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We construct the free Lagrangian of the magnetic sector of Carrollian electrodynamics. The construction
relies on Helmholtz integrability condition for differential equations in a self-consistent algorithm, working
hand in hand with imposing invariance under infinite dimensional Conformal Carroll algebra. It requires
inclusion of new fields in the dynamics and the system is free of gauge redundancies. We next add
interaction (quartic) terms to the free Lagrangian, strictly constrained by conformal invariance and
Carrollian symmetry. The dynamical realization of the non-semi-simple infinite dimensional symmetry
algebra at the level of charge algebra is exact and free from central terms.
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I. INTRODUCTION

Symmetry principles play an extremely crucial role in
building models describing fundamental particles and
interactions. It is almost always the case that larger the
symmetry group, the better is the predictive power of the
theory. Conformal symmetry is one of the most useful and
powerful symmetries observed in nature. The power
of conformal symmetry is beautifully realized in two
dimensions by looking at the two copies of the infinite
dimensional Virasoro algebra [1]. These indeed lead to
integrability along with a plethora of information, e.g.,
calculating arbitrary correlation functions with a minimal
set of data, using the bootstrap program [2].
On the other hand, organizing the space of quantum field

theories (QFTs) by classification of conformal field theo-
ries (CFTs) is an alluring yet extremely challenging
umbrella program. This overall wisdom is guided by the
age old Wilsonian point of view, which supposedly should
dictate whether a certain QFT can flow to a CFT via a
relevant deformation. In that sense, it is important that we
scan for all sensible CFTs, not only those involving
Lorentzian symmetry. This program has received consid-
erable impetus in recent times, involving Galilean and

Carrollian invariant CFTs [3–21]. Interestingly, both of
these sectors have infinite dimensional global symmetry
groups, for d > 2.
The general understanding regarding these space-time

backgrounds is that they can be found starting from a
Minkowski one. In particular, Carrollian physics is believed
to be the ultrarelativistic (c → 0) limit of Lorentz covariant
physics. Effectively, the transition from Minkowski to
Carroll space-time means closing up of light cone. This
is directly connected with the traditional lore [22] that the
Carroll particles do not move. However, field theories on
these space-times have extremely interesting dynamics as
we will review shortly. This line of study basically stems
from kinematical symmetry structures. The ultrarelativistic
limit on a relativistic conformal symmetry algebra produces
the conformal Carrollian algebra (CCA).1 In the special
case of d ¼ 2, as the relativistic conformal isometries form
an infinite dimensional algebra, it is plausible that CCA in
two-dimensional (2D) also has infinite number of gener-
ators. Curiously and very counterintuitively in space-time
dimensions d > 2, CCA is infinite dimensional [25,32–35].
For the case of d > 3, the infinite extension is given by the
Abelian ideal (A) and the CCA becomes the semidirect
sum [13]: soðdþ 1Þ ⨭ A of the conformal algebra of d − 1
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1Although not the main concern of our present line
of investigations, we must mention that the Bondi-Metzner-Sachs
(BMS) symmetry algebra [23,24] that describes asymptotic
symmetries of a gravitational theory on four- (or three-)dimen-
sional asymptotically flat space-times are conformal Carroll
isometries of a three- (or two-)dimensional Carrollian space-time
[6–8,14,25]. In last 5–6 years, the BMS group has been found as a
symmetry of quantum gravity S-matrix and is being related to the
Weinberg’s soft graviton theorem as a result of Ward identity
corresponding to the symmetry [26–31].
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dimensional Euclidean space and A. In passing, we must
mention that although free field theories on Minkowski
space do possess infinite number of global symmetry
generators (which act locally only in momentum space),
only a finite subgroup (Poincaré or conformal) is realized as
real space-time (conformal) isometry transformations. An
explicit description of an infinite set of such global
symmetries is presented in Appendix A. However, it is
hardly possible to extend those for interacting theories.
Since conformal Carroll isometries act locally in real

space, it sheds an interesting possibility of finding inter-
acting theories with infinite dimensional symmetry group.
This led some of the present authors to an ambitious
program of looking into Carrollian field theories. The
infinite dimensional conformal Carrollian symmetries were
seen in various ultrarelativistic CFTs at the level of
equations of motion in d ¼ 4 [13,18]. These symmetry
generators act locally on fields. This can be contrasted
[36,37] with the infinite hierarchy of classical Yangian
symmetry generators that act nonlocally on field in position
space, which is responsible for integrability of certain
supersymmetric QFTs.
There are two routes one can take to understand a scale

invariant Carrollian field theory. One is by taking an
ultrarelativistic limit of well-understood relativistic field
theories either at the level of the action or at the level of
equations of motion (as we will see later in the paper these
two limits are not commensurate always). The second one
is by building up from scratch an invariant action made of
fields that have well-defined Carroll transformation proper-
ties. In [13,18], the authors took the first route and proposed
a host of ultrarelativistic non-Abelian gauge theories with-
out and with various possible matter couplings, which in
d ¼ 4 possess infinite conformal Carrollian symmetries at
the level of equations of motion.2 All those systems of
equations do not necessarily descend from an action.
However, to have a better understanding of the classical
dynamics and to undertake a quantization program, an
action formalism for a field theory is needed. An action of
the electric sector of Carrollian electrodynamics [16] was
proposed as a first example of a Carrollian field theory
action. But true quantum effects in QFTs are only realized
at one-loop level of interacting theories. Toward this, the
action formulation of Carrollian scalar electrodynamics
(again in the electric sector) is described in [17].
In this paper, we take a hybrid of above two approaches,

for the magnetic sector of electrodynamics in the ultra-
relativistic limit whose equations of motion are not deriv-
able from an action. In this paper, we improve the situation
by introducing newer fields keeping in mind the symmetry

principle. The new theory, with a certain choice of newer
set of marginal deformations, can be understood to be
derived from action. However, in the limiting procedure, an
essential feature of electrodynamics, the Uð1Þ gauge
invariance is broken. The absence of gauge redundancy
however is a useful feature as far as quantization is
concerned. The most important feature of this example
is that it is an interacting theory invariant under the infinite
dimensional conformal Carroll isometry group. And curi-
ously, this does not descend either at the level of action, or
at the level of equations of motion, as an ultrarelativistic
limit of a relativistic field theory.

A. Outline of the paper

A brief summary of the paper is given below. As
previously mentioned, this paper deals with finding the
action for the magnetic limit of Carrollian electrodynamics.
To set the stage, in Sec. II, we briefly review the infinite
dimensional conformal Carrollian algebra and how the
generators of the algebra acts on fields. We also show how
that a finite number of generators constrain the correlation
functions based on a set of very generic symmetry
prescriptions. In Sec. III, we describe what precisely define
Carrollian or ultrarelativistic limits of electrodynamics and
difficulties encountered while writing an action for the
magnetic sector of the system. Then we propose an
algorithm for finding an action by introducing minimally
more degrees of freedom and which do not break the
conformal Carroll symmetry. In Sec. IV, we look for a
Minkowski ascendant of this new theory with new degrees
of freedom where we answer the question: does this theory
that we constructed come from a Lorentz invariant theory at
an ultrarelativistic limit? In Sec. V, we enhance the
Lagrangian with the addition of interaction terms which
are invariant under Carrollian symmetries and then com-
ment on observation that the Carrollian symmetries are
dynamically realized on the infinite dimensional vector
space of conserved Noether charges. We end with con-
clusions and a discussion on the directions of future work in
Sec. VI. Our paper also has two Appendices. The first one
deals with the existence of infinite dimensional symmetries
in relativistic theories, a fact which is not often appreciated.
In the second Appendix, we calculate the photon propa-
gator of electrodynamics in position space to demonstrate
an interesting similarity between those and the two-point
correlation functions of our theory.

II. CONFORMAL CARROLLIAN ISOMETRIES
AND KINEMATICS

Our primary goal is to construct an interacting field
theory on Carroll space-time, starting from an ultra-
relativistic limit of electrodynamics. As is true for any
field theory, symmetry principles play a major role to
constrain the kinetic as well as the interaction terms. Carroll

2It is to be noted, when viewed as an ultrarelativistic limit of
relativistic physics, vector fields of Minkowski space are mapped
to two distinct class of fields, depending upon causality. These
classes fall into distinct representations of CCA. For historical
reasons, they are called the electric and magnetic sectors.
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space-times have an infinite dimensional isometry group, as
opposed to Riemann ones, is a well-understood result, both
from an intrinsically geometric approach [6] and a physi-
cally motivated one, viewing Carroll space-time as an
ultrarelativistic limit of Minkowski space [13]. In the next
section, II A, we present the results for notational consis-
tency continuity and for the sake of completeness. In the
subsequent section, we provide transformation rules of
fields under these isometries also developed in [13], now
motivated from a physically intuitive point of view.

