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1 Introduction

Tensor networks furnish a powerful tool to represent and study lattice quantum field theories.
In a Hamiltonian formulation, they yield efficient representations of low lying states of the
system [1, 2] while in the context of a Euclidean path integral they form the starting point of
efficient blocking/RG schemes that can be used to compute a variety of observables.

One of the main motivations for their use within the HEP community is the famous sign
problem that prohibits the use of Monte Carlo techniques for many theories of interest. In
contrast, renormalization group algorithms for tensor networks are deterministic and hence
insensitive to sign problems — see [3, 4] for reviews and recent developments.

The ultimate goal in HEP is to formulate a tensor network representation of full QCD,
in which fermions are coupled to an SU(3) gauge field in four dimensions which can be
contracted efficiently on current hardware.1

The numerical complexity, in terms of both CPU and memory, of any tensor network
depends on the number of physical degrees of freedom which must be captured in the tensor.
For the gauge fields one must truncate the continuous degrees of freedom associated with
the gauge group down to a finite set while fermions are characterized by multidimensional
bond dimensions (see e.g. [5, 6]). In addition the number of tensor indices increases rapidly
with dimension. These facts imply that tensor renormalization group computations for the

1By taking the time continuum limit one can also extract a gauge invariant Hamiltonian from such a
network that can be implemented, in principle, on quantum computers.
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simplest non-abelian lattice gauge theory coupled to fermions are already extremely difficult
even in two space time dimensions.2,3

A typical way to extract discrete tensor indices for gauge or spin systems is the character
expansion and this approach has been shown to be successful for studies of U(N) and pure
SU(N) LGTs [10–12]. Recently other approaches that are based on the method of quadratures,
probabilistic sampling, and trial (variational) actions have been proposed [13–15].4 Also
a new method in which the tensors depend on only representation indices was proposed
in [18] for pure gauge theories.

In this work, we discretize the path integral using the Gaussian quadrature rule. Since the
fermions are represented by Grassmann valued fields they are naturally discrete. Nevertheless,
the requirements needed to build Grassmann tensor networks are typically large since they
depend on the number of both spinor and color components of a complex field. Using ordinary
staggered fermions removes the spinor index component but we will show that it still leaves a
formidable computational challenge even in the simplest case of a two color gauge theory. In
contrast, we will show that reduced staggered fermions [19] give the most economical lattice
fermion formulation possible in such systems. Reduced staggered fermions are also interesting
in the context of symmetric mass generation and recent efforts to construct chiral lattice
gauge theories — see [20, 21]. Indeed in the latter case, a sign problem is almost inevitable
which provides strong motivation for the use of tensor methods.

2 Model and tensor network representation

As a warmup we will focus first on the construction of a theory of regular staggered fermions
coupled to SU(2) — the simplest continuous non-abelian gauge group. First, we describe
why this theory is computationally challenging in the tensor renormalization group studies.
Subsequently we introduce a tensor network formulation for the SU(2) gauge theory with
reduced staggered fermions where the higher order orthogonal iteration (HOOI) algorithm
is used for the construction of tensor.

2.1 SU(2) theory with full staggered fermions

We can make a tensor network representation of this fermion model by following the Grassmann
tensor network construction (see e.g. [22]). First we express the action as a product of
Grassmann valued tensors. The action for the gauged staggered fermion is given by

SF [U ] =
∑

n

mψ̄nψn +
2∑

µ=1

ηn,µ

2
(
ψ̄nUn,µψn+µ̂ − ψ̄n+µ̂U

†
n,µψn

) . (2.1)

The staggered sign factor is defined by ηn,µ = (−1)
∑

ν<µ
nν . Both periodic and anti-periodic

boundary conditions can be used.
2Two dimensional QCD was studied using tensor networks in ref. [7]. In that paper the strong coupling

limit is taken, so that the major part of the physical degrees of freedom are integrated out at the initial stage.
By contrast, our current paper provides a way to construct a tensor network representation for QCD-like
theories for any value of the coupling constant.

