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Abstract

We investigate the holographic entanglement entropy (HEE) and the holographic subregion complexity 
(HSC) for holographic superconductors, both in the Einstein and in the Einstein-Gauss-Bonnet gravitational 
theories. For both ground and excited states, we show that, in the Einstein gravity, the HSC decreases 
as the temperature increases and the normal phase has a smaller HSC than the superconducting phase, 
which is opposite to the behavior of the HEE. Moreover, we find out that, for a given temperature T in the 
superconducting phase, the higher excited state leads to a lager value of the HEE but a smaller value of the 
HSC. However, the Einstein-Gauss-Bonnet gravity has significantly different effect on the HSC, while the 
HEE always increases monotonously as the temperature increases and its value in the normal phase always 
larger than that in the superconducting phase. Our results indicate that the HEE and HSC provide richer 
physics in phase transitions and condensation of scalar hair for holographic superconductors with excited 
states.
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1. Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence, more generally the 
gauge/gravity duality, which relates a weakly coupling gravity theory in a (d + 1)-dimensional 
spacetime to a strongly coupling field theory on the d-dimensional boundary [1–3], has been 
widely applied to study the strongly correlated systems in the theoretical condensed matter 
physics. One of its most remarkable and successful applications is providing a holographically 
dual description of a high temperature superconducting phase transition. Holographic supercon-
ductors can be constructed by coupling the AdS black hole with charged fields and U(1) gauge 
fields. If the Hawking temperature is lower than some critical value, the black hole background 
will become unstable against perturbations and get hair by condensing some fields. According 
to the AdS/CFT duality, this hairy black hole solution is regarded as a superconducting phase. 
The first simple model of the s-wave holographic superconductor was built by Hartnoll, Herzog 
and Horowitz [4,5]. Considering the Yang-Mills theory/Maxwell complex vector field theory or 
the charged spin-two tensor field in the bulk, one can obtain the p-wave superconductors with 
a vector order parameter [6,7] and d-wave superconductors with a tensor order parameter [8,9]
from holography. Until now, various holographic superconductor models have been constructed 
and have attracted tremendous interest for their potential applications to the condensed matter 
theory, see Refs. [10–13] and references therein.

Holographic superconductors with the ground state, which is the first state to condensate, have 
been extensively explored. While in condensed matter physics, the physical system does not nec-
essarily remain in equilibrium, but may stay on the excited metastable states which manifest 
themselves in the hysteresis, superheating and supercooling phenomena, in the paramagnetic 
Meissner effect, in the jumps of magnetization, and in other peculiarities of the mesoscopic 
samples behavior, observed experimentally [14]. For the mesoscopic nanomaterials, the thermal 
fluctuation of the system may make it turn into metastable states and the system may remain 
in these states for a long time because of the complicated free energy surface [15]. For the 
nanowires, the potential of superconducting nanowires lies in their long-lived excited states, 
which results from their low sensitivity to charge noise and critical current noise [16], and the 
lifetimes of YBa2Cu3O7−x nanowires in the excited state exceeding 20 ms at 5.4 K are superior 
to those in conventional Josephson junctions [17]. Thus, the extension to the excited states, by 
considering the fact that there are many novel and important properties shown up in the excited 
states for superconducting materials in condensed matter systems [18–21], is interesting and sig-
nificant. As the first step in this direction, Wang et al. established a new family of solutions for 
holographic superconductors with excited states in the probe limit [22], and pointed out that the 
excited states of holographic superconductors may represent the metastable states of the meso-
scopic superconductors [15,23]. Subsequently, they built a fully backreaction holographic model 
of superconductor with excited states [24]. Qiao et al. developed a robust analytic approach to 
study the excited states for the holographic dual models in the AdS black hole [25] and soli-
ton [26] backgrounds, by including higher order terms in the expansion of the trial function. Li 
et al. investigated the non-equilibrium dynamical transition process between the excited states 
of holographic superconductors [27]. Following this line, more works on studying holographic 
superconductors with excited states can be found in [28–32].
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Entanglement entropy and complexity, which are introduced from quantum information the-
ory, play important roles in investigating quantum gravity and quantum field theory. The entan-
glement entropy is a powerful tool to probe phase transitions and characterize the degrees of 
freedom for a strongly coupled system. Holographically it can be calculated by Ryu-Takayanagi 
(RT) formula [33,34], which states that the entanglement entropy of CFTs is associated with the 
minimal area surface in the gravity side, namely