A. The isometry algebra

One of the most straightforward ways to understand
the physics and geometry of (flat) Carroll manifolds is
by considering the ultrarelativistic limit of those on
Minkowski space,

xi → xi; t → ϵt; ϵ → 0: ð1Þ
When applied to the (conformal) isometries of Minkowski
space, this amounts to an Inonu-Wigner contraction of the
Poincaré algebra (conformal symmetry algebra). In Table I,
we summarize the generator vector fields found from the
ultrarelativistic contraction of the relativistic conformal
isometry generators. For a d dimensional space-time, the
Lie algebra formed by these generators is isoðd; 1Þ, basically
reflecting the fact that it is an Inonu-Wigner contractionof the
isometry generating algebra of dþ 1 dimensional Anti-de
Sitter (AdSdþ1) space-time. This will be referred to as the
finite CCA. It is a crucial observation [13] that if we append
this set of conformal Carroll isometry generators with an
infinite dimensional Abelian (under Lie bracket) one, the
new set of generators still close under Lie bracket. Keeping
the analogy ofBMS algebra, these generatorswill be referred
to as supertranslation (ST),

Mf ¼ fðx1; x2;…; xd−1Þ∂t≕ fðxÞ∂t; ð2Þ
here fðxÞ are arbitrary tensors transforming in irreducible
representations of soðd − 1Þ. The following special cases are
already given in Table I:

fðxÞ ¼
8<
:

1∶ ⇒ Mf ¼ H

xi∶ ⇒ Mf ¼ Bi

x2∶ ⇒ Mf ¼ K:

9=
; ∈ finite CCA: ð3Þ

Therefore, the infinite dimensional CCA consists of finite
generators given in the Table I along withMf for arbitrary f.
The Lie brackets involving the finite set ðJij; Pi; D;KiÞ and
the infinite set Mf are [16,18]

½Pi;Mf� ¼M∂if; ½D;Mf� ¼Mh; where h¼ xi∂if−f;

½Ki;Mf� ¼Mh̃; where h̃¼ 2xih− xkxk∂if;

½Jij;Mf� ¼Mg̃; where g̃¼ x½i∂j�f;

½Mf;Mg̃� ¼ 0: ð4Þ

In order to justify that the above illustrated isoðd; 1Þwith its
infinite extension does indeed form the conformal isometry
of a Carrollian manifold, we view the problem from a
geometric perspective. The minimal geometrical data that
specify a Carrollian manifold ðM; g; XÞ is a rank two
symmetric covariant tensor g and a vector field X,
such that Xμgμν ¼ 0 everywhere on the manifold. This
makes the tensor gμν degenerate and sets apart Carroll ones
from (pseudo) Riemannian ones. Conformal isometries of
ðM; g; XÞ are defined as diffeomorphisms generated by
vector fields Y, such that

LYg ¼ λg; LYX ¼ −
λ

2
X: ð5Þ

We will choose the coordinates ðt; x1;…; xd−1Þ for a flat
Carroll manifold (which descends fromMinkowski space as
an ultrarelativistic limit described above), such that

g ¼ δijdxi ⊗ dxj; X ¼ ∂t:

Solving (5) exactly gives the infinite number of linearly
independent solutions as presented in Table I and Eq. (4).
Henceforth, this infinite dimensional algebra will be called
the CCA.

B. Transformation of fields under
conformal Carroll isometries

As we aim to study field theories with conformal Carroll
symmetries, we need to understand how the above-men-
tioned generators act on the fields. The physical motiva-
tions behind the choice of possible representations of the
algebra are as follows.
Since all the microscopic Carrollian theories (as opposed

to fluid descriptions [38]) studied till now are ultrarelativistic
descendants of relativistic ones, it is a fair assumption that
these have definite scaling3 and SOðd − 1Þ spatial rotational
invariance properties. If we confine ourselves only with the
scalar ϕ and vectors ϕi under the SOðd − 1Þ rotations, then
the above considerations lead us to the following:

TABLE I. Conformal Carrollian generators. SCT stands for
special conformal transformation.

Transformations Generators

1. Translation H ¼ ∂t, Pi ¼ ∂i
2. Rotation Jij ¼ ðxi∂j − xj∂iÞ
3. Boost Bi ¼ xi∂t
4. Dilatation D ¼ ðt∂t þ xi∂iÞ
5. Spatial SCT Kj ¼ 2xjðt∂t þ xi∂iÞ − ðxixiÞ∂j

6. Temporal SCT K ¼ xixi∂t

3Note that, unlike Lifschitz or Schrödinger systems, there is no
scaling violation involved in going to the ultrarelativistic limit.
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Rotation∶δJϕðt; xÞ ¼ ωijðxi∂j − xj∂iÞϕðt; xÞ;
δJϕlðt; xÞ ¼ ωij½ðxi∂j − xj∂iÞϕlðt; xÞ þ δl½iϕj��:

Scaling∶δDϕðt; xÞ ¼ ðΔþ t∂t þ xi∂iÞϕðt; xÞ;
δDϕlðt; xÞ ¼ ðΔþ t∂t þ xi∂iÞϕlðt; xÞ: ð6Þ

We supplement these conditions along with the usual space-
time translation properties δHϕ¼∂tϕ;δPϕ¼ai∂iϕ for a
constant vector ai. However, this does not fix completely
the action of all other generators on these fields of definite
scale and spin. Motivated from the fact that we are interested
in ultra-relativistic limits of Lorentzian theories of SOðd −
1; 1Þ vectors,we confine ourselves to onlySOðd − 1Þ scalars
and vectors to describeCarrollian ones. This essentially boils
down to considering only those transformations which
preserves the module of these fields and their derivatives.
Now, let us look at the role of boost Bi on fields ðϕ;ϕlÞ.

Toward this, we consider the ultrarelativistic limit of the
SOðd − 1; 1Þ Lorentz boost transformation on a Lorentz
covariant d vector ϕμ,

δLϕρðxÞ ¼ ωμν½ðxμ∂ν − xν∂μÞϕρðxÞ þ ηρ½μδσν�ϕσðxÞ�; ð7Þ

where ωμν is the parameter for Lorentz transformation.
The ultrarelativistic limit of this transformation rule

works [13] by taking appropriate limits on ϕμ alongside
(1) and breaking Lorentz invariance by inhomogeneous
scaling rules. However, similar to the case of arriving at
Galilean transformation rules [39], here also one encoun-
ters a couple of possibilities depending on whether ϕμ is
spacelike or timelike,

ϕ → ϕ; ϕi → ϵϕi; ð8aÞ

ϕ → ϵϕ; ϕi → ϕi; ð8bÞ

conventionally noted, respectively, as the electric type and
the magnetic type limits.
Now let us consider only the boost part of the Lorentz

transformation (7), i.e., take ω0i ¼ bi;ωij ¼ 0 for some
constant SOðd − 1Þ vector b. Then employing both the
ultrarelatvistic limits on the space-time coordinates (1) and
on the fields (8a) and (8b), we get, respectively, the
Carrollian boost transformation conditions which are as
follows:

δBϕðt; xÞ ¼ bj½xj∂tϕðt; xÞ�;
δBϕlðt; xÞ ¼ bj½xj∂tϕlðt; xÞ − δljϕðt; xÞ�; ð9aÞ

δBϕðt; xÞ ¼ bj½xj∂tϕðt; xÞ − ϕjðt; xÞ�;
δBϕlðt; xÞ ¼ bj½xj∂tϕlðt; xÞ�: ð9bÞ

A more compact notation for the above equation (9) is

δBϕðt; xÞ ¼ bj½xj∂tϕðt; xÞ þ qϕjðt; xÞ�;
δBϕlðt; xÞ ¼ bj½xj∂tϕlðt; xÞ þ q0δljϕðt; xÞ�: ð10Þ

We get (9a), if we take the value of the constants as ðq¼ 0;
q0 ¼−1Þ and for ðq ¼ −1; q0 ¼ 0Þ, we get (9b) which are,
respectively, be referred to as the electric and the magnetic
sectors. It can be easily checked that these are exactly the
same as the electric and magnetic sectors defined in (8).
Similarly, the action of ðK;KiÞ can be found by taking

the Carrollian limit on relativistic special conformal trans-
formation. The final results become

δkϕðt; xÞ ¼ k½x2∂tϕðt; xÞ þ 2qxiϕiðt; xÞ�;
δkϕlðt; xÞ ¼ k½x2∂tϕlðt; xÞ þ 2q0xlϕðt; xÞ�; ð11aÞ

δkϕðt; xÞ ¼ kj½ð2Δxj þ 2xjt∂t þ 2xixj∂i − xixi∂jÞϕðt; xÞ
þ 2tqϕjðt; xÞ�; ð11bÞ

δkϕlðt; xÞ ¼ kj½ð2Δxj þ 2xjt∂t þ 2xixj∂i − xixi∂jÞ�ϕlðt; xÞ
þ 2klxjϕjðt; xÞ− 2kixlϕiðt; xÞ þ 2tq0klϕðt; xÞ:

ð11cÞ

We are only left with the action of infinite number of
generatorMf (2) on the fields. For supertranslations, we do
not have any relativistic counterpart. But an ansatz for these
transformations can be given, motivated by the trans-
formations of the fields under H;Bi; K, as these generators
are special cases of Mf (3). We first conjecturally state the
transformation rules,

δMf
ϕðt; xÞ ¼ fðxÞ∂tϕðt; xÞ þ qϕiðt; xÞ∂ifðxÞ; ð12Þ

δMf
ϕlðt; xÞ ¼ fðxÞ∂tϕlðt; xÞ þ q0ϕðt; xÞ∂lfðxÞ: ð13Þ

That the above conjecture is consistent, can be verified as
follows. Let A; B ∈ g be a symmetry algebra, which in our
case is the conformal Carrollian one and let δA etc. denote
infinitesimal change on fields, i.e., transformations as given
in (12). Then if the commutator relation (as the difference
of alternated consecutive transformations)

½δA; δB� ¼ δ½A;B� ð14Þ

on the space of fields of interest holds, we say the
transformation rules are self-consistent.4

It can be easily checked that with the above ansatz of
transformation (12), the self-consistency of conformal

4At a more formal level, this is a statement of homomorphism
from the Lie algebra g to that of the algebra of vector fields on
field space.
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Carroll transformation holds, thus validating the ansatz. We
also note that this ansatz of course is not the most general
one. However, for the purpose of the present paper, i.e., to
see Carrollian transformation of SOðd − 1Þ scalars and
vectors, this is sufficient. For ease of reading, we have
collated all the transformations in Table II. Now that we
have understood the conformal Carrollian symmetry gen-
erators, with the power of conformal symmetry, we can
constrain two-point functions of fields which transform
according to Table II in the next section. For that, we
require a definition of a unique vacuum state which respects
the global symmetries: spatial and temporal translations,
Carrollian boost, spatial rotations, dilatation, and Carrollian
special conformal transformation.

C. Correlation functions

Conformal symmetry is a powerful tool, because this
helps us find two- or three-point functions of a set of fields
with definite conformal transformation properties irrespec-
tive of the existence of a Lagrangian description. Here we
would explore this idea for fields with above-mentioned
conformal Carroll transformations. We will make a very
generic and plausible assumption of the existence of a
vacuum state that is invariant under the global part of
conformal Carroll algebra.
To set up the context,
(i) Let Φðt; xÞ and Φ̃ðt; xÞ be fields which transform

either as scalar or vector under SOðd − 1Þ and have
definite scaling dimensions.

(ii) Let us assume any global generator ★ being a
symmetry of the vacuum would mean ★j0i ¼ 0
and h0j★ ¼ 0.