3Note that theories where SU(2) gauge fields are coupled to scalar fields have been studied in refs. [8, 9].
4Note that the use of the quadrature method was introduced earlier in the context of scalar fields [16, 17].
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The partition function can be expanded thanks to the nilpotency of the Grassmann
variables:

ZF [U ] =
∫

Dψ̄Dψ
∏
n

e−SF[U ]

=
∫

Dψ̄Dψ
∏
n

2∏
a=1

1∑
sa

n=0

(
−mψ̄a

nψ
a
n

)sa
n

·
2∏

a,b=1

1∑
xab

n,1=0

(
−ηn,1

2 ψ̄a
nU

ab
n,1ψ

b
n+1̂

)xab
n,1 1∑

xab
n,2=0

(
ηn,1
2 ψ̄a

n+1̂U
ba∗
n,1 ψ

b
n

)xab
n,2

·
1∑

tab
n,1=0

(
−ηn,2

2 ψ̄a
nU

ab
n,2ψ

b
n+2̂

)tab
n,1 1∑

tab
n,2=0

(
ηn,2
2 ψ̄a

n+2̂U
ba∗
n,2 ψ

b
n

)tab
n,2
.

(2.2)

As shown in [22], the lattice coordinates x and t which label the index associated with the
expansion of the exponential constitute candidates for the tensor indices. On each link, and
for both ψ and ψ̄, there is a two component (forward and backward hopping) index and,
in addition, a color index running over two values for SU(2). Thus, the bond dimension
associated with each fermion link will turn out to be 22×2×2 = 256. This is prohibitively large
since, in the complete tensor network, one has to consider additionally the contribution from
the gauge part. Specifically, if we assume that the bond dimension of the gauge sector is χ, the
bond dimension of the total tensor network will be 256χ, and this is not currently feasible.5
To remedy this situation we have instead considered using reduced staggered fermions.

2.2 SU(2) theory with reduced staggered fermions

If one uses the reduced staggered formulation as in ref. [24], the degrees of freedom can be
reduced by half. We substitute the staggered fields by the reduced staggered fermions using
the transformation ψn → (1 − ϵn)ψn/2 and ψ̄n → (1 + ϵn)ψ̄n/2, where the parity factor is
ϵn = (−1)n1+n2 . In this formulation, the reduced staggered field ψn and its conjugate ψ̄n

are placed on odd and even sites (or even and odd sites), respectively, so that one can just
relabel ψ̄n as ψT

n . The fermionic action can then be simplified to6

SF [U ] =
∑

n

2∑
µ=1

ηn,µ

2 ψT
nUn,µψn+µ̂. (2.3)

A “projected” link variable U is defined by U = (1 + ϵn)Un,µ/2 + (1 − ϵn)U∗
n,µ/2.

In this case, the Boltzmann factor is expanded like

e−SF =
∑
{x,t}

∏
n

2∏
a,b=1

(
−ηn,1

2 ψa
nUab

n,1ψ
b
n+1̂

)xab
n
(
−ηn,2

2 ψa
nUab

n,2ψ
b
n+2̂

)tab
n

. (2.4)

5In previous tensor network studies, the typical bond dimension is 100 or less. While bond dimensions as
large as 512 have been used for the two dimensional Ising model [23], such bond dimensions require a huge
amount of CPU time and also carry memory footprints on the order of 100–1000 GB.

6Here we adopt the massless case for a simplicity. When considering massive cases, the mass is put on links
rather than sites for the reduced staggered formulation, so that the hopping structure is modified in such cases.
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Because of the halving of degrees of freedom the bond dimension of the resultant fermion
tensor network is now just 22×2 = 16. This is a significant reduction from a bond dimension
of 256 for the case of full staggered fermions.

We can split ψa
nψ

b
n+1̂ and ψa

nψ
b
n+2̂ using a set of dummy Grassmann variables αn, βn as

ψa
nψ

b
n+1̂ =

∫
(ψa

ndαab
n )(dᾱab

n+1̂ψ
b
n+1̂)(ᾱab

n+1̂α
ab
n ),

ψa
nψ

b
n+2̂ =

∫
(ψa

ndβab
n )(dβ̄ab

n+2̂ψ
b
n+2̂)(β̄ab

n+2̂β
ab
n ). (2.5)

