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We present an efficient algorithm for determining the Hilbert series of an effective theory, which counts 
the number of operators with a specific field content, and provide a companion code called Eco (Efficient 
Counting of Operators) in Form. For example, the Hilbert series for the dimension 15 operators in the 
Standard Model Effective Theory (SMEFT) can be obtained in a minute on a single CPU core. While our 
implementation focusses on SMEFT, we allow for a flexible user input of the light degrees of freedom. 
Furthermore, gravity, as well as additional U (1) global or gauge symmetries can be included.
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1. Introduction

An effective field theory (EFT) is appropriate to describe the ef-
fect of heavy degrees of freedom in the low energy limit, where 
there is insufficient energy to produce the corresponding parti-
cles on shell. These heavy degrees of freedom are not part of the 
EFT, and instead manifest themselves as higher-dimensional oper-
ators involving the light degrees of freedom φi . In the absence of 
discovering new heavy degrees of freedom, EFTs provide a model-
independent approach to search for new physics. Specific examples 
of EFTs that are relevant for this paper are the Standard Model EFT, 
both without (SMEFT) and with gravity (GRSMEFT). For an intro-
duction to EFTs, see e.g. Refs. [1,2].

The operators in the EFT Lagrangian must be invariant under 
Lorentz transformations and the (gauge) symmetry group G , and 
operators related by integration by parts and equations of motion 
can be eliminated to obtain a minimal basis [3,4]. For SMEFT, there 
is a single operator at dimension 5 [5], and the operator bases 
at dimension 6 [6,7], 7 [8,9] and 8 [9,10] have been constructed 
explicitly.

The Hilbert series (HS) of an EFT counts the number ck,n1,...,nN

of independent (higher-dimensional) operators involving ni fields 
φi and k (covariant) derivatives [11]

* Corresponding author.
E-mail address: rudi.rahn@uva.nl (R. Rahn).
https://doi.org/10.1016/j.physletb.2020.135632
0370-2693/© 2020 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
H(D, {φi}) =
∞∑

k=0

∞∑
n1=0

...

∞∑
nN =0

ck,n1,...,nND
kφ

n1
1 ...φ

nN
N . (1)

Here φi is simply used to count the number of occurrences of the 
field in the operator and is not the field itself. (HS had previously 
been used in particle physics to count e.g. flavor invariants [12,
13].)

We will provide a rather efficient implementation in Form [14,
15] for computing Hilbert Series, which we call Eco (Efficient 
Counting of Operators). It follows the approach developed in 
Refs. [9,16,17], but is orders of magnitude faster. In Table 1 we 
list the number of operators in the Standard Model EFT of various 
dimensions, and the amount of time it took to calculate the HS 
on a single CPU core. Note that we count operators and their Her-
mitian conjugate (if distinct) separately. Our Form implementation 
accompanies this paper. While our focus is on the SMEFT, in our 
code it is straightforward to add more light degrees of freedom, 
including gravity (as in Ref. [18]), by adding a line in the Form in-
put. Furthermore, additional U (1) gauge symmetries (e.g. a Z ′) or 
global symmetries (e.g. baryon number) can be added as well.

This paper is organized as follows: In Sec. 2, we review the 
method for obtaining the HS of an EFT of Refs. [9,17]. Restricting 
our discussion to EFTs in four space-time dimensions allows us to 
be quite explicit. We then describe the key insights underpinning 
our efficient implementation and a short overview of how to use 
the code in Sec. 3. We conclude in Sec. 4.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Number of operators in the SMEFT of a given dimension with 1 or 3 generations, as well as the computing time on a single 2.6 GHz Intel i7 core.

Dimension 5 6 7 8 9 10 11 12 13 14 15

One generation 2 84 30 993 560 15 456 11 962 261 485 257 378 4 614 554 5 474 170
Three generations 12 3 045 1 542 44 807 90 456 2 092 441 3 472 266 75 577 476 175 373 592 2 795 173 575 7 557 369 962
Time (in seconds) 0.01 0.04 0.07 0.18 0.40 1.0 2.1 5.8 11 27 57

Dimension 16 17 18 19 20

One generation 83 106 786 114 382 724 1 509 048 322 2 343 463 290 27 410 087 742
Three generations 104 832 630 678 320 370 940 524 3 877 200 543 051 13 044 941 495 798 141 535 779 949 640
Time (in seconds) 139 262 586 1 351 3 410
2. Hilbert series

In this section we review the Hilbert Series technique, following 
the approach of Refs. [9,16,17]. We start in Sec. 2.1 by discussing 
the HS for operators without derivatives. We subsequently add 
derivatives, accounting for relations from integration by parts in 
Sec. 2.2 and equations of motion in Sec. 2.3. In Sec. 2.4 we discuss 
how to include gravity.