(iii) If we use it in the context of correlators, it gives

h0j½★;Φðt1; x1Þ�Φ̃ðt2; x2Þj0i
þ h0jΦðt1; x1Þ½★; Φ̃ðt2; x2Þ�j0i ¼ 0:

This will give a set of simultaneous differential equations of
correlation functions. The solutions to these equations will
give us the required correlation functions.

1. Case 1.—When both ϕ and ϕi are in electric sector

(i) G00ðt;xÞ≡hϕðt1;x1Þϕðt2;x2Þi We first consider
both ϕðt; xÞ in electric sector, i.e., ðq¼0;q0 ¼−1Þ
as per the notation of (10). We will now impose
the invariance under H;Pi; Jij; D transformation.
The result which follows from the differential
equations is

G00ðt; xÞ ¼
X
m∈Z

αmtmr−m−2; ð15Þ

where xi ¼ xi1 − xi2, t ¼ t1 − t2 and r2 ¼ xixi and
n ¼ −ðmþ 2Þ. Now, let us impose the invariance
under Bi, X

m

mαmtm−1r−m−2xi ¼ 0: ð16Þ

The solution to this equation gives αm¼0∀m≠0.
Hence, using the constraint provided by Bi gives us
the correlation function

G00ðt; xÞ≡ hϕðt1; x1Þϕðt2; x2Þi ¼
α

r2
: ð17Þ

As expected, the invariance under ðKi; KÞ gives
nothing new and simply respects this form of the
correlation function.

(ii) G0iðt; xÞ≡ hϕðt1; x1Þϕiðt2; x2Þi Applying the above
scheme, we again impose the invariance of the
vacuum under H;Pi; Jij; D. The result dictates

G0iðt; xÞ ¼
X
m

βmxitmr−m−3; ð18Þ

TABLE II. Transformation of fields under CCA.

Translation δpϕðt; xÞ ¼ pj∂jϕðt; xÞ
δpϕlðt; xÞ ¼ pj∂jϕlðt; xÞ

Rotation δωϕðt; xÞ ¼ ωijðxi∂j − xj∂iÞϕðt; xÞ
δωϕlðt; xÞ ¼ ωij½ðxi∂j − xj∂iÞϕlðt; xÞ þ δl½iϕj��

Boost δBϕðt; xÞ ¼ bj½xj∂tϕðt; xÞ þ qϕjðt; xÞ�
δBϕlðt; xÞ ¼ bj½xj∂tϕlðt; xÞ þ q0δljϕðt; xÞ�

Dilatation δΔϕðt; xÞ ¼ ðΔþ t∂t þ xi∂iÞϕðt; xÞ
δΔϕlðt; xÞ ¼ ðΔþ t∂t þ xi∂iÞϕlðt; xÞ

SCT δkϕðt; xÞ ¼ kj½ð2Δxj þ 2xjt∂t þ 2xixj∂i − xixi∂jÞϕðt; xÞ þ 2tqϕjðt; xÞ�
δkϕlðt;xÞ¼kj½ð2Δxjþ2xjt∂tþ2xixj∂i−xixi∂jÞ�ϕlðt;xÞþ2klxjϕjðt;xÞ−2kixlϕiðt;xÞþ2tq0klϕðt;xÞ

ST δMf
ϕðt; xÞ ¼ fðxÞ∂tϕðt; xÞ þ qϕiðt; xÞ∂ifðxÞ

δMf
ϕlðt; xÞ ¼ fðxÞ∂tϕlðt; xÞ þ q0ϕðt; xÞ∂lfðxÞ.
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where the above expression comes only when we
take mþ nþ 3 ¼ 0. Let us now implement the
invariance under Bi, and we get

xl∂tG0i − δliG00 ¼ 0 ⇒ βm ¼ 0;

∀m and α ¼ 0: ð19Þ

Both G00 and G0i vanish completely.
(iii) Gijðt; xÞ≡ hϕiðt1; x1Þϕjðt2; x2Þi The expression for

the correlation function after we impose the invari-
ance under H;Pi; Jij; D becomes

Gijðt; xÞ ¼
X
m

tmr−m−2
�
γ1mδij þ γ2m

xixj
r2

�
: ð20Þ

Imposing the invariance under Bl, we get the
constraint as

X
m

tm−1r−m−2mxl

�
γ1mδij þ γ2m

xixj
r2

�
¼ 0

⇒ ðγ1m; γ2mÞ ¼ 0 ∀ m ≠ 0: ð21Þ

Therefore, the final result becomes

Gijðt; xÞ≡ hϕiðt1; x1Þϕjðt2; x2Þi
¼ γ1

r2
δij þ

γ2
r4

xixj: ð22Þ

Imposing the invariance under ðKi; KÞ on the
correlation function gives nothing new.

2. Case 2.—When both ϕ and ϕi are
in magnetic sector

(i) Kij ≡ hϕiðt1; x1Þϕjðt2; x2Þi Imposing invariance
under H;Pi; Jij; D, and Bi restricts the correlation
function to

Kij≡ hϕiðt1;x1Þϕjðt2;x2Þi¼
ρ1
r2
δijþ

ρ2
r4
xixj: ð23Þ

The form of the correlation function remains same
even if we impose K;Ki.

(ii) K0i ≡ hϕðt1; x1Þϕiðt2; x2Þi Looking for invariance
underH;Pi; Jij; D, the correlation function becomes

K0iðt; xÞ ¼
X
m

σmxitmr−m−3: ð24Þ

After the implementation of invariance under Bl,
we get

K0iðt; xÞ ¼ 0; Kijðt; xÞ ¼ 0: ð25Þ

(iii) K00 ≡ hϕðt1; x1Þϕðt2; x2Þi The correlation function
K00 after we impose the invariance under H;Pi;
Jij; D; K;Ki becomes

K00 ≡ hϕðt1; x1Þϕðt2; x2Þi ¼
σ

r2
: ð26Þ

3. Case 3.—When ϕ and ϕi are in either electric or
magnetic sector

(i) H0i ≡ hϕðt1; x1Þϕiðt2; x2Þi For this case, we take ϕ
in electric sector and ϕi in magnetic sector. We will
impose the invariance under H;Pi; Jij, and D to get
the form of correlator as

H0i ¼
X
m∈Z

emtmr−m−3xi: ð27Þ

The constraint equation which we get after we
impose the invariance under Bl is given by

X
m∈Z

emmtm−1r−m−3xixl¼0⇒em¼0 ∀m≠0: ð28Þ

The final expression of the correlation function
becomes

H0i ≡ hϕðt1; x1Þϕiðt2; x2Þi ¼
e
r3
xi: ð29Þ

This form remains unchanged under the invariance
of Kl; K.

(ii) Hij ≡ hϕiðt1; x1Þϕjðt2; x2Þi Here, we take one of ϕi
in electric sector and another ϕj in magnetic sector.
Following the same procedure, we will first impose
the invariance underH;Pi; Jij, andD. Next, we will,

Hij ¼
X
m∈Z

fmtmr−m−2δij; ð30Þ

impose the invariance under K, we get

x2∂tHij − 2xjHi0 ¼ 0: ð31Þ
which implies that Hij and H0i vanish completely.

(iii) H00ðt; xÞ≡ hϕðt1; x1Þϕðt2; x2Þi We take first ϕ in
electric sector and latter ϕ in magnetic sector. We
will now impose the invariance under H;Pi; Jij; D
transformation. The correlation function becomes

H00ðt; xÞ ¼
X
m∈Z

θmtmr−m−2; ð32Þ

Using the constraint provided by K gives us the
correlator

H00ðt; xÞ≡ hϕðt1; x1Þϕðt2; x2Þi ¼
θ

r2
: ð33Þ
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The summary of the correlation functions is given in
Table III. We can also write the correlation functions in
most generalized manner. They are given by

h0jϕðt1; x1Þϕlðt2; x2Þj0i ¼ 0; ð34aÞ

h0jϕðt1; x1Þϕðt2; x2Þj0i
¼ ða1ðqe þ q0eÞ þ b1ðqm þ q0mÞ þ 2Þ γ̃

r2
; ð34bÞ

h0jϕiðt1; x1Þϕjðt2; x2Þj0i
¼ ða2ðqe þ q0eÞ þ b2ðqm þ q0mÞ þ 2Þ

×
�
γ

r2
δij þ

γ0

r4
xixj

�
: ð34cÞ

In the correlators above (34), when the fields transform in
electric sector, we take the constants as ða1 ¼ 2; a2 ¼ 1;
b1;2 ¼ 0Þ along with ðqe ¼ 0; q0e ¼ −1Þ and for magnetic
case, ða1;2¼0;b1¼1;b2¼2Þ along with ðqm¼−1;q0m¼0Þ.
For mixed case, we have to take b1 ¼ 0; ða1; a2; b2 ¼ 1Þ.

III. TOWARD A LAGRANGIAN FORMULATION
FOR THE MAGNETIC LIMIT

While trying to formulate an ultrarelativistic limit of
electrodynamics, we keep in mind that fundamental
dynamical variables are still ðAt; AiÞ, as these satisfy the
Bianchi identity F ¼ dA ¼ 0, which is topological (back-
ground independent) and should hold even on Carroll
manifold. In the following, we first describe the problems
associated with the dynamics of the magnetic sector of
Carrollian sector. In the later sections, we propose an
algorithm to cure that and find an action principle for
the same.

