by polynomials of ¢; and k;. We shall
find that for N = 4, i, is already in the BCJ representation,
so it is local. For N = 5, the CK relation is not satisfied by
i,, but there are such local gauge transformations bringing
itinto a BCJ representation. For N = 6, 71, is not in the BCJ
representation, and there is no local gauge transformation
that can render it in a BCJ representation. In particular,
since n, for N = 6 satisfy the CK relation, the CHY gluon
theory cannot be local according to this more stringent
criterion. Possible implication of this nonlocality will be
discussed in Sec. VIIL.

To compute 7,, four-gluon vertices must be converted
into cubic vertices. There is a unique way to do it, but their
presence greatly complicates the computations. For exam-
ple, it is necessary to go to at least N = 6 before their
effects can be fully seen.

Sec. II contains a review of some known properties of the
CK relation for gluons. It also contains a discussion of
definitions, conventions, and other general points. Sec. III
explains how the four-gluon vertex should be systemati-
cally incorporated, and the complication that brings along.
It also reviews the Slavnov-Taylor identity which will be
used to simplify calculations. Because of the rather lengthy
calculations to be carried out in subsequent sections, a
detailed summary of results is also presented to serve as a
guidance of what is to come.

Four-point Feynman amplitudes are discussed in Sec. IV,
five-point in Sec. V, and six-point in Sec. VI. A concluding
section can be found in Sec. VII. Lengthy formulas and
results are presented in Appendixes A, B, C, and D.

II. REVIEWS, NOTATIONS,
AND GENERAL DISCUSSIONS

A. Partial amplitudes

An N-point gluon amplitude ) s C,A(laN) con-
sists of a sum of product of a Del Duca-Dixon-Maltoni
(DDM) color factor C, [15] and a color-stripped partial
amplitude A(1aN). a is a permutation of {2,3,...,N — 1},
the sum is taken over all the (N —2)! permutations
a € Sy_», and the external lines 1,a,, a3, ...,ay_1, N of
A(laN) are arranged cyclically in that order in a planar
diagram.

Each partial amplitude A(1aN) is given by a sum of
terms of the form +n,/Q, that can be computed from
Feynman diagrams, or from an S-matrix theory such as the
CHY formula. However, the numerator factors 7, com-
puted from Feynman diagrams are not the same as the

numerator factors n), computed from the CHY theory,
though both necessarily yield the same partial amplitudes
A(laN) on-shell. A change of one set of n, to another that
leaves all A(1aN) unchanged is known as a generalized
gauge transformation, or simply a gauge transformation.

Partial amplitudes depend on the scalar products of
polarization vectors ¢; and outgoing momenta k; of the
external lines. We shall call a (generalized) gauge trans-
formation local if én,, the difference between two n,’s, is a
polynomial of these scalar products for every a. Otherwise,
it is nonlocal.

The following notations are used in this article: b;;=
€ir€joci;=¢€-kj,and s;;.p = (ki + kj+ -+ kp)? =5,
where I = {i, j, ..., ¢} is the unordered set of subscripts of
s. Note that b and s are symmetric in their subscripts but ¢
is not. Because of momentum conservation, s; = sy if I’ is
the set of external lines not contained in /. To avoid this
ambiguity, most of the time we shall use the set of indices
not containing N. Unfortunately, there is no unique way to
implement the conservation condition Z?’:l ¢ij =0, so

terms involving ¢ may appear a bit unwieldy.

Both on-shell and off-shell amplitudes will be discussed.
An on-shell amplitude obeys s; =k =0 and c;; =¢; -
k; =0 for all i. Otherwise it is off-shell. For on-shell
amplitudes, there are only D — 2 independent polarizations
€; in a spacetime dimension D. For off-shell lines, there are
@

D polarization vectors €;’,4 =1, ..., D, to be normalized

so that

(u-e)e;-v)=Y (u-e) el - v)=u-v (1)

A=1

for any i, and for any vectors u and v. The first expression
in Eq. (1) is a shorthand in which all polarizations of a
repeated off-shell line i are automatically summed. With
this convention, if 7 is an off-shell line, then

byibiq = bpg bpiciq = Cpg:
1
c,-pc,»q:kp-kq:E(qu—sp—sq). (2)

The propagator factor Q, = s;,s7, -+~ 57, , 1s made up
of a product of N —3 Mandelstam variables such that
whenever p < g, either I, C 1, or I, n I, = @. The total
number of distinct propagators subject to this constraint is
(2N = 5)!!, but only Cy_, of them appear in any partial
amplitude A(laN). For N =4, 5, 6 which will be studied
explicitly, the Catalan number Cy_, is respectively
Cy_o =2, 5, 14, while the total number of distinct
propagator factor is (2N —5)!!' =3, 15, 105. Since
Cy_o(N —=2)! > (2N = 5)!!, the same n,/Q, may appear
in different partial amplitudes A(laN), possibly with
different signs.
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B. CK relations and CK combinations

Making use of the explicit form ) +n,/Q,, for A(1aN),
the gluon amplitude can also be written as ), ¢,n,/Q,,
where ¢, is a color factor obtained from an appropriate
combination of the DDM color factors C,,. Jacobi identity
demands certain triplets of these c¢,’s to be related, say
¢, —¢; — ¢, = 0. The color-kinematics relation (CK rela-
tion) asserts that (the nonunique) numerators n, can be
found for the on-shell amplitude so that ny — n, —n,, =0
as well.

The Lie algebra structure constants f; from which ¢, is
constructed is antisymmetric in its indices, hence the CK
relation also demands 7, to have the same antisymmetry
as ¢,.

From now on, partial amplitudes will be studied without
the accompanying color factors. Even without ¢, the triplet
of numerators ng, n,, n, can still be identified from the
diagrams, as illustrated in Figs. 1 and 2. These numerator
diagrams resemble, but strictly speaking are not, Feynman
diagrams. They are diagrams for n,, with shapes deter-
mined by the propagator Q,. More specifically, the distinct
Components s, S5, Sq, in the propagator factors

0, = SASBSCSDSap> Q= SASBSCSDSpy>

Qu = sAsBsCstayv (3)

give the shapes in Fig. 1. The common factor P;:=
Ss8gscsp Wwill be used to label the CK combination
A, =ny,—n,—n,, where s,, sz, Sc, Sp represent the
products of all inverse propagators in A, B, C, D,
respectively. The total number of these common factors
is (2N = 5)!1(N —3)/3, so there are 1, 10, 105 A;’s when
N=45,6.

These diagrams contain only cubic vertices which are
antisymmetric when two lines are flipped, as shown in
Fig. 2. In addition, each n, must also contain N factors of €

@9

YYP
Brarst) Brarall
FIG. 2.

n, is antisymmetric when two lines are flipped.
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A CK combination. A, B, C, D represent (possibly empty) tree diagrams.

and N —2 factors of k. Beyond that, n, could be rather
general.

C. Contents of partial amplitudes

A term n,/Q, is contained in A(laN) when
lasas - - - ay_1 N coincides with the ordering of the external
lines of its diagram. Owing to antisymmetry at cubic
vertices, some external lines may be flipped, at the cost
of a minus sign per flip. Flips produce different orderings of
the external lines, hence it is possible for a given n,/Q,, to
be contained in several A(laN), with a relative sign
determined by the number of flips. By convention, its sign
is chosen to be positive in the “smallest” A(laN).

The (N —2)! partial amplitudes A(laN) = A,, will be
ordered in a way to be discussed later. The “smallest” A
refers to the A,, with the smallest m.

Note that lines 1 and N are special because they always
occupy the two ends of the arguments of every A,,. To
reflect this, all diagrams will be drawn above a base line
with 1 at one end and N at the other end. As a result, lines 1
and N should never be flipped, and none of the lines in « is
allowed to flip across the base line connecting 1 and N.

Explicit application of these rules will appear in the
sections where the amplitudes for N =4, 5, 6 are
discussed.

D. Dimensional consideration and the variety of terms

The numerator n, contains N factors of € and N — 2
factors of k. In terms of b, c, s, the allowed monomial
combinations are

N =4, bce, bbs,
N =35, bcee, bbes,
N =6, bccee, bbees, bbbss. (4)

More generally, if u is the largest integer < %N — 1, then the
allowed terms are b'cV=2/s'=!, for 1 <i < u. Terms of the
same type can conceivably be combined through momen-
tum conservation, but terms of different types can never be
combined.

On dimensional grounds, it is possible to multiply these
forms by a dimensionless rational function, such as
S12834/ 813523, but then the numerator factor n, will no
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longer be a polynomial of b;;, c;;, and s;, and whatever
interaction that gives rise to this n, may no longer be local.

For N =4, there are six different b, j’s, and three
different b;;by;’s. Taking momentum conservation and
the on-shell condition into account, there are two c;;’s
for each 7, and two s;. So even the four-point numerators n,
contain many different terms each. For N = 5, there are 10
different b’s, 15 different bb’s, 3 different c;;’s for each i,
and 5 different s;. For N = 6, there are 15 different b’s, 30
different bb’s, 15 different bbb’s, 4 different c,».,-’s foreach i,
and 9 different s;. In short, each n, contains a vast number
of terms, especially for N = 6. This makes the computation
of numerators and CK combinations a very tedious task.
Fortunately, considerable simplification can be obtained by
using symmetries of the Feynman diagrams and the
Slavnov-Taylor identity.

E. CK relations in S-matrix theories

A short review on the CK relation of gluon tree
amplitudes is given in this subsection. See Ref. [4] for a
more thorough review. To start with, define an (N —2)! x
(N =2)! propagator matrix m whose matrix element
m(a|f) = m(laN|1pN) is determined by terms common
to A(1aN) and A(18N). m(a|p) is equal to those common
terms, with all n, set equal to 1, and with a sign which is the
product of signs of the corresponding terms in the two
amplitudes. In other words, up to a sign, it is the sum of the
common propagators of the two amplitudes. This matrix
can also be computed directly using the CHY formula for
the biadjoint scalar theory.

With the help of the propagator matrix, the on-shell
partial amplitudes

A(laN) = > m(alp)u(p) (5)

PESN-

can be related to (N — 2)! parameters v(3), to be referred to
as the fundamental numerator factors. Since there are the
same number of A’s and v’s, one might be inclined to
regard Eq. (5) as the definition of v(f) in terms of the
(N —2)! known A(1aN)’s. Unfortunately such a definition
is not unique because the partial amplitudes satisfy a set of
BCJ relations [3] to be discussed later, making them not
linearly independent, and the propagator matrix m not
invertible.

Comparing this expression for A(laN) with its other
expression Y +n,/Q,, a set of relations between n, and
v(f) can be derived by equating propagators. To distinguish
n, from the fundamental numerators v(f3), n, are some-
times referred to as ordinary numerators. A set of ordinary
numerators may or my not satisfy the CK relation, but if
they are determined from Eq. (5), then the CK relation will
automatically be fulfilled. In other words, the n, so
determined are in the BCJ representation.

Since there are (2N —5)!! ordinary numerators n,
and (N —2)! parameters v(f), there must be N, =
(2N =5)!1 = (N —2)! on-shell relations between n,.
These are the CK relations. For N = 4, 5, 6, this number
N is 1,9, 81 respectively. They differ from the numbers 1,
10, 105 given in Sec. II B for the number of A;’s. The
difference of the two sets of numbers, 0, 1, 24, is the
number of trivial CK identities. These are identities
involving CK combinations A,;, valid whatever n, are.
Details will be given in later sections.

The relation between n, and v(f) can be visualized
diagrammatically. To do that, start from a half-ladder
diagram shown in Fig. 3. Since no line in this diagram
may be flipped, it belongs to a single A(1aN) and appears
in a single propagator matrix element m(a|a). As a result,
its numerator is equal to a single fundamental numera-
tor: n, = v(a).

Next, consider two half-ladder diagrams whose external
lines @ and y coincide except for a single neighboring pair.
Identifying the numerators of these two diagrams as n, and
n,, and using the CK relation shown in Fig 1, one obtains a
two-term relation n, = ny — n,, = v(a) — v(y) for n,. In this
way, starting from half-ladder diagrams, one can get
progressively to more and more complicated combinations
of half-ladder diagrams to express the relations between
any n, and a combination of v(f)’s.

As mentioned above, the on-shell amplitudes satisfy a set
of Bern-Carrasco-Johansson relations [3,16—18]. There are
(N=2)!—(N=3)! = (N =3)!(N - 3) independent rela-
tions, given by

0=s13A(1y1 - yn3N) +- -
+(siptsppt o+ 50)A0r o viB e yvaN) + o
+(s1p+ S5+ + 8y, p)A(ly1 - yy_3BN). (6)

Each relation gives rise to a null vector u for the on-shell
propagator matrix [19,20]. For N = 4, 5, 6, this number of
null vectors is 1, 4, 18 respectively. It follows from Eq. (5)
that A(1aN) remains unchanged if we add to the column
vector v = (v(f#)) any linear combination of these null
vectors u. This flexibility of v(f) reflects the nonunique-
ness of n, in BCJ representations. Note that the coefficients
x; of these linear combinations do not have to be constants.
They can be any function of b;;, ¢;;, and s;, including
rational and irrational functions. A change of v/(f3) causes a
gauge transformation of n,. If x; are constants or

a 03

FIG. 3. A half-ladder diagram whose propagator factor is

Q,= Sty Sy~ " Slasayay_; *
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polynomials, the gauge transformation is local. If they are
rational or other functions, the transformation is nonlocal.

The validity of the BCJ relation can be seen diagram-
matically in the half-ladder diagrams of each A (1aV). In that
case, the on-shell kinematical relation 53+ 5,5+ - +
Sy.p = Siyjqp — Sly .y, ShOws that the factor multiplying
each A(1aN) is just the difference of two consecutive
inverse propagators, thereby causing the terms in Eq. (6)
to cancel pairwise.

In the presence of null vectors, v(f) is not unique, and it
remains to be shown that there is at least one set of v(f3)
satisfying Eq. (5). Since m has (N — 3)!(N — 3) null vectors
and a rank (N —3)!, only a (N — 3)! x (N — 3)! submatrix
of m can be inverted. If a = (@3-~ ay_) € Sy_3 is a
permutation of the (N — 3) objects {2,3,...,N — 1 \ay_i,
thenthe (N — 3)! x (N — 3)! matrix /2, with matrix elements
m(alb) = m(la(N — 1)N|1bN(N — 1)), has an inverse

m~! = =S. If we choose

v(B) = D _ S(blc)A(1eN(N = 1)), if p=(b.N —1),

cESN_3

=0, ifBy #N-1, (7)

then Eq. (5) is satisfied [4,9,21], hence it is a solution
of Eq. (5).

The matrix element m(la(N —1)N|IbN(N — 1))
used above is defined similar to the matrix element
m(laN|1pN). Tt is given by the common terms in
A(la(N=1)N) and A(1bN(N-1)), after setting all
n,=1 and taking into account the relative signs. In order
for a numerator diagram to be common to these two
amplitudes, lines N and (N — 1) must merge into a cubic
vertex, thereby producing a Q, factor sy_i)y, as shown
in Fig. 4. If o is the internal line at that vertex, then
m(la(N — 1)N[1bN(N — 1)) = —m(lao|1bo)/s-1)n-
Since o is off-shell, the (N —3)!x (N —3)! matrix
m(alb) = m(lao|1bo) is nonsingular and has an inverse.
There is an explicit formula for S(b|c) which will not be
displayed here. For our purpose it is sufficient to know that
it is a polynomial of s; of degree N — 3.

Equivalently, this solution of v(f) can be obtained by
using the CK relations to eliminate all but the half-ladder
n,’s, which are equal to some v(a). Owing to the BCJ
relations, there are only (N —3)! independent partial
amplitudes, so only (N —3)! of the v(a)’s can be deter-
mined by Eq. (5). The remaining ones can be anything,

a ay-2

including zero. The second line of Eq. (7) is simply a
particular way of choosing what is to be set equal to zero.

The numerators obtained in Eq. (7) is highly nonlocal.
They are rational functions of €; and k; rather than
polynomials. If we start from a set of local numerators
n,, say obtained from Feynman diagrams, then the gauge
transformation dn, taking 7, into those obtained from
Eq. (7) is also nonlocal.

F. Local and nonlocal gauge transformations

Let 6n, be a (generalized) gauge transformation, i.e., the
difference of two sets of n, that give rise to the same partial
amplitudes. If every én, is a polynomial function of b;;, ¢;;,
and s;, then the gauge transformation is local, otherwise
nonlocal.

Suppose Qa = S[lslz cee S[N—B’ with I] < 12 <. < IN—3
(see the next subsection for how I, is ordered), is the
corresponding propagator factor, and 4 is the largest integer
not exceeding %N — 1. Then én, is a local gauge trans-
formation only if every on, is a multilinear polynomial of
{s1,,81,,....87,,} of degree u, with coefficients that are
polynomials of b;; and c;;. More precisely,

N=3 (-1} N-3 N-3 ( :
i-1 i~1,j-1
on, = g Pa S+ g E qa S1,51,+
i=1 i=1 j=it1
N-3 N-3 N-3 1Ly 1 1
i1 —Li—1,..., i,—
+ g al : ! SILISI[Z' Sy,
i =1i=i;+1 =i +1
(8)
where p, g, ..., r are polynomial functions of b;; and c;;.

With this form, the product of m s; in dn, cancels m
factors of s in Q,,, leaving behind a term proportional to the
(m — N + 3) power of s. To be a gauge transformation, one
must find other 6n;,/ Q) terms in the same A(1aN) with the
same s dependence to cancel it. This requirement generates
a number of s-independent equations for p,q, ..., r that
must be satisfied. We shall refer to these equations as the
gauge constraint equations.

