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The open N = 2 string theory is defined on the 4D space-time with the split signature (+,
+, −, −). The string field theory action of the open N = 2 string theory is described by the
4D Wess–Zumino–Witten (WZW4) model. The equation of motion of the WZW4 model
is the Yang equation, which is equivalent to the anti-self-dual Yang–Mills equation. In this
paper, we study soliton-type classical solutions of the WZW4 model in the split signature
by calculating the action density of the WZW4 model. We find that the action density of
the one-soliton solutions is localized on a 3D hyperplane. This shows that there would be
codimension-one-solitonic objects, or equivalently some kind of three-branes in the open N
= 2 string theory. We also prove that, in the asymptotic region of the space-time, the action
density of the n-soliton solutions is a “non-linear superposition” of n one-solitons. This
suggests the existence of n intersecting three-branes in the N = 2 strings. Finally we make
a reduction to a (1 + 2)D real space-time to calculate the energy densities of the soliton
solutions. We can successfully evaluate the energy distribution for the two-soliton solutions
and find that there is no singularity in the interacting region. This implies the existence of
smooth intersecting codimension-one branes in the whole region. Soliton solutions in the
Euclidean signature are also discussed.
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1. Introduction
The anti-self-dual Yang–Mills equation in four dimensions is of great interest in elementary
particle physics and mathematics. In the Euclidean signature, it has quite important soliton so-
lutions, instantons that are crucial to reveal the non-perturbative aspects of quantum field the-
ory. In the split signature (+, +, −, −), it has a close relationship to integrable systems. It is well
known that, by imposing appropriate reduction conditions for the gauge fields, the anti-self-
dual Yang–Mills equations in the split signature can be reduced to various lower-dimensional
integrable equations, such as the KdV equation, the non-linear Schrödinger equation, the Toda
equations, and so on [1,2]. The integrability of these equations is well understood in the geo-
metrical framework of twistor theory [1]. Soliton solutions are mostly of codimension-one in
the sense that the energy density of the one-soliton solutions is localized on a codimension-one
hyperplane in the space-time (see, e.g., Refs. [3,4]).
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The anti-self-dual Yang–Mills equation is realized in string theories that are classified accord-
ing to the number N of the world-sheet supersymmetry. Under the condition that the critical
dimension of the target space is positive and the string world-sheet theory has an appropriate
conformal symmetry, the maximal number is found to be N = 2 (see Sect. 4.5 in Ref. [5] and ref-
erences therein). In the case of the N = 2 string theories, the condition of conformal anomaly
cancellation determines the critical dimension to be four, and the Virasoro constraints forbid
any excited physical states except for massless scalars [5]. Hence, the string field theory can be
reduced to the conventional field theory. The world-sheet N = 2 supersymmetry induces a com-
plex structure on the 4D target space and hence the Minkowski target space is forbidden [6,7].
This is the reason why non-trivial string field theories are realized only when the metric has
a split signature. (In the Euclidean case, the momentum of the massless scalar fields becomes
identically zero.) Therefore the N = 2 string theory is closely related to the Ward conjecture and
integrable systems.

The space-time action of the open N = 2 string theory is described by the 4D Wess–Zumino–
Witten (WZW4) model [6–10] (see also Refs. [11–16]). The equation of motion of this model
is the Yang equation that is equivalent to the anti-self-dual Yang–Mills equation [17]. Hence
solutions of the Yang equation are classical solutions of the open string field theory action of
the N = 2 strings. It is surprising that the action of the string field theory is explicitly written
down in terms of massless scalar fields only. Exact analysis of the classical solutions leads to
exact analysis of classical aspects of the string field theory.

Recently a new type of soliton solution of the Yang equation has been constructed by us-
ing the Darboux transformation [18,19] in 4D flat spaces with all kinds of signatures, i.e., Eu-
clidean, Minkowski, and split signatures [20]. These soliton solutions have localized Yang–Mills
action densities on 3D hyperplanes, and hence can be interpreted as codimension-one solitons.
Furthermore, an asymptotic analysis has also been undertaken in Refs. [17, 21, 22], which sug-
gests the existence of intersecting three-branes. In the case of the split signature, these solutions
are supposed to be relevant to the open N = 2 string theory. Therefore, analysis of the solitonic
behavior (including the interacting region) for the WZW4 action is much more appropriate than
the Yang–Mills action.

In this paper, we study the classical soliton solutions in the WZW4 model. The WZW4 ac-
tion (15) consists of the non-linear sigma model (NLσM) term and the Wess–Zumino (WZ)
term [23]. We calculate the action densities of the NLσM model term and the Wess–Zumino
term for the soliton solutions.1 For the one-soliton solutions, we find that the WZW4 action
density is localized on a 3D hyperplane. This suggests that there would be a codimension-one
solitonic object, or equivalently some kind of three-brane in the open N = 2 string theory. For
the multi-soliton solutions, we clarify the asymptotic behavior and conclude that the n-soliton
solution possesses n isolated and localized lumps of the action density, and can be interpreted
as n intersecting soliton walls. More precisely, each lump of the action density is essentially the
same as a one-soliton because it preserves its shape and “velocity” with a possible position shift
(called the phase shift) of the peak in the scattering process. We evaluate the distribution of the
NLσM term for the two-soliton solutions successfully and find that there is no singularity in
the interacting region. This is consistent with the existence of smooth intersecting three-branes
in the whole region. Finally, we make a reduction to a (1 + 2)D real space-time to calculate

1In Ref. [13], Parkes discussed similar problems by using the SL(2,C) non-linear plane wave solutions
[24] without calculating any action density.
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the energy densities of the soliton solutions. In (2 + 2) dimensions, the concept of energy is
ambiguous because of the existence of two time directions. This is the reason why in this paper
we discuss action density instead of energy density. We compute the energy densities of the
one-soliton and two-soliton solutions in (1 + 2) dimensions to confirm that they are localized
on the same hyperplanes as the action densities. This suggests that the locus where the action
density is localized could be considered as a physical object.

This paper is organized as follows. In Sect. 2, the WZW4 model is introduced and our con-
ventions are set up. In Sect. 3, soliton solutions of the Yang equation are reviewed and some
properties of the solutions, such as the flip symmetry, singularities, and an asymptotic behavior,
are discussed. In Sect. 4, the action density for the one- and two-soliton solutions is calculated.
In Sect. 5, an asymptotic analysis of the n-soliton solution is given. In Sect. 6, we reduce the
WZW4 model from (2 + 2) dimensions to (1 + 2) dimensions and calculate the Hamiltonian
density for the one- and two-soliton solutions. Section 7 is devoted to the conclusion and dis-
cussion. Appendix A is a brief review of the quasideterminant. In Appendix B, a statement in
footnote 8 is proved (see Sect. 5). Appendix C is a proof of unitarity of the n-soliton solutions
on the Euclidean space. Appendix D includes miscellaneous formulas and detailed calculations.

2. 4D Wess–Zumino–Witten model
In this section, we review the 4D Wess–Zumino–Witten (WZW4) model. In order to treat it in a
unified way, we introduce a 4D space with complex coordinates (z, z̃, w, w̃) and the flat metric:

ds2 = gmndzmdzn = 2(dzdz̃ − dwdw̃), m, n = 1, 2, 3, 4,

where gmn :=

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎟⎠ , (z1, z2, z3, z4) := (z, z̃, w, w̃). (1)

The space C4 can be reduced to the three kinds of real spaces by imposing suitable reality
conditions on (z, z̃, w, w̃). For example, the Euclidean real space E is given by z̃ = z, w̃ = −w,
and the ultrahyperbolic real space U by (1) z, z̃, w, w̃ ∈ R or (2) z̃ = z, w̃ = w, which are denoted
respectively by U1 and U2. Our choices are shown in terms of real coordinates xμ (μ = 1, 2, 3,
4) as follows:

(E)

(
z w
w̃ z̃

)
= 1√

2

(
x1 + ix2 x3 + ix4

−(x3 − ix4) x1 − ix2

)
, (2)

ds2 = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2. (3)

(U1)

(
z w
w̃ z̃

)
= 1√

2

(
x1 + x3 x2 + x4

−(x2 − x4) x1 − x3

)
, (4)

ds2 = (dx1)2 + (dx2)2 − (dx3)2 − (dx4)2. (5)

In this paper, we mainly consider the case of the ultrahyperbolic space U1.2

Let M4 be a 4D flat space and σ be a map from M4 to G = GL(N, C) or its subgroup. The
action of the WZW4 model consists of two parts as follows:

2The case of U2 is not considered in this paper because the unitarity condition of σ leads to trivial
action densities, as we will see in Appendix C. The case of the Euclidean space is discussed at the end of
each (sub)section.
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SWZW4 := Sσ + SWZ, (6)

Sσ := i
4π

∫
M4

ω ∧ Tr
[
(∂σ ) σ−1 ∧ (∂̃σ )σ−1] , (7)

SWZ := − i
12π

∫
M5

ω ∧ Tr
[
(d σ̂ ) σ̂−1]3

, (8)

where M5 := M4 × [0, 1] and σ̂ (z, z̃, w, w̃, t), t ∈ [0, 1] is a homotopy such that σ̂ (z, z̃, w, w̃, 0) =
Id and σ̂ (z, z̃, w, w̃, 1) = σ (z, z̃, w, w̃), and ω is the Kähler two-form on M4 given by

ω = i
2

(dz ∧ dz̃ − dw ∧ dw̃) . (9)

The exterior derivatives are defined as follows:

d := ∂ + ∂̃ + dt∂t, ∂ := dw∂w + dz∂z, ∂̃ := dw̃∂w̃ + dz̃∂̃z. (10)

The first part Sσ is called the non-linear sigma model (NLσM) term and the second part is
called the Wess–Zumino (WZ) term. In the Wess–Zumino term, we use an abbreviated notation:
A3 := A∧A∧A for a differential one-form A.

The equation of motion is

∂̃
(
ω ∧ (∂σ ) σ−1) = 0. (11)

This is derived as follows. Let us consider an infinitesimal variation of the dynamical variable
σ such that δσ |∂M4 = 0 and dδ = δd. Then,

δ((dσ )σ−1) = d ((δσ )σ−1) − (dσ )σ−1(δσ )σ−1 + (δσ )σ−1(dσ )σ−1.

Note that (δσ )σ−1 is a g-valued zero-form while (dσ )σ−1 is a g-valued one-form, where g is the
Lie algebra of G. The cyclic symmetry of trace implies

δTr
[
(d σ̂ )σ̂−1]3 = 3dTr

[
(δσ̂ )σ̂−1 ((d σ̂ )σ̂−1)2

]
.

Since dω = 0, we have

δSWZ = − i
4π

∫
M5

ω ∧ δTr
[
(d σ̂ ) σ̂−1]3 = − i

4π

∫
M4

ω ∧ Tr
[
(δσ )σ−1 ((dσ )σ−1)2

]
.

The variation of the sigma model term is

δSσ = i
4π

∫
M4

ω ∧ δTr
[
(∂σ ) σ−1 ∧ (∂̃σ )σ−1]

= i
4π

∫
M4

ω ∧ Tr
[
∂
(
(δσ )σ−1(∂̃σ )σ−1) − ∂̃

(
(δσ )σ−1 (∂σ ) σ−1)

+ (δσ )σ−1 (∂̃ (
(∂σ ) σ−1) − ∂

(
(∂̃σ )σ−1)] ,

where we use ∂∂̃ + ∂̃∂ = 0 due to ∂2 = 0, ∂̃2 = 0, and d = ∂ + ∂̃. The first and second terms
become a surface integration due to dω = 0 and the fact that:

Tr
[
∂
(
(δσ )σ−1(∂̃σ )σ−1) − ∂̃

(
(δσ )σ−1 (∂σ ) σ−1)]

= Tr
[
d
(
(δσ )σ−1(∂̃σ )σ−1) − d

(
(δσ )σ−1 (∂σ ) σ−1)] .

Therefore we get the final form of the total action variation and the equation of motion is
obtained:

δSWZW4 = i
2π

∫
M4

ω ∧ Tr
[
(δσ )σ−1∂̃

(
(∂σ ) σ−1)] .
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Finally we rewrite the WZW4 action without integration over M5. By the cyclic property of
the trace we have

dTr
[
(d σ̂ ) σ̂−1]3 = −Tr

[
(d σ̂ ) σ̂−1]4 = 0. (12)

The Kähler two-form ω is closed and H2(M4, R) = 0 and hence there exists a one-form A on
the flat space-time such that

ω = dA. (13)

Note that A is not uniquely determined and has ambiguity with respect to the following degree
of freedom: A�→A + dκ, where κ is an arbitrary zero-form.

The Wess–Zumino term is written as∫
M5

d
(

A ∧ Tr
[
(d σ̂ ) σ̂−1]3

)
=

∫
M4

A ∧ Tr
[
(d σ̂ ) σ̂−1]3

∣∣∣∣
t=1

−
∫

M4

A ∧ Tr
[
(d σ̂ ) σ̂−1]3

∣∣∣∣
t=0

.

(14)

If there exists a homotopy such that σ̂ (t = 0) = Id and σ̂ (t = 1) = σ , the second term vanishes
and we obtain

SWZW4 = i
4π

∫
M4

ω ∧ Tr
[
(∂σ ) σ−1 ∧ (∂̃σ )σ−1] − i

12π

∫
M4

A ∧ Tr
[
(dσ ) σ−1]3

. (15)

From now on, we use this form of action. Since our soliton solutions allow such a homotopy
as above, we can use Eq. (15) for computing the action density.

2.1. Component representation of WZW4 action density
Let us write down explicit representations of the WZW4 action density (15) in the flat 4D real
spaces.

In terms of the local complex coordinates (1)–(4), the NLσM action is described as follows:

Sσ = i
4π

∫
M4

ω ∧ Tr
[
(∂σ ) σ−1 ∧ (∂̃σ )σ−1]

= − 1
16π

∫
M4

Tr
[
(∂mσ ) σ−1 (∂mσ ) σ−1] dz ∧ dz̃ ∧ dw ∧ dw̃, (16)

where ∂m := gmn∂n and the metric is given by Eq. (1). This can be represented explicitly in terms
of real coordinates on U, E:

Sσ = − 1
16π

∫
UorE

Tr
[(

∂μσ
)
σ−1 (∂μσ ) σ−1] dx1 ∧ dx2 ∧ dx3 ∧ dx4, (17)

where the real space metrics are given in Eqs. (3) and (5). The NLσM action density is read
from the integrand as Lσ := −(1/16π )Tr

[(
∂μσ

)
σ−1 (∂μσ ) σ−1

]
.

Similarly, the Wess–Zumino action is described as follows:

SWZ = − i
12π

∫
M4

A ∧ Tr
[
(dσ ) σ−1 ∧ (dσ ) σ−1 ∧ (dσ ) σ−1]

= 1
16π

∫
M4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tr (θwθzθ̃z − θwθ̃zθz) w

+Tr (θw̃θzθ̃z − θw̃θ̃zθz) w̃

−Tr (θzθwθw̃ − θzθw̃θw) z

−Tr (θ̃zθwθw̃ − θ̃zθw̃θw) z̃

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dz ∧ dz̃ ∧ dw ∧ dw̃, (18)

where θm := (∂mσ )σ−1. Here we choose the potential one-form A as A =
(i/4) (zdz̃ −z̃dz − wdw̃ + w̃dw). This can be reduced to the three kinds of real spaces. For
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example, in the ultrahyperbolic space U1, it is

SWZ = − 1
16π

∫
U1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tr (θ1θ2θ4 − θ1θ4θ2) x1

+Tr (θ2θ1θ3 − θ2θ3θ1) x2

+Tr (θ3θ2θ4 − θ3θ4θ2) x3

+Tr (θ4θ1θ3 − θ4θ3θ1) x4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dx1 ∧ dx2 ∧ dx3 ∧ dx4. (19)

where θμ := (∂μσ )σ−1. The Wess–Zumino action density LWZ can be read from the integrand.

