
 

CP asymmetries of B̄ → Xs=Xdγ in models with three Higgs doublets

A. G. Akeroyd ,1,* Stefano Moretti,1,† Tetsuo Shindou ,2,‡ and Muyuan Song1,§
1School of Physics and Astronomy, University of Southampton, Highfield,

Southampton SO17 1BJ, United Kingdom
2Division of Liberal-Arts, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan

(Received 18 September 2020; accepted 11 January 2021; published 29 January 2021)

Direct CP asymmetries (ACP) in the inclusive decays of B̄ → Xsγ and B̄ → Xsþdγ of the order of
1% will be probed at the BELLE II experiment. In this work, three such asymmetries are studied in the
context of a three-Higgs-doublet model (3HDM), and it is shown that all three ACP can be as large as the
current experimental limits. Of particular interest is the ACP for B̄ → Xsþdγ, which is predicted to be
effectively zero in the Standard Model (SM). A measurement of 2.5% or more for this observable with
the full BELLE II data would give 5σ evidence for physics beyond the SM. We display parameter space in
the 3HDM for which such a clear signal is possible.
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I. INTRODUCTION

A new particle with a mass of around 125 GeV was
discovered by the ATLAS and CMS collaborations of
the Large Hadron Collider (LHC) [1,2]. At present, the
measurements of its properties are in very good agreement
(within experimental error) with those of the Higgs boson
of the Standard Model (SM), and hence the simplest
interpretation is that the 125 GeV scalar boson is the (lone)
Higgs boson of the SM (h). However, an alternative
possibility is that it is the first scalar to be discovered
from a nonminimal Higgs sector, which contains additional
scalar isospin doublets or higher representations (e.g.,
scalar isospin triplets). This scenario will be probed by
more precise future measurements of its branching ratios
(BRs), which might eventually show deviations from
those of the SM Higgs boson. There could also be the
possibility of discovering additional electrically neutral
scalars (H or A) and/or electrically charged scalars (H�),
and such searches form an active part of the LHC
experimental program. In the context of a two-Higgs-
doublet model (2HDM) the lack of direct observation of
an H� at the LHC together with precise measurements of
SM processes exclude parameter space of tan β (which is

present in the Yukawa couplings) and mH� (mass of the
H�), where tan β ¼ v2=v1 and v1 and v2 are the vacuum
expectation values (VEVs) of the two Higgs doublets,
respectively (for reviews see, e.g., [3,4]).
In a three-Higgs-doublet model (3HDM) the Yukawa

couplings of the two charged scalars depend on the four
free parameters (tan β, tan γ, θ, and δ) of a unitary matrix
that rotates the charged scalar fields in the weak eigenbasis
to the physical charged scalar fields [5]. The phenomenol-
ogy of the lightest H� in a 3HDM [6–8] can be different to
that of the H� in a 2HDM due to the larger number of
parameters that determine its fermionic couplings.
The decay b → sγ, whose BR has been measured to be

in good agreement with that of the SM, provides strong
constraints on the parameter space of charged scalars in
2HDMs and 3HDMs. In the well-studied 2HDM type II the
boundmH� > 480 GeV [9] can be obtained and is valid for
all tan β. More precise measurements of BRðb → sγÞ at the
ongoing BELLE II experiment will sharpen these con-
straints, but it is very unlikely that measurements of
BRðb → sγÞ alone could provide evidence for the existence
of an H�. However, the direct CP asymmetry in b → sγ
will be probed at the 1% level, and can be enhanced
significantly above the SM prediction by additional com-
plex phases that are present in models of physics beyond
the SM [10]. In the context of 3HDMs we study the
magnitude of three different direct CP asymmetries that
involve b → sγ, including the contribution of both charged
scalars for the first time. We display parameter space in
3HDMs that would give a clear signal for these three
observables at the BELLE II experiment.
This work is organized as follows. In Sec. II the

measurements of b → sγ are summarized and the CP
asymmetries in this decay are described. In Sec. III the
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contribution of the charged scalars in a 3HDM to the partial
decay width of b → sðdÞγ is presented. Section IV contains
our results, and conclusions are given in Sec. V.

II. DIRECT CP ASYMMETRIES
IN B̄ → Xsγ AND B̄ → Xs+ dγ

In this section the experimental measurements of the
inclusive decays B̄ → Xsγ and B̄ → Xsþdγ (charged con-
jugated processes are implied) are described, followed by a
discussion of direct CP asymmetries in these decays. The
symbol B signifies Bþ or B0 (which contain anti-b quarks)

while B̄ signifies B− or B0 (which contain b quarks). The
symbol Xs denotes any hadronic final state that originates
from a strange quark hadronizing (e.g., states with at least
one kaon), Xd means any hadronic final state that originates
from a down quark hadronizing (e.g., states with at least
one pion), and Xsþd denotes any hadronic final state that is
Xs or Xd.

A. Experimental measurements
of B̄ → Xsγ and B̄ → Xs+ dγ

There are two ways to measure the BR of the inclusive
decays B̄ → Xs=dγ:

(i) The fully inclusive method;
(ii) The sum-of-exclusives method (also known as

“semi-inclusive”).
In the fully inclusive approach, only a photon from the

signal B̄ (or B) meson in the BB̄ event, which decays via
b → s=dγ, is selected. Consequently, this method cannot
distinguish between hadronic states Xs and Xd, and what is
measured is actually the sum of B̄ → Xsγ and B̄ → Xdγ.
From the other B̄ (or B) meson (“tag B meson”) either
a lepton (e or μ) can be selected or full reconstruction
(either hadronic or semileptonic) can be carried out. The
former method has a higher signal efficiency, but the
latter method has greater background suppression.
Measurements of B̄ → Xsþdγ using the fully inclusive
method with leptonic tagging have been carried out by
the CLEO collaboration [11], the BABAR collaboration
[12], and the BELLE collaboration [13]. A measurement
of B̄ → Xsþdγ using the fully inclusive method with full
(hadronic) reconstruction of the tag B̄ meson has so far
only been carried out by the BABAR collaboration [14].
At the current integrated luminosities (0.5 to 1 ab−1) the
errors associated with measurements that involve full
reconstruction are significantly larger than the errors from
measurements with leptonic tagging. However, with the
larger integrated luminosity at BELLE II (50 ab−1) it is
expected that both approaches will provide roughly similar
errors. To obtain a measurement of B̄ → Xsγ alone, the
contribution of B̄ → Xdγ (which is smaller by roughly
jVtd=Vtsj2 ≈ 1=20 in the SM, which has also been con-
firmed experimentally) is subtracted.