An s-power larger than u is not allowed in Eq. (8) on
dimensional grounds. See Sec. II D. s; not contained in Q,,
is also not allowed because then the equations for p, ¢, ..., r
etc. will contain a rational function of s, making the gauge
transformation no longer local.

b2 bN -2

FIG. 4. The pair of tree diagrams used to compute m(la(N — 1)N|1bN(N — 1)).
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G. Canonical ordering

For N > 4, there are quite a few partial amplitudes, many
propagators Q,, and a large number of CK combinations
A,, so a systematic method is needed to enumerate them.
The simplest is to express them as lists, and have the lists
ordered canonically.

Each partial amplitude A(laN) corresponds to an
ordered list a, but Q, and A; are labeled by products of
s;’s, with I’s being unordered sets of numbers. The first
task is therefore to convert an unordered set of numbers into
an ordered list, and then use canonical ordering to order
the lists.

An unordered set of three numbers 1, 2, 3 can be written
as an ordered list {1,2,3}. More generally, an unordered
set of m numbers can be turned into an ordered list
{it,iny oey iy} With i) < iy <---i,.

Two different lists are ordered first according to their
length, and if they have the same length, according the first
unequal numbers appearing in the two lists. For example,
{5,6} <{1,2,3}, and {4,7,8,9} < {4,7,9,8}.

Two lists each with several sublists are first ordered by
their number of sublists. If they have the same number
of sublists, then they are ordered according to the first
unequal sublists. For example, {{5,6},{7,8,9}} <
{{1,2},{3},{4}}, and {{3,4,5},{4,7.8,9}} <{{3.4,5},
{4,7,9,8}}.

Mandelstam variables s; are ordered according to
the list /. Thus S5 < 8§23 < 84 < 85123- Products of k
Mandelstam variables s s;, - --s;, are ordered according
to {I,,1,,....,1;}. In this way, we can order the inverse
propagators (a product of N — 3 Mandelstam variables) Q,
and the CK combinations (labeled by a product of N — 4
Mandelstam variables) A;. Similarly, the partial amplitudes
can be enumerated according to the list of its arguments.
For example, for N = 5, A; = A(12345), A, = A(12435),
A; = A(13245), A, = A(13425), A5 = A(14235), and
Ag = A(14325).

III. FEYNMAN DIAGRAMS

A. Summary of results

The main purpose of this article is to investigate how to
obtain the CK relations from the Feynman diagrams of a
Yang-Mills field theory, and whether the (generalized)
gauge transformation required to accomplish that is local
or not.

Feynman gauge is used in the Feynman rules, so
propagators are the same as those in scalar theories.
Feynman diagrams presented here should be understood
as diagrams for the numerator 71, obtained from vertex
factors alone, without the accompanying propaga-
tors 1/Q,,.

The first obstacle encountered in such a project is the
presence of four-gluon (4g) vertices. As they are absent in
Fig. 1, they must be converted into antisymmetric cubic

vertices. This necessitates the introduction of a “virtual
vertex”” which does not exist by itself, as two of them must
be paired up to be properly defined. Since each diagram in
Fig. 1 may contain up to two virtual vertices that must be
paired up, the effect of 4g vertices will not be fully revealed
until N =6 at least, thereby greatly complicating the
calculation.

For N =4, it has been known for a long time that
the CK relation A =7, — 7, —ii, =0 computed from
Feynman diagrams holds on-shell [2]. Its off-shell expres-
sion which is useful for large N computation will also be
computed.

Both the numerator factor 71, computed from Feynman
diagrams and n/, computed from the CHY theory satisfy the
CK relation, but these two sets of numerators are different.
They will be shown to be related by a local gauge
transformation.

For N > 4, the CK combinations A; computed from
Feynman numerators 72, no longer vanish, even on-shell.
Nevertheless, amplitudes A(1a/N) so computed can be used
in Eq. (7) to obtain a set of v(/3), and from there a set of n,,
satisfying the CK relation. However, such n,’s are highly
nonlocal, so the gauge transformation én, = n, — i1, is
nonlocal as well. We would like to know whether
a local gauge transformation can be found to implement
the CK relation. That is, whether a gauge transformation
of the form Eq. (8) can cause A;:=A;,—05A; =
A, —8(ng — n, —n,) ~0. The notation ~ is used to indi-
cate equality only for on-shell amplitudes. This requires a
set of equations for the parameters p, ¢, ..., r in Eq. (8) to
satisfy, equations which shall be referred to as the CK
equations. Since these parameters also need to satisfy the
gauge-constraint relations, the locality question is equiv-
alent to the question of whether the set of gauge-constraint
and CK equations have a solution.

For N = 5, which will be discussed in Sec. V, solutions
do exist provided certain relations between Feynman
diagrams with one virtual vertex are satisfied. Direct
calculation shows that these relations are indeed satisfied,
so there are local gauge transformations for N =35 to
implement the CK relation.

The case of N = 6 to be studied in Sec. VI is much more
complicated. There are two sets of parameters, p and gq.
There are 315p parameters whose gauge-constraint equa-
tions can be explicitly solved, leaving behind 105 free
parameters that must also satisfy 210 CK equations.
Although there are many more equations than variables,
nevertheless the equations are highly degenerate, so sol-
utions could still exist if the A, obey a large set of
conditions. It turns out that only some of these conditions
are obeyed, but not others, so the p equations have no
solution.

There are also 315¢ parameters, which must satisfy 144
gauge-constraint relations, and 450 CK equations. Again it
turns out that there are no solutions.
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The absence of p solution or ¢ solution tells us that there
is no local gauge transformation that can implement the CK
relation. As an independent check, the CHY numerator
factor n/, and the difference én, = i, — i, are computed.
Since n/, obey the CK relation, 5n, must be nonlocal to be
consistent with the p, ¢ conclusions. Indeed it is, because it
contains s dependences beyond those involved in Q,.

Thus we conclude that, starting from Feynman diagrams,
there is no local gauge transformation capable of imple-
menting the CK relation, but we have to goupto N = 6 to
show it. Possible implications of this result will be
discussed in Sec. VII.

B. Three-gluon, four-gluon, and virtual vertices
in partial amplitudes

A three-gluon (3g) vertex T in a color-stripped partial
amplitude is given by

T(p1 q., I") = bpq(crp - crq) + bqr(cpq - Cpr)
+ brp(cqr - qu)' (9)

These three terms can each be associated with a diagram in
the first row of Fig. 5, where ¢ is depicted by a black dot,
and the difference of two momenta is shown as an arrow.

The 3g vertex is cyclic in its arguments, and antisym-
metric when two arguments are exchanged: T(p,q,r) =
T(q.r.p) =-T(q.p.r).

To convert a four-gluon vertex into cubic vertices, it
should be separated into two terms as follows:

- bpsbqr
Q(qv r,s, p)sqr

’

Va(p.q:7,5) = 2bprbgs = bpgbs

,q,r,8)s
Q(p(i )pq+

pa Sqr

Q(paQarwg):bprbqs_bpsbqr:Q<r7svp’Q)' (10)

Each term is depicted by a pair of virtual vertices connected
by a dotted line, and each virtual vertex has the antisym-
metry of the 3g vertex when two solid lines are flipped.
However, a single virtual vertex does not really exist; they
must come in pairs to form a Q.

q
P—I—r—

T(p.q.r) =

q r

AV

Il

V4([), q,r, S) =

FIG. 5.

q r
N/ T,

o(p.q.r.s)

Each cubic vertex in Fig. 1 can be a 3g vertex or a virtual
vertex. Feynman diagrams containing virtual vertices can
be obtained from purely 3g diagrams by replacing solid
propagator lines with dotted lines in all possible ways,
subject to the constraint that no two dotted lines may
intersect at a vertex.

To save space, commas between arguments of functions
like T and Q will often be dropped.

C. CK combinations for Feynman diagrams

With virtual vertices, one or two of the four lines a, S, y,
0 in Fig. 1 may now be dotted. In terms of the original 4g
vertices, exposing a dotted line is equivalent to cutting
through the middle of a 4g vertex.

Figure 6 shows an example where a is dotted, and an
example where both a and y are dotted. Since two dotted
lines are not allowed to intersect, the second row of Fig. 6
has only two instead of three diagrams. Also, for the same
reason, diagrams with three or four dotted lines do not exist.
The diagrams in Fig. 6 are merely symbolic, because virtual
vertices cannot exist by themselves. To make sense of
Fig. 6, we must pair up all the virtual vertices, as shown in
Fig. 7. This compels us to study Feynman diagrams
explicitly also for N =5 and N = 6.

These diagrams with dotted lines turn out to be the
culprits that cause A; # 0 for N =5 and N = 6.

D. Slavnov-Taylor identity

The Slavnov-Taylor identity can be used to simplify
calculation of the CK relation for a larger N. Like the Ward-
Takahashi identity in QED, it is a consequence of gauge
invariance of the Yang-Mills theory, relating the divergence
of a gauge field to the gauge and ghost fields. In Feynman
gauge, the Green’s function identity is

(0] At (x1)Ay; (x2) -+ Ay (x,,)[0)
+ D _{0lag, (x1)Ai3 (x2) -~ Dy (x1) - Ay (x,)]0) = O,
=2

(11)

S

Q(g.1.5.p)

3g, 4g, and virtual vertices.
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FIG. 7. Completion of the virtual vertices in Fig. 6.

where A is the gluon field, and w, @ are the ghost and
antighost fields, whose covariant derivative is given
by D, (x) = 0,0% — gf*““w’AS.

The diagrammatic expression for Eq. (11) in terms of
amplitudes is sketched in Fig. 8. Solid and dashed lines
represent gluons and (anti)ghosts, with an arrow running
from the antighost end to the ghost end. The left-hand side,
with ¢; replaced by k;, is the divergence of the gluon
amplitude. The right-hand side is given by covariant deriva-
tive terms in momentum space, with a cross (x) representing
€ - kand afilled box representing k. For on-shell amplitudes,
€; - k; and k7 both vanish, hence the gluon amplitude is
divergenceless. For off-shell amplitudes, this identity shows

i
Y

FIG. 8.

how the divergence of a gluon amplitude is related to
amplitudes involving gluons and a single ghost line.
Let M be the gluon amplitude. Singling out the

(4)

polarization vector e of its ith line, it can be written as

M= /\/l” = e -M. If i is an internal line, the
replacement of €; by k; on the left-hand side of Fig. 8
can be accomplished by Zf:l(el(-'” . k,-)(e,(-l) -M). In the
shorthand notation used in Eq. (1), this is just ¢;;,M. It is in
this form that the Slavnov-Taylor identity will be used.

By equating the residues of the amplitudes at various
propagator poles, many numerator Slavnov-Taylor iden-
tities can also be obtained.

i i
: )

Slavnov-Taylor identity.
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IV. FOUR-POINT AMPLITUDES
The numerators of the partial amplitudes
A(1234) ="
N t
A(1324) ="t ith
ru
u=s;3=>sy. (12)

S=S812=19534, =823 ="541,

can be computed from the Feynman diagrams in Fig. 9
to be

fiy = T(129)T(934) + Q(1234)s == P(1234) + Q(1234)s

= A,(1234),

i, = T(419)T(923) + Q(4123)t = P(4123) + Q(4123)t
= A,(4123),

i, = T(139)T(924) + Q(1324)u = P(1324) + Q(1324)u
= A,(1324). (13)

In Eq. (13) and in the rest of this article, high numbers such
as 9,8 are used to designate internal (off-shell) lines whose
|

A::ﬁs_ﬁt_ﬁu

polarizations are to be summed over. See Eq. (1) and
Eq. (2). The polarizations of 9 and O are the same,
egl) = eg) , but the momenta k¢ and kg are opposite to
enable all momenta at a vertex to be outgoing. For example,
in the P(1234) = T(129)T(934) term, kg + k; + k, = 0,
and kg + k3 + k4 = —ko9 + k3 + k4 = 0. The minus sign in
front of the 7,/tr term in A(1324) of Eq. (12) is a
consequence of antisymmetry at the 923 vertex.

The function P(1234) in Eq. (13) can be computed
using Feynman rules. The result, valid both on-shell and

off-shell, is
1
P(1234):bCCtCHnS+§b12b34(S13—S14—S23+524). (14)

The bcc terms are rather lengthy and will not be
displayed here. Suffice to say that they are not zero even
for on-shell external lines. However, a direct calculation
shows that the CK relation A := i1, — i1, — i, = 0 is valid
on-shell, hence a complete cancellation of the bcc terms
occurs in A. Its off-shell expression, containing only
bcc terms,

= b12[033(041 - 042) - 044(031 - 032)] + b13[c44(021 - 023) - 022(041 - 043)]
+ bialean(csr — c34) — e33(ca1 = €a4)] + boz[eri (can — €ua3) = caalcin — €13))]

+ b24[‘333(012 - 014) - 011(032 - 034)] + b34[011<C23 - C24) - C22(013 - 014)]

= d(1234),

will be useful later for larger N computations. An equiv-
alent expression which will also be useful later is

d(1234) = C“T<234) - C22T(341) + C33T<412)

2 3
A I PR

A(1234)

(15)

Although the bcce terms from each 71, are complicated,
their combined expression in Eq. (15) is relatively simple.
The simplicity stems from combinations of terms of the
type shown in Fig. 10, yielding

C(aﬁyé) = b(x&[cﬁﬂ(cya - Cy&) - ny(cﬂﬁ - Cﬂa)]' (17)

ﬁu _—t

s o 3. 2

. X

3 2 3 2

1_|...J_4 1_2_4
A(1324)

FIG. 9. Feynman diagrams for the four-point color-stripped amplitude.
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FIG. 10. Diagrams for the c-identity function c(afys).

Either from the antisymmetry at every vertex or directly
from Eq. (15) or Eq. (16), d(1234) can be seen to have a
high degree of symmetry,

d(1234) = —d(2134) = —d(1243) = —d(1324). (18)

Since 71, satisfy the on-shell CK relation, they can be
related to the fundamental numerators v(f3) by using Eq. (5)
and Eq. (12),

Gz = (" et ) i)

< ng/s+n;/ t>
A\ A u—-wt)
The mass matrix m(a|f) displayed above is obtained from
Fig. 9 and the rules stated at the beginning to Sec. II C. The

relation between 7, and v(f) can be read off from Eq. (19)
to be

(19)

iy = v(23) + xu(23),

i = 1(32) + x(32),

i, = v(23) —v(32) + x(u(23) —u(32)), (20)
where x is an arbitrary parameter and u =
(u(23),u(32))" = (s,—u)" is the null vector of the on-
shell mass matrix m(a|f) because s+ 7+ u=~0. See
Sec. II E. Since both 71, and n), are in the BCJ representa-
tion, én, =i, —nj, must be of the form xu. A direct
calculation shows that x = —(b3byy — b12bsy).

V. FIVE-POINT AMPLITUDE

A. Partial amplitudes and numerators

As discussed in Sec. I A, there are six partial amplitudes
for N =5, each containing 5 terms, making a total of 30
terms. Since there are only 15 independent propagators
1/Q,, each n,/Q, is expected to appear in several partial
amplitudes, with signs determined by the antisymmetry of
vertices as discussed in Sec. II C.

The explicit enumerations via canonical ordering of
51 Qq = 51,51,, and n, are given in Appendix A. With
those notations, the six partial amplitudes are

A, =A(12345)

— 4 ny + ny a0 + ny ns ’
S12834  S125123 238123 5235234 S345234
A, =A(12435)
___m 4 n3 + ni + njiz g5 ’
S12834  §125124 52485124 5245234 §345234
A3 =A(13245)
. ny + ns My Ny N3 ’
S13524  S135123 238123 S235234  $245234
Ay =A(13425)
__ 4 + 6 + i3 + Mg s ’
S13524  S135134 52485234 5345134 §345234
As =A(14235)
_ M 4 ng  nyp np N3
S14523  S145124 5238234 S245124 3245234’
Ag =A(14325)
___ " 4 ) 4 nyp Ny 4 nis . @1)
S14523  S145134 52385234 S345134 345234

The canonically ordered n, used here are different from
those used in Ref. [3]. A dictionary relating the two can be
found in Table III of Appendix A.

The Feynman diagrams for A(12345) are shown in
Fig. 11. Those for other partial amplitudes can be obtained
by a relabeling of the external lines, together with a change
of the numerator designations.

The sign of a n,/Q, term in an amplitude A,, can be read
out from the Feynman diagrams, as discussed in Sec. II C.
By convention, the sign of every term in A; = A(12345) is
positive. The sign of the n;/Q; term in A, = A(12435) for
example is negative because a flip of 3 and 4 is needed to
change 12345 to 12435.