A. Brief review on Carrollian electrodynamics

As already hinted above, there are a couple of ways of
thinking about the effect of ultrarelativistic limit of a
Lorentz covariant vector field. In particular, in the case
of formulating electrodynamics on a Carroll manifold, there
are a couple of ways to do that [13], as argued in (8),

At → At; Ai → ϵAi ⇒ electric limit; ð35Þ

At → ϵAt; Ai → Ai ⇒ magnetic limit: ð36Þ

The nomenclature [7] of one limit being electric and the
other as magnetic is inspired from Galilean electrodynam-
ics [39] and is same as the ones given in (8).
The dynamics for the Carrollian electric limit is straight-

forward and has been worked out in [7] and later in more
detail in [16]. The equations of motion for the same are
given by

∂i∂iAt − ∂i∂tAi ¼ 0; ∂t∂iAt − ∂t∂tAi ¼ 0; ð37Þ

which are the Euler Lagrange equations coming from the
Lagrangian (in three spatial dimensions),

L ¼
Z

d3xð∂tAi − ∂iAtÞ2: ð38Þ

However, the case of magnetic limit is fraught with
ambiguities. For example, when one takes the ultrarelativ-
istic limit of the Maxwell’s equation ∂μFμν ¼ 0, one lands
up to the following spatial and temporal equation:

∂i∂tAi ¼ 0; ∂t∂tAi ¼ 0: ð39Þ

At dropping out of the equations makes it completely
unrestricted in the phase space of Carrollian electrodynam-
ics. Moreover, it is evident that both of the equations (39)
cannot come from an action via variational principle. On
the other hand, naively taking the ultrarelativistic magnetic
limit on Maxwell Lagrangian results into

L ¼
Z

d3xð∂tAiÞ2: ð40Þ

This gives rise to the equation ∂2
t Ai ¼ 0. One of the

principal goals of this paper is to construct an action
principle for the magnetic limit of Carrollian electrody-
namics and understand the corresponding dynamics better.
As an additional feather, one notices her gauge invariance is
lost both at the level of (39) and the Lagrangian.
Irrespective of the existence or nonexistence of an action,

both the sectors (37) and (39) were checked to be invariant
under the infinite dimensional conformal Carrollian sym-
metry algebra [13]. In order to check the invariance of an
equations of motion of the form fðA; ∂A; ∂2AÞ ¼ 0 with
respect to a symmetry generator Q, we would require the
variational derivative equation

δQfðA; ∂A; ∂2AÞ ¼ 0 ð41Þ

to hold. The explicit expressions of the variational actions
of the generators are given in Table II. The invariance under

TABLE III. Summary of the two-point correlation functions.

Case 1.—ϕ and ϕi are in electric sector
hϕðt1; x1Þϕðt2; x2Þi ¼ 0; hϕðt1; x1Þϕiðt2; x2Þi ¼ 0,
hϕiðt1; x1Þϕjðt2; x2Þi ¼ γ1

r2 δij þ γ2
r4 xixj.

Case 2: ϕ and ϕi are in magnetic sector
hϕðt1; x1Þϕðt2; x2Þi ¼ σ

r2 ; hϕðt1; x1Þϕiðt2; x2Þi ¼ 0,
hϕiðt1; x1Þϕjðt2; x2Þi ¼ 0.
Case 3: ϕ and ϕi are in either electric or magnetic sector
hϕðt1; x1Þϕiðt2; x2Þi ¼ 0; hϕiðt1; x1Þϕjðt2; x2Þi ¼ 0.
hϕðt1; x1Þϕðt2; x2Þi ¼ θ

r2.
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space-time translations and spatial rotations is straightfor-
ward. To get the invariance under dilatationD, one requires
the value of the scaling weight Δ ¼ 1. Similarly, the
invariance of Eqs. (37)–(39) under SCT can be seen by
using the values of the constants ðq ¼ 0; q0 ¼ −1Þ for
electric sector and ðq ¼ −1; q0 ¼ 0Þ for the magnetic one.

B. The Helmholtz conditions and the
consistency algorithm

It is not always the case that non-Lorentz invariant
theories, viewed as particular limits of relativistic equations
of motions, have a consistent dynamical description in
terms of action formulation. Apart from the above encoun-
tered example of ultrarelativistic limit, electrodynamics on
Newton-Cartan space-time (Galilean limit) also suffers
from a similar fate. Later, a particular intelligent guess
of adding an extra field [10] in the system of equations of
motion made them such that an action formulation was
plausible. Later, in [19], a systematic analysis was done and
an algorithm was presented which justifies the procedure of
addition of new degrees of freedom.
One set of the key ingredients in this algorithm are the

Helmholtz conditions for the equations of motion. If these
conditions are met, then it is guaranteed that there exists an
action functional of the fields, the variational extremization
of which gives these equations and that the equations are
Euler Lagrange equations. In mathematics literature, this
inverse problem of calculus of variations has been well
studied [40,41]. We recapitulate the conditions for easy
reference below.
Tobeginwith,wewill consider a theorywhich is described

in terms of fields uB. We will then denote the equations of
motion by TA, where (A; B;… ¼ 1; 2;…N). In order for an
action functional S½uB� ¼ R

dnxLðuB; uCa ; uDab; xaÞ corre-
sponding to these equations of motion to exist, the necessary
and sufficient conditions are given by the Helmholtz
conditions [42]

∂TA

∂ðuBabÞ ¼
∂TB

∂ðuAabÞ ; ð42aÞ

∂TA

∂uBa þ ∂TB

∂uAa ¼ 2∂b
∂TB

∂ðuAbaÞ ; ð42bÞ

∂TA

∂uB ¼ ∂TB

∂uA − ∂a
∂TB

∂uAa þ ∂a∂b
∂TB

∂ðuAabÞ ; ð42cÞ

where uAa and uAab denote the first and second derivatives
of uA.
It is very clear that now using (42) that (39) does not

come from an action. In order to proceed further. we will
carry out the following steps systematically as a consis-
tency algorithm:
(1) The equations will be first passed through the

Helmholtz criteria. If the criteria are satisfied by

the equations of motion (EOMs), we then go down
to step 5. Otherwise, we go to step 2.

(2) We introduce new SOð3Þ scalars and vectors of mass
dimension 1, in turn to the system of equations,
which transform as by the rules of Table II. We will
add terms which are second derivatives of the new
fields in space-time coordinates.

(3) The new sets of equations of motion with new terms
of arbitrary coefficients will be passed through the
Helmholtz condition. If for any choice of coeffi-
cients, the Helmholtz conditions are satisfied, we go
to the next step, or go back to 2.

(4) We will further constrain the set of equations thus
found by requiring them to give back the Carrollian
electrodynamics equations when the newly intro-
duced field(s) is (are) set as constant nondynamical.

(5) Finally, conformal Carrollian symmetry of the equa-
tions will be checked, which will further constrain
the terms in the system of equations.

A caveat about the point 2 above is that for now we keep on
adding only fields of spin 0 and 1 (keeping in mind that we
started off as a limit of electrodynamics). However, in
principle, there is no foreseeable problem in including
tower of higher spins, as long as this remains a free theory.
Let us start with the EOMs of magnetic limit of

Carrollian electrodynamics denoted as

T̃0 ≔ ∂j∂tAj ¼ 0; T̃i ≔ ∂t∂tAi ¼ 0: ð43Þ

Since they obviously do not obey the Helmholtz conditions
(42), they cannot appear as Euler Lagrange equations of
motion derived from any local action. We then move on to
step 2 of the above procedure and add a minimal set of
additional fields ðBi; BtÞ5.
We now consider the most general set of equations of

motion of the fields At and Ai with terms corresponding to
extra scalar fields Bt and Bi. The most general second order
differential equations involving these fields are given by

T0 ≔ a1∂j∂jAt þ a2∂t∂tAt þ b1∂j∂tAj þ c1∂j∂jBt

þ c2∂t∂tBt þ d1∂j∂tBj ¼ 0; ð44aÞ

Ti ≔ a3∂i∂tAt þ b2∂t∂tAi þ b3∂j∂jAi þ b4∂j∂iAj

þ c3∂i∂tBt þ d2∂t∂tBi þ d3∂j∂jBi þ d4∂j∂iBj ¼ 0;

ð44bÞ

TB ≔ a4∂j∂jAt þ a5∂t∂tAt þ b5∂j∂tAj þ c4∂j∂jBt

þ c5∂t∂tBt þ d5∂j∂tBj ¼ 0; ð44cÞ

5Addition of a single extra scalar or a single extra vector field
does not satisfy the algorithm given above.
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TBi
≔ a6∂i∂tAt þ b6∂t∂tAi þ b7∂j∂jAi þ b8∂j∂iAj

þ c6∂i∂tBt þ d6∂t∂tBi þ d7∂j∂jBi þ d8∂j∂iBj ¼ 0:

ð44dÞ

We now crank the machine of passing these equations
through the Helmholtz criteria and find the constraints on
the coefficients appearing in (44). The constraints come out
to be

b1 ¼ a3; c1 ¼ a4; c2 ¼ a5; d1 ¼ a6; c3 ¼ b5;

d2 ¼ b6; d3 ¼ b7; d4 ¼ b8; c6 ¼ d5: ð45Þ

Next we move on to the step 4 of the algorithm above and
check the conditions found by demanding that setting At,
Bt, and Bi as constant background fields in (44) with the
parameters constraints (45) would give us back (39). This
gives rise to the following further constraints:

fa1; a2; b1; b2; b3; b4; c1; c2; d1; d3; d4g ¼ 0;

fc3; d2g ¼ 1: ð46Þ

This interestingly let us get rid of the field At from system
of fields, as its coefficient gets to vanish and effectively we
have three dynamical equations of motion which are as
follows:

Ti≔∂i∂tBtþ∂t∂tBi¼0;

TB≔∂j∂tAjþc4∂j∂jBtþc5∂t∂tBtþd5∂j∂tBj¼0;

TBi
≔∂t∂tAiþd5∂i∂tBtþd6∂t∂tBiþd7∂j∂jBiþd8∂j∂iBj

¼0: ð47Þ

There are still undetermined constants. As per the last step
of the algorithm spelled out above, we need to check
whether the above equations are invariant under conformal
Carrollian transformations. For that, we use Table II to look
for the invariance of (47). Finally, we end up with the set of
equations which are invariant under Helmholtz conditions
and CCA with restrictions on the values of the parameters
Δ ¼ 1 for both Bt, Bi and boost transformation rules:
q ¼ 0; q0 ¼ −1 in the context of Table II. However, the
vector field we started off originally will however transform
within q0 ¼ 0, as evidently the SOð3Þ scalar At drops off
from the system of equations. The final equations of motion
in the magnetic limit are given as follows:

Ti ≔ ∂i∂tBt þ ∂t∂tBi ¼ 0;

TB ≔ ∂j∂tAj þ c5∂t∂tBt ¼ 0;

TBi
≔ ∂t∂tAi ¼ 0: ð48Þ

Note that c5 is an undetermined parameter which can take
any arbitrary value.
As a summary, note that we have arrived at a system of

equations,which give the ultrarelativistic limits ofMaxwell’s
equations in the magnetic limit. Moreover, these equations
are invariant under the infinite dimensional conformal
Carrollian algebra and can be derived by variational principle
from an action. Before going on to write the action, let us
discuss aspects of the nontriviality of the infinite dimensional
global symmetry aspect in the following.