In the sum-of-exclusives approach the selection criteria
are sensitive to as many exclusive decays as possible in the
hadronic final states Xs and Xd of the signal B̄, as well as
requiring a photon from b → s=dγ. In contrast to the fully
inclusive approach, no selection is made on the other B
meson in the BB̄ event. The sum-of-exclusives method is
sensitive to which decay, b → sγ or b → dγ, occurred and
so this approach measures B̄ → Xsγ or B̄ → Xdγ. It has
different systematic uncertainties to that of the fully
inclusive approach. Measurements of B̄ → Xsγ have been
carried out by the BABAR collaboration [15] and the
BELLE collaboration [16]. Currently, 38 exclusive decays
in B̄ → Xsγ (about 70% of the total BR) and 7 exclusive
decays in B̄ → Xdγ [17] are included. At current integrated
luminosities, the error in the measurement of B̄ → Xsγ is
about twice that of the fully inclusive approach, whereas at
BELLE II integrated luminosities the latter is still expected
to give the more precise measurement.
Measurements in both of the above approaches are

made with a lower cutoff on the photon energy Eγ in
the range 1.7–2.0 GeV, and then an extrapolation is made to
Eγ > 1.6 GeV using theoretical models. The current world
average for the above six measurements of B̄ → Xsγ is [18]

Bexp
sγ ¼ð3.32�0.15Þ×10−4 with Eγ > 1.6GeV: ð1Þ

The error is currently 4.5% and is expected to be reduced
to around 2.6% with the final integrated luminosity at the
BELLE II experiment [19].
The theoretical prediction including corrections to order

α2s [i.e., next-to-next-to-leading order (NNLO)] is [20]

BSM
sγ ¼ ð3.40� 0.17Þ × 10−4 with Eγ > 1.6 GeV:

There is excellent agreement between the world average
and the NNLO prediction in the SM. Consequently, Bexp

sγ

allows stringent lower limits to be derived on the mass of
new particles, most notably the mass of the charged scalar
(mH� > 480 GeV [9], as mentioned earlier) in the 2HDM
(type II).

B. Direct CP asymmetries of B̄ → Xsγ
and B̄ → Xs + dγ

Although it is clear that measurements of BRðB̄ → XsγÞ
alone will not provide evidence for new physics with
BELLE II data, the direct CP asymmetry in this decay
might [10]. Direct CP asymmetries in B̄ → Xsγ and
B̄ → Xdγ are defined as follows:

AXsðdÞγ ¼
ΓðB̄ → XsðdÞγÞ − ΓðB → Xs̄ðd̄ÞγÞ
ΓðB̄ → XsðdÞγÞ þ ΓðB → Xs̄ðd̄ÞγÞ

: ð2Þ

If B is Bþ (and so B̄ ¼ B−Þ in the definition of AXsðdÞγ then
the CP asymmetry is for the charged B mesons, is labelled
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as A�
Xsγ

or A�
Xdγ

, and can be individually probed in a search
that reconstructs Xs or Xd (the sum-of-exclusives method).
If B is B0 the CP asymmetry is for the neutral B mesons,
is labelled as A0

Xsγ
or A0

Xdγ
, and can also be individually

probed. A general formula for the short-distance contribu-
tion (from “direct photons”) to AXsðdÞγ in terms of Wilson
coefficients was derived in Ref. [10]. Prior to the pub-
lication of Ref. [10] a few works [21–23] had calculated
AXsγ in the SM and in specific extensions of it that include a
charged Higgs boson. The formula for AXsðdÞγ in Ref. [10]
was the first complete calculation of the asymmetry in
terms of all of the contributingWilson coefficients, and was
extended 12 years later to include the long-distance
contributions (from “resolved photons”) in Ref. [24]. In
approximate form AXsðdÞγ is as follows:

AXsðdÞγ ≈ π

���
40

81
−
40

9

Λc

mb

�
αs
π
þ Λ̃c

17

mb

�
Im

C2

C7γ

−
�
4αs
9π

− 4παsespec
Λ̃78

mb

�
Im

C8g

C7γ

−
�
Λ̃u
17 − Λ̃c

17

mb
þ 40

9

Λc

mb

αs
π

�
Im

�
ϵsðdÞ

C2

C7γ

��
:

ð3Þ

The above four asymmetries are obtained from Eq. (3) with
the choices for espec (the charge of the spectator quark) and
ϵsðdÞ given in Table I. The parameters Λ̃u

17; Λ̃c
17; Λ̃78 are

hadronic parameters that determine the magnitude of the
long-distance contribution. Their allowed ranges were
updated in Ref. [25] to be as follows:

−660 MeV < Λ̃u
17 < þ660 MeV;

−7 MeV < Λ̃c
17 < þ10 MeV;

17 MeV < Λ̃78 < 190 MeV: ð4Þ

The short-distance contributions to AXsðdÞγ are the terms

that are independent of Λij, and A0
XsðdÞγ ¼ A�

XsðdÞγ if long-

distance terms are neglected. Other parameters are as
follows: Λc ¼ 0.38 GeV, ϵs ¼ ðVubV�

usÞ=ðVtbV�
tsÞ ¼

λ2ðiη̄ − ρ̄Þ=½1 − λ2ð1 − ρ̄þ iη̄Þ� (in terms of Wolfenstein

parameters), and ϵd ¼ ðVubV�
udÞ=ðVtbV�

tdÞ ¼ ðρ̄ − iη̄Þ=
ð1 − ρ̄þ iη̄Þ. The Ci’s are Wilson coefficients of relevant
operators that are listed in Ref. [10]. In the SM the Wilson
coefficients are real and the only term in AXsðdÞγ that is

nonzero is the term with ϵsðdÞ. Due to ϵs being of order λ2

while ϵd is of order 1, for the imaginary parts one has
ImðϵdÞ=ImðϵsÞ ≈ −22. For the short-distance contribution
only [i.e., neglecting the term with ðΛu

17 − Λc
17Þ=mb in

Eq. (3)] one has AXsγ ≈ 0.5% and AXdγ ≈ 10%. The small
value of AXsγ in the SM suggests that this observable could
probe models of physics beyond the SM that contain
Wilson coefficients with an imaginary part.
After the publication of Ref. [10], several works calcu-

lated AXsγ (for the short-distance contribution only) in the
context of specific models of physics beyond the SM [26],
usually in supersymmetric extensions of it. Values of AXsγ

of up to �16% were shown to be possible in specific
models, while complying with stringent constraints from
electric dipole moments (EDMs). Including the long-
distance contributions, it was shown in Ref. [24] that the
SM prediction using Eq. (3) is enlarged to the range
−0.6% < AXsγ < 2.8%, and (using updated estimates of
theΛij parameters) is further increased to−1.9% < AXsγ <
3.3% in Ref. [25]. This revised SM prediction has
decreased the effectiveness of AXsγ as a probe of physics
beyond the SM. Consequently, in Ref. [24] the difference
of CP asymmetries for the charged and neutral B mesons
ΔAXsγ ¼ A�

Xsγ
−A0

Xsγ
was proposed, which is given by

ΔAXsγ ≈ 4π2αs
Λ̃78

mb
Im

C8g

C7γ
: ð5Þ

This formula is obtained from Eq. (3) in which only the
terms with espec do not cancel out. The SM prediction is
ΔAXsγ ¼ 0 (due to the Wilson coefficients being real) and
hence this observable is potentially a more effective probe
of new physics than AXsγ. Note that ΔAXsγ depends on the
product of a long-distance term (Λ̃78, whose value is only
known to within an order of magnitude) and two short-
distance terms (C8 and C7).
An alternative observable is the untagged (fully inclu-

sive) asymmetry given by

AXsþdγ ¼
ðA0

Xsγ
þ r0�A�

Xsγ
Þ þ RdsðA0

Xdγ
þ r0�A�

Xdγ
Þ

ð1þ r0�Þð1þ RdsÞ
: ð6Þ

Here Rds is the ratio BRðB̄ → dγÞ=BRðB̄ → sγÞ≈
jVtd=Vtsj2. The parameter r0� is defined as the following
ratio:

r0� ≡ Nþ
Xs

þ N−
Xs

N 0̄
Xs

þ N0
Xs

; ð7Þ

TABLE I. The choices of espec and ϵsðdÞ in the generic formula
for AXsðdÞγ that give rise to the four asymmetries.