S = Area(γA)

4GN

. (1)

Here GN denotes the Newtonian constant in the dual gravity theory, and γA is the RT minimal 
area surface in the bulk, which shares the same boundary ∂A with the subregion A. Since this 
dual description of the entanglement entropy has been checked for several cases, it can be applied 
to holographic superconductors. The initial work in this context was done by Albash and Johnson 
who evaluated the HEE in the s-wave holographic superconductor [35]. Subsequently, the HEE in 
various superconductor models has also been studied [36–45]. The entanglement entropy turns 
out to be a good quantity to investigate the critical points and the order of holographic phase 
transitions.

However, the entanglement entropy is not enough to understand the rich geometric structures 
existed behind the horizon since it only grows for a very short time. Then the holographic dual of 
the complexity, which essentially describes the minimal number of gates of any quantum circuit 
to get a desired target state from a reference state, has recently been presented by Susskind [46]. 
The computations of the complexity in holography are refined into two concrete conjectures. The 
first one is the “complexity=volume” (CV) conjecture [47,48], which states that the holographic 
complexity is in proportion to the volume of the extremal codimension-one bulk hypersurface 
meeting the asymptotic boundary on the desired time slice. The other one is known as “complex-
ity=action” (CA) conjecture [49,50]. It proposes that the complexity corresponds to the on-shell 
bulk action in the Wheeler-DeWitt (WDW) patch which is the domain of dependence of some 
Cauchy surface in the bulk ending on the time slice of the boundary. In this work, we focus on 
the HSC proposed by Alishahiha [51], which is another definition of holographic complexity 
based on the original CV conjecture. Following Alishahiha’s proposal, we can evaluate the HSC 
by the codimension-one volume of the time-slice of the bulk geometry enclosed by the extremal 
codimension-two RT hypersurface used for the calculation of HEE as

C = V olume(γA)

8πLGN

, (2)

where L represents the AdS radius. With the right choice of the length scale, the subregion 
complexity is able to yield significant results and avoids the complex computation since the 
extremal hypersurface will not touch the singularity.