Using dummy Grassmann variables, the Boltzmann factor turns out to be

e−SF =
∑
{x,t}

∏
n

2∏
a,b=1

(
ηn,1
2 Uab

n,1

)xab
n
(
ηn,2
2 Uab

n,2

)tab
n

· (ψa
ndαab

n )xab
n (ψb

n+1̂dᾱab
n+1̂)xab

n (ψa
ndβab

n )tab
n (ψb

n+2̂dβ̄ab
n+2̂)tab

n

· (ᾱab
n+1̂α

ab
n )xab

n (β̄ab
n+2̂β

ab
n )tab

n . (2.6)

Then the fermion partition function can be expressed as

ZF [U ] =
∫ (∏

n

dψ1
ndψ2

n

)
e−SF

=
∑
{x,t}

∏
n

 2∏
a,b=1

(
Uab

n,1

)xab
n
(
Uab

n,2

)tab
n

TFxntnxn−1̂tn−2̂
Gn,xntnxn−1̂tn−2̂

, (2.7)

where the bosonic and the fermionic components can be written respectively as

TFxntnxn−1̂tn−2̂
=
∫

dψ1
ndψ2

n

 2∏
a,b=1

(
ηn,1
2

)xab
n
(
ηn,2
2

)tab
n


· (ψ2

n)t22
n−2̂(ψ2

n)t12
n−2̂(ψ1

n)t21
n−2̂(ψ1

n)t11
n−2̂

· (ψ2
n)x22

n−1̂(ψ2
n)x12

n−1̂(ψ1
n)x21

n−1̂(ψ1
n)x11

n−1̂

· (ψ2
n)t22

n (ψ1
n)t12

n (ψ2
n)t21

n (ψ1
n)t11

n

· (ψ2
n)x22

n (ψ1
n)x12

n (ψ2
n)x21

n (ψ1
n)x11

n , (2.8)

and

Gn,ijkl =
(
dα11

n

)x11
n
(
dα21

n

)x21
n
(
dα12

n

)x12
n
(
dα22

n

)x22
n

·
(
dβ11

n

)t11
n
(
dβ21

n

)t21
n
(
dβ12

n

)t12
n
(
dβ22

n

)t22
n

·
(
dᾱ11

n

)x11
n−1̂

(
dᾱ21

n

)x21
n−1̂

(
dᾱ12

n

)x12
n−1̂

(
dᾱ22

n

)x22
n−1̂

·
(
dβ̄11

n

)t11
n−2̂

(
dβ̄21

n

)t21
n−2̂

(
dβ̄12

n

)t12
n−2̂

(
dβ̄22

n

)t22
n−2̂

·

 2∏
a,b=1

(
ᾱab

n+1̂α
ab
n

)xab
n
(
β̄ab

n+2̂β
ab
n

)tab
n

 . (2.9)
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Note that these tensor elements are quite similar to the tensor network representation of the
Majorana-Wilson fermion system given in the authors’ previous paper [25]. Indeed, if one
takes a mapping as 11 → 1, 21 → 2, 12 → 3, and 22 → 4, G is exactly the same as that in [25].

The total partition function is then

Z =
∑
{x,t}

∫
DU

∏
n

TFGn

 2∏
a,b=1

(
Uab

n,1

)xab
n
(
Uab

n,2

)tab
n

 2∏
a,b,c,d=1

e
(β/2)Uab

n,1Ubc
n+1̂,2

Udc∗
n+2̂,1

Uad∗
n,2

 .
(2.10)

Note that for the gauge part of the action we can use the normal link variables U rather than
the projected ones U since the real part of UUUU and UUUU are the same.

To consider the integral of the gauge variables, we use the following parameterization
of the gauge elements

Un,µ (θ, α, γ) =
(

cos θn,µe
iαn,µ sin θn,µe

iγn,µ

− sin θn,µe
−iγn,µ cos θn,µe

−iαn,µ

)
. (2.11)

Under this parameterization the Haar measure becomes∫
DU =

∫ ∏
n,µ

dUn,µ =
∏
n,µ

∫ π
2

0
dθn,µ

∫ π

−π
dαn,µ

∫ π

−π
dγn,µ

sin θn,µ cos θn,µ

2π2 . (2.12)