AXsðdÞγ espec ϵsðdÞ

A0
Xsγ

− 1
3

ϵs
A�

Xsγ
2
3

ϵs
A0

Xdγ
− 1

3
ϵd

A�
Xdγ

2
3

ϵd
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where Nþ
Xs

is the number of Bþ mesons that decay to Xsγ,
etc. Experimentally, r0� ≈ 1.03 [19] and in our numerical
analysis we take r0� ¼ 1. In the fully inclusive measure-
ment of BRðb → s=dγÞ the asymmetry ACPðB̄ → XsþdγÞ
is measured by counting the difference in the number of
positively and negatively charged leptons from the tagged
(not signal) B meson. The SM prediction of ACPðB̄ →
XsþdγÞ is essentially 0 [10,27] (up to tiny m2

s=m2
b correc-

tions), even with the long-distance contribution included.
Hence this observable is a cleaner test of new physics than
AXsγ . The first studies of the magnitude of the untagged
asymmetry in the context of physics beyond the SMwere in
Ref. [28], and the importance of this observable was
emphasized in Ref. [29]. In this work we will consider
the above three direct CP asymmetries in the context of
3HDMs: i) AXsγ, ii) ACPðB̄ → XsþdγÞ, iii) ΔAXsγ .
Measurements of all three asymmetries have been

carried out, and the most recent BELLE and BABAR
measurements are summarized in Table II. In Table II
the CP asymmetryAtot

Xsγ
would have the same magnitude as

the average Ā ¼ ðA0
Xsγ

þA�
Xsγ

Þ=2 if the production cross-

sections of BþB− and B0B0 were the same. The BELLE
measurement [30] of Ā ¼ ð0.91� 1.21� 0.13Þ% differs
only slightly from the BELLE measurement of Atot

Xsγ
in

Table II. The world averages are taken from Ref. [31].
The given averages for Atot

Xsγ
and ΔAXsγ are obtained

from the two displayed measurements in Table II, while
the average for ACPðB̄ → XsþdγÞ also includes two earlier
BABAR measurements and the CLEO measurement
ð−7.9� 10.8� 2.2%Þ [32].
At BELLE II all three asymmetries will be measured

with greater precision [19]. At present around 74 fb−1 of
integrated luminosity have been accumulated, which is
about one-tenth of the integrated luminosity at the BELLE
experiment, and about one-sixth that at the BABAR experi-
ment. By the end of the year 2021, about 1 ab−1 is

expected, and thus measurements of b → sγ at BELLE
II will then match (or better) in precision those at BELLE
and BABAR. For an integrated luminosity of 50 ab−1

(which is expected to be obtained by the end of the
BELLE II experiment around the year 2030), the estimated
precision forAtot

Xsγ
is 0.19%, forACPðB̄ → XsþdγÞ is 0.48%

(leptonic tag) and 0.7% (hadronic tag), and for ΔAXsγ is
0.3% (sum-of-exclusives) and 1.3% (fully inclusive with
hadronic tag, and so it measures a sum of b → sγ and
b → dγ). These numbers are summarized in Table III,
together with the SM predictions. Due to the SM prediction
of ACPðB̄ → XsþdγÞ being essentially zero, a central value
of 2.5% with 0.5% error would constitute a 5σ signal of
physics beyond the SM. ForΔAtot

Xsγ
, whose prediction in the

SM is also essentially zero, a central value of 1.5% with
0.3% error would constitute a 5σ signal. Note that the
current 2σ allowed range ofAtot

Xsγ
is −0.7% < Atot

Xsγ
< 3.7%

(−1.8% < Atot
Xsγ

< 4.8% at 3σ). Comparing this range with
the SM prediction of −1.9% < Atot

Xsγ
< 3.3% shows that it

is less likely that the observableAtot
Xsγ

alone could provide a
clear signal of physics beyond the SM, e.g., a future central
value of above 4.3% (which is outside the current 2σ range)
with the expected error of 0.19% would be required to give
a 5σ discrepancy from the upper SM prediction of 3.3%.

III. THE DECAYS B̄ → Xsγ AND
B̄ → Xs + dγ IN THE 3HDM

In this section the theoretical structure of the 3HDM
is briefly introduced, followed by a discussion of the
Wilson coefficients. Finally, the expressions for the BRs
of B̄ → Xsγ and B̄ → Xdγ are given.

A. Fermionic couplings of the charged scalars
in a 3HDM

In a 3HDM, two SUð2Þ ⊗ Uð1Þ isospin scalar doublets
(with hypercharge Y ¼ 1) are added to the Lagrangian of

TABLE II. Measurements (given as a percentage) ofAtot
Xsγ

,ACPðB̄ → XsþdγÞ, and ΔAXsγ at BELLE, BABAR, and
the world average.

BELLE BABAR World average

Atot
Xsγ

ð1.44� 1.28� 0.11Þ% [30] ð1.73� 1.93� 1.02Þ% [33] 1.5%� 1.1% [31]
ACPðB̄ → XsþdγÞ ð2.2� 3.9� 0.9Þ% [34] ð5.7� 6.0� 1.8Þ% [12] 1.0%� 3.1% [31]
ΔAXsγ ð3.69� 2.65� 0.76Þ% [30] ð5.0� 3.9� 1.5Þ% [33] 4.1%� 2.3% [31]

TABLE III. SM predictions of Atot
Xsγ

, ACPðB̄ → XsþdγÞ, and ΔAXsγ , and expected experimental errors in their
measurements at BELLE II with 50 ab−1.

SM Prediction Leptonic tag Hadronic tag Sum of exclusives

Atot
Xsγ

−1.9% < AXsγ < 3.3% x x 0.19%
ACPðB̄ → XsþdγÞ 0 0.48% 0.70% x
ΔAXsγ 0 x 1.3% 0.3%
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the SM. There are two (physical) charged scalars, and for a
more detailed description of the model we refer the reader
to Refs. [35,36]. In this work we only consider 3HDMs in
which all scalar doublets have VEVs (sometimes called
“active doublets”). These models do not provide a dark
matter candidate, unlike 3HDMs in which one or two
doublets do not obtain a VEV (“inert doublets”), and thus
the lightest inert scalar provides a dark matter candidate
[37–41]. However, theoretical/experimental motivation for
the three active scalar doublets includes:

(i) Insights into a possible solution of the flavor
problem (i.e., the mixings and masses of the SM
fermions) [42];

(ii) A strongly first-order electroweak phase transition,
which occurs in a sizeable parameter space, e.g.,
see [43] in the context of a 3HDM with two inert
doublets, which has essentially the same scalar
potential as 3HDMs with three active doublets;

(iii) A greatly increased amount of CP violation relative
to the SM [42] and a mechanism for generating a
baryon asymmetry in the universe via the decay of
neutral Higgs bosons [44];

(iv) In the aforementioned 3HDMs with inert doublets,
CP violation in the inert sector only influences the
observable sector through loop effects [45–48], and
hence its impact is suppressed with respect to the
effects studied in this work (in which the CP
violating phases enter at tree-level);

(v) The 3HDM with three active doublets is a good
benchmark model for investigating the phenomeno-
logical effects of a CP violating phase in charged
Higgs interactions. In 2HDMs there is no CP
violating phase in the charged Higgs sector.