Since the complexity can measure the difficulty of turning one quantum state into another, it is 
expected that the holographic complexity should capture the behavior of phase transitions of the 
boundary field theory, and there raises a great interest in investigating the complexity for different 
types of holographic superconductors. Many efforts have been made in employing the HSC as 
a probe of phase transition in the s-wave superconductor [52–55], p-wave superconductor [56], 
Stückelberg superconductor [57] and superconductor with nonlinear electrodynamics [58,59]. 
Obviously, though the HSC is not able to probe the interior of a static black hole [60], it still 
is a good parameter to characterize the superconducting phase transitions, and behaves in the 
different way from the entanglement entropy which means that the two quantities reflect different 
information of the holographic superconductor systems.
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Considering that both the HEE and HSC can be used as the probes to the phase transition in 
holographic superconductors with the ground state, here we are aiming to investigate the HEE 
and HSC for excited states of the backreacting holographic superconductors in the Einstein grav-
ity and Einstein-Gauss-Bonnet gravity. The motivation for completing this work is two folds. On 
one side, it is worthwhile to study the HEE and HSC for excited states of the holographic super-
conductors, and examine whether the HEE and HSC are still valid to reveal properties of excited 
states in holographic superconductor models. On the other side, both for the ground state and 
excited states, it would be important to unveil some general features for the HEE and HSC, and 
seek out good probes to the phase transition in the holographic dual models. It should be noted 
that the Einstein-Gauss-Bonnet gravity model is one of the natural modifications for the Ein-
stein gravity by including Gauss-Bonnet term which arises naturally from the low-energy limit 
of heterotic string theory [61–64]. Significantly, the presence of Gauss-Bonnet correction terms 
does not result in more than second derivatives of the metric in the corresponding field equations 
and thus the theory is ghost-free. The Gauss-Bonnet theory has earned a lot of attention in holo-
graphic studies in the past decades, and the previous works of the holographic superconductors 
in the Gauss-Bonnet gravity suggest that the curvature term has nontrivial contributions to some 
universal properties in the Einstein gravity, for example see Refs. [65–81]. Particularly, it was be-
lieved that the Gauss-Bonnet correction term only plays roles in spacetimes with the dimension 
d ≥ 5 until Glavan and Lin introduced a novel 4-dimensional Einstein-Gauss-Bonnet gravity by 
rescaling the Gauss-Bonnet parameter α → α/(d −4) and taking the limit d → 4, where the cur-
vature term makes an important contribution to the gravitational dynamics [82]. Subsequently, 
the “regularized” versions of the 4-dimensional Einstein-Gauss-Bonnet gravity [83–86] and the 
consistent theory of d → 4 [87] have also been proposed. In Ref. [88], the authors constructed 
the (2 +1)-dimensional superconductors in the Einstein-Gauss-Bonnet gravity in the probe limit, 
which shows that the critical temperature Tc first decreases then increases as the correction pa-
rameter tends towards the Chern-Simons limit in a scalar mass dependent fashion. This subtle 
effect of the higher curvature correction on scalar condensation for the s-wave superconductor 
in (2 + 1)-dimensions is quite different from the counterpart in the higher-dimensional super-
conductors [65–67]. In this work, we will also study the HEE and HSC for the excited states 
of the superconductor models in the 4-dimensional Gauss-Bonnet gravity away from the probe 
limit, which can present us some interesting details of excited states of superconductors under 
the impact of the Gauss-Bonnet curvature correction.

This paper is organized as follows. In section 2, we investigate the HEE and HSC for excited 
states of holographic superconductors with fully backreaction in the Einstein gravity. In section 3, 
we extend the discussion on the HEE and HSC of the fully backreacting holographic supercon-
ductor models to the 4-dimensional Einstein-Gauss-Bonnet gravity. In section 4, we conclude 
our results.

2. Entanglement entropy and complexity for excited states of holographic 
superconductors in the Einstein gravity

2.1. Holographic model and condensates of scalar fields

In this subsection, we study a Maxwell field coupled with a charged complex scalar field in a 
d-dimensional Einstein gravity, via the action

S =
∫

ddx
√−g

[
1
2 (R − 2�) − 1

FμνF
μν − |∇ψ − iqAψ |2 − m2|ψ |2

]
, (3)
2κ 4
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where κ2 = 8πGd denotes the gravitational constant, the cosmological constant is � = −(d −
1)(d − 2)/(2L2), A and ψ stand for the Maxwell field and a scalar with mass m and charge q . 
To include the backreaction, we take the following ansatz of the metric for the black hole with a 
planar symmetric horizon

ds2 = −f (r)e−χ(r)dt2 + dr2

f (r)
+ r2hij dxidxj . (4)

The Hawking temperature of the above black hole, which also gives the temperature of the holo-
graphic superconductor, is expressed as

TH = f ′(r+)e−χ(r+)/2

4π
, (5)

in terms of the event horizon r+.
Equations of motion for matter fields and metric functions, by taking ψ = ψ(r) and A =

φ(r)dt , are given by

χ ′ + 4κ2r

d − 2

(
ψ ′2 + q2eχφ2ψ2

f 2

)
= 0, (6)

f ′ −
[
(d − 1)r

L2 − (d − 3)f

r

]
+ 2κ2r

d − 2

[
m2ψ2 + eχφ′2

2
+ f

(
ψ ′2 + q2eχφ2ψ2

f 2

)]
= 0, (7)

φ′′ +
(

d − 2

r
+ χ ′

2

)
φ′ − 2q2ψ2

f
φ = 0, (8)

ψ ′′ +
(

d − 2

r
+ f ′

f
− χ ′

2

)
ψ ′ +

(
q2eχφ2

f 2 − m2

f

)
ψ = 0, (9)

where the prime denotes the derivative with respect to the coordinate r . Just as in Ref. [89], we 
take the unit with q = 1 and keep κ2 finite when the backreaction is taken into account.