2.2. Useful formulas for G = GL(2, C)
In this subsection, we focus on the case of G = GL(2, C). Additionally we impose the condition
∂m|σ | = 0 on σ because our soliton solutions σ obtained in Sect. 3.2 satisfy this condition. Then
the WZW action density becomes a concise determinant form as follows. By Jacobi’s formula,
Tr[(∂mσ )σ−1] = ∂m|σ |/|σ | = ∂mlog |σ |, we find that the condition ∂m|σ | = 0 is equivalent to the
condition Tr[(∂mσ )σ−1] = 0, which can be expressed in terms of the matrix elements (∂mσ 11)σ 22

− (∂mσ 12)σ 21 = −{σ 11(∂mσ 22) − σ 12(∂mσ 21)}. Therefore, we have

Tr
[
(∂mσ )σ−1(∂nσ )σ−1] = −1

|σ |

(∣∣∣∣∣∂mσ11 ∂mσ12

∂nσ21 ∂nσ22

∣∣∣∣∣ +
∣∣∣∣∣∂nσ11 ∂nσ12

∂mσ21 ∂mσ22

∣∣∣∣∣
)

. (20)

In this paper, we always take the following parametrization for the soliton solution σ :

σ = −1



(

11 
12


21 
22

)
, (21)

under the condition ∂m|σ | = 0. Note that this reparametrization is not unique and there is a
relation between the five variables:


11
22 − 
12
21 = |σ | 
2. (22)

In this setting, the quadratic term (20) can be rewritten as

Tr
[
(∂mσ )σ−1(∂nσ )σ−1]

= 1
|σ |
2

{∣∣∣∣∣∂m
11 ∂m
12

∂n
21 ∂n
22

∣∣∣∣∣ +
∣∣∣∣∣∂n
11 ∂n
12

∂m
21 ∂m
22

∣∣∣∣∣ − 2|σ |(∂m
)(∂n
)

}
. (23)

Similarly, the cubic term is:

Tr
[
(∂mσ )σ−1(∂nσ )σ−1(∂pσ )σ−1] (24)

= 1
2|σ |2
4

∣∣∣∣∣∣∣∣∣

11 
12 
21 
22

∂m
11 ∂m
12 ∂m
21 ∂m
22

∂n
11 ∂n
12 ∂n
21 ∂n
22

∂p
11 ∂p
12 ∂p
21 ∂p
22

∣∣∣∣∣∣∣∣∣ = 1
2|σ |2
4

(Amnp + Anpm + Apmn),

Amnp :=
∣∣∣∣∣ 
11 
22

∂m
11 ∂m
22

∣∣∣∣∣
∣∣∣∣∣∂n
12 ∂n
21

∂p
12 ∂p
21

∣∣∣∣∣ +
∣∣∣∣∣ 
12 
21

∂m
12 ∂m
21

∣∣∣∣∣
∣∣∣∣∣∂n
11 ∂n
22

∂p
11 ∂p
22

∣∣∣∣∣ . (25)

By the permutation property of determinants (cf. Eq. (24)), we have

Tr
[
(∂mσ )σ−1(∂nσ )σ−1(∂pσ )σ−1] = −Tr

[
(∂mσ )σ−1(∂pσ )σ−1(∂nσ )σ−1] . (26)

Therefore under the condition ∂m|σ | = 0, the Wess–Zumino term can be further simplified as
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SWZ = − i
12π

∫
M4

A ∧ Tr
[
(dσ ) σ−1 ∧ (dσ ) σ−1 ∧ (dσ ) σ−1]

= 1
8π

∫
M4

{
Tr (θwθzθ̃z) w + Tr (θw̃θzθ̃z) w̃

−Tr (θzθwθw̃) z − Tr (θ̃zθwθw̃) z̃

}
dz ∧ dz̃ ∧ dw ∧ dw̃

U1=
∫

U1

LWZdx1 ∧ dx2 ∧ dx3 ∧ dx4, (27)

LWZ
U1= − 1

8π

(
Tr (θ1θ2θ4) x1 + Tr (θ2θ1θ3) x2 + Tr (θ3θ2θ4) x3 + Tr (θ4θ1θ3) x4) . (28)

3. Darboux transformation and soliton solutions
In this section, we review the soliton solutions of the Yang equation, which are constructed by
applying the Darboux transformation [18,19].

3.1. Darboux transformation for the Yang equation
Let us assume that G = GL(N, C) in this subsection. The Yang equation (11) can be rewritten
as the following differential equation:

∂̃z((∂zσ )σ−1) − ∂w̃((∂wσ )σ−1) = 0. (29)

There exists a Lax representation of Eq. (29) given by the following linear system [19]:

L( f ) := σ∂w(σ−1 f ) − (∂̃z f )ζ = 0,

M( f ) := σ∂z(σ−1 f ) − (∂w̃ f )ζ = 0. (30)

The spectral parameter ζ here must be generalized to an N × N constant matrix otherwise
the Darboux transformation would be a trivial transformation. This is a key point to define a
non-trivial Darboux transformation as we will see later.

It is not hard to verify that the compatibility condition L(M(f)) − M(L(f)) = 0 implies the
Yang equation (29). The existence of N-independent solutions of the linear system (30) is an
assumption here; however, we will show later that it actually exists for the soliton solution cases.
Then, f can be rewritten as an N × N matrix that consists of the N-independent solutions as
column vectors of length N.

The Darboux transformation is defined as an auto-Bäcklund transformation of the linear
system (30). Firstly, we start with a solution σ of the Yang equation, and a solution f = f(ζ ) of
the linear system (30). Secondly, we prepare a special solution ψ(
) := f(
) for a fixed spectral
parameter matrix ζ = 
. Then the following Darboux transformation,

f ′ = f ζ − ψ
ψ−1 f , σ ′ = −ψ
ψ−1σ, (31)

keeps the linear system (30) invariant in form, i.e.,

L′( f ′) := σ ′∂w(σ ′−1 f ′) − (∂̃z f ′)ζ = 0,

M ′( f ′) := σ ′∂z(σ ′−1 f ′) − (∂w̃ f ′)ζ = 0. (32)

As mentioned before, the transformation (31) becomes trivial if the spectral parameter is a
scalar matrix where 
 commutes with ψ . The Darboux transformation maps the input data
(σ , f(ζ ), ψ(
)) to the output data (σ ′, f ′(ζ )) and therefore we get a new solution σ ′ of the Yang
equation successfully. In the same way, these output data can be reused as the next input data
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(σ ′, f ′(ζ ), ψ ′(
′)) for the Darboux transformation. Here we define a special solution ψ ′(
′) :=
f ′(
′) by choosing a suitable spectral parameter matrix ζ = 
′. Continuing this process, we get
a series of input–output data: (σ , f, ψ)�→(σ ′, f ′, ψ ′)�→···. Therefore by applying n iterations
of the Darboux transformation, we can get n exact solutions σ [j] of the Yang equation and
express them in terms of the quasideterminants in a compact form [18,19]. For our purposes
in this paper, it is sufficient to choose a trivial seed solution σ [1] = 1:

σ[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · ψn 1
ψ1
1 · · · ψn
n 0

...
...

...
ψ1


n−1
1 · · · ψn


n−1
n 0

ψ1

n
1 · · · ψn


n
n 0

∣∣∣∣∣∣∣∣∣∣∣∣
, n ∈ N (33)

where each ψ j = ψ j(
j) (j = 1, 2,…, n) is a solution (N × N matrix) of the initial linear system
(σ = 1):

∂wψ j = (∂̃zψ j )
 j, ∂zψ j = (∂w̃ψ j )
 j . (34)

Hence the problem of solving the Yang equation reduces to solving Eq. (34). (The label [n + 1]

in the n-soliton solution is omitted in most of this paper except for Appendix C.)
In the main part of this paper, we do not explain the details of the quasideterminant, but

provide the definition and properties of the quasideterminant in Appendix A. The detailed
computations can be found in Appendices B and C.

3.2. Soliton solutions for G = GL(2, C)
From now on, we focus only on the soliton solutions for G = GL(2, C). An example of the
multi-soliton solution is given by [21]:

ψ j =
(

eL j e−Lj

−e−L j eL j

)
, 
 j =

(
λ j 0
0 μ j

)
, (35)

where the two kinds of spectral parameters λj, μj (j = 1, 2,…, n) are complex constants with
the following mutual relationship on each real space:

(λ j, μ j ) =
{

(λ j, λ j ) on U1, (λ j, 1/λ j ) on U2,

(λ j, −1/λ j ) on E.
(36)

The powers Lj of the exponential function are linear in the complex coordinates: Lj := λ jα jz +
β j z̃ + λ jβ jw + α j w̃, where α j, β j ∈ C. The representations of Lj in real coordinates are

Lj
U1= 1√

2

{
(λ jα j + β j )x1 + (λ jβ j − α j )x2 + (λ jαi − β j )x3 + (λ jβ j + α j )x4} , (37)

E= 1√
2

{
(λ jα j + β j )x1 + i(λ jα j − β j )x2 + (λ jβ j − α j )x3 + i(λ jβ j + α j )x4} . (38)

We use the notation �
( j)
μ to simplify the coefficients of Lj in the following sections, i.e., Lj :=

�
( j)
μ xμ.
We remark that the determinant of the n-soliton solution σ is constant [17, 21]:

|σ | =
n∏

j=1

λ jμ j, (39)
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which satisfies the requirement ∂μ|σ | = 0. Therefore, we can apply the formulas (23) and (24)
to the n-soliton solutions. On the ultrahyperbolic space U1 in particular, the n-soliton solution
σ satisfies σσ † = σ †σ = |σ | [17, 21] and hence after the scale transformation σ �→|σ |1/2σ , σ

belongs to SU(2). On the Euclidean space E, σ can take values in U(2), which is proved in
Appendix C.

By the definition (A5) of the quasideterminant, the n-soliton solution σ (cf. Eqs. (33) and
(35)) can be represented in the form of Eq. (21):


 =

∣∣∣∣∣∣∣∣∣∣
ψ1 · · · ψn

ψ1
1 · · · ψn
n
...

...
ψ1


n−1
1 · · · ψn


n−1
n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(ψ1)1 · · · (ψn)1

(ψ1)2 · · · (ψn)2

�(n−1)×n

∣∣∣∣∣∣∣ ,


11 = −

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · ψn e1

ψ1
1 · · · ψn
n 0
...

...
...

ψ1

n−1
1 · · · ψn


n−1
n 0

(ψ1

n
1)1 · · · (ψn


n
n)1 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(ψ1


n
1)1 · · · (ψn


n
n)1

(ψ1)2 · · · (ψn)2

�(n−1)×n

∣∣∣∣∣∣∣ ,


12 = −

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · ψn e2

ψ1
1 · · · ψn
n 0
...

...
...

ψ1

n−1
1 · · · ψn


n−1
n 0

(ψ1

n
1)1 · · · (ψn


n
n)1 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(ψ1)1 · · · (ψn)1

(ψ1

n
1)1 · · · (ψn


n
n)1

�(n−1)×n

∣∣∣∣∣∣∣ ,


21 = −

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · ψn e1

ψ1
1 · · · ψn
n 0
...

...
...

ψ1

n−1
1 · · · ψn


n−1
n 0

(ψ1

n
1)2 · · · (ψn


n
n)2 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(ψ1


n
1)2 · · · (ψn


n
n)2

(ψ1)2 · · · (ψn)2

�(n−1)×n

∣∣∣∣∣∣∣ ,


22 = −

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · ψn e2

ψ1
1 · · · ψn
n 0
...

...
...

ψ1

n−1
1 · · · ψn


n−1
n 0

(ψ1

n
1)2 · · · (ψn


n
n)2 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(ψ1)1 · · · (ψn)1

(ψ1

n
1)2 · · · (ψn


n
n)2

�(n−1)×n

∣∣∣∣∣∣∣ , (40)

where

�(n−1)×n :=

⎛⎜⎝ ψ1
1 · · · ψn
n
...

...
ψ1


n−1
1 · · · ψn


n−1
n

⎞⎟⎠ ,

and e1 := (1, 0)t, e2 := (0, 1)t, 0 := (0, 0)t, and (A)k is the kth row of a square matrix A. The
data 
 and 
jk are determinants of 2n × 2n matrices.
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We remark that ψ j can be decomposed into, for instance,

ψ j =
(

eL j e−L j

−e−L j eL j

)
=

(
eXj ei� j

−e−i� j eXj

)(
e−L j 0

0 e−L j

)
, (41)

where Xj := Lj + Lj , i� j := Lj − Lj . The second factor diag(e−L j , e−L j ) can be eliminated in
the n-soliton solutions (33) due to the property of the quasideterminant (A7). Hence the n-
soliton solutions (33) depend only on Xj and �j. The expansion coefficients for the real coordi-

nates are denoted by Xj = r( j)
μ xμ, i� j = s( j)

μ xμ, i.e., r( j)
μ := �

( j)
μ + �

( j)
μ ∈ R, s( j)

μ := �
( j)
μ − �

( j)
μ ∈ iR,

where Lj = �
( j)
μ xμ. It is obvious that

∂μe±Xj = ±r( j)
μ e±Xj , ∂μe±i� j = ±s( j)

μ e±i� j , ∂μe±i� jk = ±
(

s( j)
μ − s(k)

μ

)
e±i� jk, (42)

where �jk := �j − �k. Note that the flip of space-time coordinates x → −x⇔(x1, x2, x3, x4)
→ (− x1, −x2, −x3, −x4) corresponds to the following flips of the new variables:

x → −x ⇐⇒ L j → −Lj ⇐⇒ (Xj, � j ) → (−Xj, −� j ). (43)

Under this flip, we find the following symmetry (cf. Eq. (D1)):

(
, 
11, 
12, 
21, 
22)
∣∣∣
(Xj ,� j )→(−Xj ,−� j )

= (
, 
22, 
21, 
12, 
11), (44)

∂μ(
, 
11, 
12, 
21, 
22)
∣∣∣
(Xj ,� j )→(−Xj ,−� j )

= −∂μ(
, 
22, 
21, 
12, 
11). (45)

Here let us discuss the singularities of the solution σ . Under the decomposition (21), possible
singularities correspond to zeros of 
. For the one-soliton solution (cf. Eq. (D6)), 
 = 2cosh X1

and hence there is no singularity.3 For the two-soliton solution (cf. Eq. (D7)), we can evaluate
the value of 
 on the ultrahyperbolic space U1 as follows:

1
2

 = acosh(X1 + X2) + bcosh(X1 − X2) + ccos�12

≥ |λ1 − λ2|2 + ∣∣λ1 − λ2
∣∣2 − ∣∣(λ1 − λ1

)(
λ2 − λ2

)∣∣
=

{
2
∣∣λ1 − λ2

∣∣2 > 0 if c > 0

2 |λ1 − λ2|2 > 0 if c < 0
, (46)

where a, b, c are real constants defined in Table 1. Therefore, the denominator is positive any-
where and σ is proved to be non-singular on U1.

On the other hand, on the Euclidean space E, σ has singularities because it has zero locus
due to the fact that cosh(X1 ± X2) ≥ 1, |cos�12| ≤ 1 and a, b have opposite signs (see Table 1).
However, this problem can be solved successfully by choosing suitable initial data ψ , which will
be discussed in Sect. 5.

Finally we comment on an asymptotic behavior in the region that r2 := (x1)2 + (x2)2 + (x3)2

+ (x4)2 is large enough in order to prove that the Wess–Zumino action density decays expo-
nentially in the asymptotic region. We note that the n-soliton solution (33) is a meromorphic
function of (ξ 1,…, ξ n, η1,…, ηn) where ξK := eXK , ηK := ei�K . Let us discuss the absolute value
of the Wess–Zumino action density. In fact, we will see in Sect. 5 that the action density tends

3If the (2,1) component −e−L1 in the one-soliton solution ψ is replaced with +e−L1 , then 
 = 2sinh X1

and 
 has zero on X1 = 0. This corresponds to the following singular one-soliton solution of the KP
equation: u = 2∂2

x log(eX − e−X ) ∝ csch2X , where X is a linear combination of the space-time coordi-
nates t, x, y. On the other hand, a non-singular one-soliton solution is given by u(t, x, y) = 2∂2

x log(eX +
e−X ) ∝ sech2X .
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Table 1. Summary of coefficients.

Space U1 E
(Metric) (+, +, −, −) (+, +, +, +)

a ∈ R+ |λ1 − λ2|2 > 0 |λ1 − λ2|2 > 0

b ∈ R
∣∣λ1 − λ2

∣∣2 > 0 − ∣∣λ1λ2 + 1
∣∣2 < 0

c ∈ R
(
λ1 − λ1

)(
λ2 − λ2

)
(|λ1|2 + 1)(|λ2|2 + 1)

djk
(
α jβk − β jαk

)(
λ j − λk

)3 (
α jαk + β jβk

)(
λ jλk + 1

)3

(= dk j ) λ jλk λ jλk

ejk (α jβk − β jαk)(λ j − λk)3 (α jβk − β jαk)(λ j − λk)3

λjλk λjλk

to zero in the asymptotic region. This implies that, for any variable ξK, the polynomial degree
of the denominator is greater than that of the numerator. (ηK is not essential because of |ηK| =
1.) Let us consider a specific asymptotic direction where the most dominant terms are ξ

i1
1 · · · ξ in

n

in the numerator and ξ
j1

1 · · · ξ jn
n in the denominator where ik ≤ jk. Then the action density be-

haves as O(ξ i1− j1
1 · · · ξ in− jn

n ). At least for one K, iK < jK and hence this implies that it decays
exponentially.