The numerators 71, read off from Fig. 11 using the
Feynman rules are
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FIG. 11. Feynman diagrams for A(12345).
iy = T(129)T(985)T(834) + Q(1285)T(834)s1, + T(129)Q(3459)s34
i, = T(129)T(§3§)T( 5) + Q(1238)T(845)s1, + T(129)Q(4593)s23,
ity = T(239)T(198)T(845) + Q(2381)T(845)s23 + T(239)Q(4519)s,3,
ii;; = T(239)T(948)T(851) + Q(2348)T(851)s23 + T(239)Q(5194) 5934,
ii;s = T(349)T (29 8)T(851) + Q(3482)T(851)s34 + T(349)Q(2951)5734. (22)
The other 10 71,’s, obtained similarly, are

= T(129)T(948)T(835) + Q(1248)T(835)s1, + T(129)Q(3594)s 24,
fiy, = T(249)T(198)T(835) + Q(2481)T(835)s24 + T(249)Q(3519)s524,
ii;3 = T(249)T(93 8)T(851) + 0(2438)T(851) 594 + T(249) Q(5193) 5234,
ii, = T(139)T(985)T(824) + Q(1385)T(824)s,3 + T(139)Q(2 5§)s24,
fis = T(139)T(928)T(845) + Q(1328)T(845)s,3 + T(139)Q(4592)s 3,
iig = T(139)T(948)T(825) + Q(1348)T(825)s13 + T(139)Q(2594) 5134,
7y = T(349)T(198)T(825) + Q(3481)T(825)s34 + T(349)Q(2519)s,34,
fi; = T(149)T(985)T(823) + Q(1485)T(823)s14 + T(149)Q(2359)s,3
fig = T(149)T(928)T(835) + Q(1428)T(835)s14 + T(149)Q(359 2) S1245
fig = T(149)T(938)T(825) + Q(1438)T(825)s14 + T(149)Q(2593)s,34. (23)

Every n, contains three terms, 77T, QT, and T Q, reflect-
ing the three rows of diagrams in Fig. 11. Owing to
antisymmetry at the vertices, the last two can all be
expressed in terms of a single function f representing
Fig. 12,

£(12345) == Q(1239)T(945)
= bys[bss(—c14 + 15)
+ b14(2¢54 + cs55)]
+ b13[bys(cas — €25) + bas(cas + 2¢4s)
= byy(2¢54 + 5],

— bys(cas + 2¢ys)

(24)

which is antisymmetric in the first two arguments and in the
last two arguments:

£(12345) = —f(21345) = —f(12354).  (25)

It is also convenient to introduce another function

F(12345) = £(12345) + f(12453) + £(12534)

2 3 4

S I I Y

(26)

f(1,2345) =

FIG. 12. f(12345).
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that appears in CK combinations. Although F is not zero
even on-shell, it nevertheless possesses a large amount of
symmetry,

F(12345) = —F(21345) = —F(12435) = F(12453)
= F(12534), (27)

needed to simplify calculations.

B. CK combinations
As discussed in Sec. II B, there are 10 CK combinations
A,. Using the canonical ordering of double Mandelstam
variables specified in Appendix A to label them, these CK
combinations are

Ay =ny—n; —ns, Ay = ns —ny —n,

Az = ng —n; —no, Ay =ny—n;—ny,

As =nypp —ny —ny3, Ag =ny —nyy —nys,

Ay =ny —ns —ny, Ag = n3 —ng — ny,

Ay = ng —ng —nyy, Ay =ny —ni3—ngs. (28)
Every n, occurs twice in these A;, enabling the following
combination of A; to be identically zero,

Al—A2+A3—A4+A5+A6—A7+A8—A9—A10:0.
(29)

Such a relation will henceforth be referred to as a trivial CK
identity. It is valid on-shell and off-shell because it is
identically zero whatever n, are. There is only one trivial
identity in N = 5, but there are many in N = 6.

Using Eq. (22) to Eq. (27), the CK combinations A; can
be calculated to be

A, = T(129)d(4593) + F(12345)s,,
A, = T(139)d(4592) + F(13245)s3,
As = T(149)d(3592) + F(14235)s14,
Ay = T(239)d(4519) + F(23154)sy3,
As = T(249)d(3519) 4 F(24153)s,4,
Ag = T(349)d(1295) 4 F(34512)s34,
A, = T(459)d(1239) + F(45321)s)3,
Ag = T(359)d(1249) + F(35421)s}4,
Ay = T(259)d(1349) + F(25431)s,34,
Ajp = T(159)d(2394) + F(51432)s,34. (30)

All have the form Td + Fs. The Td terms are of the form
bccece (see Sec. 11 D); they vanish on-shell on account of the
Slavnov-Taylor identity for the following reason. Every

term in d given by Eq. (15) contains a c;; for some i, which
is zero unless i is off-shell. In the expression 7'd, internal
line 9 is the only one off-shell, hence the only nonvanishing
term in d is proportional to cqg. By setting M in Sec. Il D
to be T and i to be 9, the Slavnov-Taylor identity ensures
that the 7'd terms vanish on-shell.

The F's terms are of the form bbcs and are not zero even
on-shell, thus CK combinations A, computed from
Feynman diagrams do not satisfy the CK relation.

Although A, is not quite zero, a large amount of
cancellation has already taken place by the vanishing of
the becece terms. The beces terms do not vanish, but since it is
linear in s, there is a chance that 7i,, can be converted into a
BCJ representation by a local gauge transformation.

C. Local gauge transformation

A generalized gauge transformation 1, — n, = i1, — on,
induces a transformation A; = A; = A, — 5A,, with 6A; =
ong — on, — on,. To bring about the CK relation A; = 0 on-
shell, a shift of amount §A; = A, is required. Since A, is of
the form F's, on,, is also expected to be linear in s. This gives
hope that it may be a local gauge transformation.

According to Sec. II'F, local gauge transformations for
N =5 must have the form

5na = PaSa +pizsizv (31)

where Q, = s,s,, is the propagator factor, and by our
convention s, < s,,. In other words, 6n, may involve only
s, and s’, but no other s. Note that s, here is notr a
Mandelstam variable with the canonical subscript a. It is
defined to be the first Mandelstam factor of Q,.

An examination of Eq. (21) shows that every A(laN)
remains the same if the three parameters in every one of the
following 10 triplets are equal:

t = (=py. Py —p5). = (=Pl P5.—P).
ty=(=ph. pg.—po).  ta=(=P7.Po-—Ph):

ts = (=Pa» Plas —P3)s te = (P1.—DPlas —P)s)s

t7 = (P2, —Ps, —P1o) ts = (P3. —Ps, —P12)s

ty = (P6» —P9> —P14), tio = (P11-—P13-—P1s)-  (32)

For example, take the parameters in the first triplet #,. The
only partial amplitudes affected by these parameters are

!/ / / !/

sa, =1 P s P Py

Sz S12 S12 Si2

and they are zero if the three parameters in #; are equal.

The ¢, triplet contains p parameters for the numerators
(#1y. 715, 3), all members of A,. This is why this triplet is
labeled ¢;. Similarly, the triplet of parameters in #; are all
related to the numerators involved in A,.
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Using Eq. (31) and Eq. (32), and #, to represent any of the
three p parameters in its triplet, the shift 6A; = on, — on, —
on, takes on the form

6A; =6(ny — ny — n3)

= (t7 = te —1g)s12 + 11 (834 + S123 + 5124).
84, = 8(ns — ny — ng)

= (=t7 + 15 — t9)s13 + 12(S24 + S123 + $134),
843 = 8(ng — ny — no)

= (=g + 14+ 19)S14 + 13(523 + S124 + S134),
08y = 8(nyg — ny — nyy)

= (=t7 + 13 = 110)523 + 14(S14 + S123 + $234),
0As = 6(nyy —ny —ny3)

= (—tg + ta + 110)524 + 15(513 + S124 + 5234),
80 = 6(n) — nig — nys)

= (=t; + 19 + 110)534 + 16(S12 + S134 + 5234),
6A; = 8(ny — ns — nyp)

= (t; =ty —t4)s123 + 17(512 + 513 + 523),
6Ag = 8(n3 — ng — nyy)

= (=t) —t3 — t5)s124 + 15512 + S14 + 524),
6Ag = 6(ng —ng —nyy)

= (=ty + 13+ 16)S134 + to(S13 + S14 + $34),
6Aj0 = 8(ny; — i3 — nys)

= (=ty + ts 4 te)so34 + t10(523 + 524 +534).  (33)

These formulas are valid on-shell and off-shell. Using the
kinematical formula
Sip, tSnn tSnn = S, + S s s, (34)

Eq. (33) when on-shell reduces to

(t7 = te — 13 + 1)1,

(=t7 + 15— tg + 1p)s13,

(—t3 + ty + to + 13) 514,

(=17 + 13 = tig + 14) 523,

(=t3 + 1y + tio + 15) 524,

(=11 + to + 1o + 16) 34,

(ty =ty =ty + 17)S103,

(=t =13 — t5 + 13)S104,

(=ty + t3 + 16 + 1o) 5134,

(=ty + 15+t + t10)5234- (35)

5A1

In order for 6A; = A,, the two sides must have the same s
dependence. This can be verified to be true by comparing
Eq. (30) with Eq. (35). With this matching of the s
dependence, the requirement 6A; = A, is reduced to a
set of linear equations for the 10 unknowns ¢;. In matrix
form, these CK equations are

10

> wpty =di(1 <1<10) (36)
=1

where d, is the on-shell expression of A; with the s
dependence stripped off, namely,

dy = F(12345),  dy = F(13245),
dy = F(14235),  d, = F(23154),
ds = F(24153),  dg = F(34512),
d, = F(45321),  dg — F(35421),
do = F(25831),  dyy = F(51432). (37)
The 10 x 10 matrix
1 0 0 0 0 -1 1 -1 0 0
O 1 0 0 1 0 -1 0 -1 0
O 0 1 1 0 0 0 -1 1 0
O 0 1 1 0 0 -1 0 0 -1
O 1 0 0 1 0 0 -1 0 1
110 0 0 0 1 0 0 1 1
1 =1 0 -1 0 0 1 0 0 0
10 -1 0 =1 0 0 1 0 0
O -1 1 0 0 1 0 0 1 0
O 0 0 -1 1 1 0 0 0 1
(38)

has rank 5, and has five null vectors

I,1,1,
1,0,1,0,0,0,1,0,-1,0),

(- ~1,0,0,1,0,0,—1),
(-

= (0.-1,-1,0,0,0,—1,-1,0,0),
(-

= (

1 o,1,-1,o,-1,o,o,o,o>,

0.1,1,-1,-1,0,0,0,0,0). (39)

As a result, the inhomogeneous terms d; must satisfy five
sumrules R, := Y _,(v,),d; = 0in order for Eq. (36) to have
a solution. Explicitly, these sum rules are

065002-13



C.S. LAM

PHYS. REV. D 105, 065002 (2022)

Ri=-d +dy+ds—d,+dy—dy =0,
Ry=—d, +ds+dy—dy=0,
Ry=—dy—dy—d; —dg =0,
Ry=—d, +dy—d,—dg=0,
Rs=dy,+dy—dy—ds =0, (40)

To check whether the sum rules are satisfied, introduce
a D-function defined by

D(12345) = F(12345) + F(23415) + F(34125)
+ F(41235). (41)

In many ways this five-point function D resembles the four-
point function d in Eq. (15). It vanishes on-shell, and has
the following expression off-shell:

Ry =—-d+dy+ds—dy+d; —dy

D(12345) = ¢y (=b3bus + 2byybss — bysbss)
+ 2 (=bagbis + 2b13byss — babss)
+ ¢33(=b12bas + 2b15bay — babys)
+ c44(=bisbas + 2b13b2s — b1abss)
= 2¢55(=b1ob3s + 2b13byy — biabas).  (42)

By construction, it is cyclically symmetric in its first four
arguments, but it also possesses the following additional
symmetries:

D(12345) = D(32145) = D(14325) = D(43215).  (43)

Diagrammatically, D is given by a sum of 12 diagrams of
the form Fig. 12.

We are now ready to check the sum rules. Using Eq. (37)
and the symmetry of F given in Eq. (27), one gets

= —F(12345) + F(13245) + F(14235) — F(23154) + F(45321) — F(51432)
— F(21534) — F(31452) — F(14532) + F(32154) — F(45312) + F(16324)
= [D(21534)F(53214)] — [D(31452) — F(53142)] = D(21534) — D(31452) ~0,
Ry = —d| + dy + dy — dy = —F(12345) + F(14235) + F(45321) — F(25431)
= F(12543) + F(41253) + F(54123) + F(25413) = D(12543) ~ 0,
Ry = —dy — dy — dy — dy = —F(13245) — F(14235) — F(45321) — F(35421)
= F(13542) + F(41352) + F(54132) + F(35412) = D(13542) ~ 0,
Ry = —d, + d3 — d; — dg = —F(12345) + F(14235) — F(23154) — F(34512)
= —F(12345) — F(41235) — F(23415) — F(34125) = —D(12345) ~0,
Rs = dy + dy — dy — ds = F(13245) + F(14235) — F(23154) — F(24153)
= F(31425) + F(14235) + F(23145) + F(42315) = D(31425) ~ 0, (44)

where ~ means equality on-shell. Thus the sum rules are all
true.

With these sum rules satisfied, one can proceed to solve
Eq. (36). Since the rank of 7 is five, only five 7, can be
solved, leaving the other five ¢, free. For example, solving
for t4, ts, tg, t7, t19, ONE gets

ly = —dy — 13+ 13 — Lo,

s =dg— 1) — 13 + 15,

lo = —dy + 1 — 13— Iy,
t7:—d3—d7—t1+t2—t3+t8—t9,
t]0:d4+d7+t]—t2+t3, (45)

where Eq. (40) has been used to simplify expressions.

I

Let us briefly summarize the results obtained so far for
N = 5. The CK combinations A; computed from Feynman
diagrams are not zero on-shell, though their bccc terms all
vanish. A generalized gauge transformation 7, — n, =
i, — on, can restore the CK relation, namely, can bring
them to a BCJ representation, if the induced change 6A; =
8(ny —n, —n,) is equal to A; for all /. In order for the
gauge transformation to be local, the latter must be of the
form én, = p,s, + pls,, with the 30 parameters p,, pl
obeying 10 triplet identities, thereby leaving only 10
parameters #; to accomplish the requirement 5A; = A,.
This requirement has a solution only when the 10 A;’s
satisfy five sum rules R, = 0 shown in Eq. (40). A detailed
calculation using the explicit expressions of A; shows that
these sum rules are indeed satisfied. With that, five of the

065002-14



COLOR-KINEMATICS RELATION FROM THE FEYNMAN ...

PHYS. REV. D 105, 065002 (2022)

ten #,’s can be solved, leaving the other five ¢,’s as free
parameters. If ¢, 15, 13, tg, t9 are chosen as free parameters,
then the solution for 4, s, tg, 17, 119 1S given in Eq. (45).

These 10 7, move 7, to n,, satisfying the ten CK
equations A; = 0. The solution carries five free ¢ param-
eters, which is a consequence of the well-known fact
that any solution of the homogeneous equation can be
added to a particular solution to get a new solution of the
inhomogeneous equation. The homogeneous equation
St t(l), = 0 has five independent solutions v, given by
Eq. (39), corresponding to the five free ¢; parameters. The
addition of v, is therefore a further gauge transformation in
the BCJ representation, keeping all CK relations intact.
According to the discussion of Sec. I E, v, must therefore
be related to the null vectors u; of the mass matrix m, but
there are five v, and only four u;. Why do they not match?

D. Null vectors of 7 and m

As discussed in Sec. I1 E, the N = 5 BCJ relations can be
obtained from Eq. (6) to be

0 = A(13245)s,5 + A(12345) (513 + 523)
+ A(12435) (513 + 523 + 534),
0 = A(13425)s5 + A(14325) (513 + 534)
+ A(14235)(s13 + 523 + S34).
0= A(14325) s, + A(13425) (514 + 534)
+ A(13245) (514 + 524 + 534),
0= A(12345)s51, + A(13245) (512 + 523)
+ A(13425)(s12 + 523 + 524)- (46)

These relations give rise to four null vectors of the on-shell
propagator matrix m. They are

S13 + 523, 513 + 523 + 534, 513,0,0,0)

S13 + $23. =S124, 513, 0,0, 0),

up = (

= (

uy = (0,0,0, 513, 513 + 523 + 534, 513 + $34)
=(0,0,0, 513, =5124, 513 + 534),

us = (0,0,514 + S24 + 534, 514 + 534, 0, 514)
= (0,0, =5123, 514 + 534, 0, 514),

Uy = (512,0, 812 + 523,512 + 523 + 524,0,0)

= (512,0, 512 + 523, —5134,0,0). (47)

These null vectors enable a generalized gauge transforma-
tion v — v — ov on the fundamental numerator factors in
the form

vy v(234)
Vs v(243)
sv=s|" | =5 v(324) = ixi”i
Vy v(342) i=1
s v(423)
Vg v(432)

(x4 = Xx1)812 + X1 5123
—X15124
X] —X4)813 + (X4 —x3)8
_ (1 = x4)813 + (X4 — x3)5123 ’ (48)
(X2 = x3)813 + (X3 — X4) 134
—X28124

(X3 = X2)S14 + X25134

without altering any of the partial amplitudes given by
Eq. (5). In Eq. (48), x; are arbitrary parameters, and on-shell
kinematical relations such as s;3 + $,3 = 5123 — 515 have
been used. With the relation between n, and v(f) discussed
in Sec. IT E, changes to dv(f) give rise to changes in én,,.
Let us examine the basic changes associated with half-
ladder diagrams.

Recall from Sec. II E that the ordinary numerator n, for a
half-ladder diagram in A(1aN) is equal to the fundamental
numerator v(a). With the enumeration scheme given in
Appendix A, these half-ladder n, are

("2, ns, ns,ne,”87n9) = (V11V21V3”/4’U5’U6)- (49)

Their gauge transformation én, = p,s, + p.s, expressed
in t; are

Ony = paSin + PhSinz = 7512 + 115123,
Ony = p3Sio + P3Sia = 138512 — 115124,
Ons = pssi3 + P5Siz = —17513 + 15123,
Ong = PeSi3 + PeSi34 = o813 — 15134
Ong = pgSi4 + PgSios = —1s814 + 135124,

Ong = poSiy + PoSi3a = —loS12 — 13534 (50)

The homogeneous part t? causes change between the n,’s
that satisfy the CK relations. For those n, which are equal
to some v(a), Eq. (50) with 7, replaced by # can be
identified with Eq. (48). Therefore
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Bs12 + 108103 = (x4 — X1)812 + X15123,

19512 — 195104 = —X1 8124,

Bs13 + 05103 = (X1 = X4)5153 + (X4 — X3) 5123,
19513 — 198134 = (X2 — x3) 813 + (X3 — X4) 134
19514 + 135104 = —X28104.