For the normal phase, there is no condensate, i.e., ψ(r) = 0, which leads to, from Eqs. (6)–(9), 
a constant χ and an AdS Reissner-Nordström (RN) black hole

f (r) = r2

L2 − 1

rd−3

[
rd−1+
L2 + (d − 3)κ2ρ2

(d − 2)rd−3+

]
+ (d − 3)κ2ρ2

(d − 2)r2(d−3)
,

φ(r) = μ − ρ

rd−3 . (10)

Note that here μ and ρ are introduced to describe the chemical potential and the charge density 
in the dual field theory. In the limit of κ = 0, the Schwarzschild AdS black hole is recovered.

To get the solutions of the superconducting phase, i.e., ψ(r) �= 0, physically relevant boundary 
conditions have to be imposed. At the horizon r = r+, the metric coefficient χ and scalar field 
ψ are regular, but the metric coefficient f and gauge field φ obey f (r+) = 0 and φ(r+) =
0, respectively. Near the boundary r → ∞, the asymptotic behaviors of the solutions can be 
expressed as

χ → 0, f ∼ r2

L2 , φ ∼ μ − ρ

rd−3 , ψ ∼ ψ−
rλ− + ψ+

rλ+ , (11)

where ψ+ and ψ− are related to the vacuum expectation value of the boundary operator O with 
the conformal dimension λ± = [(d − 1) ± √

(d − 1)2 + 4m2L2]/2, respectively. For the case of 
5
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Fig. 1. The scalar field ψ(z) as a function of the radial coordinate z outside the horizon with the scalar operators O+
(left) and O− (right) for the fixed mass m2L2 = −2. In each panel, the blue, red, green and black lines denote the ground 
(n = 0), first (n = 1), second (n = 2) and third (n = 3) states, respectively.

Table 1
The critical temperature Tc of scalar operators O+ and O− with excited states for the fixed mass m2L2 =
−2.

n 0 1 2 3 4

< O+ > 0.117710ρ1/2 0.076345ρ1/2 0.058377ρ1/2 0.046861ρ1/2 0.038202ρ1/2

< O− > 0.225271ρ1/2 0.092168ρ1/2 0.066290ρ1/2 0.052181ρ1/2 0.042283ρ1/2

λ− is larger than the unitarity bound, both modes are normalizable and thus we take the boundary 
condition that either ψ− or ψ+ vanishes [4,5].

The following scaling symmetries and the transformations of relevant quantities

r → βr, (t, xi) → 1

β
(t, xi), (χ,ψ,L) → (χ,ψ,L),

(φ,μ,T ) → β(φ,μ,T ), ρ → βd−2ρ, ψ± → βλ±ψ±, (12)

with a real positive number β , are guaranteed by Eqs. (6)–(9). Thus, we can choose r+ = 1
and L = 1. For concreteness, we focus on the 4-dimensional AdS black hole spacetime, with 
κ = 0.05 and m2L2 = −2 satisfying the Breitenlohner-Freedman (BF) bound (m2L2 ≥ −9/4
for d = 4). In numerics, we take the coordinate transformation r → z = r+/r for convenience.

In Fig. 1, we set the initial condition ψ(1) = 0.0001 and plot the distribution of the scalar 
field ψ(z) as a function of z for the scalar operators O+ (left) and O− (right) with the fixed 
mass of the scalar field m2L2 = −2 by using the numerical shooting method. Obviously, the 
“excited” states correspond to the bulk solutions for which the scalar field changes sign along the 
radial direction, which means that the excited states are characterized by the number of nodes of 
the scalar field and the ground state corresponds to the scalar field without nodes. In Ref. [22], 
Wang et al. argued that these excited states of the holographic superconductors could be related 
to the metastable states of the mesoscopic superconductors. Thus, it is interesting and important 
to further consider such a configuration since we want to investigate the metastable states for 
superconducting materials in condensed matter systems by holography.