Let us take the two-soliton case as an example. If we consider the asymptotic
limit such that X1 is finite and |X2| � 1 (cf. Eq. (61)), the most dominant factor
is e±X2 and the denominator and the numerator have the same order of ξ1 ≡ e±X2 .
However, due to the identity (63), the most dominant term in the numerator van-
ishes and hence the Wess–Zumino action density is O(ξ−k

1 ), where k is some posi-
tive integer. Therefore we can conclude that the Wess–Zumino action density decays
exponentially.

Therefore, on U1, the Wess–Zumino action converges for the one- and two-soliton solutions
because it has no singularity and decays exponentially. For the n-soliton solution, this is an
open problem, which is discussed in Sect. 7.

4. Evaluation of action density
In this section, we compute the action density of the SU(2) WZW4 model for the one- and
two-soliton solutions and find that the corresponding action densities are real-valued on each
space. We also find that, for the one-soliton solution, the NLσM action density is localized
on a 3D hyperplane and the Wess–Zumino action density identically vanishes. For the two-
soliton solution, we complete the calculation of the NLσM term, and reach a compact form. In
particular, the two peaks of the action density are localized on two non-parallel 3D hyperplanes.
As for the Wess–Zumino term, we show that the action density is asymptotic to zero. On the
ultrahyperbolic space U1 in particular, no singularity appears in the action densities for the
two-soliton case as indicated in Sect. 3.

4.1. One-soliton solutions
In this subsection, we compute the action densities of the SU(2) WZW4 model for the one-
soliton solutions.
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To calculate the NLσM action density explicitly, we substitute the data of one-soliton (D6)
and Eq. (39) into Eq. (23) for m = n = μ and then obtain the following result:

Lσ = − 1
16π

Tr
[
(∂μσ )σ−1 (∂μσ ) σ−1] = 1

8π
d11 sech2X1, (47)

where d11 is determined by Eq. (36) and Eqs. (37)–(38), for instance, d U1
11 = (α1β1 − α1β1)(λ1 −

λ1)3/ |λ1|2 and d E
11 = (|α1|2 + |β1|2)(|λ1|2 + 1)3/ |λ1|2 (cf. djk in Table 1). Hence d11 and Lσ

are clearly real-valued. Note that the action density vanishes identically in the case of
α1, β1, λ1 ∈ R on U1 and hence the result is trivial. For the non-trivial cases, the peak of the
action density lies on the 3D hyperplane described by the linear equation X1 = 0 on each
space.

The Wess–Zumino action density can be calculated by substituting the data of one-soliton
(D6) and Eq. (39) into Eq. (25) directly. Then we have

∣∣∣∣∣ 
11 
22

∂μ
11 ∂μ
22

∣∣∣∣∣ =
∣∣∣∣∣ λ1eX1 + μ1e−X1 μ1eX1 + λ1e−X1

r(1)
μ (λ1eX1 − μ1e−X1 ) r(1)

μ (μ1eX1 − λ1e−X1 )

∣∣∣∣∣
= −2r(1)

μ (λ2
1 − μ2

1), (48)∣∣∣∣∣∂ν
11 ∂ν
22

∂ρ
11 ∂ρ
22

∣∣∣∣∣ =
∣∣∣∣∣r(1)

ν (λ1eX1 − μ1e−X1 ) r(1)
ν (μ1eX1 − λ1e−X1 )

r(1)
ρ (λ1eX1 − μ1e−X1 ) r(1)

ρ (μ1eX1 − λ1e−X1 )

∣∣∣∣∣ = 0, (49)∣∣∣∣∣ 
12 
21

∂μ
12 ∂μ
21

∣∣∣∣∣ = (λ1 − μ1)2

∣∣∣∣∣ ei�1 e−i�1

s(1)
μ ei�1 −s(1)

μ e−i�1

∣∣∣∣∣ = −2s(1)
μ (λ1 − μ1)2, (50)∣∣∣∣∣∂ν
12 ∂ν
21

∂ρ
12 ∂ρ
21

∣∣∣∣∣ = (λ1 − μ1)2

∣∣∣∣∣s(1)
ν ei�1 −s(1)

ν e−i�1

s(1)
ρ ei�1 −s(1)

ρ e−i�1

∣∣∣∣∣ = 0. (51)

These facts imply that

Tr
[
(∂μσ )σ−1(∂νσ )σ−1(∂ρσ )σ−1] = 0, (52)

and therefore the Wess–Zumino action density is identical to zero for the one-soliton case. In
fact, the identity (52) holds even when σ is not a classical solution of the WZW4 model because
the condition (34) is not used in our discussion. More explicitly, as long as the power Lj of
the exponential function in ψ j is an arbitrary linear function of xμ, the Wess–Zumino action
density vanishes identically.

All the above results also hold in the case of E.

4.2. Two-soliton solutions
In this subsection, we calculate the action densities of the SU(2) WZW4 model explicitly for
the two-soliton solutions.
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By the result of Appendix D.3 together with Eqs. (36)–(38), we get the following compact
form of the NLσM action density for the two-soliton solution:

Lσ = − 1
16π

Tr
[(

∂μσ
)
σ−1 (∂μσ ) σ−1]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ab
[
d11 cosh2 X2 + d22 cosh2 X1

]
+ac

[
d12 cosh2

(
X1 + X2 − i�12

2

)
+ d21 cosh2

(
X1 + X2 + i�12

2

)]
−bc

[
e12 sinh2

(
X1 − X2 − i�12

2

)
+ e12 sinh2

(
X1 − X2 + i�12

2

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
2π [a cosh(X1 + X2) + b cosh(X1 − X2) + c cos �12]2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ab
[
d11 cosh2X2 + d22 cosh2X1

]
+ c [a(d12 + d21) − b(e12 + e12)] coshX1coshX2cos�12

+ c [a(d12 + d21) + b(e12 + e12)] (sinhX1sinhX2 + 1)cos�12

−ic [a(d12 − d21) + b(e12 − e12)] sinhX1coshX2sin�12

−ic [a(d12 − d21) − b(e12 − e12)] coshX1sinhX2sin�12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
4π [a cosh(X1 + X2) + b cosh(X1 − X2) + c cos �12]2

(53)

where a, b, c, djk, ejk are defined in Table 1 for each space. (The difference between E and U1

appears only in the coefficients like the one-soliton case.) Note that the coefficients in Table 1
also guarantee the NLσM action density to be real-valued on U1 and E.

Next, let us explain why Eq. (53) can be interpreted as two intersecting one-solitons in the
asymptotic region. Due to the solitonic property, individual one-solitons will regain all their
features (wave shape, velocity, amplitude, etc.) outside the scattering region except for respective
differences of an additional position shift. Theoretically, each one-soliton can be separated
completely from the other one-soliton in the asymptotic region in which it mainly dominates
the asymptotic behavior. Therefore, we can consider the following type of asymptotic limit:

{
X1 is finite

|X2| � |X1|
(54)

in which the first one-soliton, localized on the hyperplane X1 = 0, mainly dominates the asymp-
totic behavior. Such asymptotics will be discussed more systematically in Sect. 5. In the asymp-
totic limit (54), the action density (53) is dominated by

Tr
[(

∂μσ
)
σ−1 (∂μσ ) σ−1]

|X2|�|X1|

= 8abd11 cosh2 X2 + O(cosh X2)

[acosh(X1 + X2) + bcosh(X1 − X2) + O(1)]2

= 8abd11 + O(sechX2)

[(a + b)coshX1 + (a − b)sinhX1 tanhX2 + O(sechX2)]2
. (55)
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Since sinhX1 and coshX1 are finite and sechX2 → 0 and tanhX2 → ±1 as X2 → ±∞, we have

Tr
[(

∂μσ
)
σ−1 (∂μσ ) σ−1] X2→±∞−→ 8abd11

[(a + b)coshX1 ± (a − b)sinhX1]2

=

⎧⎪⎪⎨⎪⎪⎩
8abd11

(aeX1 + be−X1 )2
as X2 −→ +∞

8abd11

(beX1 + ae−X1 )2
as X2 −→ −∞

. (56)

Now we conclude that

−8πLσ −→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1) X1 is finite, X2 → +∞ : d11 sech2 (X1 + δ1)

(2) X1 is finite, X2 → −∞ : d11 sech2 (X1 − δ1)

(3) X2 is finite, X1 → +∞ : d22 sech2 (X2 + δ2)

(4) X2 is finite, X1 → −∞ : d22 sech2 (X2 − δ2)

, (57)

where the position shift factors (or the phase shift factors) are

δ1 ≡ δ2 := 1
2

log
(a

b

)
= 1

2
log

[
a(1, 1)

a(1, −1)

]
(cf. Eq. (D8)). (58)

Cases (3) and (4) are obtained by the same argument and we just skip the details here. By the
above analysis, we find that the NLσM action density (53) has two peaks that are localized on
two non-parallel 3D hyperplanes described by the linear equation X1 ± δ1 = 0 and X2 ± δ2 =
0. A more general discussion for n-soliton case is given in Appendix D.5.

As for other asymptotic regions that differ from cases (1)–(4), no solitonic effect contributes
to the action density; i.e., the action density is asymptotic to zero in these regions. This will be
proved in Sect. 5.

Let us proceed to calculate the Wess–Zumino action density for the two-soliton solution. By
substituting Eqs. (39), (D7), and (42) into Eq. (25) for (m, n, p) = (μ, ν, ρ), we have

Tr
[
(∂μσ )σ−1(∂νσ )σ−1(∂ρσ )σ−1] = 1

2
(Bμνρ + Bνρμ + Bρμν ),

Bμνρ := 1
|σ |2
4

(∣∣∣∣∣ 
11 
22

∂μ
11 ∂μ
22

∣∣∣∣∣
∣∣∣∣∣∂ν
12 ∂ν
21

∂ρ
12 ∂ρ
21

∣∣∣∣∣ +
∣∣∣∣∣ 
12 
21

∂μ
12 ∂μ
21

∣∣∣∣∣
∣∣∣∣∣∂ν
11 ∂ν
22

∂ρ
11 ∂ρ
22

∣∣∣∣∣
)

.

(59)

Here each ingredient of Bμνρ can be calculated in the same way as the previous section. For
example, the result of the first determinant factor in Eq. (59) is

1
|σ |
2

∣∣∣∣∣ 
11 
22

∂μ
11 ∂μ
22

∣∣∣∣∣

=

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2r(1)
μ abD11 cosh(2X2) + 2r(2)

μ abD22 cosh(2X1)

+
[
(r(1)

μ + r(2)
μ ) + (s(1)

μ − s(2)
μ )

]
acD12 cosh(X1 + X2 − i�12)

+
[
(r(1)

μ + r(2)
μ ) − (s(1)

μ − s(2)
μ )

]
acD21 cosh(X1 + X2 + i�12)

+
[
(r(1)

μ − r(2)
μ ) + (s(1)

μ − s(2)
μ )

]
bcE12 cosh(X1 − X2 − i�12)

−
[
(r(1)

μ − r(2)
μ ) − (s(1)

μ − s(2)
μ )

]
bcẼ12 cosh(X1 − X2 + i�12)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
− F

2
[
acosh(X1 + X2) + bcosh(X1 − X2) + ccos�12

]2 . (60)
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The definition of the coefficients and the result of the remaining determinant factors can be
found in Appendix D.4. Furthermore, we can also show that the Wess–Zumino action density
is real-valued on U1 and E (cf. Appendix D.4).

By the same technique used in the previous section, we consider the asymptotic limit such
that |X2| � |X1| for finite X1, and find that

Bμνρ

|X2|�|X1|� −4a2b2Cμνρ D11d11tanhX2 + O(sechX2)

[(a + b)coshX1 + (a − b)sinhX1tanhX2 + O(sechX2)]4
, (61)

where Cμνρ :=
(

r(1)
μ s(1)

ν + s(1)
μ r(1)

ν

)
r(2)
ρ −

(
r(1)
μ s(1)

ρ + s(1)
μ r(1)

ρ

)
r(2)
ν . This is asymptotic to

Bμνρ
X2→±∞−→ ∓4Cμνρ D11d11sech4(X1 ± δ1), (62)

where the phase shift factor is δ1 := (1/2)log(a/b).
In fact, the coefficient Cμνρ in Eq. (62) satisfies the following relation:

Cμνρ + Cνρμ + Cρμν = 0. (63)

Therefore the cubic term (59) identically vanishes in the asymptotic region, and the Wess–
Zumino action density is asymptotic to zero for the two-soliton case:

Tr
[
(∂μσ )σ−1(∂νσ )σ−1(∂ρσ )σ−1] −→ 0. (64)

A more general discussion for the n-soliton case can be found in Appendix D.5.
The Wess–Zumino action density for the two-soliton is a smooth function and non-singular

and is hence bounded. Moreover, it decays to zero exponentially as mentioned in Sect. 3.2.
Therefore, we conjecture that the Wess–Zumino action SWZ would be zero exactly.

5. Asymptotic analysis of n-soliton solutions
Due to the problem of the singularity of the two-soliton solution on the Euclidean space E, in
this section, we consider a modified n-soliton solution and discuss the corresponding asymp-
totic behaviors in a systematic way. The modified n-soliton solution is

σ =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ2 · · · ψn 1
ψ1
1 ψ2
2 · · · ψn
n 0
ψ1


2
1 ψ2


2
2 · · · ψn


2
n 0

...
...

. . .
...

...
ψ1


n
1 ψ2


n
2 · · · ψn


n
n 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

ψ j =
(

eL j e−L j

−εe−L j eL j

)
, Lj = �

( j)
μ xμ


 j =
(

λ
(+)
j 0
0 λ

(−)
j

) , (65)

where the spectral parameters (λj, μj) are rewritten by (λ(+)
j , λ

(−)
j ) for later convenience. The

slight difference between Eqs. (65) and (35) is an additional constant factor ε taking values in
{±1}. The case of ε = +1 coincides with Eq. (35). We will show that the non-singular n-solitons
can be constructed completely for all n ∈ N by suitable choices of the constant ε with respect
to the ultrahyperbolic space U1 and the Euclidean space E.

First of all, we define two types of the asymptotic region for the n-soliton solutions. Let us
consider the asymptotic region of the 4D space where r2 = (x1) + (x2) + (x3) + (x4) is large
enough for the spacial point x = (x1, x2, x3, x4). The asymptotic region is divided into 2n regions
by the n hyperplanes Xj = 0 (j = 1, 2,…, n) depending on Xj > 0 or Xj < 0. In order to label
these regions, it is convenient to introduce a new notation εj ∈ {±1, 0}. Then the 2n asymptotic
regions can be denoted by R(ε1, . . . , εn) in which εj = +1, and εj = −1 correspond to the
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following cases (+) and (−) respectively:4

(+)Xj � +1 ⇔ ReLj � +1 ⇔ ∣∣eL j
∣∣ � 1 ⇔ ∣∣e−L j

∣∣ � 1,

(−)Xj � −1 ⇔ ReLj � −1 ⇔ ∣∣eL j
∣∣ � 1 ⇔ ∣∣e−L j

∣∣ � 1. (66)

Then we can unify the asymptotic regions as

R :=
⋃

ε j=±1

R(ε1, . . . , εn). (67)

We will see that the Wess–Zumino action density vanishes in R.
On the other hand, there is the other type of asymptotic region along the hyperplane Xj,

which corresponds to the case of εj = 0. To make the asymptotic region 4D, let us define the
asymptotic region along XK as a tubular neighborhood of R(ε1, . . . , εK = 0, . . . , εn), which
is denoted by RK (ε1, · · · , εn). In this region, the value of XK is considered to be finite. We
will see that the NLσM and the Wess–Zumino action densities coincide with a one-soliton
configuration in RK .

The two type of asymptotic regions can be expressed in terms of the following sets:

R :=
{

x ∈ M4

∣∣∣∣∣x2
1 + x2

2 + x2
3 + x2

4 is large enough.
Xj are all positive or negative ( j = 1, . . . , n).

}

RK :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x = k1e1 + k2e2 + k3e3 + a ∈ M4

∣∣∣∣∣∣∣∣∣∣∣

e1, e2, e3 are linearly independent vectors
tangent to the hyperplane: XK = 0.

a is a finite vector.
k2

1 + k2
2 + k2

3 is large enough.
Xj ( j �= K ) are all positive or negative.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
A simple example of the asymptotic regions is shown in the figure below (R3 is shown in pink).

For the asymptotic regions of type R, the behavior of Eq. (65) is dominated by all Xj for large
enough |Xj|. By Eq. (66), we find that σ is asymptotic to a constant matrix for each asymptotic

4Here we suppose that |Xj| are large enough in the asymptotic region and hence Xj > 0 implies Xj �
+1.

16/47



PTEP 2023, 043B03 M. Hamanaka et al.

region of the type R:

σ
R�

∣∣∣∣∣∣∣∣∣∣
C(±)

1 · · · C(±)
n 1

C(±)
1 
1 · · · C(±)

n 
n 0
...

...
...