In order to eliminate tree-level flavor changing neutral
currents (FCNCs) that are mediated by scalars, the cou-
plings of the scalar doublets to fermions (“Yukawa cou-
plings”) are assumed to be invariant under certain discrete
symmetries [a requirement called “natural flavor conser-
vation” (NFC), e.g., see Refs. [3,49]]. Each field in the
Yukawa couplings (fermionic singlet fields, fermionic
doublet fields, and scalar doublet fields) is assigned a
charge under three Z2 symmetries. Requiring that the
Lagrangian is invariant under these three Z2 symmetries
(which are only softly broken by dimension 2 terms in the
scalar potential) limits the possible Yukawa couplings such
that each fermion receives its mass from, at most, one VEV.
In this scenario, the fermionic couplings of the neutral
scalars are diagonal when written in terms of the neutral
scalar mass eigenstates, and thus FCNCs that are mediated
by scalars are absent at tree-level. There are five distinct
3HDMs that have NFC (each having different assignments
of charges under the Z2 symmetries), and these 3HDMs
are listed in Table IV. The Lagrangian that describes the
interactions of H�

1 and H�
2 (the two charged scalars of the

3HDM, which we do not order in mass) with the fermions
is given as follows:

LH� ¼ −
� ffiffiffi

2
p

Vud

v
ūðmdX1PR þmuY1PLÞdHþ

1 þ
ffiffiffi
2

p
ml

v
Z1νLlRH

þ
1 þ H:c:

�

þ
� ffiffiffi

2
p

Vud

v
ūðmdX2PR þmuY2PLÞdHþ

2 þ
ffiffiffi
2

p
ml

v
Z2νLlRH

þ
2 þ H:c:

�
: ð8Þ

Here uðdÞ refers to the up(down)-type quarks, and l refers to
the electron, muon, and tau. In a 2HDM there is only one
charged scalar, and the parameters X, Y, and Z (with no
subscript) are equal to tan β or cot β (where tan β ¼ v2=v1, the
ratio of vacuum expectation values). In contrast, in a 3HDM
theXi,Yi, andZi (i ¼ 1, 2) eachdependon fourparametersof

a unitary matrix U, and thus the phenomenology of H�
1 and

H�
2 can differ from that of H� in a 2HDM. This matrix U

connects the charged scalar fields in the weak eigenbasis
ðϕ�

1 ;ϕ
�
2 ;ϕ

�
3 Þ with the physical scalar fields ðH�

1 ; H
�
2 Þ and

the charged Goldstone boson G� as follows:
0
BB@

Gþ

Hþ
1

Hþ
2

1
CCA ¼ U

0
BB@

ϕþ
1

ϕþ
2

ϕþ
3

1
CCA: ð9Þ

The couplings Xi, Yi, and Zi in terms of the elements of U
are [36]

X1 ¼
U†

d2

U†
d1

; Y1 ¼ −
U†

u2

U†
u1

; Z1 ¼
U†

l2

U†
l1

; ð10Þ

and

TABLE IV. The five versions of the 3HDM with NFC, and the
corresponding values of u, d, and l. The choice of u ¼ 2 means
that the up-type quarks receive their mass from the VEV v2, and
likewise for d (down-type quarks) and l (charged leptons).

u d l

3HDM (type I) 2 2 2
3HDM (type II) 2 1 1
3HDM (lepton-specific) 2 2 1
3HDM (flipped) 2 1 2
3HDM (democratic) 2 1 3
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X2 ¼
U†

d3

U†
d1

; Y2 ¼ −
U†

u3

U†
u1

; Z2 ¼
U†

l3

U†
l1

: ð11Þ

The values of d, u, and l in these matrix elements are
given in Table IV and depend on which of the five distinct
3HDMs (with NFC) is being considered. The choice of
d ¼ 1, u ¼ 2, and l ¼ 3 indicates that the down-type
quarks receive their mass from v1, the up-type quarks
from v2, and the charged leptons from v3 (and is called the
“democratic 3HDM”). The other possible choices of d, u,
and l in a 3HDM are given the same names as the four
types of 2HDM.
The elements of the matrix U can be parametrized by

four parameters–tan β, tan γ, θ, and δ–where

tan β ¼ v2=v1; tan γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
=v3: ð12Þ

The angle θ and phase δ can be written explicitly as
functions of several parameters in the scalar potential [36].
The explicit form of U is

U ¼

0
B@

1 0 0

0 e−iδ 0

0 0 1

1
CA
0
B@

1 0 0

0 cθ sθeiδ

0 −sθe−iδ cθ

1
CA

×

0
B@

sγ 0 cγ
0 1 0

−cγ 0 sγ

1
CA
0
B@

cβ sβ 0

−sβ cβ 0

0 0 1

1
CA

¼

0
B@

sγcβ sγsβ cγ

−cθsβe−iδ − sθcγcβ cθcβe−iδ − sθcγsβ sθsγ

sθsβe−iδ − cθcγcβ −sθcβe−iδ − cθcγsβ cθsγ

1
CA:

ð13Þ

Here s and c denote the sine or cosine of the respective
angle. Hence the functional forms of Xi, Yi, and Zi in a
3HDM depend on four parameters. As mentioned earlier,
this is in contrast to the analogous couplings in the 2HDM
for which tan β is the only free coupling parameter.
The parameters Xi, Yi, and Zi are constrained (for a

specific value of mH�
i
) by direct searches for H�

i (e.g.,
at the LHC) and by their effect on low-energy observables
in flavor physics. A summary of these constraints can be
found in Ref. [36], in which the lightest charged scalar is
assumed to give the dominant contribution to the observ-
able being considered. A full study in the context of the
3HDM with both charged scalars contributing significantly
has not been performed, and is beyond the scope of this
work. The coupling Yi is most strongly constrained from
the process Z → bb̄ from LEP data. For mH� around
100 GeV the constraint is roughly jYij < 0.8 (assuming
jXij ≤ 50, so that the dominant contribution is from the Yi

coupling), and weakens with increasing mass of the
charged scalar. Constraints on the Xi and Zi are weaker
and we take jXij < 50 and jZij < 50 as being representative
of these constraints for mH�

i
around 100 GeV.

The couplings Zi do not enter the partial width of
b → sγ, and only the couplings to quarks are relevant
(Xi and Yi). Consequently, the partial width for b → sγ in
type I and the lepton-specific structures (which have
identical functional forms for Xi and Yi due to u ¼ d in
Table IV) has the same dependence on the parameters ofU.
Likewise, the partial width for b → sγ in type II, flipped
and democratic structures (u ≠ d in Table IV) are the same.
The contribution of H�

1 and H�
2 to BRðB̄ → XsγÞ has been

studied in the 3HDM at the leading order (LO) in Ref. [50]
(no αs corrections arising from diagrams with charged
scalars) and at next-to-leading order (NLO) in Ref. [51]
(αs corrections arising from diagrams with charged scalars).
In Ref. [51] the effect of a nonzero phase δwas not studied,
and direct CP asymmetries were not considered. Previous
studies of AXsγ (and AXdγ), but not ACPðB̄ → XsþdγÞ and
ΔAXsγ , in models with one charged scalar (e.g., 2HDM, or
the lightest H� of a 3HDM or multi-Higgs doublet model)
have been carried out in Refs. [21–23,52–54].