19512 — 195134 = (X3 = X2)S14 + X25134. (51)
This allows the identification

0 __ 0 __ 0 __
=Xy, 1y = X4 — X3, 3 = —Xx,

B9 =x4—x, =0, 19 =x,—x3. (52)
Let us compare these expressions for #) with those given by
Eq. (45) after setting all d; =0. There are five free
parameters in Eq. (45), 9,1,13, 1,1, through which
the other five 7' can be obtained. For example,
B=-0+68-0+1-1), which is consistent with
Eq. (52). The other five t? in Eq. (52) should all be free,
but that equation shows only four free parameters related to
x;, and 73 = 0 is not free. How come? The reason is that 3
is really not free. fg can be made to disappear if we make
the replacement ), =1, —tg, 15 =1ts—1t3,t; =t; —tg in
Eq. (45) and Eq. (39).

E. Feynman and CHY numerators

Recall the discussion in Sec. II D about the structure of
n,. For N = 5, it contains terms of the form bccc and bbcs,
each type possessing many different terms that cannot be
combined. That observation of course applies both to 7,

|

computed from Feynman diagrams, and n/, computed from
the CHY theory. Since the CK relation is satisfied by n/,
the difference 6n, = i, —n/, must take on the form
DaSa + phsy if it is a local gauge transformation. In other
words, their bcce terms must completely cancel, and the
difference of their bbcs terms must involve only s, and s/,
without any other s;. Conversely, by computing 7, — 1,
explicitly, one can verify whether it is of the form
PaSa + plsh, and therefore whether 6n, is indeed a local
gauge transformation.

Using the Mathematica program in Ref. [14] to compute
n),, and then 7, — n}, explicitly, T have verified that the
difference is indeed given by a local gauge transformation.
Namely, én, is of the form p,s, + pls’,. The coefficients
p, and pl, are rather complicated and will not be repro-
duced here. This provides an independent confirmation of
the general assertion that a local gauge transformation can
bring 7, into a set of n, that satisfy the CK relation.

VI. SIX-POINT AMPLITUDE

A. Partial amplitudes and numerators

N = 6 can be dealt with in much the same way as N = 5,
but everything is much lengthier. For that reason, many
details are relegated to the appendixes.

There are now 4! =24 partial amplitudes, listed in
Table IV of Appendix B. There are 25 single
Mandelstam variables s, listed in Table V, 105 double
Mandelstam variables used to enumerate A;, listed in
Table VI, and 105 triple Mandelstam variables used to
enumerate n,/Q,, listed in Table VII. Of the 105 possible
terms n,/Q,, only 14 are contained in each partial
amplitude. For example, the amplitude A; is given by

ny ng o

Ay = A(123456) = —2— 4 2
129349345

$1253451234

S128458123  S1284585345  S12512351234

Ne) ne3 Ny
+ +

Nee N7
+

$238458123 823845852345 523512351234 $23523481234  §23523452345
Ny N91 105 (53)
834523451234 534523452345 534534552345 545534552345

The others can be obtained by a suitable permutation of
lines 2,3,4,5, together with the appropriate renaming of n,,
and a possible minus sign determined by the number of
flips as discussed in Sec. II C.

Feynman diagrams for 71, are shown in Fig. 17 of
Appendix B. On top of those, diagrams containing virtual
vertices must be added, like those in the two bottom rows of
Fig. 11. However, this time there are four additional rows,
three containing a single dotted line, and one containing
two dotted lines.

|
N =6 is the first time when a 3g vertex with three

internal lines appear. It can be seen in Fig. 17 that the 15 7,

with

ael,={3,6,9,18,21,24,33,36,39,48,51,54,63,72,81}
(54)

contain such an internal vertex, and the remaining 90 7,
with
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ael,={1,2,4,5,7,8,10,11,12,13,14,15,16,17,19,20,22,23,25,26,27,28,29,30,31,32,34,35,37,38,40,
41,42,43,44,45,46,47,49,50,52,53,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,73,74,75,
76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105}  (55)

do not. Since two dotted lines are not allowed to intersect,
those 7, in I, do not contain any diagram with two virtual
vertices, or two dotted lines, but those in J, do.

S12834 = S18g, a fact that can be checked directly using
Tables 1V, V, VL
The 105 A;’s can be divided into groups containing a

single common Mandelstam variable s, in every one of
their n,. These n, occur twice in each group, enabling the
A; in the same group to be combined into trivial CK
identities. These trivial CK identities are valid on-shell and
off-shell because they are identically zero, no matter what
n, are. There is only one such relation for N =5, but for
N = 6, there are 25 s,’s, so there are 25 trivial CK
identities. They are listed below, with the common s, of
the group shown in parenthesis.

B. CK combinations and trivial CK identities

The 105 CK combinations A; = ng, — n, — n,, are listed
in Table VIII, with s, ¢, u specified in row B. The number
without a bar on top is s, and the other two numbers with a
bar on top are ¢ and u. The Q, of those three n,, all contain a
common double Mandelstam variable, listed in row A. For
example, A; = n3 —n, —ny, and Qz, Q,, Q; all contain

0=-A + A+ A3+ A, —As+Ag— A — Ag+ Ag— Ay, (512)
0=-Ap+Ap+Ap+AL—A+ A=A —Ag+ A=Ay, (s13)

0= Ag + Aoz + Aos + Agg + Agg — (Ag + Ags + Agy + Agg + Azg), (514)

0= —A3 + Az + Azz + Azg — Azs + Azs — Azg — Asg + Azo — Ay, (515)

0= =4y + Ag; + Ay + Dyp = Ayz — Ayy + Ays — Dys + Ayg — Agg, (523)

0=—(A; — Az — Ay — Asp + Asy + Asy — Asz + Asy — Ass + Ase), (524)

0=—Ap+Ap+Asy+ Asg = Asg — Ago + Ag1 — Agy + Ag3 — Agy, (525)

0=A; 4+ A3 + As7 + Ags — Ags — A7 + Agg — Agg — Agp — Agy, (534)

0=2p+ Ag3 + Ayg + App — Ay — Agy + Ags — Agg — Agy — Agg, (s35)

0=23—A1;3— Ay = Agg + Ago + Agy + Agy + Agz — Agy — Ags, (s45)

0=—Ay+ A1y + Ay — Agg + Agg — Agy, (5123) 0= —As+ Ay + Aso — Agp + Agg — Ay, (8124)
0= —A¢+ Asy + Asg — Ags + Agp — Ay, (s125) 0=—As+ A5 — Asg + Ags + Aoy — A3, (5134)
0=—As+ Ass — As; + Agz + Aoy — Ags, (5135) 0= —An + Azs — Ayz + Agy + Ao — Aoy, (S145)
0=—A3; — Ay + Asy + Agy + Agg — Ago, (5234) 0=—Ay —Ays + Ago + Azg + Ajoo — Ajor, (5235)
0=—Ap —As3 + Ag + Agp + Ajon — Aoz, (5245) 0= A7 — Agg + Ags + Agy — Ajog — Ajos, (5345)
0=Ag— Ay + Ay — Ayg + Asy + Agg — Ags + Agg — Agy — Agg, (51234)

0=2A29— A+ Ayg = Ayy + Agy + Agg — Agy + Agg — Agy — Ajgp, (51235)

0= A0 — Ay + Azg — Ass + Agz + Agz — Agg + Agy — Ags — Aja. (51245)

0= Ay = Azp+ Agp = Agp + Ag7 + Agy — Aoz + Ags — Agy — Ajoq. (51345)

0= A3 = Asg + Agy — Agy + Agg + Ags — Agg + Ajgp — Ajoz = Ajos.(2345) (56)

C. CK combinations for Feynman diagrams

Recall from Sec. II D that the A, terms are in the form bcccec, bbecs, bbbss. We shall see that the beccc terms are always
zero on-shell, but not the other two kinds.
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A, are computed from Feynman diagrams shown in
Fig. 17 of Appendix B, plus similar diagrams containing
virtual vertices. The computation is similar to those in
Eq. (22), Eq. (23), and Eq. (30), but much lengthier. The
result, shown in Eq. (B1) in Appendix B4, comes in two
types, depending on whether A, contains an 71, in I, or not.
Those that do have an [ index in the list

I,=1{1,2,3,8,9,10,11,12,13,18,19,20,21,22,23,
28,29,30,31,32,33,38,39,40,41,46,47,48,49, 54,
55,56,57,62,63,64,69,70,71,76,77,78, 83, 84,85},

(57)

and those that do not have an [ index in the list

J;=1{4,5,6,7,14,15,16,17,24,25,26,27,34,35, 36,
37,42,43,44,45,50,51,52,53,58,59,60, 61, 65, 66,
67,68,72,73,74,75,79, 80, 81, 82, 86, 87, 88, 89, 90,
91,92,93,94,95,96,97, 98,99, 100, 101, 102, 103,
104,105}. (58)

I, contains 45 members and J; contains and 60 members.

They are illustrated below with one example taken from

each type. B

First, consider A; = i3 — i1, — i1;, which is an example
of type I;, with Feynman diagrams shown in Fig. 13. Using

Fig. 9 and Eq. (15) for off-shell N = 4, the first four rows of

Fig. 13 give

Rows 1 and 4. d(9856)T(834)T(912),

Row 2. T(834)[f(12856) — f(12658) — f(12586)]s34

= T(834)F(12568)s34,
Row 3. T(912)[£(34965) — f(34569) + £(34659)]s,
= T(912)F(34659)s,,. (59)

To accommodate the fifth row with two dotted lines, a
new function defined by Fig. 14 is needed. This function
9(123456) = 0(1239)Q(9456)
= by3(b16bas — bisbas)
+ b13(—=basbas + basbas) (60)

S

1 )
3,

7] n
. , nlo ) 855
Y, D 0l B
S e T I PR S

FIG. 13.

2

5
I

Feynman diagrams for A,.

FIG. 14. ¢(123456).

has the symmetry

9(123456) = —g(213456) = —g(123465) = ¢(654321),
(61)

and obeys the sum rule
9(123456) + g(123564) + g(123645) = 0.  (62)

What appears in A, is g4, which is g with the two middle
arguments antisymmetrized:

94(123456) = (123456) — g(124356).  (63)

In addition to having the symmetry properties of g shown in
Eq. (61), it also obeys

ga(123456) = g,(341256) = g,(125634).  (64)

Putting these together, we get

A, = 5,,F(12568)T(834)
+ [534F(34659) + d(9856)T(834)]T(912)
+ 51253494 (125634)
~ 51, F(12568)T(834) + 534F(34659)T(912)
+ 51553404 (125634). (65)

The second line follows because the d7'7T ~ 0 on account of
the Slavnov-Taylor identity.

Next, consider the type-J, example A, = 71,y — i — 71y,
whose Feynman diagrams are shown in Fig. 15. The
difference between this type and the I; type can be spotted
in the fifth row of the diagram. There are now three double-
dotted diagrams instead of the previous two in type /;.

In the present case, the diagrams in Fig. 15 give

Rows 1 and 4. d(9456)P(1239),

Rows2and 5. d(9456)0(1239)s,,,

Row 3. T(912)[£(93456) — f(93654) — £(93546)]s123
where P(1234) is given in Fig. 9 and Fig. 16(a), with its

bbs terms shown in Fig. 16(b). Collecting the results,
we get
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FIG. 15. Feynman diagrams for A,.
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FIG. 16. (a) the functions P(1234), (b) the bbs part of P(1234).

A, = d(9456)[P(1239) + Q(1239)s,,]
+ T(912)F(93456)513
= d(9456)A4(1239) + T(912)F(93456)s,55.  (67)

Note that the double dotted diagrams in row 5 have
conveniently been combined with those in row 2 to make
things simple. As a result, there is no ss term in Eq. (67). A
different way to explain the absence of the ss term is to
appeal to Eq. (62), which shows that the three double dotted
diagrams add up to zero.

By a direct calculation, one sees that the bcccce terms of
d(9456)A4(1239) add up to zero on-shell. This is expected
from the numerator Slavnov-Taylor identity because the
beece terms of A4(1239) are the residue of A(1239) at the
pole 1/s;,. The remaining on-shell bbccs terms can be
computed with the help of Eq. (13) to Eq. (16) to be

d(9456)A4(1239) ~ ¢4y T(456)A4(1239)
~ —T(456)T(123)s,. (68)

The full Slavnov-Taylor identity can be used to verify the
correctness of this relation. The identity asserts that
A(1234) :A4(1234)/S12+A4(2341)/S23 :A4(1234)/S12 —_
A4(2314) /5,3 must be zero on-shell when ¢, is replaced by
k,. As a consequence, €, — k4 on A4(1234) must produce a

result proportional to s, with a proportionality constant
invariant under a cyclic permutation of 1,2,3. This is
precisely what Eq. (68) gives.

Caution should be exercised in using Eq. (68). T(pgr) is
given by Eq. (9), but there is no momentum conservation
between the three lines p, g, r.

Substituting Eq. (68) into Eq. (67), one gets

Ay = —5,T(123)T(456) + T(912)F(93456)s153.  (69)

Let d,s, + d,s, be the on-shell expression of those A,
terms linear in s, when A, is labeled by the double
Mandelstam variable P; = s,s), with s, < s,. Then d,, d,
can be read off from Eq. (B1) of Appendix B, together with
manipulations similar to Eq. (65) and Eq. (69). The result is
shown in Table IX of Appendix B.

D. Local gauge transformations
The vanishing of the bccce terms in A; leaves it
proportional to s and ss. That gives hope that a local
gauge transformation of the type given in Sec. II F,

n. i

(70)

may be able to bring 71, to a set of n,, satisfying the CK relation
A; = A, — 8A, = 0. The purpose of this subsection and the
next two is to investigate whether this hope is realized.

As discussed in Sec. IIF, each of the p and the ¢
parameters must satisfy a set of gauge constraint and a set
of CK equations. It turns out that there are many p and
many ¢ equations. We shall find that neither the p
equations nor the g equations have consistent solutions,
hence the gauge transformation used to restore CK relation
must be nonlocal. To verify this conclusion independently,
and to understand why that happens, we shall also compute
the numerators 7, from the CHY theory. Since the CHY
theory is known to satisfy the CK relations. this gauge
transformation én, = i, — n), must be nonlocal in order to
agree with the conclusion above. This is indeed the case
because 6n, contains s dependences beyond those allowed
by Eq. (70).

E. p equations

The p parameters of Eq. (70) give rise to a change

/

on,  Pa . Pu . Pu
Ta_ La | Pa | Fa (71)
Qs SuSa  SaSa  SuS4

Similar to the situation in N =5, in order to keep all
0A,, =0, the 3 x 105 = 315 p parameters must form 105
triplets #;, with the p parameters inside each triplet equal.
Asin N = 5, each triplet is a associated with a A;, and these
triplets are
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P3.=p3.=p1),  t=(pg.—p5.—-py).  t=(P7.-pg.—ps).  ta=(Plo.—P7.—P))
ts = (ply, =P —P'3): ts = (P4 =P —Pls), t7 = (P, —P5. —Pg)- ty = (Plo. —P5 —DP2):
fo = (P11>—P6»—Pla): tio = (Pi3: —Po: —Pis)- ti1 = (Ps. P2 —Ple): tia = (P31.—P2 —Plo):
t13 = (P32 —P23: —P2a) ti4 = (Phs. =P —P): tis = (P37:—P'o- —Ps): = (P%9. —Plg> —P50)-
iy = (Pi7. =P —P2):  hs = (Pas:—Plg-—Pr).  tio = (Phe: P21 —Ph): 120 = (Pag: —Pha» —P'50)
t = (P33, =P P31)’ 1y = (D3 —P3s: —P3a) ty = (P37. —P3s: —P): ta = (Pl —P37:—Pi41)
ts = (Plr» —Paas —P43): te = (Pls> —P531-—Pis): ty = (P3. —Ps: —Pis)- ty = (Plo» —P33: —Pin)-
1y = (Ph1> —Pe» —Pis): 130 = (Pl3» —Pho: —Pis): 131 = (Pis: —Pi7- —Pi) 13 = (P51. —P50: —Pio)
t33 = (P53 — P53 —P54)s t34 = (P55 — D5z —P36) t3s = (P57: —Phos —P5g) t36 = (P59 —Plg —Pgo)>
t37 = (D7 —P50- —P53)+ tig = (P5s. —Plgs —DP's7)s t39 = (Psgs —P51:—P /59)’ tao = (Psg —Psa —Pto)>
tyy = (Pg)» =Py P63)’ tir = (Plss —P1» —Des)- ti3 = (P31, —Pa6» —Pe)- ta = (Pogs —Pa7- =D )
tss = (Pég> —P32. —Peo)s ti6 = (Pea> —P33» —Pég)» ty7 = (Phss —Pag» —Deg)- tss = (D7 =Pz —Peo)-
tyo = (Pho. — P51 P7z)’ tso = (P73 —=Phos P74), ts1 = (P16» —Pa9- —D71)- tsy = (Pls, —Ps0. —P56)
P7s)s tss = (P33, —Pig: —P7s), tss = (Pya. —Ps1.—P7), tse = (Ph6: —P7s —P7s):
ts7 = (P> —Po- Ps1)v tss = (Pg2+ —Phos Pg3)’ tso = (P19: —P34. —Dg)- teo = (Pg4> —P35. —Pgs)
te1 = (Pg» —P20- —Ps7)- te = (Psr. —P21 —Psa), tes = (Ps3. —Pas: —Pse)- tes = (Pgs: —Ps1»—Ps7)s

tes = (P1,—DPs2s —P19), tes = (Pss» —Pso: —Pso) ts7 = (P, —Ps3: —P91) tes = (P2, —Poys —Pg3)
P3.—Dsg: —Po)- t10 = (Pgo» —Psas —P92)- t11 = (Po1. —Ps1, P93)v try = (Pa»—P37.—P70):

Po4s —P715 —Pos) t14 = (Pog» — P38+ —P97): t75 = (P5. —Pog: —P99): t16 = (P6» —Poss —Po)-

Pos» —P39 —Dog)s t1s = (D7, —P72. —Pog)- t79 = (P7,—P2:—DPe1)s t30 = (P'lo0» —Pe2> —P'lo1)»
Ploas —P23> —Pllo3)s 182 = (P8» —Ploas —Plos) tg3 = (P9s —Ploos —Ploz)s t34 = (P24s —Plo1» —Ploa)s
P63+ P03 —Plos)- 136 = (P10, —P25: —Pea)- ts7 = (P11> D26 —Des) tss = (P12 —Pa0s —P73)
P13s —P41> —P74)s too = (P14» —Pss: —Pg2) tor = (P15s —Pse: —Ps3) toy = (P27 —Pazs —Pss)s

P28s —P43> —P89)- tog = (P29+ —Ps7. —Poa)s tos = (P30s —Psg: —Pos) tos = (Paas —Ps59: —P100)>
P45, —Pe0s —P101)- tog = (Pe6s — P75+ —P%0) tog = (Pe7: — P76+ —Po1) t100 = (Pes» —Psa» —Po6)s
P69 —Psss —DP97): tiz = (P77. —Psss —P102)s tio3 = (P78, —Ps7- —P103)s tio4 = (P92, —Pog: —P104)-
P93: —P99: —P105)- (72)

leg =
73 =
77 =
I3 =
lgs =
Igg =
loz =
g7 =
Lol =

= (
(
(
(
(
(
(
(
(PS5,
(
(pg
(
(p7
ts3 = (P77.—P17:—
(p7
(
(
(
(
(
(
(
(
(
(
(
(

fos =

In particular, the ¢, triplet contains p parameters associated with ns, n,, n;, all components of A, and the ¢, triplet contains
p parameters associated with ny, ny, ny;, all components of A,. The equality of triplet parameters comes from the
requirement 0A,, = 0. For example, in order for 6A; = 0, all én,/Q,, terms must cancel. To have the coefficients of 1/s5,534
cancel, p§ = —p/ is required. To have the coefficients of 1/s;,51,3 to cancel, pf, = —p} is required.