In Fig. 2, we exhibit the condensates of scalar operators O+ (left) and O− (right), from the 
ground state to the third excited state, versus the temperature, which shows that the condensates 
emerge when the temperature is lower than the critical temperature Tc. The critical temperatures 
Tc for both operators, from the ground state to the fourth excited state, are listed in Table 1. It 
is shown that Tc of excited states is lower than that of the ground state, which means that the 
6
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Fig. 2. The condensates of scalar operators O+ (left) and O− (right) with excited states versus temperature for the fixed 
mass m2L2 = −2. In each panel, the blue, red, green and black lines denote the ground (n = 0), first (n = 1), second 
(n = 2) and third (n = 3) states, respectively.

higher excited state makes it harder for the scalar hair to form. The results agree well with the 
findings in Ref. [24]. Fitting the curves in Fig. 2, we have the condensate behavior of operators 
as 〈O±〉 ∼ (1 − T/Tc)

1/2 near Tc, which tells us that for the ground and excited states, the 
superconducting phase transition of the 4-dimensional backreacting holographic model belongs 
to the second order and the critical exponent is the mean field value 1/2.

2.2. HEE and HSC in the holographic model

In this section, we will numerically study the behaviors of the HEE and HSC in the metal/su-
perconductor phase transition with excited states, which will give more physics about the super-
conducting phase transition of excited states.

Let us consider a subsystem A with a straight strip geometry described by −l/2 ≤ x ≤ l/2
and −R/2 ≤ y ≤ R/2 (R → ∞). Here l is defined as the size of region A, and R represents a 
regulator which will be set to infinity. For a UV cutoff ε, the radial minimal surface γA starts 
from z = ε at x = l/2, and extends into the bulk until it reaches z = z∗, then returns back to the 
AdS boundary z = ε at x = −l/2. Hence, the induced metric on the minimal surface takes the 
form

ds2induced = r2+
z2

{[
1+ 1

z2f

(
dz

dx

)2]
dx2 + dy2

}
. (13)

By using the RT formula given in Eq. (1), we get the entanglement entropy

S = R

4G4

l
2∫

− l
2

r2+
z2

√
1+ 1

z2f

(
dz

dx

)2

dx. (14)

The minimality condition indicates

dz

dx
= 1

z

√
(z4∗ − z4)f , (15)

which satisfies the constraint condition dz
dx

|z=z∗ = 0 for the constant z∗. Setting x(z∗) = 0, we 
integrate the condition (15) and obtain
7
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x(z) =
z∗∫

z

z√
(z4∗ − z4)f

dz, (16)

with x(ε → 0) = l/2. After minimizing the area by Eq. (15), the HEE becomes

S = R

2G4

zε∫
ε

z2∗
z3

√
(z4∗ − z4)f

dz = R

2G4

(
s + 1

ε

)
, (17)

where s is the finite term and 1/ε is the divergent term. We will subtract this divergent term from 
S in Eq. (17), and analyze the physically important finite part s of the HEE.

Following the proposal given by Eq. (2), we find the HSC in the strip geometry

C = R

4πLG4

z∗∫
ε

x(z)dz

z4f
= R

4πLG4

[
c + F(z∗)

ε2

]
, (18)

with a universal term c and a divergent term in the form of F(z∗)/ε2. Note that the function 
F(z∗) has different forms under different situations so that we cannot give the general analytical 
expression of the HSC divergent term and subtract it off to find the universal part of C. Fortu-
nately, the universal term c is independent of the UV cutoff. So by taking two different cutoffs 
ε1 and ε2, one may numerically compute the value of F(z∗) by

F(z∗) = 4πLG4[C(ε1) − C(ε2)]
R(ε−2

1 − ε−2
2 )