We can now discretize the variables by using the Gaussian quadrature rule. For example,
for a single variable function g, the Gauss-Legendre (GL) quadrature rule is

∫ b

a
dy g(y) ≈ b− a

2

K∑
i=1

wig

(
b− a

2 zi + a+ b

2

)
. (2.13)

K is the order of the Legendre polynomial to be used, zi is the root of the Legendre polynomial,
and wi is the corresponding weight. The higher the order K of the polynomial is, the better
the approximation of the integral is. The formula generalizes to multi variable integrals∏

j

∫ bj

aj

dyj

 g(y1, . . . , yj , . . .) ≈

∏
j

bj − aj

2

∏
ij

K∑
ij=1

wij

 (2.14)

× g

(
b1 − a1

2 zi1 + a1 + b1
2 , . . . ,

bj − aj

2 zij + aj + bj

2 , . . .

)
.

Using this discretization each plaquette interaction factor can be regarded as a twelve
rank tensor

P(ijk)(lmn)(opq)(rst) =
2∏

a,b,c,d=1
e(β/2)UbcUdc∗Uad∗Uab

=
2∏

a,b,c,d=1
exp

{
β

2U
(
π

4 zi + π

4 , πzj , πzk

)
bc
U

(
π

4 zl + π

4 , πzm, πzn

)∗

dc

· U
(
π

4 zo + π

4 , πzp, πzq

)∗

ad
U

(
π

4 zr + π

4 , πzs, πzt

)
ab

}
,

– 5 –
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where z-variable corresponds to each one of the three angles in the parameterization of
the gauge group element in eq. (2.11). For simplicity, we omit showing the indices for
coordinates and directions here.

The number of elements of P , namely K12, still grows rapidly along with K, but one
wants to have a large K to keep the accuracy of the GL quadrature approximation. To
address the large rank of the tensor, the Tucker decomposition can be used to express P as a
product of lower rank tensors. In this paper we apply the higher order orthogonal iteration
(HOOI) algorithm [26] to the plaquette tensor.7

The HOOI algorithm proceeds as follows.

0. Input: an N -rank tensor A whose bond dimension is χ. Output: a core tensor C, whose
bond dimension is χ′ < χ, and a set of unitary matrices V whose dimension is χ′ × χ,
so that the tensor

XI1I2···IN
=

χ′∑
i1,i2,...,iN =1

Ci1i2···iNV
[1]

i1I1
V

[2]
i2I2

· · ·V [N ]
iN IN

(2.15)

approximates A well. For simplicity, here we assume that the length of each direction
is the same for each A and C.

1. Initialize V s as randomly generated unitary matrices.

2. For j-th leg each,

• Apply V [j̃]†s to A for j̃ ̸= j:

Bi1i2···Ij ···iN
=

χ∑
I1,I2,...,Ij−1,Ij+1,...,IN =1

AI1I2···IN
V

[1]†
I1i1

V
[2]†

I2i2
· · ·V [j−1]†

Ij−1ij−1
V

[j+1]†
Ij+1ij+1

· · ·V [N ]†
IN iN

,

(2.16)
• Take a truncated singular value decomposition (SVD) for the j-th leg of B:

Bi1i2···Ij ···iN
≈

χ′∑
k=1

Oi1i2···k···iN
ρkP

†
kIj
, (2.17)

• Update V [j] by P †.

3. Update C as

Ci1i2···iN =
χ∑

I1,I2,...,IN =1
AI1I2···IN

V
[1]†

I1i1
V

[2]†
I2i2

· · ·V [N ]†
IN iN

. (2.18)

4. Iterate until the error |A − X|F/|A|F converges, where | · |F denotes the Frobenius
norm.

7One can of course apply the higher order singular value decomposition (HOSVD) [27] to P . However, the
HOOI has an advantage in terms of both CPU and memory. It is expected that the HOOI reproduces the
result of the HOSVD. Indeed, in the numerical section of this paper, we will show the convergence of this
algorithm for some cases.

– 6 –
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HOOI has a quite tolerable numerical complexity to HOSVD, where SVDs are taken for
each leg of A directly. Another big advantage of HOOI is that one does not need to store
P explicitly in memory. Instead, one can just calculate an element of P on demand. Of
course, this is a tradeoff with computational complexity.