C. Strong invariance check and Lagrangian

The following short exercise would better illuminate the
meaning of the symmetries of the equations of motion.
It is evident in a class of systems that there are trans-

formations which are symmetries of the equations of
motion, but not of the action. As described in [37], these
are characterized as weak symmetries as opposed to
standard Noetherian, i.e., strong ones. Weak invariance
does not necessarily lead to conserved quantities; they are
rather nondynamical conditions on equations of motion.
Let us denote equations of motion derivable from an

action functional S½ΦI; ∂ΦI� as

TI ≔
δS
δΦI ¼ 0: ð49Þ

If ⋆ is generic continuous symmetry generator, i.e., the
symmetry condition (which should hold true off-shell) can
be expressed as

δ⋆S ¼
Z

ddxðδ⋆ΦIÞTI ¼ 0: ð50Þ

Let us take another variational derivative of (50), now with
respect to ΦKðyÞ, to have

Z
ddx

�
δðδ⋆ΦIðxÞÞ
δΦKðyÞ TIðxÞ þ δ⋆ΦIðxÞ δTIðxÞ

δΦKðyÞ
�
¼ 0:

The second term in the above is
R
ddxδ⋆ΦIðxÞ δ2S

δΦIðxÞδΦKðyÞ ¼
δ⋆ δS

δΦKðyÞ ¼ δ⋆TKðyÞ. Hence, it trivially follows that

δ⋆TKðyÞ ¼ −
Z

ddx
δðδ⋆ΦIðxÞÞ
δΦKðyÞ TIðxÞ: ð51Þ

This equation represents the condition of strong invariance
of the EOMs, which is valid off-shell.
If one goes on-shell, i.e., imposes T ¼ 0 and applies to

(51), then we get only

δ⋆TK ≈ 0: ð52Þ

This equation denotes the weak invariance of the EOMs
and the symbol “≈” tells us that the statement above is valid
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only on-shell. Weak invariance of EOMs denotes necessary
condition, whereas strong invariance is considered as a
sufficient condition for any generator ⋆ of a given algebra
to be a symmetry of the action.
Let us check whether these equations of motion have

strong invariance using the representation of the Carrollian
algebra. The equations in magnetic limit are given as

Tj ≔ ∂j∂tBt þ ∂t∂tBj ¼ 0; ð53aÞ

TB ≔ ∂t∂jAj þ c5∂t∂tBt ¼ 0; ð53bÞ

TBj
≔ ∂t∂tAj ¼ 0: ð53cÞ

The transformations will be appropriate conformal
Carroll transformations corresponding to the values

ðBt; BiÞ∶Δ ¼ 1; q ¼ 0; q0 ¼ −1 and

Ai∶Δ ¼ 1; q ¼ −1; q0 ¼ 0: ð54Þ

The general expression for strong invariance (51) for this
theory becomes

δ⋆TKðt; xÞ ¼ −
Z

d3ydt0
�
δðδ⋆Aiðt0; yÞÞ
δΦKðt; xÞ

Tiðt0; yÞ

þ δðδ⋆Btðt0; yÞÞ
δΦKðt; xÞ

TBðt0; yÞ

þ δðδ⋆Biðt0; yÞÞ
δΦKðt; xÞ

TBi
ðt0; yÞ

�
; ð55Þ

where ⋆ denotes Carrollian conformal generators,
TK ¼ Tj; TBj

; TB, and ΦK ¼ Ai; Bi; Bt, respectively.
Under dilatation D, the left-hand side of (55) for (53)
becomes

δDTK ¼ ½t∂t þ xl∂l þ 3�TK: ð56Þ

The right-hand side of (55) for (53a) gives

δDTj ¼ −
Z

d3ydt0
�
δðδDAiðt0; yÞÞ
δAjðt; xÞ

Tiðt0; yÞ
�

¼ −
Z

d3ydt0
�
δðt∂tAi þ yl∂lAi þ AiÞ

δAjðt; xÞ
Tiðt0; yÞ

�

¼ ½t∂t þ xl∂l þ 3�Tj: ð57Þ

We see that (53a) has strong invariance under dilatation.
Similarly, other equations of (53) are strongly invariant
under D.
We will now see the strong invariance of (53) under Kl.

The left-hand side of (55) for (53) becomes

δKl
Tj ¼ ð2xlt∂t þ 2xlxm∂m − x2∂l þ 6xlÞTj

þ 2xmδljTm − 2xjTl; ð58aÞ

δKl
TB¼ð2xlt∂tþ2xlxm∂m−x2∂lþ6xlÞTBþ2tTBl

; ð58bÞ

δKl
TBj

¼ ð2xlt∂t þ 2xlxm∂m − x2∂l þ 6xlÞTBj

þ 2xmδljTBm
− 2xjTBl

: ð58cÞ

The right-hand side of (55) for (53) becomes

δKl
Tj ¼ −

Z
d3ydt0

�
δðδKl

Aiðt0; yÞÞ
δAjðt; xÞ

Tiðt0; yÞ
�
¼ ð58aÞ;

δKl
TB ¼ −

Z
d3ydt0

�
δðδKl

Biðt0; yÞÞ
δBtðt; xÞ

TBi
ðt0; yÞ

þ δðδKl
Btðt0; yÞÞ

δBtðt; xÞ
TBðt0; yÞ

�
¼ ð58bÞ;

δKl
TBj

¼ −
Z

d3ydt0
�
δðδKl

Biðt0; yÞÞ
δBjðt; xÞ

TBi
ðt0; yÞ

�
¼ ð58cÞ:

ð59Þ

We conclude from the above analysis that the equations (53)
are strongly invariant under Carrollian generators in d ¼ 4
dimensions.
We will now look at the strong invariance under infinite

Carroll “supertranslations” Mf. The left-hand side of (55)
for (53) becomes

δMf
Tj ¼ fðxÞ∂tTj; ð60aÞ

δMf
TB ¼ fðxÞ∂tTB þ ½∂jfðxÞ�TBj

; ð60bÞ

δMf
TBj

¼ fðxÞ∂tTBj
: ð60cÞ

The right-hand side of (55) for (53) gives

δMf
Tj ¼ −

Z
d3ydt0

�
δðδMf

Aiðt0; yÞÞ
δAjðt; xÞ

Tiðt0; yÞ
�
¼ ð60aÞ;

δMf
TB ¼ −

Z
d3ydt0

�
δðδMf

Biðt0; yÞÞ
δBtðt; xÞ

TBi
ðt0; yÞ

þ δðδMf
Btðt0; yÞÞ

δBtðt; xÞ
TBðt0; yÞ

�
¼ ð60bÞ;

δMf
TBj

¼ −
Z

d3ydt0
�
δðδMf

Biðt0; yÞÞ
δBjðt; xÞ

TBi
ðt0; yÞ

�
¼ ð60cÞ:

We therefore confirm the strong invariance for (53) under
the infinite dimensional conformal Carrollian symmetry
algebra in d ¼ 4 and these are true dynamical symmetries.
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Finally, we can write down the Lagrangian which gives
the equations of motion (48). It is given by

L0 ¼
Z

d3x

�
ð∂jAjÞð∂tBtÞ þ ð∂tAjÞð∂tBjÞ þ

c5
2
ð∂tBtÞ2

�
:

ð61Þ

We note here that for all the dynamical variables in the
above Lagrangian, all time derivatives can be uniquely be
solved in terms of the canonical momenta and the Hessian
is invertible. Hence, according to the Dirac prescription, the
system is free of constraints and hence devoid of gauge
redundancy. One perceives it in a way that the ultra-
relativistic limit breaks the Uð1Þ gauge invariance at the
level of Lagrangian. This is in contrast to viewing Maxwell
theory as a massless limit of Proca theory. In Proca
dynamics, gauge invariance (as well as scale invariance)
emerges as m → 0. In contrast here, we have a situation
where gauge invariance gets broken as speed of light
c → 0. However, the interplay between ultrarelativistic
limit and the issue of gauge is more subtle, which we will
discuss later in the next section.
We notice here a particular cross kinetic term ∂tAj∂tBj.

From the perspective of a quantum theory, this does not
cause any problem, if one is interested to extract correlation
functions from a formally defined path integral.6 This can
be achieved by first complexifying the space of fields and
then defining the path integral contour such that the
Gaussian determinant is well defined [43]. Although we
do not attempt to compute the determinant for the free
theory as that would just give an adjustable normalization
factor for loop computations in an interacting theory, in
order to facilitate that for a future progress, we exemplify
one such analytic continuation (among various possible
others) below.
Let us first promote the real vector fields Ai, Bi to

complex ones. Then we reparametrize the fields as

Ai ¼
1

2
ðDi þ iEiÞ; Bi ¼

1

2
ðDi − iEiÞ: ð62Þ

We now recast the Lagrangian (61) of our theory in terms of
fieldsDi and Ei and add a complex conjugate term to make
it real,

L̃¼
Z

d3x

�
1

2
ð∂tBtÞf∂jDjþ i∂jEjgþ

1

4
ð∂tDjÞ2þ

1

4
ð∂tEjÞ2

þc5
2
ð∂tBtÞ2þcomplex conjugate

�
: ð63Þ

With the above prescription of analytic continuation, calcu-
lation of the partition function and hence the correlators
calculated from it make perfect sense. Second, as mentioned
above, the system is completely devoid of gauge invariance
and hence correlators calculation from the partition functions
is unambiguous. From the perspective of global symmetries,
we have a unique vacuum as defined in Sec. II B. Therefore,
the correlators discussed therewould be the same as obtained
from (63). Hence, we can attempt to make a curious
connection with the correlation functions in the original
Maxwell theory, which are of course heavily dependent upon
choice of gauge. Following the results in Table III, we have In
Appendix B, we kept for a comparison the causal interval
ðjx0 − y0j > jx⃗ − y⃗jÞ as well the acausal ðjx⃗ − y⃗j > jx0 −
y0jÞ ones for photon propagator in a one-parameter family of
gauge choices. Being a massless free theory of long-range
interactions, for acausal intervals the propagator has 1=r2

spatial falloff. Before thinking about a Carrollian limit of the
photon propagators, we notice that same manifold points
which are causally connected inMinkowski space-timeare no
more so inCarrollian limit unless they are at coincident spatial
points (see Fig. 1). Now, two acausal events can be made to
occur in common time, by a continuous Lorentz trans-
formation and similarly two causally connected events can
be brought to occur at a coincident spatial point. In this sense,
it is natural that we take a Carrollian limit of acausal photon
propagator in a particular gauge to compare with our
Carrollian propagators in Table IV. In the Tables V and VI
respectively, we respectively present the causal and the
acausal ultra-relativistic limits of relativistic propagators.
Curiously, the results mentioned in Table VI at the ultra-
relativistic limit can be compared with the ones given in
Table IV. If we take the gauge-fixing parameter ξ ¼ −3 there,
the correlator between temporal components vanishes, as in
the table above. On the other hand, the structure of the
correlators between spatial components also matches exactly.
Motivated by this, we check in the next subsection

whether the free Carrollian theory we have, indeed comes
from an ultrarelativistic limit of any Lorentz covariant
theory of two vectors.