, (19)

which can help us to pick up the universal term c of the HSC in every situation.
In Fig. 3, we plot the HEE (top) and HSC (bottom) in terms of the temperature T for oper-

ators O+ and O− with excited states, respectively. In each panel, we can see that the HEE and 
HSC change discontinuously at the critical point where the curves of the normal phase intersect 
with those of the superconducting phase. It characterizes that, below the critical temperature, the 
system experiences a phase transition from a normal phase to a superconducting phase with the 
decrease of the temperature. Moreover, both for the operator O+ and operator O−, the discontin-
uous points of the curves for the HEE and HSC corresponding to the critical temperatures from 
the ground state to the third excited state are given in Table 1. It is obvious that the increase of 
the number of nodes n makes the critical temperature Tc of phase transitions decrease. On the 
other hand, there are some differences between the HEE and HSC. Firstly, the HEE increases as 
the temperature increases, and its value in the normal phase is larger than that in the supercon-
ducting phase. On the contrary, the HSC decreases with the increasing temperature and always 
has a smaller value in the normal phase than that in the superconducting phase. Secondly, it is 
interesting to find that, for a fixed temperature T , the higher excited state has a larger HEE but a 
smaller HSC in the superconducting phase.

3. Entanglement entropy and complexity for excited states of holographic 
superconductors in 4-dimensional Einstein-Gauss-Bonnet gravity

3.1. Holographic model and condensates of the scalar field

Now we study the fully backreacting holographic superconductor in the consistent d → 4
Einstein-Gauss-Bonnet gravity [87]. In the Arnowitt-Deser-Misner (ADM) formalism, we adopt 
the metric ansatz
8
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Fig. 3. The HEE and HSC of scalar operators O+ (left) and O− (right) with excited states versus temperature for the 
fixed width l√ρ = 1, which shows that the higher excited state leads to a lager value of the HEE but a smaller value 
of the HSC for a given temperature in the superconducting phase. In each panel, the blue, red, green and black dashed 
lines denote the ground (n = 0), first (n = 1), second (n = 2) and third (n = 3) states of the superconducting phase, 
respectively. The orange solid line denotes the normal phase.

ds2 = gμνdxμdxν = −N2dt2 + γij (dxi + Nidt)(dxj + Njdt), (20)

where N is the lapse function, γij is the spatial metric and Ni is the shift vector. We begin with 
a Maxwell field and a charged complex scalar field coupled via the action

S =
∫

dtd3xN
√

γ

(
L4D

EGB − 1

4
FμνF

μν − |∇ψ − iqAψ |2 − m2|ψ |2
)

, (21)

where the Lagrangian density reads

L4D
EGB = 1

2κ2

{
2R + 6

L2 −M+ α

2

[
8R2 − 4RM−M2

− 8

3

(
8RijR

ij − 4RijMij −MijMij

)]}
, (22)

with the Gauss-Bonnet coupling α and the Ricci tensor of the spatial metric Rij . Here, we have

Mij = Rij +Kκ
κKij −KiκKκ

j , M ≡Mi
i , (23)

where Kij ≡ [
γ̇ij − 2D(iNj) − γijD

2λGF
]
/(2N) with a dot denoting the derivative with respect 

to the time t , and Di being the covariant derivative compatible with the spatial metric.
We simply take the following ansatz of the metric

N = √
f (r)e−χ(r)/2, Ni = 0, γij = diag

(
1

, r2, r2
)

, (24)

f (r)

9



D. Wang, X. Qiao, M. Wang et al. Nuclear Physics B 991 (2023) 116223
and consider the matter fields to be real functions of r , i.e., ψ = |ψ(r)| and At = φ(r). So the 
equations of motion are

χ ′ + 2κ2r3

r2 − 2αf

(
ψ ′2 + q2eχφ2ψ2

f 2

)
= 0, (25)

f ′ − 1

r2 − 2αf

(
3r3

L2 − rf − αf 2

r

)
+ κ2r3

r2 − 2αf

×
[
m2ψ2 + eχφ′2

2
+ f

(
ψ ′2 + q2eχφ2ψ2

f 2

)]
= 0, (26)