C(±)
1 
n

1 · · · C(±)
n 
n

n 0

∣∣∣∣∣∣∣∣∣∣
, where C(+)

i :=
(

1 0
0 1

)
, C(−)

i :=
(

0 1
−ε 0

)
.

The suffix (±) in Cj corresponds to the signature of εj. Therefore, the action densities Lσ and
LWZ identically vanish in the type R asymptotic regions.

On the other hand, since XK is kept to be finite for the type RK asymptotic regions, we have
[21]

σ
RK�

∣∣∣∣∣∣∣∣∣∣
C(±)

1 · · · ψK · · · C(±)
n 1

C(±)
1 
1 · · · ψK
K · · · C(±)

n 
n 0
...

...
...

...
C(±)

1 
n
1 · · · ψK
n

K · · · C(±)
n 
n

n 0

∣∣∣∣∣∣∣∣∣∣
.

This actually leads to the following one-soliton-type solution [21]:5

σ
RK�

∣∣∣∣∣ ψ̌K 1
ψ̌K
K 0

∣∣∣∣∣D(k), where

⎧⎪⎨⎪⎩ ψ̌K :=
(

aKeLK bKe−LK

−cKe−LK dKeLK

)
DK : a constant matrix,

(68)

and the coefficients aK, bK, cK, dK can be expressed in terms of the spectral parameters as:

aK =
n∏

j=1, j �=K

(
λ

(+)
K − λ

(±)
j

)
, bK =

n∏
j=1, j �=K

(
λ

(−)
K − λ

(±)
j

)
,

cK =
n∏

j=1, j �=K

(
λ

(+)
K − λ

(∓)
j

)
ε, dK =

n∏
j=1, j �=K

(
λ

(−)
K − λ

(∓)
j

)
. (69)

In fact, we will see later that the coefficients aK, bK, cK, dK determine the position shift (known
as the phase shift) of the one-soliton solution (68) in each asymptotic region of type RK . Fur-
thermore, these coefficients also determine whether the singularities of n-solitons exist in the
action density of the WZW4 model. First of all, we can calculate the asymptotic form of the
following μth component of the quadratic term by using Eq. (68). (The summation is not taken

5We note that the two operations of taking the limit and taking the derivation do not commute in
general; however, in our case, they do commute. This is proved in Appendix B.
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over μ.) The result is

Tr
[
(∂μσ )σ−1]2

:= Tr
[
(∂μσ )σ−1(∂μσ )σ−1]

RK�
8
∣∣∣�(K )

μ

∣∣∣2 (λ(+)
K − λ

(−)
K )2

λKμK
· aKbKcKdK

(aKdKeXK + bKcKe−XK )2

=
8
∣∣∣�(K )

μ

∣∣∣2 (λ(+)
K − λ

(−)
K )2

λ
(+)
K λ

(−)
K

· 1(
aKdK

bKcK
e2XK + bKcK

aKdK
e−2XK + 2

)

=
8
∣∣∣�(K )

μ

∣∣∣2 (λ(+)
K − λ

(−)
K )2

λ
(+)
K λ

(−)
K

· 1

eiϕK

(
eXK+δK + e−iϕK e−(XK+δK )

)2 ,

where δK := (1/2)log rK, rK := |aKdK/bKcK| and the ratio aKdK/bKcK := rKeiϕK . In particular,
aKdK/bKcK ∈ R+ if ϕK = 0 and aKdK/bKcK ∈ R− if ϕK = π . This fact implies

Tr
[
(∂μσ )σ−1]2 RK�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
∣∣∣�(K )

μ

∣∣∣2(λ(+)
K − λ

(−)
K

)2

λ
(+)
K λ

(−)
K

sech2(XK + δK ) if aKdK/bKck ∈ R+

−2
∣∣∣�(K )

μ

∣∣∣2(λ(+)
K − λ

(−)
K

)2

λ
(+)
K λ

(−)
K

csch2(XK + δK ) if aKdK/bKck ∈ R−

(70)

where cschx := 1/sinh x. Apparently, for aKdK/bKck < 0, the singularities exist on the entire 3D
hyperplane XK + δK = 0.

Now let us find out the condition such that the NLσM action density is non-singular. For
the ultrahyperbolic space U1, the reality condition is λ

(−)
j = λ

(+)
j . By Eq. (69), we have

aKdK

bKcK
= 1

ε

n∏
j=1, j �=K

∣∣∣∣∣λK − λ j

λK − λ j

∣∣∣∣∣
2ε j

on U1. (71)

Comparing this with Eq. (70), we can conclude that, in the case of ε = +1, the NLσM action
density of the n-soliton is definitely asymptotic to a non-singular one-soliton for the ultrahy-
perbolic signature. This fact implies that, for all n ∈ N, the n-soliton solution (35) gives a class
of non-singular NLσM action densities for the ultrahyperbolic signature.

Similarly, the reality condition of the Euclidean space E : λ
(−)
j = −1/λ

(+)
j implies

aKdK

bKcK
= (−1)n−1

ε

n∏
j=1, j �=K

∣∣∣∣∣ λK − λ j

λKλ j + 1

∣∣∣∣∣
2ε j

on E. (72)

The ratio (72) is positive in the following two cases: (1) n is odd and ε = +1 or (2) n is even and
ε = −1. Then the NLσM action densities are non-singular. On the other hand, the ratio (72) is
negative in the following two cases: (3) n is even and ε = +16 or (4) n is odd and ε = −1.7 Then
the NLσM action densities are singular. It is quite interesting that, in the Euclidean signature,
singular and non-singular solutions are generated alternately by the Darboux transformations
with respect to initial solutions ψ j for ε = ±1.

6Case (3) for n = 2 corresponds to the singular two-soliton solution on E (cf. Table 1).
7Case (4) for n = 1 corresponds to the singular solution in footnote 5.
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In summary, for all n ∈ N, non-singular NLσM action densities of the n-soliton can be con-
structed by taking ε = +1 for all n ∈ N (cf. Eq. (71)) on the ultrahyperbolic space U1, and by
taking ε = +1 for all odd n and ε = −1 for all even n (cf. Eq. (72) and cases (1) and (2)) on the
Euclidean space E. They would share the same asymptotic form in RK on each real space:

Lσ = − 1
16π

Tr
[
(∂μσ )σ−1(∂μσ )σ−1] RK� − 1

8π
dKK sech2 (XK + δK ) , (73)

where dKK is defined in Table 1 (cf. U1 and E) and the phase shift factor is

δK = 1
2

log
(

aKdK

bKcK

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
j=1, j �=K

ε j log

∣∣∣∣∣λK − λ j

λK − λ j

∣∣∣∣∣ on U1

n∑
j=1, j �=K

ε j log

∣∣∣∣∣ λK − λ j

λKλ j + 1

∣∣∣∣∣ on E

. (74)

Since the result of Eq. (73) is valid for arbitrary K in {1, 2,…, n}, we can regard the behavior
of non-singular n-soliton as a “non-linear superposition” of n non-singular and mutually non-
parallel one-solitons on each real space in which each one-soliton in the asymptotic region RK

keeps its form invariant but is shifted by δK, called the phase shift factor, which results from a
non-linear effect.

In conclusion, in the asymptotic region, the n-soliton solution possesses n isolated and local-
ized lumps of the NLσM action density, and we can interpret this as n intersecting soliton walls.
The phase shift factors are also obtained explicitly. The scattering process of the n-soliton solu-
tion is quite similar to that of the KP solitons [3,25,26]. On the other hand, the Wess–Zumino
action density identically vanishes in the asymptotic region because in the asymptotic region
R, the action density identically vanishes, and in the asymptotic region RK , the n-soliton so-
lution is reduced to the one-soliton (68) whose Wess–Zumino action density is identically zero
as proved in Sect. 4.1.

6. Reduction to (1 + 2) dimensions
So far, we have discussed the action density of the WZW4 model for n-soliton solutions and have
found that it is localized on n non-parallel codimension-one hyperplanes in four dimensions.
However, to understand better the physical meaning of our soliton solutions, it would be a
good idea to calculate the energy density of the soliton solutions and compare it with the action
density. For this purpose, we assume translation invariance in the x2 direction.

The WZW4 model Lagrangian is reduced to the following one (cf. Eqs. (17) and (27)):

Ltot = − 1
16π

(
Tr(θt )2 − Tr(θx)2 − Tr(θy)2 + 2Tr

(
θtθxθy

)
y
)
, (75)

where we reset (t, x, y) := (x1, x3, x4) and θμ := (∂μσ )σ−1 (μ = t, x, y). The equation of motion
is the Ward chiral model [27] or the space-time monopole equation [28,29] in (1 + 2) dimensions
in the Yang form. The n-soliton solution of Eq. (75) is obtained by imposing the condition αj

= λjβ j (cf. Eq. (37)) on the powers Lj of the n-soliton solution (35). Then, the powers of the

n-soliton solution is actually reduced to Lj = (β j/
√

2)
[

(λ2
j + 1)t + (λ2

j − 1)x + 2λ jy
]

in the

(1+2)D space-time.
Let us consider three angular coordinates φi(x) (i = 1, 2, 3) that parametrize SU(2) ≈ S3,

where σ (x) belongs. Then the Hamiltonian density can be obtained by the Legendre transfor-
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mation of the Lagrangian:

Htot =
3∑

i=1

∂Ltot

∂ (∂tφi)
∂tφi − Ltot = − 1

16π

(
Tr(θt )2 + Tr(θx)2 + Tr(θy)2) .

This Hamiltonian physically makes sense because it is positive definite due to the fact that θμ

is an anti-Hermitian matrix. This is a conserved energy density by definition. Note that the
contribution of the Wess–Zumino term to Htot vanishes identically: HWZ = 0, or equivalently
Htot = Hσ .

Let us calculate the energy density of the reduced soliton solution from the Hamiltonian
density Htot. For the one-soliton solution, the Hamiltonian Htot is:

Htot = − 1
8π

d11sech2X1, d11 := (|λ1|2 + 1)2(λ1 − λ1)2

|λ1|2 |β1|2. (76)

This is in the same form as the reduced NLσM action density Lσ up to an overall coefficient
(cf. Eq. (47)). Therefore, the peaks of Htot and Lσ are localized on the same 2D hyperplane X
= 0 in the (1 + 2)D space-time. In this sense, Lσ can also be interpreted as an analogue of the
energy density in physical reality.

For the two-soliton solution, the Hamiltonian density for the two-soliton solution is calcu-
lated by using the result of Appendix D.3; we have

Htot = −

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ab
[
d11 cosh2 X2 + d22 cosh2 X1

]
+ac

[
d12 cosh2

(
X1 + X2 − i�12

2

)
+ d21 cosh2

(
X1 + X2 + i�12

2

)]
−bc

[
e12 sinh2

(
X1 − X2 − i�12

2

)
+ e12 sinh2

(
X1 − X2 + i�12

2

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
2π [a cosh (X1 + X2) + b cosh (X1 − X2) + c cos �12]2

, (77)

where a, b, c are the same coefficients defined in Table 1 and

d jk := (λ jλk + 1)2(λ j − λk)2

λ jλk
β jβk, e jk := (λ jλk + 1)2(λ j − λk)2

λ jλk
β jβk. (78)

As for the NLσM term, the Hamiltonian density Htot for the two-soliton is also in the same
form as the reduced NLσM action density Lσ up to the differences of the coefficients dij and
eij (cf. Eq. (53)). Therefore, the two peaks of Htot are localized on the same hyperplanes X1 ±
δ1 = 0 and X2 ± δ2 = 0 as those of Lσ (cf. Eq. (57)). The phase shift factors are also exactly
the same. There is no singularity either. This result implies that there is no essential difference
between Htot and Lσ for describing the solitonic properties.

The peaks of the energy density of the two-soliton solutions are shown in the figure below.
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On the other hand, as for the Wess–Zumino term, there is a mismatch that the Hamiltonian
density HWZ is identical to zero, while we cannot confirm whether the action density LWZ is.
The physical meaning of this mismatch should be clarified in future work.

7. Conclusion and discussion
In this paper, we calculated the action density of the WZW4 model for the classical soli-
ton solutions. We found that, for the one-soliton solutions, the NLσM action density is lo-
calized on a 3D hyperplane and the Wess–Zumino action density identically vanishes. This
suggests the existence of a three-brane in the open N = 2 string theory. For the two-soliton
solutions, the NLσM action density has a beautiful compact form that represents two in-
tersecting one-solitons. The Wess–Zumino action density does not vanish in the interaction
region but does vanish in the asymptotic region. For the n-soliton solutions, we clarified
the asymptotic behavior and found that the NLσM action density describes “non-linear su-
perposition” of n intersecting one-solitons and the Wess–Zumino action density asymptot-
ically vanishes. The non-linear interaction gives rise to phase shifts that were evaluated ex-
plicitly. We also calculated the Hamiltonian (energy) density of the one- and two-soliton so-
lutions of the reduced WZW model in (1 + 2) dimensions. We found that the energy den-
sity of the Wess–Zumino term identically vanishes, and the energy density of the NLσM
term has the same profile as the action density for our soliton solutions. The peaks of the
energy densities perfectly coincide with those of the action density, including the phase shift
factor.

We also discussed whether singularities exist for the n-soliton solutions. For the one- and two-
soliton solutions, we proved that there is no singularity. For the n-soliton solutions (n ≥ 3), it
is unsolved; however, we can argue as follows. The existence of singularities in the solution is
equivalent to the existence of zeros in the data 
, which is a polynomial of eXj and ei� j . Be-
cause Xj and �j are linear functions of the real coordinates, possible singularities would lie on
the intersection of Xj = Cj and/or �j = Dj where Cj and Dj are constants. These possibilities
are mostly forbidden because there is no singularity of the action density of the n-soliton so-
lutions in the asymptotic region where the intersection still exists. The intersection of just four
hyperplanes defined by Xj = Cj or �j = Dj (j = 1, 2, 3, 4) gives rise to an isolated singular-
ity. This possibility might arise when the parameters in the solutions are appropriately tuned,
which should be clarified in the future.

The next step is to clarify the roles and properties of the soliton solutions in the open N =
2 string theory. At least we can see that they are not D-branes because the number of solitons
is not related to the rank of the gauge group. It is worth studying the topological charge and
mass of the solitons, and explicit calculation of infinite conserved densities [8, 30–32] for the
n-soliton solutions. It is also interesting to construct resonance solutions of the solitons that
represent the three-brane reconnections or, in other words, annihilation and creation of the
three-branes. Then a classification of the soliton solutions could be possible, like the positive
Grassmannian description of the KP solitons by Kodama and Williams [33]. The moduli space
of the n-soliton solutions could be described in a geometrical framework. Extension of the
model to non-commutative spaces would allow the presence of background B-fields in the open
N = 2 string theory [34,35,36,37]. The isolated singularities mentioned above might be resolved
and new physical objects appear on the non-commutative spaces such as non-commutative U(1)
instantons [38]. Sen’s conjecture on the tachyon condensation (for a review see Ref. [39]) could
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be confirmed by the solution-generating technique [40] in the context of the open N = 2 string
theory.

Furthermore, the WZW4 model can be realized in the context of the twistor string the-
ory [41]. Recently, Bittleston and Skinner showed that a meromorphic Chern–Simons the-
ory on the twistor space in six dimensions has a double fibration structure that gives
rise to the WZW4 model by solving along fibers in one direction and the 4D Chern–
Simons theory by symmetry reduction in another direction [42]. These models are con-
nected to each other and have a close relationship to integrable systems [43]. The KP
equation has not yet obtained a symmetry reduction of the anti-self-dual Yang–Mills
equation so far; however, this 6D Chern–Simons theory might give a “unified theory”
of integrable systems including both the Sato theory [44] of the KP equation and the
twistor descriptions of classical integrable systems. This might give a stringy viewpoint
to various aspects of integrability and duality. The relation to mirror symmetry is also
exciting [45].
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A. Brief review of quasideterminants
In this subsection, we excerpt some necessary pre-knowledge of quasideterminants mentioned
in Sect. 2 of the previous paper [21]. It is a brief review of the work of Gelfand and Retakh
[46,47] (see also, e.g., Refs. [17, 48]).

The quasideterminant is defined for an n × n matrix X where matrix elements belong to
a non-commutative ring. The quasideterminant is a non-commutative generalization of the
matrix determinant in this sense; however, it rather has a direct relation to the inverse matrix
of X.

Let X = (xij) be an n × n invertible matrix over a non-commutative ring and Y = (yij) be the
inverse matrix of X: XY = YX = 1. The existence of Y is assumed. Then the (i, j)th quasideter-
minant of X is defined as the inverse of an element of Y = X−1:

|X |i j := y−1
ji . (A1)

This has a convenient expression as follows:

|X |i j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 · · · x1 j · · · x1n
...

...
...

xi1 · · · xi j · · · xin

...
...