FIG. 1. In the panel (a) above, the points A and C are causally
connected, whereas the interval A-B is acausal, in Minkowski
space. To get Carroll space-time as the c → 0 limit, one should
collapse the light cone to a single line, as in panel (b). In Carroll
space-time, none of the points A, B, andC are causally connected,
unless the events take place exactly at the same spatial points.

6Notably, for the world-sheet way of looking at string theory
with Lorentzian target space-time, there is always terms with
“wrong” kinetic term. However, this does not prevent one from
constructing a unitary theorywith physicallymeaningful spectrum.
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IV. LOOKING FOR A MINKOWSKI
ASCENDANT

The Lagrangian L0 obtained above in (61) has equations
of motion which correspond to the magnetic limit of
Carrollian electrodynamics once the additional fields Bi
and Bt are set to zero. However, it is not clear whether the
entire theory by itself can be obtained by taking suitable
limits of a Lorentz invariant theory.7 In this section, we will
try to answer this question.
Recall that the equations of motion for the theory given

in (53) contain two SOð3Þ vectors and a scalar. Hence, if
the theory is to descend from a Minkowski theory as an
ultrarelativistic limit, the Lorentz covariant theory better
have a couple of Lorentz vectors, giving rise to a couple of
SOð3Þ vectors and scalars. For degree of freedom match-
ing, one scalar must be rendered unphysical or nondynam-
ical. One way to see if such a parent theory exists is by
starting with a Lorentz invariant action with two Lorentz
covariant vectors and then taking limits. However, we
already noted in Sec. III A, the diagram in Fig. 2 does not
necessarily commute.

Hence, we start with the most general (64) Lorentz
covariant equations of motion and take the ultrarelativistic
limit and impose Helmholtz condition (such that there
exists an Carrollian action). Then we inspect whether
making one SOð3Þ scalar nondynamical would yield
us (53).
We begin by writing out a set of most general Lorentz

covariant equations of motion for two vector fields (say Aμ

and Bμ), i.e.,

TA ¼ a1∂ν∂νAμ þ a2∂μ∂νAν þ a3∂ν∂νBμ þ a4∂μ∂νBν ¼ 0;

TB ¼ b1∂ν∂νAμ þ b2∂μ∂νAν þ b3∂ν∂νBμ þ b4∂μ∂νBν ¼ 0:

ð64Þ

There is a caveat regarding gauge, in the equations
presented above and a bit of care is necessary before
one takes Carrollian limits on them. That is, unless we
choose particular constraints on the coefficients a1, a2, etc.,
the equations do not enjoy gauge invariance. However, if
one puts a constraint a1 ¼ −a2, then terms like ∂2

t At drop
out from (64). Therefore, taking Carrollian limits on those
equations would lead us to equations of motion which
describe completely different physics than the case of
a1 ≠ −a2.
Hence, before ultrarelativistic limits, we classify all such

classes of possible gauge [keeping in mind that the
equations of (64) should not be degenerate in any case]
invariance.
(1) All the coefficients ai; bi; i ¼ 1;…4 are nonzero and

independent of each other.
(2) a1 ¼ −a2 and all the other parameters are indepen-

dent of each other. In this case, the first of the
equations (64) has gauge invariance in the field Aμ.
However, the second one breaks it.

(3) a1 ¼ −a2 and b1 ¼ −b2 and all other parameters are
independent. Therefore, both the equations are Uð1Þ
gauge invariant for the field A.

(4) a1 ¼ −a2 and a3 ¼ −a4 and all other parameters are
independent. The first equation has Uð1Þ ×Uð1Þ

TABLE IV. Summary of results.

Correlators Results

1. hBtðt1; x1ÞBtðt2; x2Þi ¼ 0
2. hBtðt1; x1ÞDjðt2; x2Þi ¼ 0

3. hBtðt1; x1ÞEjðt2; x2Þi ¼ 0

4. hDiðt1; x1ÞDjðt2; x2Þi ¼ a
r2 δij þ b

r4 xixj
5. hDiðt1; x1ÞEjðt2; x2Þi ¼ c

r2 δij þ d
r4 xixj

6. hEiðt1; x1ÞEjðt2; x2Þi ¼ − a
r2 δij −

b
r4 xixj

TABLE V. Summary of results in causal case.

Correlators Results

1. h0jA0ðxÞA0ð0Þj0i ¼ ½− 1
4π2t2 þ ð1 − ξÞ 1

8πt2�
2. h0jA0ðxÞAið0Þj0i ¼ 0

3. h0jAiðxÞAjð0Þj0i ¼ ½δii 1
4π2t2 þ ð1 − ξÞ 1

8πt2� for i ¼ j
¼ 0 for i ≠ j

TABLE VI. Summary of results in acausal case.

Correlators Results

1. h0jA0ðxÞA0ð0Þj0i ¼ ½− 1
4π2r2

þ ð1 − ξÞ 1
16π2r2

�
2. h0jA0ðxÞAið0Þj0i ¼ 0

3. h0jAiðxÞAjð0Þj0i ¼ ½ 1
4π2r2 þ

ð1−ξÞ
16π4

ðr2−2xixir4 Þ� for i ¼ j

¼ ð1 − ξÞ 1
8π4

ðxixjr4 Þ for i ≠ j

FIG. 2. The process of taking Carrollian (ultrarelativistic) limit
and applying variational derivative on action functional does not
commute.

7R. B. thanks Andrew Strominger for suggesting this check.
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gauge invariance, whereas the second equation
breaks both.

(5) a1 ¼ −a2 and b3 ¼ −b4 and all other parameters are
independent. Both the equations separately are Uð1Þ
gauge invariant but those are broken by, respectively,
the other one.

(6) a1 ¼ −a2, a3 ¼ −a4 and b1 ¼ −b2 and other
parameters are independent. In this case, the first
equation is Uð1Þ ×Uð1Þ gauge invariant, but the
second one loses half of it.

(7) a1 ¼ −a2, a3 ¼ −a4, b1 ¼ −b2, and b3 ¼ −b4. The
system describes fully Uð1Þ × Uð1Þ gauge invariant
fields.

In each of these above classes, one can take at most four
combinations of Carrollian electric and magnetic limits on
the Aμ and Bμ fields and finally set At or Bt, the SOð3Þ
scalars to space-time constant. It is a straightforward yet
strenuous set of calculations and then comparing with (53)
which we performed. But none of the above equations
result into the Carrollian magnetic equations of motion
(53). Hence, we conclude that there is no Lorentz invariant
theory whose ultrarelativistic limit is the proposed mag-
netic sector of Carrollian electrodynamics.
However, the possibility remains that our theory can be

obtained from a gauge-fixed version of a Minkowski
theory, where the gauge-fixing condition explicitly breaks
the Lorentz symmetry. This can be achieved by setting
some of the ai or bi arbitrarily to zero or some other fixed
number. Such a possibility cannot be explored in this
analysis carried out in this section, but we briefly explore a
way to address this issue in Appendix B.

V. EXTENSION TO AN INTERACTING THEORY

Until now, we have been concerned with Carrollian
version of electrodynamics, which is a free theory enjoying
an infinite dimensional global symmetry group. Although
not very common, it is understandable that a free theory
might have much extended symmetry, hidden or explicit
(view Appendix A for such a class of symmetries).
However, in the following, we will present very nontrivial
result in the form of interaction terms, such as the new
interacting theory still enjoys the infinite dimensional
conformal Carrollian symmetry.

A. Addition of interactions

One way of adding interactions to electrodynamics is to
couple minimally charged matter. Another would be to
generalize to non-Abelian version of it. Both of these
procedures rely heavily on the gauge principle, which the
Carrollian theory lacks.
Our principle in finding possible deformations to the free

theory starts by first classifying all possible marginal terms
(hence respecting scaling symmetry) which respect spatial
rotational symmetry. This would involve all possible SOð3Þ

scalars of dimension 4. We first exhaust all possible terms
of this type. This includes, e.g., B4

t ; DiDiEjEj or momen-
tum-dependent vertices like B2

t ∂jDj, etc. We add all such
interactions and then check for invariance under the infinite
dimensional conformal Carrollian symmetry. Through a
lengthy yet straightforward set of computations, directly
checking with the symmetry generators presented in
Table II, we see that the Lagrangian is invariant up to
total time derivative, only if we include the following terms
to the free Lagrangian (63):

L̃int ¼
Z

d3x

�
−g1B4

t −
g2
2
B2
t ðD2

j − E2
jÞ
�
: ð65Þ

Therefore, symmetry principle (in particular the infinite
dimensional conformal Carrollian algebra) helps us find the
interactions uniquely. Hence, we have constructed an
example of an interacting theory which possess an infinite
number of conformal Carrollian global symmetries.

B. Dynamical realization of the Carrollian algebra

The conformal Carroll algebra is not semisimple and has
an infinite dimensional Abelian ideal. For non-semi-simple
symmetry algebras, due to cohomological properties, it is
not guaranteed that the homomorphism from the algebra of
symmetry generators to the space of conserved charges is
exact [44]. This gives rise to the possibility of nontrivial
central extension. The easiest example is that of a 1D free
particle Lagrangian. This has Galilean boost and translation
as symmetries. The two-dimensional symmetry algebra is
Abelian and not semisimple, obviously. Its second coho-
mology is nontrivial. This is reflected in the mass-depen-
dent central term in the Poisson bracket between conserved
momentum and boost charge.8 It is therefore instructive to
check for possible central extensions in our present case of
interest.
For the interacting theory (63), we will now look at the

Noether charges and the corresponding Poisson brackets.
Although our Lagrangian is manifestly invariant under
CCA, the closure of the algebra of Noether charges will
ensure the dynamical preservation of the conformal
Carrollian symmetries. Let us consider the conserved
Noether charges consistent with the symmetries associated
with the Lagrangian. Since we do not have manifested
Lorentz covariance in our system, calculating directly the
textbook definition of Noether current and thereafter the
Noether charge would not be feasible.