φ′′ +
(
2

r
+ χ ′

2

)
φ′ − 2q2ψ2

f
φ = 0, (27)

ψ ′′ +
(
2

r
+ f ′

f
− χ ′

2

)
ψ ′ +

(
q2eχφ2

f 2 − m2

f

)
ψ = 0, (28)

where the prime denotes differentiation in r . If the Gauss-Bonnet term α → 0, Eqs. (25)-(28) will 
reduce to Eqs. (6)-(9) with d = 4 for the backreacting holographic superconductors investigated 
in Ref. [89]. Here, the Hawking temperature has the same form as in (5), which is interpreted as 
the temperature of the dual field theory.

For the normal phase, we can get the analytic solution to the field equations (26) and (27)

f (r) = r2

2α

[
1−

√
1− 4α

L2

(
1− r3+

r3

)
+ 2ακ2ρ2

r+r3

(
1− r+

r

)]
,

φ(r) = μ − ρ

r
, (29)

which reduces to the case of the 4-dimensional AdS RN black hole in the limit α → 0.
For the superconducting phase, the boundary conditions at the horizon and asymptotic AdS 

boundary have to be imposed to solve Eqs. (25)-(28). At the horizon r = r+, we still have the 
regularity conditions, just as in section 2 for the Einstein gravity. Near the asymptotic boundary 
r → ∞, we find

χ → 0, f ∼ r2

L2
eff

, φ ∼ μ − ρ

r
, ψ ∼ ψ−

rλ− + ψ+
rλ+ , (30)

where the effective AdS radius is defined as

L2
eff = 2α

1−
√
1− 4α

L2

, (31)

with the characteristic exponents λ± = (3 ±
√
9+ 4m2L2

eff )/2. Following Ref. [88], we take 

m2L2
eff = −2, κ = 0.05 and α ≤ L2/4 (this is the so-called Chern-Simons limit) in our calcu-

lations. For simplicity, here we only consider the scalar operator O+ since the behaviors of the 
HEE and the HSC for both operators O+ and O− are the same, just as shown in Fig. 3 for the 
Einstein gravity.

In Fig. 4, we present the scalar condensation 〈O+〉 in terms of the temperature, by taking 
α = 0.0001, 0.10, 0.24 and 0.25, for the ground (n = 0), first (n = 1) and second (n = 2) states. 
It is observed that the condensate occurs, for different values of α and n, if T < Tc . For small 
10
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Fig. 4. The condensates of the scalar operator O+ versus temperature with the fixed mass m2L2
eff

= −2 for different 
Gauss-Bonnet parameters α, i.e., α = 0.0001 (orange), 0.10 (green), 0.24 (red) and 0.25 (blue). The three panels from 
left to right represent the ground (n = 0), first (n = 1) and second (n = 2) states, respectively.

Fig. 5. The critical temperature Tc of the scalar operator O+ versus Gauss-Bonnet parameter α with the fixed mass 
m2L2

eff
= −2 for the ground n = 0 (blue), first n = 1 (red) and second n = 2 (green) states, respectively.

condensate, we see that there is a square root behavior 〈O+〉 ∼ (1 − T/Tc)
1/2, which shows 

that the phase transition of these backreacting Gauss-Bonnet superconductors is typically second 
order one with the mean field critical exponent 1/2 for all values of α.

In order to show the effect of the curvature correction on Tc, in Fig. 5 we present the crit-
ical temperature Tc for the operator O+ in terms of the Gauss-Bonnet parameter α, by taking 
m2L2

eff = −2, both for the ground and excited states. An interesting feature we observed is 
that the critical temperature Tc decreases as α increases, but slightly increases near the Chern-
Simons limit α = 0.25. Furthermore, this non-monotonic behavior of Tc is more pronounced 
in the ground state than that in the excited state, which is in good agreement with the results 
obtained in Ref. [29].