2.1. Operators without derivatives

We start by considering a single field φ transforming under 
the representation R of the symmetry group G . An operator in-
volving n fields φ transforms under the (anti-)symmetric tensor 
product symn(R) (�n(R)) if φ is a boson (fermion), because the 
fields (anti-)commute. The corresponding HS can be obtained by 
exploiting the orthogonality of characters to project onto the triv-
ial representation (the invariant terms) [11],

H(0, u) =
∫
G

dμ

{
PE(φχR(g)) φ is boson,
PEF(φχR(g)) φ is fermion.

(2)

Here μ is the Haar measure for the group G . The characters for 
representation of n copies of the field (including a φn) are conve-
niently summed by the plethystic exponential (PE) [19–21]

∞∑
n=0

φnχsymn(R)(g) = exp

[ ∞∑
n=1

φn

n
χR(gn)

]
≡ PE

(
φχR(g)

)
,

∞∑
n=0

φnχ�n(R)(g) = exp

[
−

∞∑
n=1

(−φ)n

n
χR(gn)

]

≡ PEF
(
φχR(g)

)
. (3)

For multiple fields φi one multiplies their plethystic exponentials 
before integrating over the Haar measure. Explicitly, for N fields φi

in representation Ri of G ,

H(0, {φi}) =
∫
G

dμ

N∏
i=1

{
PE(φiχRi (g)) φi is boson,

PEF(φiχRi (g)) φi is fermion.
(4)

2.2. Integration by parts

The discussion in Sec. 2.1 applies to a general symmetry group 
G , including the Lorentz group. We focus on the Lorentz group 
in this section due to its interplay with derivatives. Exploiting 
the equivalence of its Lie algebra with SU (2) × SU (2), we de-
note the representation of φ by its spin � = (�1, �2). To incorporate 
integration-by-parts (IBP) identities, we consider representations of 
the conformal group which act on objects like [16]
⎛
⎜⎜⎜⎝

φ

Dμ1φ

Dμ1 Dμ2φ
...

⎞
⎟⎟⎟⎠ . (5)

Here φ is the highest weight of this representation with scaling 
dimension �. The (covariant) derivatives act as a lowering opera-
tors, so IBP identities can be taken into account by solely focussing 
on the highest weight state. Derivatives transform as ( 1

2 , 12 ) un-
der the Lorentz group and their commutators yield field strength 
(and Weyl) tensors when including gauge groups (gravity), so the 
character of the representation of Eq. (5) is

χ�,�(q, x) = q�χ�(x)
∞∑

n=0

qnχsymn( 1
2 , 1

2 )(x)

≡ q�χ�(x)P (q, x) . (6)

Here x parametrizes the Lorentz group with its Haar measure dμL , 
and q denotes the scaling dimension, that enter in the orthogonal-
ity of characters1

∫
dμL

∮
dq

2π i q

1

|P (q, x)|2 χ∗
�,�χ�′,�′ = δ�,�′δ�,�′ . (7)

To construct the HS for the Lorentz group we need the charac-
ter for multiple fields, which is given by the plethystic exponential 
in Eq. (3) of the character in Eq. (6). In this case we don’t project 
onto the trivial representation, but rather onto Lorentz scalars with 
a specific scaling dimension. Since we want the highest weight of 
this representation, we can directly read off the number of deriva-
tives, by dividing out the scaling dimension of the field. This leads 
to the following expression for the HS of a bosonic field, which 
takes into account IBP identities,

H(D, φ) = 1 +
∑

k

Dk
∫

dμL

∮
dq

2π i q

1

|P (q, x)|2 (8)

× χ∗
k,(0,0)

[
PE

( φ

q�
χ�,�(q, x)

)
− 1

]

= 1 +
∫

dμL
1

P (D, x)

[
PE

( φ

D�
χ�,�(D, x)

)
− 1

]
.