Inordertohave A; = A, — 5A; = 0 on-shell for every /, the p parameters must obey a number of CK equations. For example,

0A; = 5(”3 —np = ”1)
= S12(P3 —P2— Pl) + S34(P P’1) + (P/3/31234 - P/2,S345 - P/1’5125)
teo — tes — t6s) + S3a(—t3 — t7 4 tg) + 11(S1234 + S345 + S125)
(-

s1a(
S12(teo = teg — tes) + s34(—tg — t7 + 1) + 11 (512 + 534)
12ty — tes — tes + 11) + S3a(—tg — 17 + ts + 1), (73)

where Eq. (72) and Eq. (34) have been used to get to the final result.
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Excluding the ss term which is associated with the ¢
parameter, the on-shell terms in A; shown in Eq. (65) are

Ay = 51, F(12569)T(934) + 53,F(34659)T(912) + O(s?).

A matching of the s-dependent coefficients of Eq. (73) and
Eq. (65) yields

08y = 8(nyg —ny —nyy)

teo — teg — tes + 1 = F(12569)T(934) := d|,
—ty — t7 + tg + t; = F(34659)T(912) := d, (74)

which are the two equations associated with the require-
ment 6A; = A;. Similarly,

= S12<P10 —P71— P11) + S123(P/10 - P/7/ - P/1/1) + (P/1/031234 - P/7345 - P/1151235>

= S12(tg6 — t79 — t37) + S123(ts — 13 — t9) + t4(S1234 + Su5 + S1235)

(
= S12(tg6 = t79 — 137) + S13(ts — 13 — t9) + 145123
(

= S12(tg6 — t79 — 137 + 14) + s123(ts — 13 — 19). (75)

This differs from §A; in that 74 is added to one of the s
terms in the last line, but not the other s term. On the other
hand, Eq. (69) gives

Ay~ —s5,T(123)T(456) + T(912)F(93456)s53 + O(s).

A matching of the s-dependent coefficients of Eq. (75) and
Eq. (69) yields

tge — trg — 137 + 14 = =T(123)T(456) := dy,
ty — 13 — tg = T(912)F(93456) := d. (76)

More generally, let the A, terms linear in s to be designated
asd,s, + d.s,,, where P; = s,s), is the double Mandelstam
variable specifying A;, with s, < s.. The 2 x 105 = 210
equations for 5A; = A, are listed in Appendix C. For/ € I,
the equations resemble Eq. (74). For [ € J,, they resemble
Eq. (76).

These equations can written in a matrix form similar to
Eq. (36),

105

Z(T)ii’ti’ =d, (77)

i'=1

where i = (21 —1,21) with 1 <[ < 105, and d; = (d,.d.).
With 105 unknowns #; and 210 equations in Eq. (77), one
might expect to have no solution unless the 210 x 105
matrix 7 is highly degenerate. In fact, it is, with a rank 79. It
has 131 left null vectors u,(l <x<131) so that
20 (uy);(t);7 = 0. As a result, Eq. (77) has a solution
only when all the following 131 sum rules are satisfied:

™~

10

Ry=) (u)id;=0. (78)

Il
-

Some of these sum rules have two terms, some four terms,
some six terms, but some have many more terms. The
shorter sum rules are often satisfied, but the longer ones are

generally not. As a result, Eq. (77) has no solution. Details
are shown in Appendix C.

F. g equations
The g parameters of Eq. (70) give rise to a change
ong _qa  9a | Ya

0 fs—'f's—,-f—y. (79)

To be a generalized gauge transformation, it is necessary to
keep all 06A,, =0, thus the 3 x 105 = 315 ¢ parameters
must satisfy many gauge constraint equations. Unlike the p
parameters, the constraint equations for ¢ are much more
complicated. For example, in order to cancel the 1/s;,
terms in 0A;, it follows from Eq. (53) that one needs

9> +q3+q7+ g3 +q10 =0, (80)

and in order to cancel the 1/s345 terms in §A;, one needs
7 + 45 + 993 + ¢ = 0. (81)

Since each n, is often contained in several A,,’s, these
equations are generally coupled. If we go through the
cancellation of every 1/s term for every 84,,, then there are
144 such homogeneous equations for the 315q parameters
to satisfy. These 144 constraint equations are listed in
Eq. (D1) in Appendix D.

On top of that, ¢ must also satisfy the many CK
equations implementing §A;, = A,. For example, the equa-
tion for 6A, = A, is

Ay = 51253494 (125634) := 5155349
=06A; =8(n3 —ny—ny)
= ((1/3' - 61'2' - 9/11)512S34 + 512(61'3S1234 - qlzs345 - 9,15125)

+S34(43S1234—612S345 —6115125)~ (82)
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For the s dependence of 6A; and A, to match, one way is
put g, = ¢} = ¢» = g5 = q3 = ¢4 = 0 so that the last two
terms vanish. There is however potentially a more general
solution. Using the on-shell version of the kinematical
identity Eq. (34),

1234 + S345 + S125 = S12 + 534,

the last line can be reduced to

(g5 — g5 — q7)s12534 + q3512(512 + 534) + q3534 (512 + 534)

provided ¢; =-¢, =—¢) and g3 =-q, =—¢q;, but
a priori neither set has to vanish. Unfortunately this
manipulation does not help because it produces extra terms
proportional to s}, and s%,, which could be avoided only
when ¢4 = g3 = 0. In other words, in order to satisfy
Eq. (82), it is necessary to have

g1 = ga(125634) = ¢%5 — ¢4 — ¢}, and (83)
O=qs=@:=¢=0=49=q. (84)
Although this Ir_lanipulation does not pan out here, it does
work for A, = Ay:
Ay =0:=s51081300 = 8(nip —ny —nyy)
= 312S123(q/1/0 -q5 = 61’1/1)

+ 512(q1051234 — 95545 — 411 51235)

+ 5123(611031234 — 47545 — 41 1S1235)- (85)

Again one requires ¢}, = —¢5 = —¢}, and g9 = —¢q7; =
—qy; to be able to combine the extra s terms, but this time

81234 1 845 + 81235 = S123 (86)

results in one term instead of two, thus avoiding the
quadratic s terms appearing above. As a result, as long
as g = —q7 = —q; = 0, the s dependence would match,
Eq. (85) would be satisfied if

94 =0=qio— ¢7 = q1, + qo» (87)
0=q10=-97=—q1, (88)
dio =97 =4 (89)

The parameters in the last line must be equal but they do not
have to vanish.

In general, the g parameters for SA; = A, need to satisfy
a relation similar to those satisfied by A, if A, is of type 1,
or a relation similar to those satisfied by A, if A, is type J,.
These relations come in three groups: X, Y, Z. Group X
consists of equations like Eq. (83) and Eq. (87), group Y
consists of equations like Eq. (89), with equal g parameters
but not necessarily zero, and group Z consists of equations
like Eq. (84) and Eq. (87), with zero g parameters. The

number of equations in groups X, Y, Z are respectively
(105, 120, 225). They are listed in Appendix D.

On top of these, remember that there are also 144
equations derived from the gauge constraints to be satisfied.
With so many equations and only 3 x 105 = 315 unknowns
44> 494, qh, one might expect to have no solutions. This is
indeed the case. Details are shown in Appendix D.

G. Nonlocal gauge transformation between
Feynman and CHY numerators

In order to confirm the conclusion that there is no local
gauge transformation moving the Feynman numerators 7, to
a set of n, satisfying the CK relations, because neither the p
equations nor the g equations have solutions, and in order to
understand why this is so, we calculate explicitly the CHY
fundamental numerator factor v(2345). Itis equal to the CHY
ordinary numerator factor n/, so the gauge transformation
onyy = o — 1, should be nonlocal in order to agree with
the general conclusion. If local, the terms of dn,( linear in s
may depend only on sy5,8703 = S;2 + S13 + Sp3, and
S1234 = Ss5¢. Its terms quadratic in s may depend on the
three nondiagonal quadratic products of these three s, and its
s-independent (or bcccc) terms must be zero. If any of these
is violated, én ;g is nonlocal.

Using the Mathematica program of Ref. [14] to compute
n', = v(2345), and Feynman rules to compute 7y, one
indeed gets no bcccc terms in the resulting 6n,,. However,
its linear s dependence and its quadratic s dependence are
much more complicated then those terms allowed above, so
ony is indeed nonlocal.

VII. CONCLUSION

Numerator factors 71, and CK combinations A; = i1, —
n, — n, have been computed from the Feynman diagrams
of N-particle pure gluon amplitudes. To do so, four-gluon
vertices must first be converted into a pair of virtual cubic
vertices. The necessity for virtual vertices to come in pairs
implies that their effect on A; cannot be fully realized until
at least N = 6.

For N = 4, the CK relation A = 0 is valid on-shell.

For N =5, there is one trivial CK identity and nine
nontrivial CK combinations which are not zero even
on-shell. However, a local (generalized) gauge transforma-
tion can convert every A, into some A, that satisfies the CK
relation, provided five sum rules involving Feynman dia-
grams with one virtual vertex are obeyed. Explicit calculation
shows that the sum rules are fulfilled, thus proving that A, can
obey CK relations through a local gauge transformation. This
result is verified by computing the difference between
Feynman and CHY numerator factors.

For N = 6, there are 25 trivial CK identities and 80
nontrivial combinations A; which are not zero on-shell.
After a lengthy calculation, one concludes that there is no
local (generalized) gauge transformation that can render the
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CK relations valid. This conclusion is confirmed also by
computing the difference between the Feynman and CHY
numerator factors.

Locality is a fundamental attribute of quantum field theory
that one would like to preserve. For scalar amplitudes,
locality is often deemed to be maintained when a scattering
amplitude displays the same propagators as the Feynman tree
amplitude. Strictly speaking this is correct only when it is
also true off-shell. For a gluon theory, that is not sufficient, for
the Yang-Mills coupling with local gauge invariance are also
reflected in the numerator factors. Even with a local
redefinition of fields or the insertion of total derivative terms,
one would still expect the numerator factors to be poly-
nomials of €; and k; if the S-matrix theory preserves locality.
Since Feynman diagrams derived from the Yang-Mills
Lagrangian are by definition local, the gauge transformation
between it and the S-matrix theory must also be local. The
failure to do so for the CHY gluon theory at N = 6 raises the
possibility that the inherent interaction in the CHY theory
may not be local. The difficulty of extending the CHY gluon
amplitude off-shell may be another circumstantial evidence
suggesting its nonlocality.

The CHY scalar theories can be extended off-shell to
agree with the Feynman amplitudes, and to keep its
signature Mdbius invariance intact [22,23]. The CHY gluon
amplitude can also be extended off-shell maintaining
Mobius invariance [13], but that extension does not agree
with the off-shell Feynman amplitude, and it does not
satisfy the Slavnov-Taylor identity.

It is conceivable that the nonlocality discussed above
indeed reflects an inherently nonlocal interaction mechanism
in S-matrix theories such as the CHY theory, but it is also
possible that this nonlocality can be fixed by an ordinary
gauge change, say from the Feynman gauge to an R; gauge.
Since both the CK relation and the CHY theory have the
ability to obtain the local Einstein theory by doubling the
local Yang-Mills theory, at least on-shell, it seems that they
ought to remain local, so the apparent nonlocality found for
N =6 may just be a gauge artifact. However, further
investigation is required to clarify and to determine the true
meaning of the nonlocality found in this article.
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APPENDIX A: N=5

The canonical ordering of the 10 Mandelstam variables
s, = s; is shown in Table I. These are all the s; that enter
into the double Mandelstam-variable expression for Q,,
but they are not all independent. For example, s1,3 =
S12 + 813 + $23.

The canonical ordering of the 15 double Mandelstam
variables Q, = s, s,, is shown in Table II.

TABLE I. Ordered Mandelstam variables for N = 5.

e 1 2 3 4 5 6 7 8 9 10

S S12 S13 S14 823 S24 S3a 8123 Si124 S134 234

TABLE II. Ordered double Mandelstam variables for N = 5.
a 1 2 3 4 5

ey, e 1, 6 1,7 1, 8 2,5 2,7
a 6 7 8 9 10
el, e2 2,9 3,4 3,8 3,9 4,7
a 11 12 13 14 15

el, e2 4, 10 5,8 5, 10 6,9 6, 10
TABLE IIl. n, correspondence in Eq. (21) and in Ref. [3].

Eq. ) nyny ny ny ns ng ny ng ngnygny nppnyz nyg s

Ref. [3] n3 ny nyy —njg nys ng —ng nyy ng ny Ny ny3nyy —ng ns

A dictionary relating the numerator factor n, used
in Eq. (21) and those used in Ref. [3] is given in
Table III.

APPENDIX B: N=6

1. Canonical ordering

Table IV gives the canonical ordering of the partial
amplitudes A,, = A(laN). The canonical ordering of the
25 single Mandelstam variables s, =s; is shown in
Table V. These are all the s; that enter into the double
Mandelstam-variable expression for P; and the triple
Mandelstam-variable expression for Q,, but they are not
all independent. For example, s153 = s + S;3 + S23. The
canonical ordering of the 105 double Mandelstam variables
P; = s,,S,, is shown in Table VI. The canonical ordering of
the 105 triple Mandelstam variables Q, = s, s,,5,, i8
shown in Table VIIL.

2. Feynman diagrams

Figure 17 shows the 105 diagrams whose propagators

are 1/0Q,.
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TABLE IV. Numbering of the partial amplitudes.

m 1 2 3 4 5 6 7 8
A(laN) A(123456) A(123546) A(124356) A(124536) A(125346) A(125436) A(132456) A(132546)
m 9 10 11 12 13 14 15 16
A(laN) A(134256) A(134526) A(135246) A(135426) A(142356) A(142536) A(143256) A(143526))
m 17 18 19 20 21 22 23 24
A(laN) A(145236) A(145326) A(152346) A(152436) A(153246) A(153426) A(154236) A(154326)
TABLE V. Ordered Mandelstam variables s, = s; for N = 6.

e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sy S12 S13 S14 S1s5 $23 S24 825 $34 8§35 S45 S123 S124 S125 S134 $135
e 16 17 18 19 20 21 22 23 24 25
Sy S145 5234 $235 5245 $345 §1234 51235 §1245 S1345 §2345
TABLE VI.  Ordered double Mandelstam variables P; = s, s,, for N = 6.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e;,e, 1,8 1,9 1,10 1,11 1,12 1,13 1,20 1,21 1,22 1,23 2,6 2,7 2,10 2,11 2,14
/ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
e,e, 2,15 2,19 2,21 2,22 2,24 3,5 3,7 39 3,12 3,14 3,16 3,18 3,21 3,23 3,24
l 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
e,eo 4,5 4,6 4,8 4,13 4,15 4,16 4,17 4,22 4,23 4,24 5,10 5,11 5,16 5,17 5,18
l 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
e;,en 5,21 522 525 6,9 6,12 6,15 6,17 6,19 6,21 6,23 6,25 7,8 7,13 7,14 7,18
l 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
el,e, 7,19 7,22 7,23 7,25 8,13 8,14 8,17 8,20 8,21 8,24 8§25 9,12 9,15 9,18 9,20
/ 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
e, en 9,22 9,24 9,25 10,11 10,16 10,19 10,20 10,23 10,24 10,25 11,21 11,22 12,21 12,23 13,22
l 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
e, e, 13,23 14,21 14,24 15,22 15,24 16,23 16,24 17,21 17,25 18,22 18,25 19,23 19,25 20,24 20,25
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TABLE VII.  Ordered triple Mandelstam variables Q, = s, s,,s,, for N = 6.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ejeze;1,8,131,8,201,8,211,9,121,9,201,9,221,10,111,10,201,10,231,11,211,11,221,12,21,12,23 1,13,221,13,23

a 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
e1e,032,6,152,6,192,6,212,7,142,7,192,7,222,10,112,10,192,10,242,11,212,11,222,14,212,14,242,15,222,15,24

a 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
ejere3 3,5,163,5,183,5,213,7,143,7,183,7,233,9,123,9,18 3,9,24 3,12,21 3,12,23 3, 14,21 3, 14,24 3, 16,23 3, 16,24

a 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ejere34,5,164,5,174,5,224,6,154,6,174,6,234,8,134,8,174,8,244,13,224,13,23 4,15,224,15,24 4,16,23 4,16,24

a 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
ejeye35,10, 115,10, 165, 10,255, 11,215, 11,225, 17,215, 17, 255, 18, 225, 18, 256,9, 126,9, 156,9,256, 12,216, 12,236, 17, 21

a 76 77 78 79 80 81 82 &3 84 85 86 &7 88 89 90
ejere36,17,256,19,236,19,257,8,137,8,147,8,257,13,227,13,237,18,227, 18,257, 19,237, 19,258, 14,218, 14,248, 17,21

a 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
ejeres 8,17, 8,20, 8,20, 9,15, 9,15, 9,18, 9,18, 9,20, 9,20, 10,16, 10,16, 10,19, 10,19, 10,20, 10,20,
25 24 25 22 24 22 25 24 25 23 24 23 25 24 25
3. CK combinations and that Qs3, Oy, O, all contain the common factor
Table VIII gives the 105 CK combinations A; = 512534

ng—n,—n, Row A shows the double Mandelstam _
4. A,
Using Table VIII and Fig. 17, the CK combinations A,
for the Feynman diagrams can be calculated and are shown

in Eq. (B1). The coefficients d,, d, of their linear s terms
For example, the table tells us that Ay =n3—n; —ny,  are given in Table IX.