B. Wilson coefficients in 3HDM

The direct CP asymmetry given by Eq. (3) is written in
terms of Wilson coefficients, which (for B observables) are
generally evaluated at the scale of μb ¼ mb. We use the
explicit formulae in Ref. [23] for the Wilson coefficients at
LO and NLO in the 2HDM, and apply them to the 3HDM
(generalizing the expressions to account for the two
charged scalars). The effective Hamiltonian relevant for
radiative B–decays (with jΔBj ¼ jΔSj ¼ 1) is

Heff ¼ −
4GFffiffiffi

2
p V⋆

tsVtb

X8
i¼1

CiðμÞOiðμÞ: ð14Þ

The operatorsO2ðμÞ,O7ðμÞ, andO8ðμÞ are most important
for our purposes, but all eight operators are listed below:

O1¼ðs̄LγμTacLÞðc̄LγμTabLÞ; O2¼ðs̄LγμcLÞðc̄LγμbLÞ;
O3¼ðs̄LγμbLÞ

X
q

ðq̄γμqÞ; O4¼ðs̄LγμTabLÞ
X
q

ðq̄γμTaqÞ;

O5¼ðs̄LγμγνγρbLÞ
X
q

ðq̄γμγνγρqÞ;

O6¼ðs̄LγμγνγρTabLÞ
X
q

ðq̄γμγνγρTaqÞ;

O7¼
e

16π2
m̄bðμÞðs̄LσμνbRÞFμν;

O8¼
gs

16π2
m̄bðμÞðs̄LσμνTabRÞGa

μν; ð15Þ
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where Ta (a ¼ 1, 8) are SUð3Þ color generators and gs and
e are the strong and electromagnetic coupling constants.
The LO Wilson coefficients [50] at the matching scale

μW ¼ mW are as follows:

C0;eff
2 ðμWÞ ¼ 1; ð16Þ

C0;eff
i ðμWÞ ¼ 0 ði ¼ 1; 3; 4; 5; 6Þ; ð17Þ

C0;eff
7γ ðμWÞ ¼ C0

7;SM þ jY1j2C0
7;Y1Y1

þ jY2j2C0
7;Y2Y2

þ ðX1Y�
1ÞC0

7;X1Y1
þ ðX2Y�

2ÞC0
7;X2Y2

; ð18Þ

C0;eff
8g ðμWÞ ¼ C0

8;SM þ jY1j2C0
8;Y1Y1

þ jY2j2C0
8;Y2Y2

þ ðX1Y�
1ÞC0

8;X1Y1
þ ðX2Y�

2ÞC0
8;X2Y2

: ð19Þ

Terms with X�
1Y1, X�

2Y2, jX1j2, and jX2j2 are absent because
ms ¼ 0 (as is usually taken) in the effective Hamiltonian.
Explicit forms for all C0

7 and C0
8 are given in Ref. [23];

those for the SM contribution are functions of m2
t =m2

W
while those for H�

1 and H�
2 are functions of m2

t =m2
H�

1

and

m2
t =m2

H�
2

, respectively.

The NLOWilson coefficients at the matching scale are as
follows:

C1;eff
1 ðμWÞ ¼ 15þ 6 ln

μ2W
M2

W
; ð20Þ

C1;eff
4 ðμWÞ ¼ E0 þ

2

3
ln

μ2W
M2

W
þ jY1j2EH2

þ jY2j2EH3
; ð21Þ

C1;eff
i ðμWÞ ¼ 0 ði ¼ 2; 3; 5; 6Þ; ð22Þ

C1;eff
7γ ðμWÞ ¼ C1;eff

7;SMðμWÞ þ jY1j2C1;eff
7;Y1Y1

ðμWÞ
þ jY2j2C1;eff

7;Y2Y2
ðμWÞ þ ðX1Y�

1ÞC1;eff
7;X1Y1

ðμWÞ
þ ðX2Y�

2ÞC1;eff
7;X2Y2

ðμWÞ; ð23Þ

C1;eff
8g ðμWÞ ¼ C1;eff

8;SMðμWÞ þ jY1j2C1;eff
8;Y1Y1

ðμWÞ
þ jY2j2C1;eff

8;Y2Y2
ðμWÞ þ ðX1Y�

1ÞC1;eff
8;X1Y1

ðμWÞ
þ ðX2Y�

2ÞC1;eff
8;X2Y2

ðμWÞ: ð24Þ

Explicit forms for all functions are given in Ref. [23].
Renormalization group running is used to evaluate the
Wilson coefficients at the scale μ ¼ mb.
The partial width for B̄ → Xsγ has four distinct parts:

i) Short-distance contribution from the b → sγ partonic
process (to a given order in perturbation theory); ii) Short-
distance contribution from the b → sγg partonic process;
iii) Nonperturbative corrections that scale as 1=m2

b and
iv) Nonperturbative corrections that scale as 1=m2

c, respec-
tively. The partial width of B̄ → Xsγ is as follows:

ΓðB̄→ XsγÞ ¼
G2

F

32π4
jV�

tsVtbj2αemm5
b

�
jD̄j2 þAþ δNP

γ

m2
b

jC0;eff
7 ðμbÞj2 þ

δNP
c

m2
c
Re

�
½C0;eff

7 ðμbÞ�� ×
�
C0;eff
2 ðμbÞ−

1

6
C0;eff
1 ðμbÞ

���
:

ð25Þ

The short-distance contribution is contained in jD̄j2, with D̄
given by

D̄ ¼ C0;eff
7 ðμbÞ þ

αsðμbÞ
4π

½C1;eff
7 ðμbÞ þ VðμbÞ�: ð26Þ

The Wilson coefficient C0;eff
7 ðμbÞ is a linear combination of

C0;eff
7 ðμWÞ, C0;eff

8 ðμWÞ, and C0;eff
2 ðμWÞ, while C1;eff

7 ðμbÞ is a
linear combination of these three LO coefficients as well as
the NLO coefficientsC1;eff

7 ðμWÞ,C1;eff
8 ðμWÞ,C1;eff

4 ðμWÞ, and
C1;eff
1 ðμWÞ. The parameter VðμbÞ is a summation over all

the LOWilson coefficients which are evaluated at the scale
μb ¼ mb. The contribution from b → sγg is contained in A,
and the remaining two terms are the nonperturbative
contributions. In jD̄j2 there are terms of order α2s, but to

only keep terms to the NLO order for a consistent
calculation (to αs) the following form is used in Ref. [23]:

jD̄j2 ¼ jC0;eff
7 ðμbÞj2f1þ 2ReðΔD̄Þg; ð27Þ

ΔD̄ ¼ D̄ − C0;eff
7 ðμbÞ

C0;eff
7 ðμbÞ

¼ αsðμbÞ
4π

C1;eff
7 ðμbÞ þ VðμbÞ

C0;eff
7 ðμbÞ

: ð28Þ

The m5
b dependence is removed by using the measured

value of the semileptonic branching ratio BRSL ≈ 0.1 and
its partial width ΓSL (which also depends on m5

b), and
BRðB̄ → XsγÞ can be written as follows:

BRðB̄ → XsγÞ ¼
ΓðB̄ → XsγÞ

ΓSL
BRSL: ð29Þ
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IV. NUMERICAL RESULTS

The four input parameters that determine Xi, Yi, and Zi
are varied in the following ranges, while respecting
the constraints jXij < 50, jZij < 50, and jYij < 0.8 for
mH�

i
¼ 100 GeV:

−π=2 ≤ θ ≤ 0; 0 ≤ δ ≤ 2π;