After applying the HOOI, the plaquette tensor P is decomposed into a core tensor S
and a set of unitary matrices V :

Pζn+1̂,2ζn+2̂,1ζn,2ζn,1 (2.19)

≈
D∑

xn,b,tn,b,xn−1̂,b,tn−2̂,b=1
Sxn,btn,bxn−1̂,btn−2̂,b

V
[1]

xn,bζn+1̂,2
V

[2]
tn,bζn+2̂,1

V
[3]

xn−1̂,bζn,2
V

[4]
tn−2̂,bζn,1

,

where D < K3 and where each ζ simply denotes a set of three indices that correspond to
the roots of the Legendre polynomial (see eq. (2.15) for the correspondence). In this way,
one can approximate the plaquette tensor with a memory requirement of O(D4 + 4DK3)
instead of O(K12).

Finally, the full partition function is

Z =
∑
{x,t}

∏
n

∑
ζn,1,ζn,2,x′

n−1̂,b
,t′

n−2̂,b

TFGnSxn,btn,bx′
n−1̂,b

t′
n−2̂,b

 2∏
a,b=1

Uab
n,1 (ζn,1)xab

n Uab
n,2 (ζn,2)tab

n


· V [4]

t′
n−2̂,b

ζn,1
V

[2]
tn−2̂,bζn,1

V
[3]

x′
n−1̂,b

ζn,2
V

[1]
xn−1̂,bζn,2

, (2.20)

where the summation for ζn,1, ζn,2 and for x′
n−1̂,b, t′

n−2̂,b run over K3 and D integers,
respectively.8 By defining the integrated bosonic tensor as

Txntnxn−1̂tn−2̂
=

∑
ζn,1,ζn,2,x′

n−1̂,b
,t′

n−2̂,b

TFxn,ftn,fxn−1̂,ftn−2̂,f
Sxn,btn,bx′

n−1̂,b
t′
n−2̂,b

(2.21)

·

 2∏
a,b=1

Uab
n,1 (ζn,1)xab

n Uab
n,2 (ζn,2)tab

n


· V [4]

tn−2̂,b′ζn,1
V

[2]
tn−2̂,bζn,1

V
[3]

xn−1̂,b′ζn,2
V

[1]
xn−1̂,bζn,2

, (2.22)

the partition function can be written as

Z =
∑
{x,t}

∏
n

Txntnxn−1̂tn−2̂
Gn,xntnxn−1̂tn−2̂

. (2.23)

In this expression the indices with the subscript “f” denote the set of fermionic (binary)
indices; i.e. xf = (x11, x21, x12, x22). Also, the integrated indices are simply shown without
subscript as in x = (xf , xb).

3 Numerical results

In this section, convergence of the HOOI algorithm is examined, and performance of the
proposed construction of tensor network is shown. When taking coarse-graining of networks,
the normal (Grassmann) TRG is adopted throughout this section.

8Note that we assume the weight and the constant factors generated from the Gaussian quadrature are
incorporated into the P tensor. Otherwise one should explicitly have the factors in eq. (2.20).
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3.1 Pure SU(2) gauge theory

Figure 1 shows how the relative error converges for the SU(2) plaquette tensor as the
HOOI proceeds. Here we discretize the plaquette tensor by using the roots of the Legendre
polynomial with varying the number of roots Ngauge to be 3, 4, and 5. Ngauge in this section
is identified as K in the previous section; in other words, we approximate the plaquette tensor
by replacing the integrals of angle by summations over the Ngauge roots of the Legendre
polynomial. With the same notation in eq. (2.19), the error in the figure is defined by∣∣∣P − SV [1]V [2]V [3]V [4]

∣∣∣
F

|P |F
. (3.1)