variable s, s,, common to Q,, Q;, Q,. Row B shows
the a’s of the three n, making up of ng, n,, n,. The one
without a bar on top is ng, the other two are n,, n, or n,, n,.
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Fig. 17. (Continued).
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FIG. 17. 3g Feynman diagrams for N = 6.
TABLE VIII. Composition of the 105 A;’s.
A Ay Ay Ay As Ag A; Ag Ay Ay
A S12534 S12535 S12545 _ S128123 _ S128124 _ S128125 S125345 _S1251234 _ 81251235 51251245
B (1,2,3) (4.5.6) (7.8,9) (7,10,11) (4,12,13) (1,14,15) (2.5,8) (3,10,12) (6,11,14) (9,13,15)
A Az Ay As Age Ay Agg Ay Ay
A S35 _ S13825 $13545 5138123 S13S134. 5138135 S138245  S1381234 81381235 S13S1345
B (16,17,18) (19,20,21) (22,23,24) (22,25,26) (19,27,28) (16,29,30) (17,20,23) (18,25,27) (21,26,29) (24,28,30)
Ay An Ay As A Ay Agg Ag Az
A $14523 S14825 S14535 S145124 S145134 S145145 S145235 S1451234 S1451245 S1451345

B (31,32,33) (34,35.36) (37,38.39) (37.40,41) (34,42,43) (31,44,45) (32.35.38) (33.40,42) (36,41,44) (39,43,45)

(Table continued)
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TABLE VIIL (Continued)

Az Az Azs Azy Ass Azg Ay Agg Azg Ay

A o S1sS3 SisS 515834 Si1sS12s SisS13s S15S145 Si58234  SisS1235 S15S1245  S1551345
B (46,47,48) (49.50,51) (52,53,54) (52,55,56) (49,57,58) (46,59.60) (47,50,53) (48,55,57) (51,56,59) (54.58,60)

Ay Ap Ay Ay Ays Ay Ay Ag Ay Asg

A S238ss $235123 §238145  S238234  $238235  S2381034 $2351235 852389345 §24535 §245124

B (61,62,63) (61,64,65) (31,46,62) (47,66,67) (32,68,69) (33,64,66) (48,65,68) (63,67,69) (70,71,72) (70,73,74)
Asy Asy Asy Asy Ass Ase Asy Asg Asg Ago

A S245135  S245234  S245245  S24S1234 52481245 52452345 §25834  S258125 §258134  $258035

B (16,49,71) (50,75,76) (17,77,78) (18,73,75) (51,74,77) (72,76,78) (79,80,81) (79,82,83) (19,34,80) (35,84,85)
Ag Ag Ags Agy Ags Ags Ag Ags Ago Ay

A §255245 S2581235  S25S1245 $2552345 §348125 5345134 S345234 §345345 §3451234 53451345

B (20,86,87) (21,82,84) (36,83,86) (81,85,87) (1,52,79) (80,88,89) (53,90,91) (2,92,93) (3,88,90) (54,89,92)
Ag Ay Az Ay Azs Aze Ay Azg Agg Ago

A SaSuus S3sSi4 8358135 §358235 §358345 83581235 53581345 S3580345  SasSioz SasSws

B (81,91,93) (4,37,70) (71,94,95) (38,96,97) (5,98,99) (6,94,96) (39,95,98) (72,97,99) (7,22,61) (62,100,101)
Ag Agy Ags Agy Ags Age Ag; Agg Ago Agg

A S455245 $455345 S4551245 $4551345 54552345 S123851234  S12351235  S12451234  S12451245  S12551235

B (23,102,103) (8, 104,105) (9,100, 102) (24,101, 104) (63,103, 105) (10,25,64) (11,26,65) (12,40,73) (13,41,74) (14,55,82)

A91 A92 A93 A94 A95 A% A97 A98 A99 A100

A Slzsﬂzi S13451234 S13451345 5135ﬂ2£ S13551345 Slnts_slzi 514551345 S23ﬂ2ﬁ §23452345 §23581235
B (15,56,83) (27,42,88) (28,43,89) (29,57,94) (30,58,95) (44,59,100) (45, 60, 10) (66,75,90) (67,76,91) (68,84,96)

Ajp Ajp Ajos Ajgy Ajps

A $23552345 §24551245 §24552345 §34551345 534552345
B (69,85,97) (77,86,102) (78,87,103) (92,98, 104) (93,99,105)

A = (1,2,3) = 5, F(12569)T(934) + [s34F(34659) + d(9856)T(834)]T(912) + 5153494 (125634),

A, = (4,5,6) = 51,F(12469)T(935) + [535F(35649) + d(9846)T(835)]T(912) + 51553594 (124635),

Az = (7,8,9) = 512F(12396)T(945) + [545F(45693) + d(9386)T (845)]T(912) + 51254594 (123654),

Ay = (7,10, 11) = 5,,A44(1239))d(9456) + 51,3 F(93456)T(912),

As = (4,12,13) = 5,A4(1249)d(9356) + 51,4F(94356)T(912),

Ag = (1,14,15) = 51,4,(1259)d(9346) + 5,,5F(95346)T(912),

A; = (2,5,8) = 5,44(1296)d(9345) + 5345 F(69543)T(912),

Ag = (3,10,12) F(12349)T(956) + [51234F (56439) + d(9348)T(856)|T(912) + 5155123494 (123456),

Ay = (6,11,14) = 5, F(12359)T(946) + [51235F (46539) + d(9358)T(846)]T(912) + 5155123594 (123546),

Ao = (9,13,15) = 51, F(12459)T(936) + [51245F (36549) + d(9458)T(836)]T(912) + 5155124594 (124536).

Ay = (16,17, 18) = 5,3F(13956)T(924) + [554F(24965) + d(9856)T (824)]T(913) + 51352494 (135624),

A, = (19,20,21) = 5,3F(13946)T(925) + [5,5F(25964) + d(9846)T(825)]T(913) + 51352594 (134625),
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Asg = (48,55,57) = s5,5F(15239)T(946) + [s1235F (46329) + d(9238)T(846)]T(915) + 5155123594 (152346),
Asy = (51,56,39) = 5,5 F(15249)T(936) + [51245F (36429) + d(9248)T(836)]T(915) + 5155124594 (152436).
Ay = (54,58,60 F(15349)T( 026) + [51345F(26439) + d(9348)T(826)]T(915) + 55534594 (153426),
Ay = (61,62,63) = 553 F(23169)T(945) + [s45F(45619) + d(1986)T(845)]T(923) + s235459.(231645),

Ay = (61,64,65) = 5,3A4(2391)d(9456) + 51,3 F(19456)T(923),
46 (1459) + 5145F(96541)T(923),

(1956) + 5,34 F(94165)T(923),

Ays = (32,68,69) = 513A4(2359)d(1946) + 5235 F(95164)T(923),
Ass = (33,64,66) = 5,3 F(23194)T(9
Ay = (48,65,68) = 5,3F(23195)T (9
A = (63.67,69) = 55, F(23459)T(9

56) [S1234F(56491) + d(1948)T(gS6)]T(923) + S23S12349A (23]465),
946) + [51235F (46591) + d(1958)T(846)|T(923) + 535123594(235164),
16) [S2345F(61549) ( 458)T(g61)]T(923) + S23S23459A(234561),

Az = (22,23,24) = 513F(13296)T(945) + [s45F (45692) + d(9286)T (845)]T(913) + 51354594 (132654),
Ay = (22,25,26) = 513A4(1329)d(9456) + 5,,3F(92456)T(913),
Ajs = (19,27,28) = 5,3A44(1349)d(9256) + 5,3, F(94256)T(913),
Aje = (16,29,30) = 5,3A4,(1359)d(9246) + 5,35F(95246)T(913),
A7 = (17,20,23) = 5134,4(1396)d(9245) + 5545F(69542)T(913),
Ag = (18,25,27) = 513F(13249)T(956) + 51234 [F (56429) + d(9248)T(856]T(913) + 5135123494 (132456),
Ay = (21,26,29) = 5,3F(13259)T(946) + s5,235[F (46529) + d(9258)T(846)]T(913) + 5135123594 (132546),
Ay = (24,28,30) = 5,3F(13459)T(926) + 51345 [F(26549) + d(9458)T(826)]T(913) + 5135134594 (134526),
A, = (31,32,33) = 5., F(14956)T(923) + [5,3F(23965)) + d(9856)T(823)]T(914) + 5452394 (145623),
Ay, = (34,35,36) = 51,F(14936)T(925) + [5,5F(25963) + d(9836)T(825)]T(914) + 51452594 (143625),
Ayy = (37,38,39) = 514, F(14296)T(935) + [535F(35692) + d(9286)T(835)]T(914) + 51453594 (142653),
Ayy = (37,40,41) = 5,,A4,(1429)d(9356) + 51,4 F(92356)T(914),
Ays = (34,42,43) = 514,A44(1439)d(9256) + 5,3, F(93256)T(914),
Aye = (31,44,45) = 5,,A4(1459)d(9236) + 5145F(95236)T(914),
Ay; = (32,35,38) = 514A4(1496)d(9235) + 5,35 F (69532)T(914),
Ayg = (33,40,42) = 5,,F(14239)T(956) + 5134[F(56329) + d(9238)T(856)]T(914) + 5145123494 (142356),
Ay = (36,41,44) = 5., F(14259)T(936) + 51245[F(36529) + d(9258)T(836)]T(914) + 5145124594 (142536),
Azy = (39,43,45) = 5,,F(14359)T(926) + 51345 [F(26539) + d(9358)T(826)]T(914) + 5145134594 (143526)
Ay = (46,47,48) = 5,5F(15946)T(923) + [553F(23964) + d(9846)T (823)]T(915) + 5552394 (154623),
Ay, = (49,50,51) = 5,5F(15936)T(924) + [554F(24963) + d(9835)T(824)]T(915) + 5552494 (153624),
Asy = (52,53,54) = 5,5F(15296)T(934) + [53,F(34692) + d(9286)T (834)]T(915) + 5553494 (152643),
Asy = (52,55,56) = 5,5A44(1529)d(9346) + 5,,5F(92346)T(915),
Ass = (49,57,58) = 5154,4(1539)d(9246) + 5,35F(93246)T(915),
Ase = (46,59,60) = 5,544(1549)d(9236) + 5,45F(94236)T(915),
Ay; = (47,50,53) = 5,544(1569)d(9234) + 5,3, F(69432)T(915),

)

) =

) =

)

) =

,62) =
,67) =

) =

) =

) =

) =
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Ao = (70,71,72) = 504 F(24169)T(935) + [535F(35619) + d(1986)T(835)]T(924) + 52353594 (241653),

Asy = (70,73,74) = 5,4A4(2491)d(9356) + 5,5, F(19356)T(924),

As; = (16,49,71) = 5,,A4(2469)d(1359) + 5,35F(96531)T(924),

Asy = (50,75,76) = 5,4A4(2439)d(1956) + 5,34 F(93165)T(924),

Asy = (17,77,78) = 554A4(2459)d(1936) + 5545F(95163)T(924),

Asy = (18,73,75) = 5,4 F(24193)T(956) + [51234F(56391) + d(1938)T(856)]T(924) + 5745123494 (241365),
Ass = (51,74,77) = 554, F(24195)T(936) + [51245F(36591) 4 d(1958)T(836)]T(924) + 5245124594 (241563),
Ase = (72,76,78) = 5,4F(24359)T(916) + [55345F(61539) + d(9358)T(861)]T(924) + 5545234594 (615324),
As; = (79,80, 81) = 5,5F(25169)T(934) + 534[F(34619) + d(1986)T(834)]T(925) + 5553494 (251634),
Ass = (79, 82,83) = 25A4(2591)d( 0346) + 51,5F(19346)T(925),

Aso = (19,34,80) = 5,544(2569)d(1349) + 5,34 F(96431)T(925),

Agp = (35,84, 85) = 5,54,(2539)d(1946) + 5,35F(93164)T(925),

Agy = (20,86,87) = 5,5A4(2549)d(1936) + 5,45 F(94163)T(925),

Agy = (21,82,84) = 5,5F(25193)T(946) + [51235F (46391) + d(1938)T(846)]T(925) + 5555123594 (251364),
Agy = (36, 83,86) = 5,5F(25194)T(936)) + [51245F (36491) + d(1948)T(836)]T(925) + 5555124594 (251463),
Ags = (81,85,87) = 5,5F(25349)T(916) + [52345F(61439) + d(9348)T(861)]T(925) + 5255234594 (614325),
Ags = (1,52,79) = 534A4,(3469)d(1259) + 51,5 F(96521)T(934),

Ags = (80, 88,89) = 534A4(1349)d(9256) + 5,3, F(19256)T(934),

Ag; = (53,90,91) = 53,A4,4(3492)d(1956) + 5,34 F(29165)T(934),

Ags = (2,92,93) = 53,4,(3459)d(1296) + s5345F(95612)T(934),

Ago = (3,88,90) = 53,F(34912)T(956) + [51234F (56921) + d(1298)T(856)|T(934) + 5345123494 (341256),
Aqg = (54,89,92) = 53, F(34195)T(926) + [51345F(26591) + d(1958)T(826)]T(934) + 5345134594 (341562),
A = (81,91,93) = 53, F(34295)T(916) + [50345F (61592) + d(9258)T(816)]T(934) + 5345234594 (342516),
Ay = (4,37,70) = 535A44(3569)d(1249) + 515, F(96421)T(935),

Az = (71,94,95) = 535A4(3591)d(9246) + 5,35 F(19246)T(935),

Ay = (38,96,97) = 535A44(3592)d(1946)) + s235F(29164)T(935),

Ass = (5,98,99) = s535A4,4(3549)d(1296) + s5345F (94612)T(935),

Az = (6,94,96) = 535F(35912)T(946) + [51235 F (46921) + d(1298)T(846)]T(935) + 5355123594 (351246),
A7 = (39,95,98) = 535 F(35194)T(926) + [51345F (26491) + d(1948)T(826)]T(935) + 5355134594 (351462),
Asg = (72,97,99) = 535F(35294)T(916) + [52345F(61492) + d(9248)T(816)]T(935) + 5355234594 (352416),
Aqg = (7,22,61) = 545A4(4569)d(1239) + 5123F(96321)T(945),

Agy = (62,100, 101) = 54544(1459)d(9236)) + 5145 F(19236)T(945),

Agi = (23,102,103) = s545A4(4592)d(1936) + 5545 F(29163)T(945),

Ag, = (8,104, 105) = s545A44(4593)d(1296) + s345F (39612)T(945),

Ags = (9,100, T02) = 545 F(45912)T(936) + [51245F (36921) + d(1298)T(836)T|T(945) + 5455124594 (451236),
Agy = (24,101, 104) = s545F(45913)T(926) + [51345F (26931) 4 d(1398)T(826)T|T(945) + 5458134594 (451326),
Ags = (63,103,105) = 5,45F(45923)T(961) + [52345F(61932) 4 d(2398)T(861)T|T (945) + 5455234594 (452361),
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A93
Agy =
Ags =
Ags =
Ag; =

A,O4_ 92,98, 104

S245F(91542 T

93,99, 105

= (10,25,64) = 5123F(49321)T(956) + 5,234A44(9456)d(1239),
= (11,26,65) = 51,3 F(59321)T(946) + 5,535A4(9546)d(1239),
= (12,40,73) = 5104 F(93421)T(956) + 51234A44(9356)d(1249),
= (13,41,74) = 5,,4F(95421)T(936) + 5,245A4(9536)d(1249),
= (14,55,82) = 5155F(39521)T(946) + 5,235A4(9346)d(1259),
= (15,56, 83) = 51,5 F(49521)T(936) + 5,245A44(3694)d(1259),
= (27,42,88) = 5134F(29431)T(956) + 51234A44(5692)d(1349),
= (28,43,89) = 5,34 F(59431)T(926) + 5,345A4(2695)d(1349),
=(29,57,94) = 5135F(29531)T(946) + 5,235A4(4692)d(1359),
= (30,58,95) = 5,35 F(49531)T(926) + 5,345A4(2694)d(1359),
= (44,59,100) = 5,45F(29541)T(936) + 5174544(3692)d(1459),
= (45,60, 101) = 5,45F(39541)T(926) + 5134544(2693)d(1459),
Agg = (66,75,90) = 5,34F(91432)T(956) + 5123444(5619)d(9234),
Agg = (67,76,91) = 5,34 F(59432)T(961) + 5134544(6195)d(9243),
Ajgo = (68,84,96) = 5535F(91532)T(946) + 512354,(4619)d(9235),
Alm = (69,85, 97) = 5935F(49532)T(961) + 5345A44(6194)d(9235),
= (
(
(
= (

102) =
Aygs = (78.87,103) =
) =
05) =

)T(9

(39542)T(9
345F(91543)T(
5345 F(92543)T(9

TABLE IX. A list of d, and d, in A, = d,s, + d.s', + O(s?), with s, < 5.