8The author R. B. thanks Glenn Barnich for brining to notice
this naive yet beautiful example. A more involved but standard
example where Noether charge algebra does not exactly respect
the algebra of symmetry generators (central term appears)
crops up in the asymptotic symmetries of asymptotically flat
space-time.
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The systematic procedure we employ to find out the
charges is as follows. Consider a Lagrangian in d spacetime
dimensions

L ¼ LðΦ; ∂tΦ; ∂iΦÞ; ð66Þ

whereΦðt; xÞ is a generic field. Varying the Lagrangian on-
shell in an arbitrary direction on the tangent space of field
space Φ → Φþ δΦ, we get

δL ¼
Z

dd−1x
h
∂t ΘðΦ; ∂Φ; δΦÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ðpreÞ-symplectic potential

i
∶on − shell: ð67Þ

Now consider a specific infinitesimal transformation
Φ → Φþ δ⋆Φ off-shell. The transformation δ⋆ is said to
be a symmetry, if

δL ¼
Z

dd−1x½∂tfðΦ; ∂Φ; δ⋆ΦÞ�∶off − shell ð68Þ

for some function f in field space.
Comparing (67) and (68), we infer that on-shell

∂tQ⋆ ≔
Z

dd−1x∂tðΘðΦ; ∂Φ; δ⋆ΦÞ − fðΦ; ∂Φ; δ⋆ΦÞÞ

¼ 0: ð69Þ
Using this procedure, the Noether charges for the finite and
infinite Conformal Carrollian generators are calculated as

Rotation∶Qω ¼
Z

d3x2ωij½xif2πDl
∂jDl þ 2πEl

∂jEl þ 2πB∂jBtg þ 2πDi
Dj þ 2πEi

Ej�;

Translation∶Qp ¼
Z

d3xpk½2πDj
∂kDj þ 2πEj

∂kEj þþ2πB∂kBt�;

ST∶Qf ¼
Z

d3xf

�
2π2Dj

þ 2π2Ej
þ 1

c5

�
πB −

1

2
ð∂jDj þ i∂jEjÞ

�
2

þ g2
2
B2
t ðDj þ iEjÞ2 þ 2g1B4

t

�
þ 2∂jðBtðπDj

þ iπEj
ÞÞ
�
;

Dilatation∶QD ¼
Z

d3x

�
2πBBt þ ð2πDj

Dj þ 2πEj
EjÞ þ 2xlfπBð∂lBtÞ þ πDj

∂lDj þ πEj
∂lEjg

þ 2t

�
π2Dj

þ π2Ej
þ 1

2c5

�
πB −

1

2
ð∂lDj þ i∂lEjÞ

�
2

þ g1B4
t þ

g2
4
B2
t ððDj þ iEjÞ2Þ

��
: ð70Þ

Similarly, the charge associated to special conformal transformation is given as

Qk ¼
Z

d3x2kl

�
ðDl þ iElÞBt þ 2xl½πBBt þ πDj

Dj þ πEj
Ej�

þ 2xlt

�
π2Dj

þ π2Ej
þþ 1

2c5

�
1

2
ð∂jDj þ i∂jEjÞ − πB

�
2

þ 2g1B4
t þ

g2
4
B2
t ðDj þ iEjÞ2

�

þ xlxm½2πBð∂mBtÞ þ 2πDj
∂mDj þ 2πEj

∂mEj� − x2½πBð∂lBtÞ þ πDj
∂lDj þ πEj

∂lEj�

þ 2xm½ðπDl
Dm þ πEl

Em� − 2xj½ðπDj
Dl þ πEj

El� − 2tðπDl
þ iπEl

ÞBt

�
: ð71Þ

Wewill write down the results of Poisson brackets between
the conserved charges using the canonical commutation
relations. The Poisson bracket between dilatation and
spatial translation is given by

fQD;Qpg ¼ −Qp: ð72Þ

The above Poisson brackets (72) reflects the CCA
bracket,

½D;Pk� ¼ −Pk: ð73Þ

Consider some of the other terms in the infinite CCA,

½Pk;Mf� ¼M∂kf; ½D;Mf� ¼Mh; where h¼ xl∂lf−f;

½Kl;Mf� ¼Mh̃; where h̃¼ 2xlh− x2∂lf:

Correspondingly, a set of lengthy yet straightforward
Poisson bracket computations of the charges give
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fQp;Qfg ¼ Qh0 ; where; h0 ¼ pk∂kf; ð74aÞ

fQD;Qfg ¼ Qh; where ;h ¼ xk∂kf − f; ð74bÞ

fQk;Qfg ¼ Qh̃; where ;h̃ ¼ ð2xixk∂k − x2∂iÞf: ð74cÞ

The results confirm the CCA algebra being satisfied at
the level of charges, i.e., the existence of Lie algebra
homomorphism from CCA to the Poisson algebra of
charges. Given the fact that CCA is infinite dimensional
and non-semi simple, this check was necessary. Because for
non-semi-simple symmetry algebras, this homomorphism
is not guaranteed and may lead to central extensions.

VI. CONCLUSIONS

A. Summary

To conclude, let us first summarize the results obtained
in the paper.
Our main achievement in this paper has been the

construction of an interacting theory with infinite number
of global symmetries in d ¼ 4. Starting from the magnetic
sector of ultrarelativistic equations of motion, we added
newer degrees of freedom to the system to make it
dynamically consistent. The resultant theory is devoid of
gauge redundancies. And more interestingly, addition of
new degrees of freedom takes us to a portion of the space
of Carrollian theories which are not, in an obvious way,
found to be ultrarelativistic limit of any Lorentz invariant
field theory.
To begin with, we started with a brief review of flat

conformal Carrollian manifolds and isometries thereon,
which form an infinite dimensional Lie group. For fields,
which we demand transform as scalars and vectors under
spatial rotations and have definite scaling dimensions, we
developed the transformation rules under the conformal
Carrollian transformations. We then motivated toward a
theory of Carrollian electrodynamics as an ultrarelativistic
limit of Maxwell’s electrodynamics and focused particu-
larly on the magnetic sector at the level of equations of
motion. As these equations of motion cannot be derived as
Euler-Lagrange equations from an action, we devised an
algorithm for adding newer degrees of freedom linearly to
the system respecting the symmetries, so that we have an
action principle to work with. After getting the action, we
added interaction terms such that the system has infinite
dimensional conformal Carroll group as group of global
symmetry generators.

B. Discussions and future direction

Following are some of the aspects of present paper which
should be pursued in the near future:

1. Propagators

As mentioned in the Introduction, when viewing
Carrollian space-time as an ultrarelativistic limit of
Lorentz covariant systems, light cones now collapse to the
erstwhile time axis of Minkowski space. This obviously
means that all causal propagation is ultralocal in space.
Without going into the picture of particles as quanta of the
fields in Carroll background, we worked here with a very
mild assumption of existence of a vacuum state of the free
theory. With a set of symmetry considerations, including the
conformal ones, we are able to construct uniquely the
position space propagator. The propagators are unique, even
for massless vector theories, as this is devoid of gauge
invariance. Interestingly, these two-point functions can be
interpreted as ultrarelativistic limit of relativisticUð1Þ gauge
theory at a certain gauge. Further investigations in causal
propagators are necessary to set up the quantum theory. A
rather intriguing question in this regard, for those Carrollian
theories which descend as ultrarelativistic limit, is whether
the connection carries over at the quantum levels as well.

2. Perturbative quantization

One of the key motivations in this line of projects in
Carrollian physics is probing and classifying all CFTs,
beyond the regime of the relativistic ones and other QFTs
connected via RG flow. Taking cue from relativistic
physics, we have included all possible marginal deforma-
tions in the present theory. So, it is imperative that one
should check the divergence structure at least up to the first
quantum correction and understand the meaning of renorm-
alization in Carrollian setup.

3. Ward identities

Probably the main feature that sets Carrollian conformal
theories apart is the existence of an infinite set of locally
acting space-time symmetry transformations. If a consistent
quantization program is developed, the obvious question that
one would like to ask is the exactness or corrections to these
infinite symmetries at quantum level via Ward identities.
Even finding anomaly structure for the scaling symmetry
itself would be an interesting progress in these theories.

4. Graphene superconductivity

It is well known that low-lying levels of electron energy
bands in graphene exhibits linear dispersion, and hence the
low-energy (comparing to Fermi level) physics is described
by Dirac equation in 2þ 1 dimensions. Hence, this is a
massless Lorentz covariant description, with speed of light
replaced by the Fermi velocity. It has been recently
observed9 experimentally [45] that at certain twist angles
(magic angles), the effective Fermi velocity goes to zero

9We thank Gregory Tarnopolsky for bringing this to notice and
Swastibrata Bhattacharyya for further discussions on this topic.
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and the conical bands flatten out making way for a new type
of superconductivity. This phenomenon obviously is an
indicator of Carrollian conformal physics in Fermionic
systems. We would like to explore more into these systems
with particular emphasis on possibility and consequences
of Carrollian conformal symmetries.
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APPENDIX A: DIGRESSION ON INFINITE
DIMENSIONAL SYMMETRY ALGEBRAS

IN RELATIVISTIC THEORIES

It is not often realized that even (free) field theories in
Minkowski space have infinite number of continuous
symmetries and hence conserved charges. In the following,
we will explore a large set of them.
This is motivated basically by an algebra of Abelian

generators, similar in spirit to the supertranslation charges
Qf of BMS symmetries, i.e., those forming the asymptotic
symmetry group of general relativity for asymptotically flat
spacetime. As a theory of gravity must have built-in
diffeomorphism invariance, any nontrivial physical sym-
metry and hence conserved quantity is only supported at the
asymptotic boundary. For asymptotically flat spacetimes,
Qf charges are defined as conserved charges integrated
over two-sphere foliations of the future (or past) null
infinity, corresponding to arbitrary angle-dependent time
translations, off the celestial sphere. Since f is an arbitrary
function, there are infinite number of them, which are
algebraically independent and by construction, they are all
conserved global charges. Note that, the energy H ¼ Qf¼1

is a special case of the supertranslation charge.
In order to stress on the existence of the nontriviality of

the infinite number of algebraically independent conserved
quantities in four-dimensional bulk physics (free), we bring
in the textbook topic of a field theory defined on a
Lorentzian-manifold-like Minkowski, where one can still
define phase space functions like