...
xn1 · · · xn j · · · xnn

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A2)

When the matrix elements belong to a commutative ring, e.g., C, the quasideterminant can be
represented as a ratio of ordinary determinants by virtue of the Laplace formula on inverse
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matrices:

|X |i j = y−1
ji = (−1)i+ j det X

det X i j
, (A3)

where Xij is a matrix obtained from X by deleting the ith row and jth column.
In order to find another representation of the quasideterminant, let us consider the inverse

matrix formula for the 2 × 2 block matrix divided as follows:

X −1 =
(

A B
C d

)−1

=
(

A−1 + A−1Bs−1CA−1 −A−1Bs−1

−s−1CA−1 s−1

)
,

where A is a square matrix, d is a single element, and s := d − CA−1B is called the Schur
complement. The quantity s−1 is just the (n, n)-element of X−1 and hence the quasideterminant
|X|nn is s. If we decompose X into a 2 × 2 block matrix where xij corresponds to the single
element d, the (i, j)th quasideterminant can be expressed in the form of the Schur complement:

|X |i j = xi j −
∑

k( �=i),l ( �= j)

xik(X i j )−1
kl xl j, = xi j −

∑
k( �=i),l ( �= j)

xik|X i j |−1
lk xl j . (A4)

By using this, explicit representations of the quasideterminants can be obtained iteratively.
We note that the quasideterminant is well defined in the case that each matrix element xij

in Eq. (A2) take values in GL(N, C). (Then, X is an nN × nN matrix.) The following example
of the N = 2 case can be expressed finally by the ratios of determinants due to Eqs. (A4) and
(A3): ∣∣∣∣∣∣∣∣

M C1 C2

R1

R2

a b
c d

∣∣∣∣∣∣∣∣ =
(

a b
c d

)
−

(
R1

R2

)
M−1

(
C1 C2

)

=

⎛⎜⎜⎜⎜⎝
∣∣∣∣∣M C1

R1 a

∣∣∣∣∣
∣∣∣∣∣M C2

R1 b

∣∣∣∣∣∣∣∣∣∣M C1

R2 c

∣∣∣∣∣
∣∣∣∣∣M C2

R2 d

∣∣∣∣∣

⎞⎟⎟⎟⎟⎠ = 1
|M|

⎛⎜⎜⎜⎜⎝
∣∣∣∣∣M C1

R1 a

∣∣∣∣∣
∣∣∣∣∣M C2

R1 b

∣∣∣∣∣∣∣∣∣∣M C1

R2 c

∣∣∣∣∣
∣∣∣∣∣M C2

R2 d

∣∣∣∣∣

⎞⎟⎟⎟⎟⎠ . (A5)

The final form corresponds to the parametrization (21) of σ for the soliton solution (33):


 = |M|, −
11 =
∣∣∣∣∣M C1

R1 a

∣∣∣∣∣, − 
12 =
∣∣∣∣∣M C2

R1 b

∣∣∣∣∣, − 
21 =
∣∣∣∣∣M C1

R2 c

∣∣∣∣∣, − 
22 =
∣∣∣∣∣M C2

R2 d

∣∣∣∣∣,
(A6)

which leads to the soliton data (40).
Here we summarize some properties and identities of the quasideterminant, which are rele-

vant to discussions in this paper.

Proposition A.1 [17, 46–48]
Let A = (aij) be a square matrix of order n in (1), while in (2) and (3) appropriate partitions

are made so that all matrices in quasideterminants are square.

(1) The common multiplication of rows and columns
For any invertible elements 
j (j = 1,…, n), we have
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∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1
1 · · · a1, j
 j · · · a1,n
n
...

...
...

ai,1
1 · · · ai, j
 j · · · ai,n
n

...
...

...
an,1
1 · · · an, j
 j · · · an,n
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1, j · · · a1,n
...

...
...

ai,1 · · · ai, j · · · ai,n

...
...

...
an,1 · · · an, j · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

 j, (A7)

∣∣∣∣∣∣∣∣∣∣∣∣∣


1a1,1 · · · 
1a1, j · · · 
1a1,n
...

...
...


iai,1 · · · 
iai, j · · · 
iai,n

...
...

...

nan,1 · · · 
nan, j · · · 
nan,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 
i

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1, j · · · a1,n
...

...
...

ai,1 · · · ai, j · · · ai,n

...
...

...
an,1 · · · an, j · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A8)

(2) Non-commutative Jacobi identity [49]∣∣∣∣∣∣∣
a R b
P M Q
c S d

∣∣∣∣∣∣∣ =
∣∣∣∣∣M Q

S d

∣∣∣∣∣ −
∣∣∣∣∣ P M

c S

∣∣∣∣∣
∣∣∣∣∣ a R

P M

∣∣∣∣∣
−1∣∣∣∣∣R b

M Q

∣∣∣∣∣. (A9)

(3) Homological relations [46, 47, 49]∣∣∣∣∣∣∣
a R b
P M Q
c S d

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a R b
P M Q
c S d

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

a R b
P M Q
0 0 1

∣∣∣∣∣∣∣,
∣∣∣∣∣∣∣
a R b
P M Q
c S d

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
a R 0
P M 0
c S 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
a R b
P M Q
c S d

∣∣∣∣∣∣∣. (A10)

B. Proof of statement in footnote 8

Proposition B.1 Let σ be the n-soliton solution defined by

σ =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ2 · · · ψn 1
ψ1
1 ψ2
2 · · · ψn
n 0
ψ1


2
1 ψ2


2
2 · · · ψn


2
n 0

...
...

. . .
...

...
ψ1


n
1 ψ2


n
2 · · · ψn


n
n 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

ψ j =
(

eL j e−L j

−e−L j eL j

)
, Lj = �

( j)
μ xμ


 j :=
(

λ j 0
0 μ j

) , (B1)

and RK be the asymptotic region defined by the asymptotic limit{
ReLK is fixed

ReLj, j �=K −→ ±∞ . (B2)

Then the operation of the partial derivative ∂μ commutes with the operation of the asymptotic
limit (B2) for σ .

Proof. Without loss of generality, we consider the K = 1 case due to the fact that the
quasideterminant |σ |ij does not depend on permutations of rows and columns in the matrix
σ [46,47].
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For j �= 1, ψ j

m
j can be decomposed into

ψ j

m
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 e−2L j

−e−2L j 1

)

m

j

(
eL j 0
0 eLj

)
=: f (+)

j 
m
j E (+)

j(
−e2Lj 1

1 e2L j

)

m

j

(
−e−L j 0

0 e−L j

)
=: f (−)

j 
m
j E (−)

j

, (B3)

and

f (±)
j −→ C(±)

j as ReLj −→ ±∞, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(+)

j :=
(

1 0
0 1

)

C(−)
j :=

(
0 1
1 0

) . (B4)

By Eqs. (B3) and (A7), the right common factors E (±)
j of each column of σ can be omitted

completely, and hence

σ =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · f (±)

n 1
ψ1
1 f (±)

2 
2 · · · f (±)
n 
n 0

ψ1

2
1 f (±)

2 
2
2 · · · f (±)

n 
2
n 0

...
...

. . .
...

...
ψ1


n
1 f (±)

2 
n
2 · · · f (±)

n 
n
n 0

∣∣∣∣∣∣∣∣∣∣∣∣
, (B5)

which is asymptotic to

σ̃ :=

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 C(±)
2 · · · C(±)

n 1
ψ1
1 C(±)

2 
2 · · · C(±)
n 
n 0

ψ1

2
1 C(±)

2 
2
2 · · · C(±)

n 
2
n 0

...
...

. . .
...

...
ψ1


n
1 C(±)

2 
n
2 · · · C(±)

n 
n
n 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (B6)

By the fact that

C(±)
j 
m

j = 

(±)m
j C(±)

j ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩



(+)
j :=

(
λ j 0
0 μ j

)



(−)
j :=

(
μ j 0
0 λ j

) , (B7)

and Eq. (A7), the right common factors C(±)
j of each column of σ̃ can be omitted completely,

and hence

σ̃ =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 1
ψ1
1 


(±)
2 · · · 


(±)
n 0

ψ1

2
1 


(±)2
2 · · · 


(±)2
n 0

...
...

. . .
...

...
ψ1


n
1 


(±)n
2 · · · 


(±)n
n 0

∣∣∣∣∣∣∣∣∣∣∣∣
, (B8)
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which is called the asymptotic form of the n-soliton solution σ . By the derivative formula [49]
of the quasideterminant

∂μ

∣∣∣∣∣A B
C d

∣∣∣∣∣ =
∣∣∣∣∣A ∂μB
C ∂μd

∣∣∣∣∣ +
n∑

j=1

∣∣∣∣∣A ∂μAj

C ∂μCj

∣∣∣∣∣
∣∣∣∣∣ A B
E j 0

∣∣∣∣∣ ,
(Aj : jth column of A, E j : jth row of identity matrix I ) (B9)

we have

∂μσ̃ =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 ∂μψ1

ψ1
1 

(±)
2 · · · 


(±)
n (∂μψ1)
1

ψ1

2
1 


(±)2
2 · · · 


(±)2
n (∂μψ1)
2

1
...

...
. . .

...
...

ψ1

n
1 


(±)n
2 · · · 


(±)n
n (∂μψ1)
n

1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 1
ψ1
1 


(±)
2 · · · 


(±)
n 0

...
...

. . .
...

...
ψ1


n−1
1 


(±)n−1
2 · · · 


(±)n−1
n 0

1 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

+
n∑

j=2

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 0
ψ1
1 


(±)
2 · · · 


(±)
n 0

ψ1

2
1 


(±)2
2 · · · 


(±)2
n 0

...
...

. . .
...

...
ψ1


n
1 


(±)n
2 · · · 


(±)n
n 0

∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · 1 · · · 1
ψ1
1 · · · 


(±)
j · · · 0

...
. . .

...
. . .

...
ψ1


n−1
1 · · · 


(±)n−1
j · · · 0

0 · · · 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (∂μ


(±)m
j = 0 in the last column). (B10)

Now we can conclude that

∂μσ̃

=

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 ∂μψ1

ψ1
1 

(±)
2 · · · 


(±)
n (∂μψ1)
1

ψ1

2
1 


(±)2
2 · · · 


(±)2
n (∂μψ1)
2

1
...

...
. . .

...
...

ψ1

n
1 


(±)n
2 · · · 


(±)n
n (∂μψ1)
n

1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 1
ψ1
1 


(±)
2 · · · 


(±)
n 0

...
...

. . .
...

...
ψ1


n−1
1 


(±)n−1
2 · · · 


(±)n−1
n 0

1 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (B11)

On the other hand, by the derivative formula of the quasideterminant on σ we have

∂μσ

=
n∑

j=1

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ2 · · · ψn ∂μψ j

ψ1
1 ψ2
2 · · · ψn
n (∂μψ j )
 j

ψ1

2
1 ψ2


2
2 · · · ψn


2
n (∂μψ j )
2

j
...

...
. . .

...
...

ψ1

n
1 ψ2


n
2 · · · ψn


n
n (∂μψ j )
n

j

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · ψ j · · · 1
ψ1
1 · · · ψ j
 j · · · 0

...
. . .

...
. . .

...
ψ1


n−1
1 · · · ψ j


n−1
j · · · 0

0 · · · 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (B12)

By a similar argument to Eqs. (B3), (B4), we have

(∂μψ j )
m
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 −e−2L j

e−2L j 1

)

m

j

(
�

( j)
μ eL j 0

0 �
( j)
μ eL j

)
=: f̃ (+)

j 
m
j Ẽ (+)

j(
e2Lj 1

1 −e2L j

)

m

j

(
�

( j)
μ e−L j 0

0 −�
( j)
μ e−L j

)
=: f̃ (−)

j 
m
j Ẽ (−)

j

, (B13)
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and

f̃ (±)
j −→ C(±)

j as ReLj −→ ±∞, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(+)

j :=
(

1 0
0 1

)

C(−)
j :=

(
0 1
1 0

) . (B14)

Now by Eqs. (B3), (B13), and (A7), we can omit the right common factor E (±)
j from the jth

column (j = 2 − n), and take the right common factor Ẽ (±)
j of the last column out of the

quasideterminant. Then we obtain

∂μσ

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · f (±)

n ∂μψ1

ψ1
1 f (±)
2 
2 · · · f (±)

n 
n (∂μψ1)
1

ψ1

2
1 f (±)

2 
2
2 · · · f (±)

n 
2
n (∂μψ1)
2

1
...

...
. . .

...
...

ψ1

n
1 f (±)

2 
n
2 · · · f (±)

n 
n
n (∂μψ1)
n

1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · f (±)
j · · · 1

ψ1
1 · · · f (±)
j 
 j · · · 0

...
. . .

...
. . .

...
ψ1


n−1
1 · · · f (±)

j 
n−1
j · · · 0

1 · · · 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣

+
n∑

j=2

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · f (±)

n f̃ (±)
j

ψ1
1 f (±)
2 
2 · · · f (±)

n 
n f̃ (±)
j 
 j

ψ1

2
1 f (±)

2 
2
2 · · · f (±)

n 
2
n f̃ (±)

j 
2
j

...
...

. . .
...

...

ψ1

n
1 f (±)

2 
n
2 · · · f (±)

n 
n
n ( f̃ (±)

j 
n
j

∣∣∣∣∣∣∣∣∣∣∣∣∣
Ẽ (±)

j

×

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · ψ j · · · f (±)

n 1

ψ1
1 f (±)
2 
2 · · · ψ j
 j · · · f (±)

n 
n 0
...

...
. . .

...
. . .

...
...

ψ1

n−1
1 f (±)

2 
n−1
2 · · · ψ j


n−1
j · · · f (±)

n 
n−1
n 0

0 0 · · · 1 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

(B15)

By the Jacobi identity (A9), we have
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Ẽ (±)
j

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · ψ j · · · f (±)

n 1

ψ1
1 f (±)
2 
2 · · · ψ j
 j · · · f (±)

n 
n 0
...

...
. . .

...
. . .

...
...

ψ1

n−1
1 f (±)

2 
n−1
2 · · · ψ j


n−1
j · · · f (±)

n 
n−1
n 0

0 0 · · · 1 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
(B16)

= −Ẽ (±)
j

∣∣∣∣∣∣∣∣∣∣
ψ1 f (±)

2 · · · ψ j · · · f (±)
n

ψ1
1 f (±)
2 
2 · · · ψ j
 j · · · f (±)

n 
n
...

...
. . .

...
. . .

...
ψ1


n−1
1 f (±)

2 
n−1
2 · · · ψ j


n−1
j · · · f (±)

n 
n−1
n

∣∣∣∣∣∣∣∣∣∣

−1

(B17)

= −Ẽ (±)
j (E (±)

j )−1

∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · f (±)

j · · · f (±)
n

ψ1
1 f (±)
2 
2 · · · f (±)

j 
i · · · f (±)
n 
n

...
...

. . .
...

. . .
...

ψ1

n−1
1 f (±)

2 
n−1
2 · · · f (±)

j 
n−1
j · · · f (±)

n 
n−1
n

∣∣∣∣∣∣∣∣∣∣∣

−1

.

(With Eqs. (B3) and (A7), we can take the right common factor E (±)
j out of the

quasideterminant.) (B18)

By Eqs. (B3) and (B13),

Ẽ (±)
j (E (±)

j )−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
�

( j)
μ eL j 0

0 �
( j)
μ eL j

)(
e−L j 0

0 e−Lj

)
(
�

( j)
μ e−L j 0

0 −�
( j)
μ e−L j

)(
−eL j 0

0 eLj

) = ±
(

�
( j)
μ 0

0 �
( j)
μ

)
=: 
̃

(±)
j , (B19)

which are constant matrices. Therefore, we can conclude that

∂μσ =

∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · f (±)

n ∂μψ1

ψ1
1 f (±)
2 
2 · · · f (±)

n 
n (∂μψ1)
1

...
...

. . .
...

...

ψ1

n
1 f (±)

2 
n
2 · · · f (±)

n 
n
n (∂μψ1)
n

1

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · f (±)
j · · · 1

ψ1
1 · · · f (±)
j 
 j · · · 0

...
. . .

...
. . .

...
ψ1


n−1
1 · · · f (±)

j 
n−1
j · · · 0

1 · · · 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

−
n∑

j=2

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · f (±)

n f̃ (±)
j

ψ1
1 f (±)
2 
2 · · · f (±)

n 
n f̃ (±)
j 
 j

...
...

. . .
...

...

ψ1

n
1 f (±)

2 
n
2 · · · f (±)

n 
n
n f̃ (±)

j 
n
j

∣∣∣∣∣∣∣∣∣∣∣∣

̃

(±)
j

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 f (±)
2 · · · f (±)

j · · · f (±)
n

ψ1
1 f (±)
2 
2 · · · f (±)

j 
i · · · f (±)
n 
n

...
...

. . .
...

. . .
...