From the figure we can observe that larger β are relatively difficult although fortunately, the
iteration rapidly converges in all cases. Surprisingly, in the strong coupling region β < 0.5, the
accuracies are beyond the single precision even though the drastic reduction of the number
of d.o.f. (from N3×4

gauge to 84) is taken place.
Next, we show the efficiency of the truncated quadrature scheme by comparing free

energies calculated from the tensor renormalization group with the exact solution. The latter
is easy to derive in two dimensions since the partition function can be reduced to a single
plaquette integral. For the sake of completeness, the partition function of the pure SU(2)
gauge theory in terms of tensors is detailed in the appendix B using the character expansion.
Figures 2 and 3 show the free energy of the pure SU(2) theory and corresponding relative
errors on a L = 4 lattice. In these figures, “Full” indicates that the plaquette tensor with
N3×4

gauge elements is treated as the fundamental tensor in the network. On the other hand,
truncated cases are also shown, where N3×4

gauge elements are reduced to 84 (fixed for any choice
of Ngauge) by using the HOOI algorithm. It is clear from the error analysis that relatively
a small number of terms (i.e. Ngauge) is needed in the quadrature approximation and that
the effect of the further reduction by the HOOI is quite small.

We also find, from the comparison to the relative errors in figure 1, that the β-dependence
of the relative error of lnZ in figure 3 is quite milder; i.e. in figure 1 the scale of vertical
axis is roughly from 10−12 to 10−2, and, on the other hand, that in figure 3 is roughly
from 10−4 to 100 for Ngauge ≥ 3. This might be attributed to some cancellation occurring
among neighboring plaquettes.

3.2 SU(2) theory coupled to reduced staggered fermions

We now turn to the theory including reduced staggered fermions. Figure 4 shows a plot
of the free energy versus β on L = 32 lattice.

To check for the accuracy of the tensor network calculation we have compared the
expectation value of the plaquette with Monte Carlo results.9 This comparison is shown
in figure 5 for a lattice of size L = 32 and a bond dimension of 64 that denotes how many
singular values of the bosonic tensor are kept in the coarse-graining steps. Here the average

9In general the Pfaffian arising in reduced staggered fermions suffers from a sign problem, but one can use
the pseudoreal property of the gauge group to show that this is evaded in the case of SU(2). It can hence be
simulated with a conventional RHMC algorithm.
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Figure 1. Relative errors of the HOOI for the SU(2) plaquette tensor.
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Figure 2. Free energy for pure SU(2) gauge theory as a function of β in two dimensions. Exact
solution is reproduced with 2–3 digits accuracy, so that the exact (purple) line is behind the data points.
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Figure 3. Relative error in the free energy for pure SU(2) in two dimensions.

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

 0  2  4  6  8  10  12

ln
Z

β

GTRG; (bond dim.)=64

Figure 4. Free energy of (massless) reduced staggered fermions coupled to SU(2) gauge fields on
32 × 32 lattice.

plaquettes in the (G)TRG side are computed by the three-point numerical differentiation
of lnZ with respect to β.

Clearly the Monte Carlo agrees well with the tensor network result over a wide range
of β although the small deviation is observed in the large β region.10 It is interesting to
examine in more detail the small β region. This is done in figure 6. The straight line shows a

10We have numerically confirmed that the deviation is due to the accuracy of initial tensor rather than the
bond dimension in the coarse-graining steps.
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fit to the strong coupling result for the average plaquette P

P =
(1

2

)4
+ β

4 , (3.2)

where the intercept arises from the leading contribution to the plaquette from expanding the
fermion hopping term. One can see the stability of TN result and that the TN calculation
finely reproduces the analytical formula.
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4 Summary

In this paper we have shown how to construct a tensor network representing the path
integral of reduced staggered fermions coupled to an SU(2) gauge field which is minimal in
terms of its memory and computational requirements. We have described the complexities
arising in formulating tensor network representations for fermions coupled to non-abelian
gauge fields and shown how the use of reduced staggered fermions combined with a HOOI
modified Gaussian quadrature algorithm for handling the gauge fields, allows for an efficient
tensor representation. We use this representation to compute the free energy and the
average plaquette using the Grassmann tensor renormalization group algorithm finding good
agreement with Monte Carlo results in the case of the latter.