0.1 ≤ tan β ≤ 60; 0.1 ≤ tan γ ≤ 60: ð30Þ
As mentioned in Sec. III (A), the functional dependence
on these four input parameters of the observables
BRðb → sγÞ, AXsγ , ACPðB̄ → XsþdγÞ, and ΔAXsγ is the
same in the flipped 3HDM, type II, and democratic
3HDMs. Results will be shown in this class of models,
and sizeable values of the asymmetries are shown to be
possible. Results are not shown for the model type I and
lepton specific structures because the asymmetries in these
two models do not differ much from the SM values, the
reason being that the products X1Y�

1 and X2Y�
2 (which enter

the Wilson coefficients) are real in these two models,
leading to real C7 and C8. The couplings Zi are different
functions of θ, tan β, tan γ, and δ in the flipped 3HDM,

type II, and democratic 3HDMs, and thus the constraints in
Eq. (30) on Zi rule out different regions of the four input
parameters in each model. However, the constraints from
Zi ≤ 50 are quite weak, and so the allowed parameter
space from jXij < 50, jZij < 50, and jYij < 0.8 for mH�

i
¼

100 GeV is essentially the same in all three models under
consideration. For definiteness, our results will be pre-
sented in the context of the flipped 3HDM. In Eq. (1), for
the measurement of BRðB̄ → XsγÞ we take the 3σ allowed
range, giving 2.87 × 10−4 ≤ BRðB̄ → XsγÞ ≤ 3.77 × 10−4.
In Figs. 1(a) and 1(b) the magnitude of BRðb → sγÞ in

the plane ½mH�
1
; mH�

2
� is plotted with θ ¼ −π=4, tan β ¼ 10,

and tan γ ¼ 1. In the left panel δ ¼ 0 and in the right panel
δ ¼ π=2. In Ref. [51] only δ ¼ 0 was taken when studying
BRðb → sγÞ in 3HDMs. In our numerical analysis we set
the normalization scale to be μb ¼ mb ¼ 4.77 GeV (the
central value of the b—quark pole mass), and the uncer-
tainty in the asymmetries due to the choice of μb is
discussed later. It can be seen in Figs. 1(a) and 1(b) that
for this choice of parameters the nonzero value of δ
significantly increases the allowed parameter space in
the plane ½mH�

1
; mH�

2
�. In Figs. 2(a) and 2(b) the parameters

FIG. 1. BRðB̄ → XsγÞ in the plane ½mH�
1
; mH�

2
�, with θ ¼ −π=4, tan β ¼ 10, tan γ ¼ 1. Left Panel: δ ¼ 0. Right Panel: δ ¼ π=2.

FIG. 2. BRðB̄ → XsγÞ in the plane ½mH�
1
; mH�

2
�, with θ ¼ −π=2.1, tan β ¼ 10, tan γ ¼ 1. Left Panel: δ ¼ 0. Right Panel: δ ¼ π=2.
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are taken to be θ ¼ −π=2.1, tan β ¼ 10, and tan γ ¼ 1. In
the left panel δ ¼ 0 and in the right panel δ ¼ π=2. In this
case the nonzero value of δ significantly decreases the
parameter space in the plane ½mH�

1
; mH�

2
�, although a region

with mH�
1
< mt and mH�

2
< mt becomes allowed for

δ ¼ π=2. In all these plots the notation mH�
1
> mH�

2
is

not used and both masses are scanned in the range
80 GeV < mH�

1
; mH�

2
< 1000 GeV. It is clear that the

phase δ can have a sizeable effect the parameter space
of ½mH�

1
; mH�

2
� in the 3HDM.

In an earlier work by some of us [55] the region allowed
by BRðb → sγÞ in the plane ½tan γ; tan β� in the flipped
3HDM was obtained by using the constraint −0.7 <
ReðX1Y�

1Þ < 1.1 only, with δ ¼ 0. This is a result from
the aligned 2HDM for small jY1j2, and when applied to an
H� of the 3HDM it is neglecting the contributions of X2Y�

2,
jY2

2j, and mH�
2
. In Figs. 3(a) and 3(b) we compare this

approximation with the full BRðb → sγÞ constraint in the
3HDM. In Fig. 3(a), the allowed region in the plane

½tan γ; tan β� is plotted with θ ¼ −π=3, mH�
1
¼ 85 GeV,

and mH�
2
¼ 800 GeV, with δ ¼ 0. The region is much

smaller than that displayed in Ref. [55], which used the
constraint −0.7 < ReðX1Y�

1Þ < 1.1 in the same plane;
decreasing mH�

2
below 600 GeV leads to no allowed

parameter space of ½tan γ; tan β� for this choice of param-
eters. In Fig. 3(b), which has δ ¼ π=2, but also¿ other
parameters the same as those in Fig. 3(a), one can see that
the allowed region is much larger, and is in fact more
similar in extent (although still smaller) than that allowed
from the constraint −0.7 < ReðX1Y�

1Þ < 1.1 with δ ¼ 0 in
Ref. [55]. Hence the approximate constraint does not give
a very accurate exclusion of parameter space, but the
inclusion of a nonzero value of δ can (very roughly)
reproduce the allowed regions in Ref. [55] (which focus
on the possibility of a large BRðH� → cbÞ in the flipped
3HDM with δ ¼ 0). In Figs. 4(a) and 4(b) we take
mH�

1
¼ 130 GeV, mH�

2
¼ 400 GeV (i.e., a smaller mass

splitting between the charged scalars), and θ ¼ −π=3.

FIG. 3. BRðB̄ → XsγÞ in the plane ½tan γ; tan β�, with θ ¼ −π=3, mH�
1
¼ 85 GeV, mH�

2
¼ 800 GeV. Left Panel: δ ¼ 0. Right Panel:

δ ¼ π=2.

FIG. 4. BRðB̄ → XsγÞ in the plane ½tan γ; tan β�, with θ ¼ −π=3, mH�
1
¼ 130 GeV, mH�

2
¼ 400 GeV. Left Panel: δ ¼ π=4. Right

Panel: δ ¼ π=2.
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In Fig. 4(a) we take δ ¼ π=4 and in Fig. 4(b) δ ¼ π=2. One
can see that for δ ¼ π=4 very little parameter space is
allowed by BRðb → sγÞ. In contrast, for δ ¼ π=2 a sizeable
region of the plane ½tan γ; tan β� is permitted. We calculated
BRðH� → cb) in the same plane ½tan γ; tan β� but with
δ ¼ π=2 and found that is essentially the same as the
case with δ ¼ 0 in Ref. [55]. Hence there is a sizeable
parameter space for a large BRðH� → cbÞ in the flipped
3HDM while satisfying the full BRðb → sγÞ constraint,
provided that δ is nonzero.
We now turn our attention to the CP asymmetries. For

AXsγ we use Ā ¼ ðA0
Xsγ

þA�
Xsγ

Þ=2, which is obtained by
taking espec ¼ 1=6. The CP asymmetries are evaluated at
OðαsÞ so that we use the LO formulae for the Wilson
coefficients C2, C7γ, and C8g in Eq. (3). In order to evaluate
the CP asymmetries at Oðα2sÞ, it is necessary to include not
only the NLO terms of these Wilson coefficients but also
the NNLO terms of C7γ and C8g.
In Figs. 5(a), 5(b), and 6 the asymmetries AXsγ , ΔACP,

and ACPðB̄ → XsþdγÞ are (respectively) plotted in the
plane ½tan γ; tan β�. In all these figures the remaining four
3HDM parameters are fixed as mH�

1
¼ 170 GeV, mH�

2
¼

180 GeV, θ ¼ −π=4, and δ ¼ 2.64, whereas the long-
distance (hadronic) parameters are taken to be Λ̃u

17 ¼
0.66 GeV, Λ̃c

17 ¼ 0.010 GeV, and Λ̃78 ¼ 0.19 GeV.
The scale μb is taken to be 4.77 GeV (pole mass mb).