ψ1

n−1
1 f (±)

2 
n−1
2 · · · f (±)

j 
n−1
j · · · f (±)

n 
n−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

−1

,
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which is asymptotic (cf. Eqs. (B4), (B14)) to

∂̃μσ

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 C(±)
2 · · · C(±)

n ∂μψ1

ψ1
1 C(±)
2 
2 · · · C(±)

n 
n (∂μψ1)
1

ψ1

2
1 C(±)

2 
2
2 · · · C(±)

n 
2
n (∂μψ1)
2

1
...

...
. . .

...
...

ψ1

n
1 C(±)

2 
n
2 · · · C(±)

n 
n
n (∂μψ1)
n

1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · C(±)
j · · · 1

ψ1
1 · · · C(±)
j 
 j · · · 0

...
. . .

...
. . .

...
ψ1


n−1
1 · · · C(±)

j 
n−1
j · · · 0

1 · · · 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣

−
n∑

j=2

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 C(±)
2 · · · C(±)

n C(±)
j

ψ1
1 C(±)
2 
2 · · · C(±)

n 
n C(±)
j 
 j

ψ1

2
1 C(±)

2 
2
2 · · · C(±)

n 
2
n C(±)

j 
2
j

...
...

. . .
...

...

ψ1

n
1 C(±)

2 
n
2 · · · C(±)

n 
n
n (C(±)

j 
n
j

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸

̃

(±)
j

∣∣∣∣∣∣∣∣∣∣∣

ψ1 · · · C(±)
j · · · 1

ψ1
1 · · · C(±)
j 
 j · · · 0

...
. . .

...
. . .

...
ψ1


n−1
1 · · · C(±)

j 
n−1
j · · · 0

∣∣∣∣∣∣∣∣∣∣∣

−1

= 0 (the jth column is identical to the last column). (B20)

By Eqs. (B7) and (A7), the right common factors C(±)
j of each column can be omitted com-

pletely, and hence

∂̃μσ

=

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 ∂μψ1

ψ1
1 

(±)
2 · · · 


(±)
n (∂μψ1)
1

ψ1

2
1 


(±)2
2 · · · 


(±)2
n (∂μψ1)
2

1
...

...
. . .

...
...

ψ1

n
1 


(±)n
2 · · · 


(±)n
n (∂μψ1)
n

1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 · · · 1 1
ψ1
1 


(±)
2 · · · 


(±)
n 0

...
...

. . .
...

...
ψ1


n−1
1 


(±)n−1
2 · · · 


(±)n−1
n 0

1 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
(B21)

= ∂μσ̃ . (B22)

�

C. Proof of unitarity for n-soliton solutions on E

Proposition C.1 Let σ [n + 1] be defined in Eq. (B1) with the reality condition (36) on E. Then
σ [n + 1] ∈ U(2) on the Euclidean space if |λj| = 1.

Proof. For n = 1, we have

ψ
†
1ψ1 = ψ1ψ

†
1 = (eL1+L1 + e−(L1+L1 ) )I, 


†
1
1 = 
1


†
1 = |λ1|2I = I, (C1)

which implies

σ
†
[2]σ[2] = (−ψ1
1ψ

−1
1 )†(−ψ1
1ψ

−1
1 ) = (ψ†

1ψ1)(ψ1ψ
†
1 )−1(
†

1
1) = I = σ[2]σ
†
[2], (C2)

i.e., the one-soliton solution σ [2] ∈ U(2). Assume that the n-soliton solution σ [n + 1] ∈ U(2) for
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1 ≤ n ≤ k − 1. For n = k and by the Darboux transformation [18], we have

σ[k+1] = −ψ[k]
[k]ψ
−1
[k] σ[k], (C3)

where

ψ[k] :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ2 · · · ψk−1 ψk

ψ1
1 ψ2
2 · · · ψk−1
k−1 ψk
k
...

...
...

...
ψ1


k−2
1 ψ2


k−2
2 · · · ψk−1


k−2
k−1 ψk


k−2
k

ψ1

k−1
1 ψ2


k−1
2 · · · ψk−1


k−1
k−1 ψk


k−1
k

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (C4)

By using the Jacobi identity (A9) in the following two equalities marked by �= notation, we have

ψ[k]
�=

∣∣∣∣∣∣∣∣
ψ2
2 · · · ψk
k

...
...

ψ2

k−1
2 · · · ψk


k−1
k

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
ψ1
1 · · · ψk−1
k−1

...
...

ψ1

k−1
1 · · · ψk−1


k−1
k−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

ψ1 · · · ψk−1
...

...
ψ1


k−2
1 · · · ψk−1


k−2
k−1

∣∣∣∣∣∣∣
−1 ∣∣∣∣∣∣∣

ψ2 · · · ψk
...

...
ψ2


k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣∣
ψ2
2 · · · ψk
k

...
...

ψ2

k−1
2 · · · ψk


k−1
k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

ψ2 · · · ψk
...

...
ψ2


k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣
−1

−

∣∣∣∣∣∣∣∣
ψ1
1 · · · ψk−1
k−1

...
...

ψ1

k−1
1 · · · ψk−1


k−1
k−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

ψ1 · · · ψk−1
...

...
ψ1


k−2
1 · · · ψk−1


k−2
k−1

∣∣∣∣∣∣∣
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣
ψ2 · · · ψk
...

...
ψ2


k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣

�=

⎡⎢⎢⎢⎢⎣
∣∣∣∣∣∣∣∣∣∣

ψ2 · · · ψk 1
ψ2
2 · · · ψk
k 0

...
...

...
ψ2


k−1
2 · · · ψk


k−1
k 0

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
ψ1 · · · ψk−1 1

ψ1
1 · · · ψk−1
k−1 0
...

...
...

ψ1

k−1
1 · · · ψk


k−1
k−1 0

∣∣∣∣∣∣∣∣∣∣

⎤⎥⎥⎥⎥⎦
∣∣∣∣∣∣∣

ψ2 · · · ψk
...

...
ψ2


k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣
=: (σ̃[k] − σ[k] )ψ̃[k−1], (C5)
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where σ̃[k] := σ[k]

∣∣∣
(ψ1,
1 )→(ψk,
k )

∈ U (2). On the other hand,

ψ̃[k−1]
kψ̃
−1
[k−1]

= −

∣∣∣∣∣∣∣
ψ2 · · · ψk
...

...
ψ2


k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣︸ ︷︷ ︸

k

∣∣∣∣∣∣∣
ψ2 · · · ψk
...

...
ψ2


k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣
−1

|| By the homological relation (A10)∣∣∣∣∣∣∣
ψ2 · · · ψk−1 0
...

...
...

ψ2

k−2
2 · · · ψk−1


k−2
k−1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

ψ2 · · · ψk
...

...

ψ2

k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ψ2 · · · ψk−1 1
...

...
...

ψ2

k−2
2 · · · ψk−1


k−2
k−1 0

∣∣∣∣∣∣∣
−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−

∣∣∣∣∣∣∣∣
ψ2
2 · · · ψk
k

...
...

ψ2

k−1
2 · · · ψk


k−1
k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

ψ2 · · · ψk
...

...
ψ2


k−2
2 · · · ψk


k−2
k

∣∣∣∣∣∣∣
−1

︸ ︷︷ ︸

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
|| By the Jacobi identity (A9)∣∣∣∣∣∣∣

ψ2 · · · ψk 1
...

...
...

ψ2

k−1
2 · · · ψk


k−1
k 0

∣∣∣∣∣∣∣
= σ̃−1

[k−1]σ̃[k] ∈ U (2). (C6)

Note that the second equality from the bottom is obtained by using the homo-
logical relation (A10) and (A7). By Eqs. (C3), (C5), and (C6), we can conclude
that

σ[k+1] = (σ̃[k] − σ[k] )σ̃−1
[k−1]σ̃[k](σ̃[k] − σ[k] )−1σ[k] ∈ U (2). (C7)

�

D. Miscellaneous formulas
D.1. Flip symmetry of n-soliton solutions

Proposition D.1 The data of the n-soliton solutions have the following symmetry:

(
, 
11, 
12, 
21, 
22)

∣∣∣∣
L j→−L j

= (
, 
22, 
21, 
12, 
11) , (D1)

∂μ (
, 
11, 
12, 
21, 
22)

∣∣∣∣
L j→−L j

= ∂μ (
, 
22, 
21, 
12, 
11) . (D2)
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Proof. Let ψ̃ j be defined by ψ̃ j := ψ j

∣∣∣∣
L j→−L j

=
(

e−L j eL j

−eL j e−Lj

)
, which satisfies

ψ̃ j

k
j = E (ψ j


k
j )F, E :=

(
0 1
1 0

)
, F :=

(
−1 0
0 1

)
.

Then

σ

∣∣∣∣
L j→−L j

=

∣∣∣∣∣∣∣∣∣∣
ψ̃1 ψ̃2 · · · ψ̃n 1

ψ̃1
1 ψ̃2
2 · · · ψ̃n
n 0
...

...
. . .

...
...

ψ̃1

n
1 ψ̃2


n
2 · · · ψ̃n


n
n 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
E (ψ1)F E (ψ2)F · · · E (ψn)F E1E

E (ψ1
1)F E (ψ2
2)F · · · E (ψn
n)F E0E
...

...
. . .

...
...

E (ψ1

n
1)F E (ψ2


n
2)F · · · E (ψn


n
n)F E0E

∣∣∣∣∣∣∣∣∣∣
= E

∣∣∣∣∣∣∣∣∣∣
ψ1 ψ2 · · · ψn 1

ψ1
1 ψ2
2 · · · ψn
n 0
...

...
. . .

...
...

ψ1

n
1 ψ2


n
2 · · · ψn


n
n 0

∣∣∣∣∣∣∣∣∣∣
E = EσE

by the multiplicative rule (A7) and (A8) of the quasideterminant. (The common multiplier for
the rows is E, the common multipliers for the columns are F and E.) Now we have

σ

∣∣∣∣
L j→−L j

=
(

0 1
1 0

)
−1



(

11 
12


21 
22

)(
0 1
1 0

)
= −1




(

22 
21


12 
11

)
.

Therefore, (
, 
11, 
12, 
21, 
22)

∣∣∣∣
L j→−L j

= (
, 
22, 
21, 
12, 
11).

By the fact that
df (−x)

dx
= −df (x)

dx

∣∣∣∣
x→−x

, we have

(
∂μ
, ∂μ
11, ∂μ
12, ∂μ
21, ∂μ
22

) ∣∣∣∣
L j→−L j

= −∂μ

(


∣∣
L j→−L j

, 
11
∣∣
L j→−L j

, 
12
∣∣
L j→−L j

, 
21
∣∣
L j→−L j

, 
22
∣∣
L j→−L j

)
= −∂μ (
, 
22, 
21, 
12, 
11) by (D.1)

= − (
∂μ
, ∂μ
22, ∂μ
21, ∂μ
12, ∂μ
11

)
.

�

Corollary D.2 Proposition D.1 implies that:
(1) Tr[(∂μσ)σ−1(∂νσ)σ−1] is an even function with respect to Lj.
(2) Tr[(∂μσ)σ−1(∂νσ)σ−1(∂ρσ)σ−1] is an odd function with respect to Lj.
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Proof. (1)

Tr
[
(∂μσ )σ−1(∂νσ )σ−1] ∣∣∣∣

L j→−L j

= −1
|σ |
2

{∣∣∣∣∣∂μ
11 ∂μ
12

∂ν
21 ∂ν
22

∣∣∣∣∣ +
∣∣∣∣∣∂ν
11 ∂ν
12

∂μ
21 ∂μ
22

∣∣∣∣∣ − 2|σ |(∂μ
)(∂ν
)

} ∣∣∣∣
L j→−L j

= −1
|σ |
2

{∣∣∣∣∣−∂μ
22 −∂μ
21

−∂ν
12 −∂ν
11

∣∣∣∣∣ +
∣∣∣∣∣−∂ν
22 −∂ν
21

−∂μ
12 −∂μ
11

∣∣∣∣∣ − 2|σ |(−∂μ
)(−∂ν
)

}

= −1
|σ |
2

{∣∣∣∣∣∂ν
11 ∂ν
12

∂μ
21 ∂μ
22

∣∣∣∣∣ +
∣∣∣∣∣∂μ
11 ∂μ
12

∂ν
21 ∂ν
22

∣∣∣∣∣ − 2|σ |(∂μ
)(∂ν
)

}
= Tr

[
(∂μσ )σ−1(∂νσ )σ−1] .

(2)

Tr
[
(∂μσ )σ−1(∂νσ )σ−1(∂ρσ )σ−1] ∣∣∣∣

L j→−L j

= 1
2|σ |2
4

∣∣∣∣∣∣∣∣∣

11 
12 
21 
22

∂μ
11 ∂μ
12 ∂μ
21 ∂μ
22

∂ν
11 ∂ν
12 ∂ν
21 ∂ν
22

∂ρ
11 ∂ρ
12 ∂ρ
21 ∂ρ
22

∣∣∣∣∣∣∣∣∣
L j→−L j

= 1
2|σ |2
4

∣∣∣∣∣∣∣∣∣

22 
21 
12 
11

−∂μ
22 −∂μ
21 −∂μ
12 −∂μ
11

−∂ν
22 −∂ν
21 −∂ν
12 −∂ν
11

−∂ρ
22 −∂ρ
21 −∂ρ
12 −∂ρ
11

∣∣∣∣∣∣∣∣∣
= (−1)3

2|σ |2
4

∣∣∣∣∣∣∣∣∣

22 
21 
12 
11

∂μ
22 ∂μ
21 ∂μ
12 ∂μ
11

∂ν
22 ∂ν
21 ∂ν
12 ∂ν
11

∂ρ
22 ∂ρ
21 ∂ρ
12 ∂ρ
11

∣∣∣∣∣∣∣∣∣ = −1
2|σ |2
4

∣∣∣∣∣∣∣∣∣

11 
12 
21 
22

∂μ
11 ∂μ
12 ∂μ
21 ∂μ
22

∂ν
11 ∂ν
12 ∂ν
21 ∂ν
22

∂ρ
11 ∂ρ
12 ∂ρ
21 ∂ρ
22

∣∣∣∣∣∣∣∣∣
= −Tr

[
(∂μσ )σ−1(∂νσ )σ−1(∂ρσ )σ−1] .

�

D.2. Data of n-soliton solutions
In this subsection we present the data of n-soliton solutions in terms of Xj, �j. We introduce the
convention εj, which takes values in {±1, ±i}, and define an informal symbol P{(ε1, . . . , εn)} to
denote the set of all permutations of (ε1,…, εn). The data of n-soliton solutions can be expressed
formally as the following 
, 
ij with some undetermined coefficients a(ε) := a(ε1, . . . , εn) and
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A(ε) := A(ε1, . . . , εn):


 =
∑

1 ≤ j ≤ n,

ε = ±1

a(ε) exp

⎛⎝ n∑
j=1

ε jXj

⎞⎠

+
∑

1 ≤ k < � ≤ n,

ε j = ±1, j �= k, �

(εk, ε�) ∈ P{(i, −i)}

a(ε) exp(
n∑

j �=k,�

ε jXj + εk�k + ε���) + terms involving more i� j

= 1
2

∑
1 ≤ j ≤ n,

ε j = ±1

[
a(ε) exp (

n∑
j=1

ε jXj ) + a(−ε) exp (−
n∑

j=1

ε jXj )

]

+ 1
2

∑
1 ≤ k < � ≤ n,

ε j = ±1, j �= k, �

(εk, ε�) ∈ P{(i, −i)}

⎡⎢⎢⎢⎢⎣
a(ε) exp(

n∑
j �=k,�

ε jXj + εk�k + ε���)

+a(−ε) exp(−
n∑

j �=k,�

ε jXj − εk�k − ε���)

⎤⎥⎥⎥⎥⎦ + · · ·

︸ ︷︷ ︸
∑

1 ≤ k < � ≤ n,

ε j, j �=k,� = ±1

O

⎛⎝cosh(
n∑

j=1, j �=k,�

ε jXj )

⎞⎠ .