QðMinkÞ
f ¼

Z
d3xfHðMinkÞ; ðA1Þ

with HðMinkÞ being the Hamiltonian density for the rela-
tivistic theory on Minkowski space and the function f is

supported only on the spatial surface. For local, Poincaré
invariant theories10 of course, these will not be conserved
unless f is constant.
However, since going to the momentum space com-

pletely decouples free theories as independent oscillators,
an infinite number of conserved quantities can be con-
structed. In order to facilitate the comparison, one can start
with the Hamiltonian of a massless free field theory of
helicity σ (taken to be integral; otherwise, one has to take a
little bit more care in the following discussion with the
variables now becoming Grassmann),

HðMinkÞ ¼ 1

2ð2πÞ3
Z

d3p⃗jp⃗ja⋆ðp; σÞaðp; σÞ; ðA2Þ

with the usual (pre)-symplectic structure,

Ω ¼ −
i

2ð2πÞ3
Z

d3p⃗Daðp; σÞ ∧ Da⋆ðp; σÞ: ðA3Þ

Here

p ¼ fðE; p⃗ÞjE2 − jp⃗j2 ¼ 0g ðA4Þ

is the null momentum and we denote the exterior derivative
on phase space by D. Note that we have not chosen a
traditional Lorentz invariant measure in (A2) and density
factors have been appropriately absorbed in oscillator
variables, which is reflected in the symplectic structure.
It is easy to verify that the vector field

ξ ¼ i
Z

d3p⃗0
�
aðp0; σÞ δ

δaðp0; σÞ − a⋆ðp0; σÞ δ

δa⋆ðp0; σÞ
�

on the infinite dimensional phase space is a generator
of canonical transformation and the corresponding
generating function is the Hamiltonian (A2) itself, i.e.,
iξΩ ¼ DHðMinkÞ. It captures the time translation symmetry
of the problem.
Interestingly, a phase space vector field

ξg ¼ i
Z

d3p⃗0gðp⃗0Þ
�
aðp0; σÞ δ

δaðp0; σÞ

− a⋆ðp0; σÞ δ

δa⋆ðp0; σÞ
�

ðA5Þ

is also a generator of canonical transformation, for
any arbitrary (tensor) g of p⃗, giving rise to the generating
function,

10For example, for a massless free scalar in three spatial
dimensions, HðMinkÞ ¼ 1

2
ðπ2 þ ∂iϕ∂iϕÞ and hence,

d
dt

QðMinkÞ
f ¼ −

Z
d3x∂if∂iϕπ:
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Qg ¼
1

2ð2πÞ3
Z

d3p⃗gðp⃗Þa⋆ðp; σÞaðp; σÞ: ðA6Þ

The g ¼ jp⃗j case corresponds to the Hamiltonian (A2).
Moreover, these are all conserved,

fH;Qgg ¼ iξg iξg¼jp⃗jΩ ¼ 0: ðA7Þ

Since g is arbitrary, we already get an infinite number of
which are all conserved and they form the infinite dimen-
sional Abelian algebra [following the algebra of the
symplectomorphisms (A5)],

fQf;Qgg ¼ iξg iξfΩ ¼ 0:

In the analysis of finding the BMS symmetry algebra in
free field theories in [29],11 these generators took the role of
supertranslations. Physically, this is another manifestation
of the fact that the energy of each individual oscillator
mode (described by a; a⋆) is conserved independently, as
one can choose a particular momentum p⃗0 and the energy
of the oscillator corresponding to it is found by choosing
gðp⃗Þ ¼ δ3ðp⃗ − p⃗0Þ in (A6).
What might have been overlooked in recent relevant

literature is that these sets of generators are the special cases
of a much larger tensor algebra with varying degrees of
locality in momentum space. With SOð3Þ tensors F, G, one
can have generators of linear symplectic transformations,

Z
d3p⃗Fi1…imðp⃗Þ ∂

∂pi1
…

∂
∂pim

aðp;σÞ δ

δaðp;σÞ
þGj1…jnðp⃗Þ ∂

∂pj1
…

∂
∂pjn

a⋆ðp;σÞ δ

δaðp;σÞþ c:c: ðA8Þ

For certain specific symmetry structures and divergence
conditions on F, G, these also are symmetry generators,
called higher spin symmetries for obvious reason. This is
precisely the reason that all free systems are integrable.
Some of interesting exemplary special subalgebras are as
follows:

(i) Let us consider the phase-space vector fields,

χA⃗ ¼
Z

d3p⃗Aiðp⃗Þ
�
∂iaðp; σÞ

δ

δaðp; σÞ

þ ∂ia⋆ðp; σÞ
δ

δa⋆ðp; σÞ
�
: ðA9Þ

This is both a symplectomorphism and a symmetry
generator, for an arbitrary divergence-less vector
field, A⃗ in 3-momentum space,

iχA⃗Ω¼DðQ½χA⃗�Þ; where

Q½χA⃗�¼
i

2ð2πÞ3
Z

d3p⃗a⋆ðp;σÞAiðp⃗Þ∂iaðp;σÞ and

iχA⃗ iξg¼1
Ω¼0: ðA10Þ

They generate the following Lie algebra of
divergence-less vector fields:

½χA⃗; χB⃗� ¼ χC⃗; where C⃗ ¼ £B⃗A⃗: ðA11Þ
As expected, this is realized at the level of charges,
in an equivariant way,

iχA⃗ iχB⃗Ω¼Q½χC⃗�; whereDðQ½χC⃗�Þ ¼ iχC⃗Ω: ðA12Þ

(ii) One can easily parametrize the null 4-momenta
forming the null cone (A4) as

pμ ¼ E

�
1;

zþ z̄
1þ zz̄

;−i
z − z̄
1þ zz̄

;
1 − zz̄
1þ zz̄

�
: ðA13Þ

This space with topology (E > 0) Rþ × S2 does not
have a Riemann structure, but has conformal proper-
ties. Actually, as we will later review in this paper,
this has properties of a Carroll manifold. One has the
induced measure d3p⃗ ¼ i dEdzdz̄ð1þzz̄Þ2. It can be shown

that

Lm ¼
Z
Rþ×S2

dEdzdz̄
ð1þ zz̄Þ2 z

mþ1a⋆ðE; z; z̄Þ∂zaðE; z; z̄Þ

ðA14Þ
for integer m and analogously written L̄n are also
conserved quantities and their Poisson algebra
defined by the above symplectic structure form a
pair of Witt algebras. Moreover, together with all the
Qg as appearing in (A6) for functions g supported on
S2, they form the BMS4 algebra. The generators
Lm; L̄m for m ¼ 0;�1 are the conformal isometry
generators on the S2 and all higher and lower modes
are named as the superrotations.

The symmetry generators defined for generic cases (A8)
means departure from locality in terms of position space.
That is why geometric intuition does not come in handy
when trying to find these apparently hidden symmetries
even for the trivial case of free field theory.
Despite this, very large amount of global symmetry

generators being found relatively easily in free theories,
for interacting theories (which are described by local
Lagrangians), it is an extremely difficult task if not impos-
sible, to find ones beyond those associated with spacetime
Killing symmetries and internal symmetries. We make this
statement even keeping in mind the recently discovered
“hidden” Yangian symmetries [36,37] for relativistic super-
symmetric theories, which strictly act nonlocally on fields.

11It is to be noted that in [29], the functions gwere chosen to be
supported on the two-sphere parametrized by p⃗=jp⃗j.
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In contrast, in the present paper, we have demonstrated
an infinite dimensional symmetry algebra (CCA), now
acting locally in real space on fields, and thus having well-
understood geometric interpretation for an interacting
theory. To the best of our knowledge, only other example
of such a symmetry group was in the case of Carrollian
scalar electrodynamics in the electric limit [17].

APPENDIX B: PHOTON PROPAGATOR
IN POSITION SPACE

We will begin with the Lagrangian that contains the
gauge-fixing term. It is given by

L ¼ −
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2: ðB1Þ

We will now write down the equation [which can be found
from (B1)]

�
−k2ημν þ

�
1 −

1

ξ

�
kμkν

�
GνρðkÞ ¼ iδμρ; ðB2Þ

from which the expression for the propagator will be
obtained. The solution comes out to be

GμνðkÞ ¼
−i
k2

�
ημν − ð1 − ξÞ kμkν

k2

�
: ðB3Þ

Finally, we can write the most general expression for the
photon propagator given by

Gμνðx − yÞ ≔ h0jAμðxÞAνðyÞj0i

¼
Z

∞

−∞

d4k
ð2πÞ4

�
−i
k2

�
ημν − ð1 − ξÞ kμkν

k2

��
e−ikρx

ρ
:

Here, μ ¼ ð0; 1; 2; 3Þ, k2 ¼ −k20 þ jk⃗j2 and kμ is the four-
momentum. For doing the computations, ξ can take any
possible value. Some of the popular choices are ξ ¼ 0
(Landau gauge); ξ ¼ 1 (Feynman gauge).
In this paper, we will only quote the results for the case

where ξ is arbitrary while writing the propagator in position
space. We will look at both the timelike ðjx0−y0j> jx⃗− y⃗jÞ
as well the spacelike ðjx⃗ − y⃗j > jx0 − y0jÞ case. The results
in causal interval are given as (taking y ¼ 0 to make
calculations bit easy) follows: Similarly, the results in
acausal case are as follows: To get the final results, we
have used x0 ¼ t and r2 ¼ xixi in the intermediate steps.
Here we have considered the operators to be inserted at
same time slice. Now, one can see that going to the
Carrollian limit, i.e., t → ϵt, xi → xi does not alter the
spacelike case above. We use this observation in Table IV
to understand two-point correlation functions found from
global symmetry arguments.
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