(B1)

I d, d, ! d, d,

1 F(12569)T(934) F(34659)T(912) 2 F(12469)T(935) F(35649)T(912)
3 F(12396)T(945) F(45693)T(912) 4 ~T(123)T(456) F(93456)T(912)
5 —T(124)T(356) F(94356)T(912) 6 —T(125)T(346) F(95346)T(912)
7 —T(126)T(354) F(69543)T(912) 8 F(12349)T(956) F(56439)T(912)
9 F(12359)T(946) F(46539)T(912) 10 F(12459)T(936) F(36549)T(912)
11 F(13956)T(924) F(24965)T(913) 12 F(13946)T(925) F(25964)T(913)
13 F(13296)T(945) F(45692)T(913) 14 ~T(132)T(456) F(92456)T(913)
15 —T(134)T(256) F(94256)T(913) 16 —T(135)T(246) F(95246)T(913)
17 —T(136)T(254) F(69542)T(913) 18 F(13249)T(956) F(56429)T(913)
19 F(13259)T(946) F(46529)T(913) 20 F(13459)T(926) F(26549)T(913)
21 F(14936)T(925) F(23965)T(914) 22 F(14936)T(925) F(25963)T(914)
23 F(14296)T(935) F(35692)T(914) 24 ~T(142)T(356) F(92356)T(914)
25 —T(143)T(256) F(93256)T(914) 26 ~T(145)T(236) F(95236)T(914)
27 —T(146)T(253) F(69532)T(914) 28 F(14239)T(956) F(56329)T(914)
29 F(14259)T(936) F(36529)T(914) 30 F(14359)T(926) F(26539)T(914)
31 F(15946)T(923) F(23964)T(915) 32 F(15936)T(924) F(24963)T(915)
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TABLE IX. (Continued)

l d, d, l d, d,
33 F(15296)T(934) F(34692)T(915) 34 ~T(152)T(346) F(92346)T(915)
35 —T(153)T(246) F(93246)T(915) 36 —T(154)T(236) F(94236)T(915)
37 ~T(156)T(234) F(69432)T(915) 38 F(15239)T(946) F(46329)T(915)
39 F(15249)T(936) F(36429)T(915) 40 F(15349)T(926) F(26439)T(915)
41 F(23169)T(945) F(45619)T(923) 42 ~T(231)T(564) F(19456)T(923)
43 —T(236)T(541) F(96541)T(923) 44 —T(234)T(165) F(94165)T(923)
45 ~T(235)T(164) F(95164)T(923) 46 F(23194)T(956) F(56491)T(923)
47 F(23195)T(946) F(46591)T(923) 48 F(23459)T(916) F(61549)T(923)
49 F(24169)T(935) F(35619)T(924) 50 —T(241)T(365) F(19356)T(924)
51 —T(246)T(531) F(96531)T(924) 52 —T(243)T(165) F(93165)T(924)
53 —T(245)T(163) F(96153)T(924) 54 F(24193)T(956) F(56391)T(924)
55 F(24195)T(936) F(36591)T(924) 56 F(24359)T(916) F(61539)T(924)
57 F(25169)T(934) F(34619)T(925) 58 —T(251)T(364) F(19346)T(925)
59 —T(256)T(134) F(96431)T(925) 60 —T(253)T(164) F(93164)T(925)
61 —~T(254)T(163) F(94163)T(925) 62 F(25193)T(946) F(46391)T(925)
63 F(25194)T(936) F(36491)T(925) 64 F(25349)T(916) F(61439)T(925)
65 —~T(346)T(521) F(96521)T(934) 66 —T(341)T(265) F(19256)T(934)
67 —~T(342)T(165) F(29165)T(934) 68 —~T(345)T(612) F(95612)T(934)
69 F(34912)T(956) F(56921)T(934) 70 F(34195)T(926) F(26591)T(934)
71 F(34295)T(916) F(61592)T(934) 72 ~T(356)T(421) F(96421)T(935)
73 —T(351)T(264) F(19246)T(935) 74 —T(352)T(146) F(29164)T(935)
75 —-T(354)T(612) F(94612)T(935) 76 F(35912)T(946) F(46921)T(935)
77 F(35194)T(926) F(26491)T(935) 78 F(35294)T(916) F(61492)T(935)
79 —T(456)T(321) F(96321)T(945) 80 —T(451)T(263) F(19236)T(945)
81 —T(452)T(136) F(29163)T(945) 82 —T(453)T(621) F(39612)T(945)
83 F(45912)T(936) F(36921)T(945) 84 F(45913)T(926) F(26931)T(945)
85 F(45923)T(961) F(61932)T(945) 86 F(49321)T(956) —T(654)T(321)
87 F(59321)T(946) —T(645)T(321) 88 F(93421)T(956) —T(653)T(421)
89 F(95421)T(936) ~T(635)T(421) 90 F(39521)T(946) ~T(643)T(521)
91 F(49521)T(936) —T(364)T(512) 92 F(29431)T(956) —T(562)T(413)
93 F(59431)T(926) —T(625)T(431) 94 F(29531)T(946) T(642)T(531)
95 F(49531)T(926) —T(624)T(531) 96 F(29541)T(936) —T(632)T(541)
97 F(39541)T(926) —T(623)T(541) 98 F(91432)T(956) —T(561)T(234)
99 F(59432)T(961) ~T(165)T(243) 100 F(91532)T(946) —T(461)T(235)
101 F(49532)T(961) ~T(164)T(235) 102 F(91542)T(936) ~T(361)T(245)
103 F(39542)T(961) —T(163)T(245) 104 F(91543)T(926) —T(261)T(345)
105 F(92543)T(961) —T(612)T(345)

APPENDIX C: p EQUATIONS FOR N=6 E, = (1,-65,—68,69) and E, = (1,6,—7,—8) corre-

1. A, =A, equations

sponds to Eq. (74)

The 210 equations for parameters p, or f,, can be
obtained from the list E below by setting E,;,_; = d; and
Ey =d; (1 <1<105). Each r combination in E; is

expressed as a signed list

of m. For example,
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E=1{(1,-65,-68,69),(1,6,~7,-8).(2,-72,=75.76).(2.5.7,-9).(3.79,—-82,-83),(3,—4.7.10),
(=79.86,—87),(~3.4.8,-9),(—72,88,-89),(2.5,—8,—10), (—65,90,—-91),(1,6,-9, 10),
(68,—75,-82),(~1.2.3.7).(8.-69,86,—88), (—1,4,-5.8),(9,-76.87,-90), (=2,—4,-6.9),
(10,—83,89,-91),(3,-5.6,10),(11,=51,53,=54),(11,16,—17,—18), (12,—-59,61,—62),(12,15,17,—19),
(13,=79,81,-84),(13,—14,17,20),(79,—86,87). (13, 14,18,—-19).(—59,92,-93), (12, 15,—18,-20),
(—51,94,-95),(11,16,—-19,20), (—=53.61,81),(=11,12,13,17),(18,54,-86,—92), (= 11,14,—15,18),
(19,62,-87,-94),(~12,—14,-16,19),(20,-84,93,-95), (13,—15,16,20), (21,—43,45,-46), (21,26, -27,-28),
(22,59,60,—63).(22.25,27,-29).(23,-72,74,77),(23,-24.27,30). (72, —88.89), (—23,24,28,-29),
(59,-92,93),(22,25,-28,-30), (—43,96,-97), (21,26,-29,30), (=45,60,74), (-21,22,23,27),
(28,46,—88,92), (=21,24,-25,28),(29,63,-89,-96), (22, -24,-26,29), (30,77,-93,-97), (23,-25,26.30),
(31,43,44,-47),(31,36,—-37,-38),(32,51,52,-55).(32.35,37,-39).(33,-65.67,70), (33,—34,37,40),
(65,—90,91),(—33,34,38,-39), (51,—94,95),(32,35,—-38,-40), (43,-96,97). (31,36, -39,40),
(—44,52,67).(=31,32,33,37).(38.47,-90,94), (=31,34,-35,38),(39,55,-91,96), (=32, -34,-36,39),
(40,70,-95,97).,(33,-35,36,40), (41,-79,80,—85), (41,—-42,43,48),(79,-86,87), (—41,42,46,—47),
(—26.,36,80), (=21,31,41,43), (—=37,98,—99), (31,44, —46,—-48),(~27,100,—101), (21,45, -47,48),
(28,46,—86,—98), (—21,42,—44,46),(38,47,-87,-100), (=31,—42, —45,47),(48,-85,99,—101), (41,-44,45,48),
(49,-72,73,78).(49,-50,51,56). (72,—88,89), (=49,50,54,-55), (—16,35,73).(—11,32,49,51),
(37,-98,99), (32,52,—-54,-56), (—17,102,-103),(11,53,-55,56), (18,54,—88,98), (—11,50,-52,54),
(39,55,-89,—102), (=32,—50,—53,55), (56,78,-99,—103), (49,-52.53,56), (57,—65.,66,71), (57,—-58,59,64),
(65,—90,91), (—57,58,62,—63), (—15.,25.66), (—12,22,57,59), (27,100, 101), (22,60, 62, —64),
(17,-102,103),(12,61,—63,64),(19,62,-90,100), (—12,58,-60,62), (29,63,-91,102), (—22,-58,—61,63),
(64,71,—101,103),(57,—60,61,64),(~6,34,58), (—1,—-33,-57,65). (59,-92.,93),(57.66,-69,~70),
(37,-98.99).,(33,67,-69,—71), (7,—104,-105), (—1,68,70,71),(—8,69,92,98), (1,-66,—67,69),
(40,70,-93,—104),(33,-66,68,70), (64,71,—99,-105), (57,-67,68,71), (—5.24,50), (=2,-23,-49,72),
(51,-94,95),(49,73,-76,-77),(27,—100,101),(23,74,-76,=78).(—7,104,105), (=2.75,77,78),
(=9.76.,94,100), (2,—73,74,76).(30,77.-95,104), (23,—73,75.77).(56,78.—-101,105), (49, —74,75,78),
(—4.,14,42),(3,—13,-41,79),(43,-96,97), (41,80,—83,84), (17,—102,103), (13,81,—83,85),

(—7.104,105), (—3,82,84,85).(—10,83,96,102), (—3,—80,—81,83), (—20,84,97,104), (—13,80,82,84),
(—48.,85,103,105), (—41,81,82,85),(8,—18,—46,86). (4,—14,—42),(9,—19,-47,87), (=4, 14,42),
(—8,—-28,—54,88), (5,—24,-50),(10,—29,—55,89), (—5,24,50), (=9,—38,-62,90), (6,—34,—58),
(—10,-39,-63,91), (—6,34,58). (—18,28,69,92),(15,-25,-66), (20,-30,—70,93), (—15,25,66),
(—19,38,76,94), (16,—35,—73), (=20,-40,—77,95), (—16,35,73). (=29,39,83,96). (26, —36,—80),
(—30,40,84,97).(—26,36,80), (—46,54,69,98), (44,—52,—67), (48,-56,—71,99), (—44,52,67),

(—47,62.76,100), (45,-60,-74), (—48,-64,—78,101), (=45,60,74), (—55.63,83,102). (53,—61,—81),

(—56,64,85,103),(—53,61,81),(=70,77,84,104), (—68,75.82),(=71,78.85,105), (—68,75,82)}. (C1)
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2. Solutions

The 210t equations in Eq. (C1) can be written in the
matrix form 7 - t = d as in Eq. (77). The 210 x 105 matrix 7
turns out to have a rank of 79, thus possessing 131 left null
vectors u, so that u, - 7 = 0. As aresult, for Eq. (C1) to have
a solution, the inhomogeneous terms d; must satisfy 131
sumrules of the form R, := u, - d = 0. Of the 131 sumrules,
40 of them have two terms, 37 of them have four terms, eight
of them have six terms, and the rest, 46, of them have at least
13 terms. It turns out that sum rules are often satisfied when
the number of terms are less or equal to six, but they are

generally not satisfied when many terms are present. Hence
the ¢ equations Eq. (C1) have no solutions.

To illustrate this statement, let us pick four null vectors,
with 2, 4, 6, 13 nonzero entries, for a detailed illustration.
First, let us use the  equations to verify directly that these
are indeed null vectors. Once verified, their respective sum
rules are then checked.

Every null vector u, has 210 components. For those with
very few nonzero entries, it is more economical to express
u, by displaying the position of its nonzero entries, together
with its coefficient (usually —1) if it is not 1.

(1) u; = (13,210). This null vector has only two nonzero entries, at position 13 and 210, both with value 1. Since
E 3 = (68,—=75,—82), meaning teg — 175 — tg, and E,;y = (—68,75,82), meaning —t45 + f75 + t3,, (the left-hand
side of) these two equations obviously add up to zero, proving that u; = (13,210) is indeed a null vector.

(2) uy31 = (—4,6,8,10). The four nonzero entries are

—E, = —(2,5,7,-9),

E¢ = (3,-4,7,10),

Eg = (-3,4,8,-9), Ep = (2,5,-8,-10).

These four equations do add up to be zero, so u;3; is indeed a null vector.
(3) upg = (—2,4,—6,-8,—14,20). The six nonzero entries are

—E2 - —(1,6, —7,—8),
—Eg =—(-3,4,8,-9),

E,=(2,5.7,-9),
—E14 - —(—1,2,3,7),

—Es =—(3,-4,7,10),
E20 = (3, _5,6, 10)

They can be seen to add up to zero, so uj,4 is a null vector.
4) upp; =(1,-3,-5,-6,-7,-8,9,—11,13,14,15,—17,19). The 13 nonzero entries are

E; = (1,—65,-68,69),
—Eg = —(3,-4,7,10),
Ey = (~72,88,-89),
Eu=(-1,2,3,7),
Ejo = (10,-83,89, —91).

—E; = —(2,-72,-75.76),

—E; = —(~79,86,-87),

—E;, = —(—65,90,-91),
Eys = (8.-69,86, —88),

—Es = —(3,79, -82,-83),
—Eg = —(-3,4.8,-9),
Ep; = (68,-75,-82),
—Ej; = —(9,-76,87,-90),
(C2)

Again, these 13 equations can be seen to add up to zero, proving that u;,; is a null vector.
Having thus verified the correctness of the null vectors, let us now use the explicit expressions of (d,, d,) in Table IX to

check whether the corresponding sum rules are satisfied.

(1) Ry =dy3+dyo=dy +djys = —T(126)T(354) — T(612)T(345) = 0 because of the symmetries of 7.

@

Ryz = —dy +dg + dy + d1g = —d, + d} + d}, + d
= (—F(35649) + F(45693) + F(93456) + F(94356))T(912)
= (=F(35496) — F(54936) — F(93546) — F(49356))T(912)

= —D(35496)T(512) ~ 0,

where Eq. (27), Eq. (41), and the numerator Slavnov-Taylor identity have been used.
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3)
R126 :—C_l2+6_i4—6_16—6_18—6_i]4+6_120:—d/1 +d/2—d/3—d£1—d/7+d/10
= (—F(34659) + F(35649) — F(45693) — F(93456) — F(69543) + F(36549))T(912)
= (F(34695) — F(53649) — F(45368) + F(93465) + F(69345) — F(36459))T(912)
= (D(34695) — D(53649))T(912) ~ 0.
“)

Riyy=dy—ds—ds—dsg—dy —dg +dy —dy + dy3 + dyy + dis — dyg + dyo
—di—dy—dy—dy —dy — d\ + ds — dg + dy + d, + dg — do + dyo # 0

as can be seen from Table IX.

APPENDIX D: ¢ EQUATIONS FOR N=6

This appendix provides supplementary material for Sec. VIF. Please see the main text for some of the definitions
used below.

1. Gauge constraint equations

The following notations will be used for the g parameters: g, — a;, g, = a,, ¢ — a3. In terms of these notations, the
144 constraint equations are given below by setting each entry to be zero. For example, Eq. (80) is given by the sixth entry
below, and Eq. (81) is given by the ninth entry.