In general one expects that SU(N) gauge theories coupled to reduced staggered fermions
will have sign problems and this is hence the arena in which tensor formulations such as the one
described in this paper will be most useful. We hope to report on such work in the near future.
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A Character expansion formulae

The character expansion is given by

e
(β/2) tr

[
Un,1Un+1̂,2U†

n+2̂,1
U†

n,2

]
=

∞∑
rn=0

Frn (β)χrn

(
Un,1Un+1̂,2U

†
n+2̂,1U

†
n,2

)
. (A.1)

For the SU(2) case, F is expressed using the modified Bessel function of the first kind I:

Fr (β) = I2r (β) − I2r+2 (β) = 2 (2r + 1) I2r+1 (β)
β

. (A.2)

χ is called the character, whose properties are given below.
The character of the product of the group elements can be broken up into the trace over

the product of the matrix represnetation of the group elements:

χrn

(
Un,1Un+1̂,2U

†
n+2̂,1U

†
n,2

)
=

∑
a,b,c,d

D
[rn]
ab (Un,1)D[rn]

bc

(
Un+1̂,2

)
D

[rn]†
cd

(
Un+2̂,1

)
D

[rn]†
da (Un,2)

(A.3)
Note that the dimensions of the matrices (the ranges of a, b, c, d) depend on the label of the
irreducible representation of the group r. D is called the Wigner D-matrix.
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The D-matrices satisfy an orthogonality condition∫
dUD[r1]

i1j1
(U)D[r2]∗

i2j2
(U) = 1

2r1 + 1δr1r2δi1i2δj1j2 . (A.4)

B Pure SU(2) with character expansion

The lattice action of the 2D pure SU(2) model is given by

S = −β2
∑

n

tr
[
Un,1Un+1̂,2U

†
n+2̂,1U

†
n,2

]
(B.1)

with the inverse coupling constant β = 1/g2 and the link variables Un,µ = exp{igAi
n,µT

i}.
T is the generator of SU(2).

We make a tensor network representation of the partition function

Z =
∫

DUe−S

=
∫

DU
∏
n

e
(β/2) tr

[
Un,1Un+1̂,2U†

n+2̂,1
U†

n,2

]
, (B.2)

where DU = ∏
n dUn,1dUn,2 is the SU(2) Haar measure. By using the well known formu-

lae (A.1), (A.3), the partition function can be written using the Wigner D-matrices:

Z =
∑

{r,x,t,x′,t′}

∏
n

Frn (β)
∫

dUn,1D
[rn]
t′n,1t′n,2

(Un,1)D[rn−2̂]∗
tn−2̂,1tn−2̂,2

(Un,1)

·
∫

dUn,2D
[rn]∗
x′

n,1x′
n,2

(Un,2)D[rn−1̂]
xn−1̂,1xn−1̂,2 (Un,2)

· δt′n,2xn,1δxn,2tn,2δtn,1x′
n,2
δx′

n,1t′n,1
.

(B.3)

The summation ∑{·} denotes the summation over the corresponding indices all over the sites
and links; this rule is inherited throughout this paper.

Now we can integrate out the original link variables by using the orthogonality condi-
tion (A.4) and obtain a tensor network representation:

Z =
∑

{r,x,t}

∏
n

Frn (β)
(2rn + 1)2 δrnrn−1̂

δrnrn−2̂
δtn−2̂,2xn,1δxn,2tn,2δtn,1xn−1̂,2

δxn−1̂,1tn−2̂,1
. (B.4)

An object in the product in the righthand side can be regarded as a tensor placed on the
center of each plaquette.

Figure 7 shows the decay of the weight factor in eq. (B.4) normalized by F0(β). To make
a comparison between the HOOI and the character expansion, one can consider to truncate
the summation of r in eq. (B.4). Compared to figure 1, the qualitative behavior is the same
in the sense that larger β is associated with smaller decay rate so that the truncation leads
to worse approximation. In terms of quantity, e.g. truncating ∑r with 5 dominant terms
means that we pick r = 0, 1, 2, 3, 4. This correspondence lets us roughly compare the values
in the vertical axis between figures 1 and 7; however, one has to note that figure 1 shows the
relative error for the discretized plaquette while figure 7 does for the partition function itself.

Note that all the indices associated to plaquette (r in eq. (B.4)) take the same value in
two dimensions. In other words, if one fixes one r, every other r takes the same value owing
to δrnrn−1̂

and δrnrn−2̂
. One may call this property the Gauss’s law.
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