Here D counts the number of (covariant) derivatives. To obtain the 
last line the integral over q is performed. For a fermionic field the 
PE is replaced by PEF. The generalization to multiple fields again 
involves multiplying the corresponding plethystic exponentials. To 
add symmetry groups, the corresponding characters and Haar mea-
sures should be included.

1 For modifications due to equations of motions see Ref. [17].
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2.3. Equations of motion

EOM redundancies can be removed by modifying the characters 
for the conformal representation in the preceding section. We start 
with the EOM for a Lorentz scalar, which allows us to drop D2φ. 
Contracted indices correspond to taking a trace, which we there-
fore need to remove from Eq. (5). For example, for the row with 
two derivatives in Eq. (5),

Dμ1 Dμ2φ = (Dμ1 Dμ2 − 1
4ημ1μ2 D2)φ2 + 1

4ημ1μ2 D2φ2 , (9)

we only want the first term on the right-hand side. While the gen-
eralization of Eq. (9) to the row with n derivatives is cumbersome, 
the corresponding character under the Lorentz group is

χsymmn( 1
2 , 1

2 )(x) = χ̃(0,0)(x) + χsymmn−2( 1
2 , 1

2 )(x) · 1, (10)

with 1 the trivial character of D2φ and χ̃ the character of the 
traceless part that we seek. Note that this also removes all powers 
of equations of motion, since these are descendants of D2φ. Imple-
menting this modified Lorentz character changes the character for 
the conformal representation to

χ̃�,(0,0)(q, x) = q�(1 − q2)χ(0,0)(x)P (q, x) . (11)

For fermions and gauge fields the Lorentz structure of the fields 
enters the fray. The EOM for a lefthanded Weyl fermion allows 
us to remove /Dψ , which transforms as (0, 1/2) under the Lorentz 
group, corresponding to the first term on the right-hand side in 
the decomposition of the tensor product(1

2
,

1

2

)
⊗

(1

2
,0

)
=

(
0,

1

2

)
⊕

(
1,

1

2

)
. (12)

Accordingly, the Lorentz character corresponding to n derivatives 
acting on a left-handed spinor decomposes as

χ( 1
2 ,0)χsymmn( 1

2 , 1
2 ) = χ̃( 1

2 ,0) + χsymmn−1( 1
2 , 1

2 )χ(0, 1
2 ), (13)

suppressing the argument x of these characters. Using χ̃ instead of 
χ modifies the character for the conformal representation to

χ̃�,( 1
2 ,0)(q, x) = q�

(
χ( 1

2 ,0)(x) − qχ(0, 1
2 )(x)

)
P (q, x), (14)

and similarly for right-handed fermions.
Gauge fields transform under (1, 0) ⊕ (0, 1), hence it is easi-

est to look at the self-dual and anti-self-dual, (1, 0) and (0, 1), 
first. We note here that due to the identity D2 F μν = 0, which 
follows from the Bianchi identity, we only consider symmetrized 
and traceless combinations of derivatives.2 A derivative acting on a 
(1, 0) then decomposes as(1

2
,

1

2

)
⊗ (

1,0
) =

(1

2
,

1

2

)
⊕

(3

2
,

1

2

)
, (15)

and we identify the first term on the RHS with the EOM, DμF μν =
Jν . Since currents are conserved, we’d overreach by removing the 
full vector component, and have to separate out the trace Dμ Jμ =
0. The character for the conformal representation is therefore given 
by

χ̃�,(1,0) = q�
(
χ(1,0) − qχ( 1

2 , 1
2 ) + q2)P (q, x), (16)

where we again suppressed the arguments of the characters. A 
similar argument holds for the (0, 1) component of the field 

2 See the discussion on short representations in [17].
strength. Combining these, we find that the character of the con-
formal representation for the field strength after removing EOM is 
given by

χ̃�,(1,0)⊕(0,1) = q�
(
χ(1,0)⊕(0,1) − 2qχ( 1

2 , 1
2 ) + 2q2

)
P (q, x). (17)

2.4. Gravity

We will now discuss how to include gravity, providing a brief 
summary of the approach in Ref. [18]. Quantizing the action of 
general relativity (GR)