1,-2,=5—-6;+14;, -1 +2,4+8, -9, +15,,1, -2, +79, + 81, —93, 13+ 14, + 795 +82,,
—134+15,-795483,,2,+3,+7,+8,+10;,-2; =3, +4, -5, +12{,2,+3,+90; + 91, +93,,
23+83+93,+105,,—23-53-93,-99,,33 4103 + 643 + 665 + 903, =33 + 123+ 733 + 755 — 905,
—414+5-8,+9,+13,,4,=5,+70,+72,—-99,43 + 12, + 703 +73,,—45 + 13, = 705 +74,,
514+61—7, =8 +11{,5,+6,+96,+97,+99,,5; —83;4+99, —105,,63 + 115+ 655 4+ 685 + 965,
—63+ 143 +825484;—-965,7,+8,+61,4+63,+105,73+10, +615+64,, =73+ 11, — 613+ 65,,
-8, +9,4+102, 4103, 105,95+ 133+ 7453+ 775+ 1023,-9; + 155+ 833 + 865 — 1025,16, =17, —20, — 21, +29,,
—16,+17,+23, -24, 430,16, =17, +71, =72, +78,,165+29, + 715+ 94,,-165 +30, - 715 +95, + 17,
18, +22, 423, +25,,—-17, =18, +19, =20, +27,,17,+ 18, =75, =76, = 78,,175 +235 - 78, — 103,,
—173—-203+78, +87,,183 +25; — 643 — 665 — 755, —183 + 2753 + 755+ 883 —905,—-19, +-20, — 23, +24, +28,,
19, —20,+ 80, —81; 487,195 +27, + 805 +88,,—-195 428, =805 +-89,,20, + 21, =22, —23, 426,
20,421, -84, -85, —87,,20; —23;—87,+103,,215 4263 —65; — 683 — 843, —215 +29; 845 + 945 — 963,
22,4+23,-61,—-63,—-103,,22; +25, - 615 —-64,,-22; 426, + 615 —65,,-23, 424, + 103, + 104, — 105,
24342834893+ 92541045, -245+303+ 9554983 —1045,31, —32, - 35, —36, +44,,-31,+ 32, +38, -39, +45,,
31,-32,+62, —63;+69,315+44, + 625+ 100,,—-315+45, - 625+ 101,,32; +33, +37, + 38, +40,,
—32,—-33,+34,-35,+42,,32,+33,-66, 67, —69,,323+38; - 69, —97,,—-325 —35; + 69, 4+ 85, + 335,
403 —665 —733 —755,—335+42; +66; — 885 +905,—-34, +35, —38, +39, +43,,34, -35,-80, + 81, +85,
34;+42, —80;—88,,—34; +43, +80; —89,,35, +36, —37, — 38, +41,,35, +36,—85, —86, =87,
35;—38;—-85,4+97,,36;5 +415 —74; =773 —863,—363 +445 4+ 865+ 1003 —1023,37, + 38, =70, + 72, =974,
375440, =703 —=73,,-37;+41,+703—-74,,-38, +39,+97, — 98, +99,,39; + 435 —89; — 925 —98;,
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—39;+45;+98;+ 1015 — 1045,46, —47, =50, =51, +59,,-46, +47, +53, — 54, +60,,46, 47, — 62, +63, +67,,
465+59, —623— 1005, —465 +60, +625 — 101,47, +-48, +52, +53, +55,,—47, —48, 449, —50, +57,,

47, +48,—67, =68, —69,,474+533 =67, —91,,—475 =505 + 67, +76,,48; +55; — 685 — 82, — 84,
—485+57;+68;—945 4965, 49, +50, — 53, + 54, +58,,49, =50, =71, +72, +76,,49;+ 57, — 71, — 94,
—49,+58,4+71,-95,.50, +51, =52, =53, +56,.50, +51,— 76, =77, —78,,505 — 53, =76, +91,,
513+565—773—835—865,—515459;+775— 10054 1025,52, + 53, =79, =81, —91,,525 + 55, = 79; — 825,
—524+565+79;—835,—53,+ 54, +91; =92, +93,,54; +58; —925 — 955 — 983, —545 + 605 +92; — 1015+ 1045,
61,463, +64, +66,+67,,—61, =63, +65, +68,; +69,,62, —63, + 100, — 102, — 103,,—62, + 63, + 101, — 104, + 105,
633+673+913+933 41055, 633+ 695 +975 +99; — 1055, —635 — 673 — 765 — 783 — 1035,63; —69; — 855 — 875 + 1033,
665 +67,+90, +91,,—66, —67, =75, — 765, —673 — 693 — 72, — 765 — 975,675 + 695 +81; + 855 +-913,

685 +69; +96, +97,,—68, —69, —84, —85,,70, + 72, +73, +75,+76,,—70, =72, + 74, +77, +78,.

71, =72, 494, =96, —97,,—71,+72,+95,+98,—99,,725 + 765 —91; — 935 —99;, =725 + 785 +99; + 103; — 1053,
—725+783+855+875 975,75, +76,—90, —91,,765+ 785 —81;+ 875 —915,77, + 78, + 102, + 103,,
—77,—78,—86,—87,,79, +81,+82,+84, +85,,—79, —81, +83, +86, +87,,80, —81,+88, =90, =91,
—80,+81,+89, +92,-93,,815+85;—93; —975 —99;, —8 1, + 875 +93; — 1035 + 105,84, +85, — 96, — 97,

86, +87,— 102, —103,,92, =93, + 104, — 1055, -92, +93, — 98, +99,,98, — 99, — 104, + 105,. (D1)

2. 6A;= A, equations
There are three groups of equations, X, Y, Z. Group X equations consist of setting the /th member of the following list to
g1, where g, is the ss coefficient of A; in Eq. (B1). For example, Eq. (83) is given by the first member of X, and Eq. (87) is
given by the fourth member of X. A member of X has three terms if A; belongs to I;, and has four terms of A, belongs to J;.
Altogether X has 105 members.

X={—13,-25433,—43—554+63,73 =83 =93, ~ T, + 105 — 1 13 — T3, —dy + 125 — 135 — 45,
1, 143—15;— 15,2y =5, =8 +23,—3, + 10, — 12,,—6, + 11, — 14,,—9, + 13, — 15,,
— 163 — 175+ 183, =195 =205 + 215,225 — 235 — 244 — 225,25, — 265 — 225, — 19, + 27, — 28, — 195,
— 16,429, =305 — 165,17, =20, =23, + 173, —18, +25, = 27,,—21, + 26, —29,,—24, + 28, — 30,,
—313—32;5+333.—34; —35;+ 365,373 — 385 — 395, -37, +40; — 415 — 375,34, + 42, —43; — 345,
—31,+445—45,—315,32, — 35,38, + 325,33, +40, —42,,—36, + 41, —44,,—39, + 43, — 45,,
— 465 — 475 +485,—49; — 505+ 515,525 — 535 — 543, =52, +55; — 565 — 523, —49, + 575 — 585 — 495,
— 465+ 595 — 605 — 465,47, — 50, — 53, + 475, —48, +55, = 575, =515 + 56, — 59,,—54, + 58, — 60,
613 =625 —635,—61, + 643 — 655 — 615,31, —46, —62, + 315,47, 4665 — 673 —475,-32, + 685 — 695 —32;,
—33, 464, —66,,—48, +65, —68,,—63, + 67, — 695,70, — 713 — 723, =70, + 733 — 743 — 705,
16, =49, =71, 4+ 165,—50, + 755 = 763 — 505, — 17, + 775 =785 — 175, =18, + 735 =755, =51, + 74, = 77,,
—72,+765—78,.79; — 805 —815,—79, + 825 — 835 — 795,19, —34, —80, — 19;,—35, + 845 —85; — 35,
—20, +865 — 875 —20;,—21, +82, —84,,—36, +83, —86,,—81,+85, —87,.1, =52, =79, + 15,
—80, +885 —89; —80;,—53, +903 — 915 —533,2, =925 —93; + 25,3, — 88, —90,,—54, +89, —92,,
—81,+91,-93,.4, =37, =70, +45,~71, + 94, —95; = 715, -38, + 965 —97; — 38,5, —98; —99; + 5,
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6, — 94, —96,,—39, +95,—98,,~72, +97,—99,,7, =22, —61, +73,—62, +100; — 1015 — 625,
—23, 4102, — 1035 —235.8, — 104, — 1055 + 85,9, — 100, — 102,,24, — 101, — 104,,63, — 103, — 105,.
10, =25, =64, 410,11, =26, =65, + 115,12, =40, =73, + 125,13, —41, =74, +13,, 14, =55, =82, + 14,
15,56, —83, +15,,27, 42, — 88, +27,,28, —43, —89, +28,.29, — 57, 94, +29,,30, — 58, —95, +30,,
44, =59, =100, +44,,45, —60, — 101, +45,,66, =75, =90, +66,,67, =76, 91, +67,,68, —84, —96, +68,,
69, —85, =97, +69,,77, —86, — 102, +77,,78, —87, — 103, +78,,92, =98, — 104, +92,,93, =99, — 105, +93,.}
(D2)

Group Y consists of 60 pairs of equations, namely 120 equations. They are listed below. The three quantities within each
pair of parentheses are equal. These equations occur only for A, in class J;. For example, Eq. (89) is given by the first
member of Y.

Y

{(=73.10,, =115), (=43, 125, =13,), (=13, 145, =15,), (23, =53, 83), (=23, 25,, =26,),
(—195,27,,-28,), (—165,29,,-30,), (175, =203, =233), (—375,40,, —41,), (—=343,42,, —43,),
(=313,44,,-45,), (325, -355,-383), (=523, 55,, =56,), (=495, 57,, —58,), (=465, 59,, =60, ),
(473,505, =5331), (=613, 64,, —65,), (313, =465, =62, 3), (=475, 66,, —67,), (=323, 68,, —69,),
(=703,73,,=74,), (163, —495, =713), (=505, 75,, =76,), (=175,77,,=78,), (=793, 82,, —83,),
(193, =345, -80;), (=353, 84,, —85,), (=20, 86,, —87,), (15, =523, —793), (—803, 88,, —89,),
(=533,90,,-91,), (23, -92,,-93,), (43, =373, =7051), (=715, 94,, =95,), (—385, 96,, —97,),
(53,-98,,-99,), (73, =225, —613), (=625, 100,, —101,), (=235, 102,, —103,), (83, —104,, —105,),
(10,, =25,,—64,), (11,, =26,,—65,), (12,,—-40,, =73,), (13,, —41,,=74,), (14,, =55,, —82,),
(15,,-56,,-383,), (27,,—42,,—88,), (28,,—43,, -89,), (29,, —57,, —94,), (30,, =58,, —95,),
(44,,-59,,—100,), (45,, —60,, —101,), (66,, —75,, =90,
(69,,—85,,-97,), (775, —86,,—102,), (78,, —87,, —103,

), (675, =76,,-91,), (68,, —84,,-96,),
), (92,,-98,,-104,), (93,5, -99,,—105,) }. (D3)
Group Z consists of the following 225¢ parameters which are zero.

Z :{12s 11’227 21, 337 32v 31,42,417 52, 51, 63»627 61, 727717 82, 81’ 937 92,
9,,105,10,, 115, 11,125, 12, 135, 13, 145, 14,, 155, 15,, 165, 16,, 17,, 17,. 185, 18,, 18,,
19,,19;,20,,20,,215,21,,21,,22,,22,,23,,23,, 245,24, 24,,25;,25,,265,26,,275.27,,
285.28,,295.29,,305,30,,31,.31,,32,.32,,33;. 335, 33,. 345, 34, 35,, 35, 363, 36,. 36,
37,.37,.38,.38,,395,39,,39,,405,40,,415,41,,425,42,, 435, 43,, 445, 44,455 45, 46,,
46,,47,,47,,48,,48,,48,,49,,49,.50,,50,,515,51,,51,.52,.52,.53,.53,. 543, 54,, 54,,
555,55/, 565.56,,575,57,.585,58,.595,59,.605,60;,61,,61,,62,,62,,63;,63,,63,, 645,
64,,655.65,,665,66,,675.67,,685,68,,695,69,,70,,70,,71,,71,,725,72,.72,,735.73,,
T45,74,.755.75,.765,76,.775.77,.785.78,.795.79;, 80,., 80,815, 81,, 81,, 825, 82,, 833,
83,.84,,84,,855,85,,865,86,.875,87,, 885, 88,.895,89,,90,90,,915,91;,92;,92,,93;,
93,,945,94,,95;,95,,965,96,,975.97,,985,98,,99;.99,, 1005, 100,, 1015, 101,, 1025, 102,, 103,
103,, 1045, 104,, 1055, 105, }. (D4)
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For example, Eq. (84) corresponds to members 1, 15,2,
2,,31,3, of Z, and Eq. (88) corresponds to members
71, 101, 111 of Z.

3. Solutions

The 3 x 105 = 315 ¢ parameters must satisfy the 144
gauge constraint equations Eq. (D1), the 105 equations of
group X, the 120 equations of group Y, and the 225
equations of group Z. With the equations numbers so much
larger than the number of ¢ parameters, there would be no
solutions unless these equations are highly degenerate.

To show that there is really no solution, one can proceed as
follows. By substituting Z into Y, more g parameters must
vanish. Substituting these vanishing parameters into X, one

gets 105 equations relating ¢’s on the left-hand side to g; on
the right-hand side. Since g; = 0 for the 60/’s with [ € J,, the
combination of ¢ on the left must be zero as well. It turns out
that for those /, there is always a single g term left on the left,
so in this way one gets even more zero g parameters. With all
these vanishing ¢ parameters substituted into the left-hand
side of the remaining 45X equations for / € I;, where g; # 0,
there can be no solutions if any of the left-hand side of the 45
equations is identically zero, namely, has no nonvanishing g
parameters left. This turns out to be indeed the case for
[=17,8,13,14, 19,20, 37,40, 43, 44, 45. Thus even without
ever using the 144 gauge constraint equations Eq. (D1), one
sees that the X, Y, Z solutions have no solutions as long as
g #0forlelJ,

[1] H. Kawai, D.C. Lewellen, and S.H.H. Tye, A relation
between tree amplitudes of closed and open strings, Nucl.
Phys. B269, 1 (1986).

[2] D.-p. Zhu, Zeros in scattering amplitudes and the structure of
non-Abelian gauge theories, Phys. Rev. D 22, 2266 (1980).

[3] Z. Bern, J. J. M. Carrasco, and H. Johansson, New relations
for gauge-theory amplitudes, Phys. Rev. D 78, 085011
(2008).

[4] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R.
Roiban, The duality between color and kinematics and its
applications, arXiv:1909.01358.

[5] C. Cheung and J. Mangan, Covariant color-kinematics
duality, J. High Energy Phys. 11 (2021) 069.

[6] J. Broedel and J.J. M. Carrasco, Virtuous trees at five and
six points for Yang-Mills and gravity, Phys. Rev. D 84,
085009 (2011).

[7] F. Cachazo, S. He, and E. Y. Yuan, Scattering equations and
Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90,
065001 (2014).

[8] F. Cachazo, S. He, and E. Y. Yuan, Scattering of Massless
Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113,
171601 (2014).

[9] E. Cachazo, S. He, and E. Y. Yuan, Scattering of massless
particles: Scalars, gluons and gravitons, J. High Energy
Phys. 07 (2014) 033.

[10] C.S. Lam and Y.-P. Yao, Evaluation of the CHY gauge
amplitude, Phys. Rev. D 93, 105008 (2016).

[11] Y.-J. Du and F. Teng, BCJ numerators from reduced
Pfaffian, J. High Energy Phys. 04 (2017) 033.

[12] C.S. Lam, Pfaffian diagrams for gluon tree amplitudes,
Phys. Rev. D 98, 076002 (2018).

[13] C.S. Lam, Off-shell Yang-Mills amplitude in the CHY
formalism, Phys. Rev. D 100, 045009 (2019).

[14] A. Edison and F. Teng, Efficient calculation of crossing
symmetric BCJ tree numerators, J. High Energy Phys. 12
(2020) 138.

[15] V. Del Duca, L.J. Dixon, and F. Maltoni, New color
decompositions for gauge amplitudes at tree and loop level,
Nucl. Phys. B571, 51 (2000).

[16] N.E.J. Bjerrum-Bohr, P. H. Damgaard, and P. Vanhove,
Minimal Basis for Gauge Theory Amplitudes, Phys. Rev.
Lett. 103, 161602 (2009).

[17] S. Stieberger, Open and closed vs pure open string disk
amplitudes, arXiv:0907.2211.

[18] N.E.J. Bjerrum-Bohr, P. H. Damgaard, T. Sondergaard,
and P. Vanhove, Monodromy and Jacobi-like relations for
color-ordered amplitudes, J. High Energy Phys. 06 (2010)
003.

[19] D. Vaman and Y.-P. Yao, Constraints and generalized gauge
transformations on tree-level gluon and graviton amplitudes,
J. High Energy Phys. 11 (2010) 028.

[20] D. Vaman and Y.-P. Yao, Color kinematic symmetric (BCJ)
numerators in a light-like gauge, J. High Energy Phys. 12
(2014) 036.

[21] N. E.J. Bjerrum-Bohr, P. H. Damgaard, T. Sondergaard, and
P. Vanhove, The momentum kernel of gauge and gravity
theories, J. High Energy Phys. 01 (2011) 001.

[22] C.S. Lam and Y.-P. Yao, Off-shell CHY amplitudes, Nucl.
Phys. B907, 678 (2016).

[23] C.S. Lam, CHY theory for several fields, Phys. Rev. D 102,
025018 (2020).

065002-39


https://doi.org/10.1016/0550-3213(86)90362-7
https://doi.org/10.1016/0550-3213(86)90362-7
https://doi.org/10.1103/PhysRevD.22.2266
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevD.78.085011
https://arXiv.org/abs/1909.01358
https://doi.org/10.1007/JHEP11(2021)069
https://doi.org/10.1103/PhysRevD.84.085009
https://doi.org/10.1103/PhysRevD.84.085009
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1007/JHEP07(2014)033
https://doi.org/10.1007/JHEP07(2014)033
https://doi.org/10.1103/PhysRevD.93.105008
https://doi.org/10.1007/JHEP04(2017)033
https://doi.org/10.1103/PhysRevD.98.076002
https://doi.org/10.1103/PhysRevD.100.045009
https://doi.org/10.1007/JHEP12(2020)138
https://doi.org/10.1007/JHEP12(2020)138
https://doi.org/10.1016/S0550-3213(99)00809-3
https://doi.org/10.1103/PhysRevLett.103.161602
https://doi.org/10.1103/PhysRevLett.103.161602
https://arXiv.org/abs/0907.2211
https://doi.org/10.1007/JHEP06(2010)003
https://doi.org/10.1007/JHEP06(2010)003
https://doi.org/10.1007/JHEP11(2010)028
https://doi.org/10.1007/JHEP12(2014)036
https://doi.org/10.1007/JHEP12(2014)036
https://doi.org/10.1007/JHEP01(2011)001
https://doi.org/10.1016/j.nuclphysb.2016.04.023
https://doi.org/10.1016/j.nuclphysb.2016.04.023
https://doi.org/10.1103/PhysRevD.102.025018
https://doi.org/10.1103/PhysRevD.102.025018