By the symmetry (44), 


∣∣∣
(Xj ,� j )→(−Xj ,� j )

= 
 implies a(ε) = a(−ε), and hence


 =
∑

1 ≤ j ≤ n,

ε j = ±1

a(ε) cosh

⎛⎝ n∑
j=1

ε jXj

⎞⎠ +
∑

1 ≤ k < � ≤ n,

ε j, j �=k,� = ±1

O

⎛⎝cosh(
n∑

j=1, j �=�,m

ε jXj )

⎞⎠ . (D3)
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Similarly, we have


11 =
∑

1 ≤ j ≤ n,

ε j = ±1

A(ε) exp

⎛⎝ n∑
j=1

ε jXj

⎞⎠

+
∑

1 ≤ k < � ≤ n,

ε j = ±1, j �= k, �

(εk, ε�) ∈ P{(i, −i)}

A(ε) exp(
n∑

j �=k,�

ε jXj + εk�k + ε���) + terms involving more i� j

= 1
2

∑
1 ≤ j ≤ n,

ε j = ±1

[
A(ε) exp (

n∑
j=1

ε jXj ) + A(−ε) exp (−
n∑

j=1

ε jXj )

]

+ 1
2

∑
1 ≤ k < � ≤ n,

ε j = ±1, j �= k, �

(εk, ε�) ∈ P{(i, −i)}

⎡⎢⎢⎢⎢⎣
A(ε) exp(

n∑
j �=k,�

ε jXj + εk�k + ε���)

+A(−ε) exp(−
n∑

j �=k,�

ε jXj − εk�k − ε���)

⎤⎥⎥⎥⎥⎦ + · · ·

︸ ︷︷ ︸
∑

1 ≤ k < � ≤ n,

ε j, j �=k,� = ±1

O

⎛⎝cosh(
n∑

j=1, j �=k,�

ε jXj )

⎞⎠ . (D4)
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By the symmetry (44), 
22 = 
11

∣∣∣
(Xj ,� j )→(−Xj ,� j )

implies that 
22 = 
11

∣∣∣
A(ε)→A(−ε)

:


12 =
∑

1 ≤ k ≤ n,

ε j =
{

±1, j �= k
+i, j = k

A(ε) exp(
n∑

j �=k

ε jXj + εk�k)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
1 ≤ k < � < m ≤ n,

ε j = ±1, j �= k, �, m
(εk, ε�, εm) ∈ P{(i, i, −i)}

A(ε) exp(
n∑

j �=k,�,m

ε jXj + εk�k + ε��� + εm�m)

+ terms involving more i� j︸ ︷︷ ︸

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∑

1 ≤ k < � < m ≤ n,

ε j, j �=k,�,m = ±1

O

⎛⎝cosh(
n∑

j=1, j �=k,�,m

ε jXj )

⎞⎠ . (D5)

By the symmetry (44), 
21 = 
12

∣∣∣
(Xj ,� j )→(−Xj ,� j )

. Concrete examples are mentioned as follows:
� The data of one-soliton solutions:


 = a(1)
(
eX1 + e−X1

)
,


11 = A(1)eX1 + A(−1)e−X1, 
22 = A(−1)eX1 + A(1)e−X1, 
12 = A(i)ei�1,


21 = A(i)e−i�1, (D6)

where a(1) = 1, A(1) = λ1, A(−1) = μ1, A(i) = −(λ1 − μ1).
� The data of two-soliton solutions (�jk := �j − �k, j, k = 1, 2):


 =
{

a(1, 1)
(
eX1+X2 + e−(X1+X2

) + a(1, −1)
(
eX1−X2 + e−(X1−X2

)
+a(i, −i)

(
ei�12 + e−i�12

) }
,


11 =

⎧⎪⎨⎪⎩
[
A(1, 1)eX1+X2 + A(−1, −1)e−(X1+X2 )

]
+ [

A(1, −1)eX1−X2 + A(−1, 1)e−(X1−X2 )
]

+ [
A(i, −i)ei�12 + A(−i, i)e−i�12

]
⎫⎪⎬⎪⎭ ,


22 = 
11

∣∣∣
(Xj ,� j )→(−Xj ,−� j )

= 
11

∣∣∣
A(ε1,ε2 )→A(−ε1,−ε2 )

,


12 =
{

A(1, i)eX1+i�2 + A(−1, i)e−X1+i�2

+A(i, 1)eX2+i�1 + A(i, −1)e−X2+i�1

}
,


21 = 
12

∣∣∣
(Xj ,� j )→(−Xj ,−� j )

, (D7)
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where

a(1, 1) = (λ1 − λ2)(μ1 − μ2), a(1, −1) = (λ1 − μ2)(μ1 − λ2), a(i, −i) = (λ1 − μ1)(λ2 − μ2)

A(1, 1) = −(λ1 − λ2)(μ1 − μ2)λ1λ2, A(−1, −1) = −(λ1 − λ2)(μ1 − μ2)μ1μ2,

A(1, −1) = −(λ1 − μ2)(μ1 − λ2)λ1μ2, A(−1, 1) = −(λ1 − μ2)(μ1 − λ2)μ1λ2,

A(i, −i) = −(λ1 − μ1)(λ2 − μ2)λ1μ1, A(−i, i) = −(λ1 − μ1)(λ2 − μ2)λ2μ2,

A(1, i) = (λ1 − λ2)(λ1 − μ2)(λ2 − μ2)μ1, A(−1, i) = (μ1 − μ2)(μ1 − λ2)(λ2 − μ2)λ1,

A(i, 1) = (λ1 − λ2)(λ1 − μ1)(μ1 − λ2)μ2,

A(i, −1) = (μ1 − μ2)(λ1 − μ1)(λ1 − μ2)λ2. (D8)

D.3. Exact calculation of the NLσM term (two-soliton)
For preparation, we introduce some symmetries between the coefficients of the soliton data
before our calculation. Our observations are given in the following Remarks 1–3, which can be
checked simply from Eqs. (D7) and (D8).
Remark 1

A(1, 1) = −λ1λ2 a(1, 1), A(−1, −1) = −μ1μ2 a(1, 1),

A(1, −1) = −λ1μ2 a(1, −1), A(−1, 1) = −μ1λ2 a(1, −1). (D9)

Remark 2

A(1, i)A(−1, i) = λ1μ1(λ2 − μ2)2 a(1, 1)a(1, −1),

A(i, 1)A(i, −1) = λ2μ2(λ1 − μ1)2 a(1, 1)a(1, −1),

A(−1, i)A(i, 1) = λ1μ2(μ1 − λ2)2 a(1, 1)a(i, −i),

A(1, i)A(i, −1) = μ1λ2(λ1 − μ2)2 a(1, 1)a(i, −i),

A(−1, i)A(i, −1) = λ1λ2(μ1 − μ2)2 a(1, −1)a(i, −i),

A(1, i)A(i, 1) = μ1μ2(λ1 − λ2)2 a(1, −1)a(i, −i). (D10)

Remark 3

A(1, i) − A(−1, i) = A(i, −1) − A(i, 1) = (λ1μ1 − λ2μ2) a(i, −i),

A(i, 1) − A(−1, i) = A(i, −1) − A(1, i) = (λ1μ2 − μ1λ2) a(1, −1),

A(1, i) + A(i, 1) = A(−1, i) + A(i, −1) = (λ1λ2 − μ1μ2) a(1, 1), (D11)

which implies the relation

A(1, i) − A(−1, i) + A(i, 1) − A(i, −1) = 0 (D12)

directly by taking some simple addition and subtraction over Eq. (D11). On the other hand,
by taking the sum of squares over the left- and right-hand sides of Eq. (D11) and using the
relation (D12), we get the following non-trivial identity.
Remark 4

(λ1λ2 − μ1μ2)2a2(1, 1) + (λ1μ2 − μ1λ2)2a2(1, −1) + (λ1μ1 − λ2μ2)2a2(i, −i)

= A2(1, i) + A2(−1, i) + A2(i, 1) + A2(i, −1). (D13)
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Now let us start our main calculation of the two-soliton NL sigma model term. By using the
soliton data (D7) and after a slightly tedious calculation, we can conclude that

∂μ
11∂μ
22 − ∂μ
12∂μ
21 − |σ |(∂μ
)2

=
(r(1)

μ + r(2)
μ )2

[
A(1, 1)A(−1, −1) − |σ |a2(1, 1)

] [
e2(X1+X2 ) + e−2(X1+X2 )

]
+(r(1)

μ − r(2)
μ )2

[
A(1, −1)A(−1, 1) − |σ |a2(1, −1)

] [
e2(X1−X2 ) + e−2(X1−X2 )

]
+(s(1)

μ − s(2)
μ )2

[
A(i, −i)A(−i, i) − |σ |a2(i, −i)

] (
e2�12 + e−2�12

)

+

⎧⎪⎪⎨⎪⎪⎩
(r(1)

μ + r(2)
μ )(r(1)

μ − r(2)
μ )

[
A(1, 1)A(−1, 1) + A(1, −1)A(−1, −1)

−2|σ |a(1, 1)a(1, −1)

]
−(r(1)

μ + s(2)
μ )(r(1)

μ − s(2)
μ )A(1, i)A(−1, i)

⎫⎪⎪⎬⎪⎪⎭
[
e2X1 + e−2X1

]

−

⎧⎪⎪⎨⎪⎪⎩
(r(1)

μ + r(2)
μ )(r(1)

μ − r(2)
μ )

[
A(1, 1)A(1, −1) + A(−1, 1)A(−1, −1)

−2|σ |a(1, 1)a(1, −1)

]
−(s(1)

μ + r(2)
μ )(s(1)

μ − r(2)
μ )A(i, 1)A(i, −1)

⎫⎪⎪⎬⎪⎪⎭
[
e2X2 + e−2X2

]

+

⎧⎪⎪⎨⎪⎪⎩
(r(1)

μ + r(2)
μ )(s(1)

μ − s(2)
μ )

[
A(1, 1)A(−i, i) + A(−1, −1)A(i, −i)

−2|σ |a(1, 1)a(i, −i)

]
−(r(1)

μ − s(2)
μ )(s(1)

μ + r(2)
μ )A(−1, i)A(i, 1)

⎫⎪⎪⎬⎪⎪⎭
[

eX1−X2+i�12

+e−(X1−X2+i�12 )

]

−

⎧⎪⎪⎨⎪⎪⎩
(r(1)

μ + r(2)
μ )(s(1)

μ − s(2)
μ )

[
A(1, 1)A(i, −i) + A(−1, −1)A(−i, i)

−2|σ |a(1, 1)a(i, −i)

]
−(r(1)

μ + s(2)
μ )(s(1)

μ − r(2)
μ )A(1, i)A(i, −1)

⎫⎪⎪⎬⎪⎪⎭
[

eX1+X2−i�12

+e−(X1+X2−i�12 )

]

+

⎧⎪⎪⎨⎪⎪⎩
(r(1)

μ − r(2)
μ )(s(1)

μ − s(2)
μ )

[
A(1, −1)A(−i, i) + A(−1, 1)A(i, −i)

−2|σ |a(1, −1)a(i, −i)

]
−(r(1)

μ − s(2)
μ )(s(1)

μ − r(2)
μ )A(−1, i)A(i, −1)

⎫⎪⎪⎬⎪⎪⎭
[

eX1−X2+i�12

+e−(X1−X2+i�12 )

]

−

⎧⎪⎪⎨⎪⎪⎩
(r(1)

μ − r(2)
μ )(s(1)

μ − s(2)
μ )

[
A(1, −1)A(i, −i) + A(−1, 1)A(−i, i)

−2|σ |a(1, −1)a(i, −i)

]
−(r(1)

μ + s(2)
μ )(s(1)

μ + r(2)
μ )A(1, i)A(i, 1)

⎫⎪⎪⎬⎪⎪⎭
[

eX1−X2−i�12

+e−(X1−X2−i�12 )

]

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(r(1)
μ + r(2)

μ )2
[
A2(1, 1) + A2(−1, −1) − 2|σ |a2(1, 1)

]
+(r(1)

μ − r(2)
μ )2

[
A2(1, −1) + A2(−1, 1) − 2|σ |a2(1, −1)

]
+(s(1)

μ − s(2)
μ )2

[
A2(i, −i) + A2(−i, i) − 2|σ |a2(i, −i)

]
−(r(1)

μ + s(2)
μ )2A2(1, i) − (r(1)

μ − s(2)
μ )2A2(−1, i)

−(s(1)
μ + r(2)

μ )2A2(i, 1) − (s(1)
μ − r(2)

μ )2A2(i, −1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

By Eqs. (D9) and (D10), we find that the coefficients of the leading terms exp (±2(X1 ± X2))
are identical to zero and the remaining terms can be rewritten as
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∂μ
11∂μ
22 − ∂μ
12∂μ
21 − |σ |(∂μ
)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(r(2)
μ + s(2)

μ )(r(2)
μ − s(2)

μ )A(1, i)A(−1, i)
(
e2X1 + e−2X1

)
−(r(1)

μ + s(1)
μ )(r(1)

μ − s(1)
μ )A(i, 1)A(i, −1)

(
e2X2 + e−2X2

)
−(r(1)

μ − s(1)
μ )(r(2)

μ + s(2)
μ )A(−1, i)A(i, 1)

(
eX1+X2+i�12 + e−(X1+X2+i�12 )

)
−(r(1)

μ + s(1)
μ )(r(2)

μ − s(2)
μ )A(1, i)A(i, −1)

(
eX1+X2−i�12 + e−(X1+X2−i�12 )

)
+(r(1)

μ − s(1)
μ )(r(2)

μ − s(2)
μ )A(−1, i)A(i, −1)

(
eX1−X2+i�12 + e−(X1−X2+i�12 )

)
+(r(1)

μ + s(1)
μ )(r(2)

μ + s(2)
μ )A(1, i)A(i, 1)

(
eX1−X2−i�12 + e−(X1−X2−i�12 )

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(r(1)
μ + r(2)

μ )2(λ1λ2 − μ1μ2)2 a2(1, 1)

+(r(1)
μ − r(2)

μ )2(λ1μ2 − μ1λ2)2 a2(1, −1)

+(s(1)
μ − s(2)

μ )2(λ1μ1 − λ2μ2)2 a2(i, −i)

−(r(1)
μ + s(2)

μ )2A2(1, i) − (r(1)
μ − s(2)

μ )2A2(−1, i)

−(s(1)
μ + r(2)

μ )2A2(i, 1) − (s(1)
μ − r(2)

μ )2A2(i, −1)︸ ︷︷ ︸

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=: �. (D14)

Next, we want to show that the constant term � above can be absorbed completely into the
non-constant terms. By the definition of r( j)

μ , s( j)
μ above Eq. (42), we can replace r( j)

μ , s( j)
μ with

�
( j)
μ and obtain

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�

(1)
μ + �

(1)
μ + �

(2)
μ + �

(2)
μ

)2
(λ1λ2 − μ1μ2)2 a2(1, 1)

+
(
�

(1)
μ + �

(1)
μ − �

(2)
μ − �

(2)
μ

)2
(λ1μ2 − μ1λ2)2 a2(1, −1)

+
(
�

(1)
μ − �

(1)
μ − �

(2)
μ + �

(2)
μ

)2
(λ1μ1 − λ2μ2)2 a2(i, −i)

−
(
�

(1)
μ + �

(1)
μ + �

(2)
μ − �

(2)
μ

)2
A2(1, i) −

(
�

(1)
μ + �

(1)
μ − �

(2)
μ + �

(2)
μ

)2
A2(−1, i)

−
(
�

(1)
μ − �

(1)
μ + �

(2)
μ + �

(2)
μ

)2
A2(i, 1) −

(
�

(1)
μ − �

(1)
μ − �

(2)
μ − �

(2)
μ

)2
A2(i, −1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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By Eqs. (D13) and (D11),

� = −4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(1)
μ �

(1)
μ

[−(λ1μ1 − λ2μ2)2a2(i, −i) + A2(i, 1) + A2(i, −1)
]

+�
(2)
μ �

(2)
μ

[−(λ1μ1 − λ2μ2)2a2(i, −i) + A2(1, i) + A2(−1, i)
]

+�
(1)
μ �

(2)
μ

[−(λ1μ2 − μ1λ2)2a2(1, −1) + A2(1, i) + A2(i, −1)
]

+�
(1)
μ �

(2)
μ

[−(λ1μ2 − μ1λ2)2a2(1, −1) + A2(−1, i) + A2(i, 1)
]

−�
(1)
μ �

(2)
μ

[−(λ1λ2 − μ1μ2)2a2(1, 1) + A2(1, i) + A2(i, 1)
]

−�
(1)
μ �

(2)
μ

[−(λ1λ2 − μ1μ2)2a2(1, 1) + A2(−1, i) + A2(i, −1)
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −8

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

(1)
μ �

(1)
μ A(i, 1)A(i, −1) + �

(2)
μ �

(2)
μ A(1, i)A(−1, i)

+�
(1)
μ �

(2)
μ A(1, i)A(i, −1) + �

(1)
μ �

(2)
μ A(−1, i)A(i, 1)

+�
(1)
μ �

(2)
μ A(1, i)A(i, 1) + �

(1)
μ �

(2)
μ A(−1, i)A(i, −1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Comparing this with Eq. (D14), we have

∂μ
11∂μ
22 − ∂μ
12∂μ
21 − |σ |(∂μ
)2

= −4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(1)
μ �

(1)
μ A(i, 1)A(i, −1)

(
eX2 + e−X2

)2

+�
(2)
μ �

(2)
μ A(1, i)A(−1, i)

(
eX1 + e−X1

)2

+�
(1)
μ �

(2)
μ A(1, i)A(i, −1)

(
e

X1+X2−i�12
2 + e− (X1+X2−i�12 )