S = − 1

16πG

∫
d4x

√−g R (18)

yields a non-renormalizable theory. This can of course be used as 
an effective theory, for which we must include operators of higher 
mass dimension in the Riemann tensor Rμνρσ , whose reducible 
representation under the Lorentz group is (2, 0) ⊕ (0, 2) ⊕ (1, 1) ⊕
(0, 0). To see which EOM redundancies we need to remove, we 
look at the Einstein equations

Rμν − 1

2
gμν R = 8πGTμν, (19)

with Rμν and R the Ricci tensor and scalar, respectively. In vacuum 
the energy momentum tensor Tμν is zero and the Einstein equa-
tions reduce to Rμν = 0. As explained in Ref. [18], we can perform 
field redefinitions in the metric tensor to remove any occurrence 
of Ricci scalar and tensor from the operator basis. Therefore, the 
building block in the EFT of gravity is the Weyl tensor Cμνρσ , 
which is the Riemann tensor sans its Ricci tensor/scalar traces. The 
representation of Rμν under the Lorentz group is (1, 1) ⊕ (0, 0), 
meaning that the Weyl tensor has to transform as (2, 0) ⊕ (0, 2). 
Besides satisfying the Einstein equations, we have to take the con-
tracted Bianchi identity

∇μCμνρσ = ∇[ρ Rσ ]ν + 1

6
gν[ρ∇σ ]R (20)

into account, which can be regarded as an additional equation of 
motion.

To see which expressions we must subtract in the character 
for Cμνρσ , we again work with the self-dual and anti-self-dual of 
the Weyl tensor, which yields the irreducible subspaces (2, 0) and 
(0, 2). As in the gauge field case, commutators of derivatives yield 
building blocks that are already included, and the Bianchi iden-
tity implies that ∇2Cμνρσ is not an independent quantity, so we 
again consider symmetrized and traceless products of derivatives. 
The tensor product of a derivative acting on (2, 0) decomposes as(1

2
,

1

2

)
⊗

(
2,0

)
=

(5

2
,

1

2

)
⊕

(3

2
,

1

2

)
(21)

and we identify ( 3
2 , 12 ) with the contracted Bianchi identity. Simi-

lar to the gauge field case, subtracting the full ( 3
2 , 12 ) removes too 

much, as ∇μ∇νCμνρσ ≡ 0 by antisymmetry. This vanishing ob-
ject is an antisymmetric rank-2 tensor, and so transforms as (1, 0). 
Therefore, the character of the conformal representation is given 
by

χ̃�,(2,0) = q�
(
χ(2,0) − qχ

( 3
2 , 1

2 )
+ q2χ(1,0)

)
P (q, x), (22)

and we find a similar expression for the (0, 2) component. Com-
bining these results yields the EOM-removed character for the con-
formal representation of the Weyl tensor as
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χ̃�,(2,0)⊕(0,2) = q� P (q, x)
(
χ(2,0)⊕(0,2)

− qχ
( 3

2 , 1
2 )⊕( 1

2 , 3
2 )

+ q2χ(1,0)⊕(0,1)

)
. (23)

3. Implementation

In this section we discuss Eco,3 our implementation of the 
Hilbert series in Form. We start in Sec. 3.1 by discussing the struc-
ture of the algorithm, explaining some of methods that are key 
to making it an efficient implementation. In Sec. 3.2 we provide 
instructions on how the code can be used, and how it can be ap-
plied to different EFTs. The possibility to add local and/or global 
U (1) symmetries is discussed in Sec. 3.3. In Sec. 3.4 we illus-
trate the use of our program by applying it to SMEFT, SMEFT for 
a Higgs-doublet model and GRSMEFT, reproducing known results 
and obtaining new ones at higher dimensions.

3.1. Structure of the algorithm

Using the Hilbert series in Sec. 2, we see that implementing an 
algorithm to enumerate the operators (including their field con-
tent, but not their explicit form) in a minimal basis at a desired 
mass dimension is straightforward. It amounts to inserting the ex-
plicit form of the characters for all the different fields, expanding 
the plethystic exponentials at that mass dimension and integrating 
over the Lorentz group and the gauge groups. In principle, integrat-
ing can be a hard problem, but from the form of the characters 
and the Haar measure in Table 5 we see that this amounts to 
the simple task of taking residues. However, if this is implemented 
without any refinement, it results in an inefficient algorithm that 
generates a huge number of terms, of which many will be zero in 
the end. The trick to getting an efficient implementation is keep-
ing the number of terms in the expansion as small as possible, and 
figuring out terms that will be zero before carrying out the whole 
expansion.