The three red lines (from left to right) show the upper (3σ)
limit, the central value, and the lower (3σ) limit for
BRðB̄ → XsγÞ. The white region in Fig. 5(a) with roughly
tan γ > 1 violates the current experimental (3σ) limit for
AXsγ (the white regions in Figs. 5(a), 5(b), and 6 with
tan γ < 0.1 correspond to parameter choices not covered in
the scan). In Fig. 5(a), in the parameter space allowed by
BRðB̄ → XsγÞ, the magnitude of AXsγ is roughly between
0.5% and 1.5%, which is within the current experimental

limits. In Fig. 5(b), ΔACP can reach −1.5%, which would
provide a 5σ signal at BELLE II with 50 ab−1. We note that
ΔACP is directly proportional to Λ̃78, which has been taken
to have its largest allowed value. If Λ̃78 is reduced then
ΔACP will decrease proportionally. In Fig. 6 it is shown that
ACPðB̄ → XsþdγÞ can reach almost−3%, which would be a
5σ signal at BELLE II. The parameter Λ̃78 has a subdomi-
nant effect on ACPðB̄ → XsþdγÞ (in contrast to ΔACPÞ and
so ACPðB̄ → XsþdγÞ ≈ −3% is possible, independent of
the value of Λ̃78. We note that there is more parameter
space in a 3HDM for such large asymmetries than in the
aligned 2HDM [53,54]. This is because there is a greater
possibility of cancellation in the contributions of H�

1 and
H�

2 to B̄ → Xsγ (while having a large asymmetry), but in

FIG. 5. CP asymmetries (as a percentage) in the plane [tan γ; tan β] with mH�
1
¼ 170 GeV, mH�

2
¼ 180 GeV, θ ¼ −π=4, and

δ ¼ 2.64. The three red lines (from left to right) show the upper (3σ) limit, the central value, and the lower (3σ) limit for BRðB̄ → XsγÞ.
Left Panel: ACPðB̄ → XsγÞ, with the white region for tan γ > 1 violating the 3σ experimental bounds. Right Panel: ΔACP.

FIG. 6. ACPðB̄ → XsþdγÞ (as a percentage) in the plane
[tan γ; tan β] with mH�

1
¼170GeV, mH�

2
¼180GeV, θ ¼ −π=4,

and δ ¼ 2.64. The three red lines (from left to right) show the
upper (3σ) limit, the central value, and the lower (3σ) limit
for BRðB̄ → XsγÞ.
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the aligned 2HDM there is only one charged scalar and no
X2 and Y2 coupling.
In Figs. 7(a), 7(b), and 8 the contours of the CP

asymmetries are shown in the plane ½δ; θ�. The other

parameters are fixed as mH�
1
¼170GeV, mH�

2
¼180GeV,

tan β ¼ 35, and tan γ ¼ 1.32. The scale μb and the hadronic
parameters are taken to be the same as in Figs. 5(a), 5(b),
and 6. Inside the red circles the predicted BRðB̄ → XsγÞ
satisfies the current (3σ) experimental constraint, and
restricts the allowed parameter space to be roughly 2.5 <
δ < 3.5 and −0.5 < θ < −1.1 (i.e., an ellipse centred on
around δ ¼ 3). The white regions in all plots violate
the current 3σ experimental limits (see Table II) on the
displayed asymmetry. In Fig. 7(a) it can be seen that
roughly the right half (δ > 3) of the ellipse is ruled out from
ACPðB̄ → XsγÞ. In Figs. 7(b) and 8, in the allowed region
of the plane ½δ; θ� the asymmetries increase in magnitude
as δ is varied from δ ¼ π to δ ≈ 2.5, and values of ΔACP ≈
−1.5% andACPðB̄ → XsþdγÞ ≈ −3% can again be reached.
The theoretical uncertainty is significant, and will be
quantified in what follows.
We now consider the theoretical uncertainty of our

predictions that arise from varying the scale μb and the
hadronic parameters. In Tables V, VI, and VII the param-
eters are fixed as mH�

1
¼ 170 GeV, mHþ

2
¼ 180 GeV,

θ ¼ − π
4
, and δ ¼ 2.64 [the same as in Figs. 5(a), 5(b),

and 6]. Also, tan β ¼ 35 and tan γ ¼ 1.32 (the same as in
Figs. 7(a), 7(b), and 8). Table V uses the lowest possible
values of the hadronic parameters, Table VI uses the central
values, and Table VII uses the maximum values. In each

FIG. 7. CP asymmetries (as a percentage) in the plane [δ, θ] with mH�
1
¼ 170 GeV, mH�

2
¼ 180 GeV, tan β ¼ 35, and tan γ ¼ 1.32.

Inside the red circles the predicted BRðB̄ → XsγÞ satisfies the current experimental constraint. The white regions are excluded by the
current (3σ) experimental limits on the asymmetry displayed in the figure. Left Panel: ACPðB̄ → XsγÞ. Right Panel: ΔACP.

FIG. 8. ACPðB̄ → XsþdγÞ (as a percentage) in the plane
[δ, θ] with mH�

1
¼ 170 GeV, mH�

2
¼ 180 GeV, tan β ¼ 35,

and tan γ ¼ 1.32. Inside the red circle the predicted BRðB̄ →
XsγÞ satisfies the current experimental constraint. The white
regions are excluded by the current (3σ) experimental limits
on ACPðB̄ → XsþdγÞ.

TABLE V. Dependence of the asymmetries on the scale μb, taking the lowest values of the hadronic parameters
and mb ¼ 4.71 GeV. Parameters are fixed as follows: mH�

1
¼ 170 GeV, mH�

2
¼ 180 GeV, θ ¼ − π

4
, tan β ¼ 35,

tan γ ¼ 1.32, δ ¼ 2.64, Λ̃u
17 ¼ −0.66 GeV, Λ̃c

17 ¼ −0.007 GeV, Λ̃78 ¼ 0.017 GeV with LO C7, C8.

μb B̄ → sγð×10−4Þ ACPðB̄ → XsγÞ% ΔACP% ACPðB̄ → XsþdγÞ%
mb=2 2.912 −3.170 −0.111 −0.974
mb 2.968 −3.636 −0.134 −1.058
2mb 2.801 −4.137 −0.163 −1.153
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table the value of the scale μb is taken to be μb ¼ mb=2,mb,
and 2mb. The pole b—quark mass is 4.77� 0.06 GeV, and
in Tables V, VI, and VII we take 4.71 GeV, 4.77 GeV, and
4.83 GeV, respectively. This scale dependence corresponds
to the NNLO contributions in BRðB̄ → XsγÞ and the NLO
contributions in the CP asymmetries. The uncertainty from
μb is around 50% for ΔACP and ACPðB̄ → XsþdγÞ in each
table. One can see that increasing the scale μb makes both
ΔACP and ACPðB̄ → XsþdγÞ more negative. The CP
asymmetry ACPðB̄ → XsγÞ is very significantly affected
by the change of the hadronic parameters, so that even the
sign of the asymmetry is flipped. The effect of the change
of the hadronic parameters onΔACP is also severe (due to it
being proportional to Λ̃78), while the effect on ACPðB̄ →
XsþdγÞ is less significant. The maximum and minimum
values of the observables in Tables V, VI, and VII are as
follows:

2.724 × 10−4 < BRðB̄ → XsγÞ < 2.968 × 10−4; ð31Þ

−4.137% < ACPðB̄ → XsγÞ < 0.581%; ð32Þ

−1.785% < ΔACP < −0.111%; ð33Þ

−3.323% < ACPðB̄ → XsþdγÞ < −0.974%: ð34Þ

We note that a full scan over the hadronic parameters might
result in larger asymmetries.
In Table VII the contributions to the untagged asymme-

try ACPðB̄ → XsþdγÞ from the terms proportional to
ImðC2=C7γÞ, ImðC8g=C7γÞ, and ImðϵsðdÞC2=C7γÞ in
Eq. (3) are displayed. The benchmark points BP1, BP2,
and BP3, respectively, correspond to the lowest, central,
and largest values of the hadronic parameters and mb, with
μb ¼ mb. The other parameters are fixed to the same values
as in Tables V, VI, and VII. The value of ACPðB̄ → XsþdγÞ
in BP1, BP2, and BP3 is therefore equal to its value in the
middle rows of Tables V, VI, and VII, respectively. For
these benchmark points it can be seen that the dominant
contribution to the untagged asymmetry comes from
ImðC2=C7γÞ.

A. Electric dipole moments, collider limits,
and theoretical consistency

In a separate publication [56] some of us addressed the
calculation of both the neutron and electron EDMs in the
3HDM discussed here, as these observables will be affected

TABLE VI. Dependence of the asymmetries on the scale μb, taking the central values of the hadronic parameters
and mb ¼ 4.77 GeV. Parameters are fixed as follows: mH�

1
¼ 170 GeV, mH�

2
¼ 180 GeV, θ ¼ − π

4
, tan β ¼ 35,

tan γ ¼ 1.32, δ ¼ 2.64, Λ̃u
17 ¼ 0 GeV, Λ̃c

17 ¼ 0.0085 GeV, Λ̃78 ¼ 0.0865 GeV with LO C7, C8.

μb B̄ → sγð×10−4Þ ACPðB̄ → XsγÞ% ΔACP% ACPðB̄ → XsþdγÞ%
mb=2 2.888 −1.220 −0.562 −1.755
mb 2.931 −1.663 −0.673 −2.151
2mb 2.761 −2.212 −0.820 −2.670

TABLE VII. Dependence of the asymmetries on the scale μb, taking the largest values of the hadronic parameters
and mb ¼ 4.83 GeV. Parameters are fixed as follows: mH�

1
¼ 170 GeV, mH�

2
¼ 180 GeV, θ ¼ − π

4
, tan β ¼ 35,

tan γ ¼ 1.32, δ ¼ 2.64 Λ̃u
17 ¼ 0.66 GeV, Λ̃c

17 ¼ 0.010 GeV, Λ̃78 ¼ 0.19 GeV with LO C7, C8.

μb B̄ → sγð×10−4Þ ACPðB̄ → XsγÞ% ΔACP% ACPðB̄ → XsþdγÞ%
mb=2 2.865 1.145 −1.223 −2.123
mb 2.896 0.914 −1.466 −2.641
2mb 2.724 0.581 −1.7854 −3.323

TABLE VIII. Contributions to ACPðB̄ → XsþdγÞ from the terms proportional to ImðC2=C7γÞ, ImðC8g=C7γÞ, and
ImðϵsðdÞC2=C7γÞ in Eq. (3) for three benchmark points, which correspond to the lowest (BP1), central (BP2), and
largest (BP3) values of the hadronic parameters and mb, with μb ¼ mb. Other parameters are fixed as follows:
mH�

1
¼ 170 GeV, mH�

2
¼ 180 GeV, θ ¼ − π

4
, tan β ¼ 35, tan γ ¼ 1.32, δ ¼ 2.64 with LO C7, C8.

ImðC2=C7γÞ ImðC8g=C7γÞ ImðϵsðdÞC2=C7γÞ ACPðB̄ → XsþdγÞ%
BP1 (lowest) −1.638 0.395 0.185 −1.058
BP2 (central) −2.422 0.306 −0.035 −2.151
BP3 (largest) −2.559 0.176 −0.258 −2.641
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by a nonzero value of the CP violating (CPV) phase δ.
Without preempting the results to appear therein, it has
been checked that the regions of 3HDM parameter space
explored in our present analysis are generally compliant
with constraints coming from both neutron and electron
EDMs. However, some regions of the parameter space
covered here would be excluded. Specifically, with refer-
ence to the tan β and tan γ values adopted and the ½δ; θ�
plane considered, we can anticipate that the regions centred
around θ ≈ −0.8 and δ ≈ 1.4 and 4.6 would be excluded by
the combination of the two EDMs. However, the expanse of
such an invalid parameter space diminishes significantly as
mH�

1
and mH�

2
get closer, to the extent that no limits can be

extracted from such observables in the case of exact mass
degeneracy of the two charged Higgs states for suitable
values of their Yukawa couplings. Hence, the majority of
the results presented here are stable against EDM con-
straints. Indeed, it should further be noted that both in the
present paper and in Ref. [56], for computational reasons,
the neutral Higgs sector of the 3HDM has essentially been
decoupled. Hence, in the case of a lighter neutral scalar
spectrum one may potentially invoke cancellations occur-
ring between the charged and neutral Higgs boson states
(including the SM-like one) of the CPV 3HDM (in the
same spirit as those of Ref. [57] for the CPV aligned
2HDM), which could further reduce the impact of EDM
constraints. Moreover, one also ought to make sure that the
H�

1 and H�
2 spectra of masses and couplings adopted here

do not violate bounds coming from colliders, specifically
LEP/SLC, Tevatron and the LHC. Again, based on the
forthcoming results of Ref. [56], we anticipate this being
the case in the present context. Finally, in Ref. [56], it will
also be shown that the values of the Yukawa parameters
adopted in this paper are compliant with theoretical self-
consistency requirements of the 3HDM stemming from
vacuum stability and perturbativity.

V. CONCLUSIONS

In the context of 3HDMs with NFC, the magnitudes of
three CP asymmetries that involve the decay b → s=dγ

have been studied. In the SM, the CP asymmetry in the
inclusive decay B̄ → Xsγ alone (AXsγ) has a theoretical
error from long-distance contributions that render it
unlikely to provide a clear signal of physics beyond the
SM at the ongoing BELLE II experiment. The untagged
asymmetry (ACPðB̄ → XsþdγÞ) and the difference of CP
asymmetries (ΔAXsγ) are both predicted to be essentially
zero in the SM, with negligible theoretical error. Hence
these latter two observables offer better prospects of
revealing new physics contributions to b → s=dγ.
In the context of 3HDMs there are two charged scalars

that contribute to the process b → s=dγ. There are six new
physics parameters (two masses of the charged scalars and
four parameters that determine the Yukawa couplings of the
charged scalars) that together enable the relevant Wilson
coefficients to contain a sizeable imaginary part. In three of
the five types of 3HDM the magnitude ofACPðB̄ → XsþdγÞ
and ΔAXsγ can reach values such that a 5σ signal at the
BELLE II experiment with 50 ab−1 of integrated luminos-
ity would be possible. Although the parameter space for
such a clear signal is rather small (which is also usually the
case in other models of physics beyond the SM), it was
shown that a 3HDM could accommodate any such signal,
and thus would be a candidate model for a statistically
significant excess (beyond the SM prediction) in these
asymmetry observables.
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