2

)2

+�
(1)
μ �

(2)
μ A(−1, i)A(i, 1)

(
e

X1+X2+i�12
2 + e− (X1+X2+i�12 )

2

)2

−�
(1)
μ �

(2)
μ A(1, i)A(i, 1)

(
e

X1−X2−i�12
2 − e− (X1−X2−i�12 )

2

)2

−�
(1)
μ �

(2)
μ A(−1, i)A(i, −1)

(
e

X1−X2+i�12
2 − e− (X1−X2+i�12 )

2

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

By Eqs. (23) and (D10), we can conclude that

Tr
[
(∂μσ )σ−1]2 =

−8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1, 1)a(1, −1)
[
�

(1)
μ �

(1)
μ 
11 cosh2 X2 + �

(2)
μ �

(2)
μ 
22 cosh2 X1

]

+a(1, 1)a(i, −i)

⎡⎢⎢⎢⎣
�

(1)
μ �

(2)
μ 
12cosh2

(
X1 + X2 − i�12

2

)
+�

(1)
μ �

(2)
μ 
21 cosh2

(
X1 + X2 + i�12

2

)
⎤⎥⎥⎥⎦

−a(1, −1)a(i, −i)

⎡⎢⎢⎢⎣
�

(1)
μ �

(2)
μ �12 sinh2

(
X1 − X2 − i�12

2

)
+�

(1)
μ �

(2)
μ �̃12 sinh2

(
X1 − X2 + i�12

2

)
⎤⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭[
a(1, 1) cosh(X1 + X2) + a(1, −1) cosh(X1 − X2) + a(i, −i) cos �12

]2 ,

where


 jk := (λ j − μk)2

λ jμk
, � jk := (λ j − λk)2

λ jλk
, �̃ jk := (μ j − μk)2

μ jμk
.
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D.4. Exact calculation of the Wess–Zumino action density (two-soliton)
By substituting Eqs. (39), (D7), and (42) into Eq. (25) for (m, n, p) = (μ, ν, ρ), we have

Tr
[
(∂μσ )σ−1(∂νσ )σ−1(∂ρσ )σ−1] = 1

2
(Bμνρ + Bνρμ + Bρμν ),

Bμνρ := 1
|σ |2
4

(∣∣∣∣∣ 
11 
22

∂μ
11 ∂μ
22

∣∣∣∣∣
∣∣∣∣∣ ∂ν
12 ∂ν
21

∂ρ
12 ∂ρ
21

∣∣∣∣∣ +
∣∣∣∣∣ 
12 
21

∂μ
12 ∂μ
21

∣∣∣∣∣
∣∣∣∣∣ ∂ν
11 ∂ν
22

∂ρ
11 ∂ρ
22

∣∣∣∣∣
)

,

(D15)

where

1
|σ |
2

∣∣∣∣∣ 
11 
22

∂μ
11 ∂μ
22

∣∣∣∣∣

=

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2r(1)
μ abD11 cosh(2X2) + 2r(2)

μ abD22 cosh(2X1)

+
[
(r(1)

μ + r(2)
μ ) + (s(1)

μ − s(2)
μ )

]
acD12 cosh(X1 + X2 − i�12)

+
[
(r(1)

μ + r(2)
μ ) − (s(1)

μ − s(2)
μ )

]
acD21 cosh(X1 + X2 + i�12)

+
[
(r(1)

μ − r(2)
μ ) + (s(1)

μ − s(2)
μ )

]
bcE12 cosh(X1 − X2 − i�12)

−
[
(r(1)

μ − r(2)
μ ) − (s(1)

μ − s(2)
μ )

]
bcẼ12 cosh(X1 − X2 + i�12)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
− F

2
[
a cosh(X1 + X2) + b cosh(X1 − X2) + c cos�12

]2 , (D16)

1
|σ |
2

∣∣∣∣∣ 
12 
21

∂μ
12 ∂μ
21

∣∣∣∣∣

=

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2s(1)
μ abd11 cosh(2X2) + 2s(2)

μ abd22 cosh(2X1)

+
[
(r(1)

μ − r(2)
μ ) + (s(1)

μ + s(2)
μ )

]
acd12 cosh(X1 + X2 − i�12)

−
[
(r(1)

μ − r(2)
μ ) − (s(1)

μ + s(2)
μ )

]
acd21 cosh(X1 + X2 + i�12)

+
[
(r(1)

μ + r(2)
μ ) + (s(1)

μ + s(2)
μ )

]
bce12 cosh(X1 − X2 − i�12)

−
[
(r(1)

μ + r(2)
μ ) − (s(1)

μ + s(2)
μ )

]
bcẽ12 cosh(X1 − X2 + i�12)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+ f

2
[
a cosh(X1 + X2) + b cosh(X1 − X2) + c cos�12

]2 , (D17)

1
|σ |
2

∣∣∣∣∣ ∂ν
11 ∂ν
22

∂ρ
11 ∂ρ
22

∣∣∣∣∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
[
r(1)
ν r(2)

ρ − r(1)
ρ r(2)

ν

]
ab [D11 sinh (2X2) − D22 sinh (2X1)]

−
[
(r(1)

ν + r(2)
ν )(s(1)

ρ − s(2)
ρ ) − (r(1)

ρ + r(2)
ρ )(s(1)

ν − s(2)
ν )

]
· ac [D12 sinh(X1 + X2 − i�12) − D21 sinh(X1 + X2 + i�12)]

−
[
(r(1)

ν − r(2)
ν )(s(1)

ρ − s(2)
ρ ) − (r(1)

ρ − r(2)
ρ )(s(1)

ν − s(2)
ν )

]
·

bc
[
E12 sinh(X1 − X2 − i�12) + Ẽ12 sinh(X1 − X2 + i�12)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
2
[
a cosh(X1 + X2) + b cosh(X1 − X2) + c cos�12

]2 ,

(D18)
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Table D1. Summary of coefficients.

Space U1 E
(Metric) (+, +, −, −) (+, +, +, +)

Djk (λ j − λk)(λ j + λk) −(λ jλk − 1)(λ jλk + 1)

λ jλk λ jλk

Ejk (λ j − λk)(λ j + λk) (λ j − λk)(λ j + λk)

λjλk λjλk

Ẽjk (λ j − λk)(λ j + λk) −(λ j − λk)(λ j + λk)

λ jλk λ jλk

djk (λ j − λk)2 −(λ jλk + 1)2

λ jλk λ jλk

ejk (λ j − λk)2 (λ j − λk)2

λjλk λjλk

ẽjk (λ j − λk)2 (λ j − λk)2

λ jλk λ jλk

1
|σ |
2

∣∣∣∣∣ ∂ν
12 ∂ν
21

∂ρ
12 ∂ρ
21

∣∣∣∣∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
[

(s(1)
ν r(2)

ρ − s(1)
ρ r(2)

ν )abd11 sinh (2X2) − (r(1)
ν s(2)

ρ − r(1)
ρ s(2)

ν )abd22 sinh (2X1)
]

−
[

(r(1)
ν + s(2)

ν )(s(1)
ρ − r(2)

ρ ) − (r(1)
ρ + s(2)

ρ )(s(1)
ν − r(2)

ν )
]

acd12 sinh(X1 + X2 − i�12)

−
[

(r(1)
ν − s(2)

ν )(s(1)
ρ + r(2)

ρ ) − (r(1)
ρ − s(2)

ρ )(s(1)
ν + r(2)

ν )
]

acd21 sinh(X1 + X2 + i�12)

−
[

(r(1)
ν + s(2)

ν )(s(1)
ρ + r(2)

ρ ) − (r(1)
ρ + s(2)

ρ )(s(1)
ν + r(2)

ν )
]

bce12 sinh(X1 − X2 − i�12)

−
[

(r(1)
ν − s(2)

ν )(s(1)
ρ − r(2)

ρ ) − (r(1)
ρ − s(2)

ρ )(s(1)
ν − r(2)

ν )
]

bcẽ12 sinh(X1 − X2 + i�12)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
2
[
a cosh(X1 + X2) + b cosh(X1 + X2) + c cos�12

]2 .

(D19)

a, b, c are defined in Table 1 and Djk, djk, Ejk, Ẽjk, ejk are defined in Table D1 for each real
space respectively. F and f are some constants. Note that

(Djk, Ejk) =
{

(−Dk j, Ẽjk) on U1(Dk j, − Ẽjk) on E , (D20)

(djk, ejk) = (dk j, ẽjk) on U1, E, (D21)

which implies that Eqs. (D16)–(D19) are all pure imaginary functions on U1 and hence Eq.
(D15) is real-valued on U1. By Eq. (28), the Wess–Zumino term is real-valued on U1. On the
other hand, we find that Eqs. (D16), (D18) are real functions and Eqs. (D17), (D19) are pure
imaginary functions on E. Therefore, Eq. (D15) is a pure imaginary function on E. This implies
that the Wess–Zumino term is real-valued on E because of (cf. Eq. (28))

LWZ
E= − i

8π

(
Tr (θ1θ3θ4) x1 + Tr (θ2θ3θ4) x2 − Tr (θ3θ1θ2) x3 − Tr (θ4θ1θ2) x4) . (D22)
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For convenience, to discuss the asymptotic behavior of Eq. (D15), we consider the asymptotic
limit {

X1 is a finite real number|X2| � |X1| . (D23)

By the same calculation as mentioned in Sect. 4.2, we have

1
|σ |
2

∣∣∣∣∣ 
11 
22

∂μ
11 ∂μ
22

∣∣∣∣∣
|X2|�|X1|

= −2r(1)
μ abD11 cosh2 X2 + O(cosh X2)[

a cosh(X1 + X2) + b cosh(X1 + X2) + O(1)
]2

= −2r(1)
μ abD11 + O(sechX2)

[(a + b) coshX1 + (a − b) sinhX1tanhX2 + O(sechX2)]2
,

1
|σ |
2

∣∣∣∣∣ 
12 
21

∂μ
12 ∂μ
21

∣∣∣∣∣
|X2|�|X1|

= −2s(1)
μ abd11 cosh2 X2 + O(cosh X2)[

a cosh(X1 + X2) + b cosh(X1 + X2) + O(1)
]2

= −2s(1)
μ abd11 + O(sechX2)

[(a + b) coshX1 + (a − b) sinhX1tanhX2 + O(sechX2)]2
,

1
|σ |
2

∣∣∣∣∣ ∂ν
11 ∂ν
22

∂ρ
11 ∂ρ
22

∣∣∣∣∣
|X2|�|X1|

=
2
(

r(1)
ν r(2)

ρ − r(1)
ρ r(2)

ν

)
abD11 cosh X2 sinh X2 + O(cosh X2)[

a cosh(X1 + X2) + b cosh(X1 + X2) + O(1)
]2

=
2
(

r(1)
ν r(2)

ρ − r(1)
ρ r(2)

ν

)
abD11 tanhX2 + O(sechX2)

[(a + b) coshX1 + (a − b) sinhX1tanhX2 + O(sechX2)]2
,

1
|σ |
2

∣∣∣∣∣ ∂ν
12 ∂ν
21

∂ρ
12 ∂ρ
21

∣∣∣∣∣
|X2|�|X1|

=
2
(

s(1)
ν r(2)

ρ − s(1)
ρ r(2)

ν

)
abd11 cosh X2 sinh X2 + O(cosh X2)[

a cosh(X1 + X2) + b cosh(X1 + X2) + O(1)
]2

=
2
(

s(1)
ν r(2)

ρ − s(1)
ρ r(2)

ν

)
abd11 tanhX2 + O(sechX2)

[(a + b) coshX1 + (a − b) sinhX1tanhX2 + O(sechX2)]2
.

Therefore, for fixed X1 and |X2| � |X1|, we can conclude that

Bμνρ

|X2|�|X1|� −4a2b2Cμνρ D11d11tanhX2 + O(sechX2)

[(a + b) coshX1 + (a − b) sinhX1tanhX2 + O(sechX2)]4

X2→±∞−→ ∓32a2b2Cμνρ D11d11

(aeX1 + beX1 )4
= ∓2CμνρD11d11sech4(X1 + δ1) for fixed X1,

where the phase shift factor is δ1 := (1/2) log(a/b). and Cμνρ :=
(

r(1)
μ s(1)

ν + s(1)
μ r(1)

ν

)
r(2)
ρ −(

r(1)
μ s(1)

ρ + s(1)
μ r(1)

ρ

)
r(2)
ν .

D.5. Asymptotic form of WZW4 action density (n-soliton)
Without loss of generality, we consider one of the asymptotic regions of type RK , which is
labeled by (the other cases are equivalent to this one)

ε j =
{

+1, j = 1, . . . , K − 1
−1, j = K + 1, . . . , n

, (D24)
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and define

X K̂ :=
n∑

j=1, j �=K

ε jXj
(D25)= X1 + · · · + XK−1 − XK+1 + · · · + Xn.

By Eqs. (D3), (D4), and (D5), we can conclude that



RK� 2

{
a(1, εK = +1, −1) cosh(X K̂ + XK )
+a(1, εK = −1, −1) cosh(X K̂ − XK )

}
+

n∑
j=1, j �=K

O
(
cosh(X K̂ − ε jXj )

)
,


11
RK�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(1, εK = +1, −1) exp(X K̂ + XK )
+A(1, εK = −1, −1) exp(X K̂ − XK )
+A(−1, εK = +1, 1) exp(−X K̂ + XK )
+A(−1, εK = −1, 1) exp(−X K̂ − XK )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ +
n∑

j=1, j �=J

O
(
cosh(X K̂ − ε jXj )

)
,


22 (RK ) = 
11 (RK )
∣∣∣
A(ε1,...,εn ) → A(−ε1,...,−εn )

, (D25)


12
RK�

{
A(1, εK = +i, −1) exp(X K̂ + i�K )
+A(−1, εK = +i, 1) exp(−X K̂ + i�K )

}
+

n∑
j=1, j �=K

O
(
cosh(X K̂ − ε jXj )

)
,


21 (RK ) = 
12 (RK )
∣∣∣
(Xj ,�K ) → (−Xj ,−�K )

.

(D26)

By Eqs. (D25), (42), and direct calculation, we have the asymptotic form of the NLσM action
density:

Tr
[
(∂μσ )σ−1(∂μσ )σ−1]

RK�

⎡⎢⎣ 4dKK a(1, εK = +1, −1) cosh(2X K̂ )

+
n∑

j=1, j �=K

O
(
cosh(2X K̂ − ε jXj )

)
⎤⎥⎦

⎧⎨⎩
[

a(1, εK = +1, −1) cosh(X K̂ + XK )
+a(1, εK = −1, −1) cosh(X K̂ − XK )

]
+

n∑
j=1, j �=K

O
(
cosh(X K̂ − ε jXj )

)⎫⎬⎭
2

=
8dKK a(1, εK = +1, −1)a(1, εK = −1, −1) +

n∑
j=1, j �=K

O
(
sechXj

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[a(1, εK = +1, −1) + a(1, εK = −1, −1)] cosh XK

+ [a(1, εK = +1, −1) − a(1, εK = −1, −1)] tanh X K̂ sinh XK

+
n∑

j=1, j �=K

O
(
sechXj

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

2

X K̂→±∞−→ 2dKKsech2(XK ± δK ) for fixed real number XK ,

where the phase shift factor is δK := 1
2

log
[

a(1, εK = +1, −1)
a(1, εK = −1, −1)

]
and dKK is defined in Table 1.
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By Eqs. (D25), (42), and direct calculation, we have the asymptotic form of the Wess–Zumino
action density:

Bμνρ

RK�
−4AÃC(K )

μνρtanhXK̂ +
n∑

j=1, j �=K

O
(
sechXj

)

|σ |2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[a(1, εK = +1, −1) + a(1, εK = −1, −1)] cosh XK

+ [a(1, εK = +1, −1) − a(1, εK = −1, −1)] tanh XK̂ sinh XK

+
n∑

j=1, j �=K

O
(
sechXj

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

4 ,

where

C(K )
μνρ :=

(
r(K )
μ s(K )

ν + s(K )
μ r(K )

ν

)
r(K̂ )
ρ −

(
r(K )
μ s(K )

ρ + s(K )
μ r(K )

ρ

)
r(K̂ )
ν ), r(K )

ρ :=
n∑

j=1, j �=K

ε j r( j)
ρ ,

and

A :=
[

A(1, εK = +1, −1)A(−1, εK = +1, 1)
−A(1, εK = −1, −1)A(−1, εK = −1, 1)

]
,

Ã := A(1, εK = +i, −1)A(−1, εK = +i, 1).

By Eq. (59) and the fact that

C(K )
μνρ + C(K )

νρμ + C(K )
ρμν = 0,

we have

Tr
[
(∂μσ )σ−1(∂νσ )σ−1(∂ρσ )σ−1] −→ 0

in the asymptotic region. Therefore, the Wess–Zumino term is asymptotic to zero for the n-
soliton case.
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