To illustrate how to keep the number of terms small, we discuss 
the example of the Hilbert series for multiple left-handed fermions 
ψi (� = 3

2 and � = ( 1
2 , 0)), which are all charged differently under 

the gauge group G

H(D, φ) (24)

=1+
∫

dμL,G
1

P (D, x)

[∏
i=1

PEF
( ψi

D�
χ̃�,�(D, x)χi

)
− 1

]

=1+
∫

dμL,G
1

P (D, x)

[
PEF

(
D−�χ̃�,�(D, x)

∑
i

ψiχi

)
−1

]
,

with χi the character of the representation of ψi under G . Be-
cause the only dependence on the mass dimension in the argu-
ment of the plethystic exponential is in D−�χ�,�(D, x), we see 
that 

∑
i ψiχi can be treated as one element during the expansion 

in mass dimension, and the only important feature is the power of 
its argument (this arises from the gn in Eq. (3)).

To efficiently expand the plethystic exponential, which involves 
many terms, we make great use of the Brackets+ and id, 
once features of Form. With the Brackets+ statement we can 
order the expression with all terms of equal mass dimension in 
a single bracket. The id, once statement tries to match terms 
one by one with another expression, giving Form the possibility 
to sort the whole expression after each insertion i.e. combining 
same terms. The interested reader can have a look at the com-
ments in the code to see how we used these Form statements for 

3 The Eco code can be found in the arXiv source archive or on https://bitbucket .
org /eco _hs /eco/.
an efficient expansion. Furthermore, we can postpone inserting the 
explicit form of χ( 1

2 ,0) and χ(0, 1
2 ) until after the expansion in mass 

dimension (once again, you only have to keep track of the power 
of the variables of these characters), when we integrate over the 
Lorentz group, thus reducing the number of terms in intermediate 
expressions.

From the character, which is the product of the Lorentz char-
acter with the character of the gauge group, we note that after 
the expansion we can first perform the integral over the Lorentz 
group and still treat 

∑
i ψiχi just as one term. The integral over the 

Lorentz group will set many terms equal to zero, so it is not un-
til we perform the integral over the gauge group, that we have to 
expand the sum 

∑
i ψiχi . Of course, when the gauge group is the 

product of other groups, the character is a product of characters 
meaning we can use this trick again; only inserting explicit expres-
sions for these characters when we perform the integral over the 
corresponding group. Inserting the characters of the gauge groups 
can be done efficiently by making use of id, once again.

Therefore, the algorithm has to perform one expansion for the 
plethystic exponential of a scalar field, fermion, field strength or 
gravity tensor and for every field type a commuting function4 is 
used that can be replaced later by the field content (i.e. the sym-
bol to count the occurrence of a field and its character under the 
gauge group). Furthermore, to account for IBP relations, we have 
to expand the prefactor 1

P (D,x) . From Eq. (6), we see that this is a 
plethystic exponential itself,

1

P (D, x)
= PE[−Dχ( 1

2 , 1
2 )(x)], (25)

and in order to expand this we can follow the recipe of subsequent 
substitutions, as described above.

For the Standard Model gauge group U (1) × SU (2) × SU (3), our 
implementation takes on the following form:

• Read in which fields are present, and store their representation 
under the symmetry groups.

• Expand just one plethystic exponential for every type of field 
(scalar, fermion, field strength or gravity), and multiply these 
to get the Hilbert series.

• Insert expressions for Lorentz characters, and perform integral 
over Lorentz group (from residues).

• Insert expressions for gauge group characters and perform in-
tegral, one at the time. First for SU (2), then U (1), and finally 
SU (3).

Another trick we employ is that we can express characters in 
terms of a basis. For example, 2 ⊗ 2 = 3 ⊕ 1, so χ3 = χ2

2 − 1. This 
results in a faster algorithm as we can now use the power of Form

to combine terms, and only need to substitute the characters of 
our basis. For SU (2), and similarly the Lorentz group, we therefore 
only require the character for spin 1

2 .

3.2. How to use ECO

The user can specify the input in the file main.frm, and ex-
ecute Eco by calling form main or tform -wn main, where n
denotes the number of cores. The structure of this file is as follows: 
the first part contains settings, such as the desired mass dimen-
sion, after which the different fields of the model are specified. 
The final part of the file performs the calculation described above, 
giving the Hilbert Series as the output. A summary of all proce-
dures and their action can be found in Table 2. All the declarations 

4 If all objects in a power are commuting, Form makes use of binomial expan-
sions, making the expansion a lot faster.

https://bitbucket.org/eco_hs/eco/
https://bitbucket.org/eco_hs/eco/
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Table 2
Overview of all procedures.

Procedure Description

add‘Field’(‘symbol’,‘SU3’,‘SU2’,‘Q’) Adds the field with its symbol (symbol needs to be declared first in Form) to the Hilbert 
series. For an efficient algorithm to only count the operators replace symbol by 1, that is use
#call add‘Field’(1,‘SU3’,‘SU2’,‘Q’). See Table 5 for an overview of the differ-
ent fields that can be used and what form is expected for the input of the symmetry group 
SU (3) × SU (2) × U (1).

HilbertSeries(‘symbol’) Computes the HS at mass dimension massDim with symbol as the symbol for the derivative 
(symbol needs to be declared first in Form). Needs to be called after all particles are added 
with add‘Field’

counting Counts the number of operators in the output of HilbertSeries. Needs to be called after
HilbertSeries.
the program needs and the procedures that can be used to add 
fields are in the files declare.h, addField.h, and Hilbert-
Series.h, respectively. These files are included as header files in 
the main file.

We start by discussing the settings, of which the most impor-
tant one is the desired mass dimension, which is specified using 
the variable massDim. One can choose whether or not EOM and 
IBP relations should be used to reduce the basis by setting EOM
and IBP to 1 or 0, respectively. As an additional feature (useful 
e.g. in SMEFT), the number of Fermion generations can be defined 
with numFermGen (by default this is 1). For example, if we want 
to generate a basis at mass dimension 6, subtract both EOM and 
IBP relations and with one fermion generation, the Settings sec-
tion in the main file includes

#define massDim "6"
#define EOM "1"
#define IBP "1"
#define numFermGen "1"
.
.
.

Next we specify the fields by calling the procedure

#call add‘Field’(‘symbol’,‘SU3’,‘SU2’,‘Q’)

for every field separately. Here ‘Field’ refers to the trans-
formation under the Lorentz group, e.g. scalars or left-handed 
fermions, and a complete list of all supported particles is given 
in Table 5. The argument Symbol of this procedure encodes the 
symbol used to denote the field, which needs to be declared before 
calling the procedure.5 The next three parameters are the repre-
sentations under SU (3) × SU (2) × U (1). For SU (3) and SU (2) the 
input of the representation is equal to the dimension of the repre-
sentation. For the representation under SU(3) the possibilities are 
the singlet (1), 3 (3), 3̄ (3B) and 8 (8) representations, and for 
SU (2) one can choose between the singlet (1), doublet (2) and 
triplet (3) representations. The charge under U (1) needs to be an 
integer Q, which we achieve by rescaling with a factor of 6 (sim-
ilarly we rescaled the mass dimensions in our internal code such 
that they are integers). Charges for additional U (1) symmetries can 
be added at the end of the string (not shown), as discussed in 
Sec. 3.3.

An example in which the Higgs field and the left-handed quark 
doublet of the SM are added looks as follows

.

.

.

Symbol h,hd,Q,Qd;

5 All protected symbols can be found in the declare.h file, the most important 
of which are x,y,y1,y2,z1,z2.
#call addScalar(h,1,2,3)
#call addScalar(hd,1,2,-3)

#call addLHFermion(Q,3,2,1)
#call addRHFermion(Qd,3B,2,-1)
.
.
.

Note that the conjugate particles need to be added as indepen-
dent building blocks.

When all fields are declared, the HS is computed by calling 
the HilbertSeries procedure, which takes the symbol used for 
momentum as its argument. To count operators one can set the ar-
gument to 1, and when set to 0 only operators without derivatives 
are produced. This procedure carries out the calculation discussed 
before and therefore takes up the bulk of the run time. The output 
of this procedure is a Local expression Hilbert that gives the 
basis as a polynomial of the symbols of the fields declared above 
and the user-specified symbol for the derivative. For the above ex-
ample this yields

.

.

.

Symbol p;
#call HilbertSeries(p)
Print;
.sort

Hilbert = 2*Q^2*Qd^2 + 2*h*hd*Q*Qd*p
+ 2*h^2*hd^2*p^2 + h^3*hd^3;

#call counting
Number of operators at mass dimension 6 is 7.

.end
0.03 sec out of 0.03 sec

where we also display the result of the Form program in blue.6

The number of operators can be counted and printed by calling the
counting procedure. This procedure only prints the total number 
of operators that are in the expression Hilbert, without over-
writing it.

3.3. Additional U(1) symmetries and generations

In addition to the gauge groups of the SM, we have included 
the possibility to add one (or more) U (1) symmetry group(s). Such 
a U (1) can be either an extra gauge symmetry, e.g. a Z ′ model, or 
a global symmetry such as baryon number. From the point of view 

6 For colors see the web version of the article.
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Table 3
Number of operators in the GRSMEFT of a given dimension with 1 or 3 generations.

Dimension 5 6 7 8 9 10 11 12 13 14 15

One generation 2 94 30 1 096 580 17 797 12 936 314 650 291 702 5 812 440 6 518 462
Three generations 12 3 055 1 542 45 816 91 284 2 160 964 3 567 228 79 514 441 182 542 620 2 995 340 275 8 023 911 776

Table 4
Number of operators in the SMEFT that conserve baryon minus lepton number.

Dimension 5 6 7 8 9 10 11 12 13 14 15

One generation 0 84 0 993 0 15 456 0 261 421 0 4 612 082 0
Three generations 0 3 045 0 44 807 0 2 091 965 0 75 497 816 0 2 788 483 269 0
of enumerating operators, the only difference between a gauge and 
global symmetry is that in the former case one needs to include 
the corresponding field strength in the list of particles. The charges 
under these additional U (1) symmetries can be added as extra ar-
guments when listing particles. E.g. for baryon number,

.

.

.

#call addLHFermion(Q,3,2,1,1)
#call addRHFermion(Qd,3B,2,-1,-1)
.
.
.

If for a field no charge corresponding to an additional U (1) is 
provided, we assume that it has charge 0. We remind the reader 
that these charges must be integers, which is why we multiplied 
baryon number by a factor of 3.

To get general dependence on the number of fermion genera-
tions, we can declare a symbol for this (at the beginning of the
main file)

Symbol Nf;
#define numFermGen "Nf"
.
.
.

#call HilbertSeries(p)
Print;
.sort

Hilbert = 2*h^2*hd^2*p^2 + h^3*hd^3
+ Nf^2*Q^2*Qd^2 + 2*Nf^2*h*hd*Q*Qd*p
+ Nf^4*Q^2*Qd^2;

To organize this expression in powers of Nf one can use the
Brackets command. Details on its use and other tips can be 
found in the Eco package.

3.4. Results

With Eco it is now straightforward to reproduce known results 
for (extensions of) SMEFT. The results for SMEFT up to mass di-
mension 15 were already given in [9] and with the Form code we 
extended this up to dimension 20 in a reasonably short amount 
of time, see Table 1. We reproduced the results of Ref. [18] for 
GRSMEFT at dimension 8 and extended it to dimension 15, see Ta-
ble 3. As an illustration of including an additional U (1) symmetry, 
we counted how many of the operators in SMEFT conserve baryon 
minus lepton number (B − L). None of the operators of odd di-
mension do, while all of the operators of even dimension do up 
to and including dimension 8 (10) for three (one) generations of 
fermions. An example of an operator of dimension 10 that violates 
B − L for two or more generations is h4�2

1�
2
2. This operator must 

vanish for �1 = �2 due to the antisymmetry of fermion fields. Our 
full results are listed in Table 4. Calculating the HS for GRSMEFT is 
about a factor two slower than SMEFT, while obtaining the B − L
conserving operators is about 10% faster.

The Hilbert series approach was applied to the Two Higgs Dou-
blet Model (2HDM) in Ref. [22]. In this extension of the SM, an 
identical second Higgs doublet is added. We reproduced the 228 
operators found in [22] at mass dimension 6. As most of the op-
erators in the SM have a coupling to the Higgs field, it is not 
surprising that we find a sizable number of additional operators 
for the 2HDM. This has of course implications for the run time of 
the program. At mass dimension 15 we find a number of 22020182 
(16181746764) operators with one (three) generation(s) respec-
tively. Producing the full operator basis results in a run time which 
is a factor 2 slower compared to SMEFT. For counting the total 
number of operators only, more terms can of course be combined, 
giving a run time which is just a few percent slower.

4. Conclusions

We have presented an efficient algorithmic implementation of 
the Hilbert series for the SMEFT with some extensions, and release 
a Form instantiation of this approach called Eco. The speed-up 
due to how we structured the calculation and from using Form

allows us to determine the number of operators, and their field 
content (including derivatives) of a minimal basis up to mass di-
mensions as high as 20, in less than an hour on a single core. We 
supplemented our code with capabilities for spin-2 fields and addi-
tional U (1) symmetries, which extends its application to GRSMEFT 
and models with additional Z ′ bosons, or global symmetries such 
as baryon or lepton number, among others. As we also allow for 
the inclusion of additional light scalars, vectors, and fermions, we 
expect this tool to be a valuable addition to the model-building 
toolkit.
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Appendix A. Characters

In group theory, the character of a representation is equal to 
the trace of the matrix constituting this representation. Charac-
ters of conjugate group elements are equal, and so for simple and 
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Table 5
The symmetry groups and the representations that we implemented. The explicit form of the characters is given together with the Haar measure in terms of the Cartan 
variables. In the fourth column the name of the Form procedure or the input for these procedures is given. Note that the input for U (1) can be multiple numbers for the 
charges of additional U (1) symmetries (when no charge corresponding to an additional U (1) is provided, we assume that it is zero).

Group Representation Character Form procedure/input Haar measure

Lorentz (0,0) 1 addScalar()

1
(2π i)2

∮
|y1 |=1

dy1
y1

(1 − y2
1)

×∮
|y2 |=1

dy2
y2

(1 − y2
2)

( 1
2 ,0) y1 + 1

y1
addLHFermion()

(0, 1
2 ) y2 + 1

y2
addRHFermion()

( 1
2 ,0) ⊕ (0, 1

2 ) y1 + 1
y1

+ y2 + 1
y2

addDiracFermion()

( 1
2 , 1

2 ) (y1 + 1
y1

)(y2 + 1
y2

) -

(1,0) ⊕ (0,1) y2
1 + 1 + 1

y2
1

+ (y1 ↔ y2) addFieldStrength()

(2,0) ⊕ (0,2) y4
1 + y2

1 + 1 + 1
y2

1
+ 1

y4
1

+ (y1 ↔ y2) addGravity()

( 3
2 , 1

2 ) (y3
1 + y1 + 1

y1
+ 1

y3
1
)(y2 + 1

y2
) -

( 1
2 , 3

2 ) (y1 + 1
y1

)(y3
2 + y1 + 1

y2
+ 1

y3
2
) -

U (1) charge Q xQ Q 1
2π i

∮
|x|=1

dx
x

SU (2) singlet 1 1
1

2π i

∮
|y|=1

dy
y (1 − y2)fundamental/doublet y + 1

y 2

triplet/adjoint y2 + 1 + 1
y2 3

SU (3) singlet 1 1
1

(2π i)2

∮
|z1 |=1

dz2
z2

∮
|z2 |=1

dz2
z2

×(1 − z1 z2)(1 − z2
1

z2
)(1 − z2

2
z1

)

fundamental/3 z1 + z2
z1

+ 1
z2

3

antifundamental/3̄ z2 + z1
z2

+ 1
z1

3B

adjoint z1 z2 + z2
2

z1
+ z2

1
z2

+ 2 + z2
z2

1
+ z1

z2
2

+ 1
z1 z2

8

semi-simple Lie groups the characters can be given in terms of the 
Cartan matrices’ parameters. Table 5 contains explicit expressions 
for the characters of all representations that we have implemented. 
In the fourth column we list the explicit Form procedures (for the 
Lorentz group representation) and the input for these procedures 
(gauge group representation) that can be used in Eco. Note that Q
needs to be an integer.

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .physletb .2020 .135632.
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