3.2. HEE and HSC in the holographic model

We are ready to analyze the properties of the HEE and HSC for the backreacting holographic 
superconductor in the 4-dimensional Einstein-Gauss-Bonnet gravity. Since a Gauss-Bonnet term 
is present, we have to use a general formula to calculate the HEE [90–93]

S = −2π
∫

ddy
√−g

{
∂L

∂Rμρνσ

εμρενσ −
∑(

∂2L
∂Rμ ρ ν σ ∂Rμ ρ ν σ

)
2Kλ1ρ1σ1Kλ2ρ2σ2

qα + 1

α 1 1 1 1 2 2 2 2 α

11
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Fig. 6. The HEE of the scalar operator O+ versus temperature from the ground state (n = 0) to the second excited 
state (n = 2) with a fixed width l√ρ = 1 for different Gauss-Bonnet parameters α, which shows that the HEE always 
increases monotonously with the increase of the temperature and its value in the normal phase always larger than that 
in the superconducting phase. The solid (blue) lines denote the normal phase and the dashed (red) lines are for the 
superconducting phase.

×
[
(nμ1μ2nν1ν2 − εμ1μ2εν1ν2)n

λ1λ2 + (nμ1μ2εν1ν2 + εμ1μ2nν1ν2)ε
λ1λ2

]}
, (32)

where nμν and εμν reduce to the metric and Levi-Civita tensor in the two orthogonal directions 
when all other components vanish, and qα is treated as “anomaly coefficients”. This will result in 
the corrections to expressions (14) and (17). We again employ the shooting method in numerical 
calculations, and use s and c to denote the entanglement entropy and complexity of the universal 
term, respectively.

In Fig. 6, we present the HEE of the scalar operator O+ in terms of the temperature T , for 
both the ground state (n = 0) and up to the second excited state (n = 2). In each panel, the 
critical temperature Tc for the system can be determined by the joint point of the solid line for 
the normal phase and the dashed line for the superconducting phase. For example, in the ground 
state (n = 0), we have Tc/

√
ρ = 0.117705 for α = 0.0001 (top-left panel), Tc/

√
ρ = 0.100418

for α = 0.24 (top-middle panel) and Tc/
√

ρ = 0.105064 for α = 0.25 (top-right panel), which 
are consistent with those in Fig. 5. It is shown obviously that, for the ground state and as α
approaches the Chern-Simons limit, the critical temperature first decreases and then increases. 
In addition, for the ground state and excited states, we can always find that the value of the HEE 
in the superconducting phase is less than that in the normal phase when T < Tc, which does not 
depend on the Gauss-Bonnet parameter α. This behavior of the HEE is due to the fact that the 
condensate turns on at the critical point Tc and the formation of Cooper pairs makes the degrees 
of freedom decrease in the superconducting phase. While we fix the Gauss-Bonnet parameter α, 
we see that the value of the HEE becomes larger as the number of nodes n increases.
12
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Fig. 7. The HSC of the scalar operator O+ versus temperature from the ground state (n = 0) to the second excited 
state (n = 2) with a fixed width l√ρ = 1 for different Gauss-Bonnet parameters α, which shows that the Gauss-Bonnet 
parameter has a more subtle effect on the HSC when compared to the HEE. The solid (blue) lines denote the normal 
phase and the dashed (red) lines are for the superconducting phase.

In Fig. 7, we plot the HSC of the scalar operator O+ in terms of the temperature T , and 
find that the curve of the HSC in the normal phase and the one in the superconducting phase 
intersect at the same critical temperature as that reflected by the HEE in Fig. 6. It means that the 
HSC is able to capture the emergence of the phase transitions in the ground state and excited 
states. What is noteworthy is that the Gauss-Bonnet term has an interesting effect on the relation 
between the HSC and the temperature, which can be seen in the ground state and excited states. 
Obviously, there is a threshold αt of the Gauss-Bonnet parameter. When α < αt , the value of the 
HSC decreases as the temperature increases. And the value of the HSC decreases as n increases 
for the fixed α, which is consistent with the finding obtained from the bottom-left panel of Fig. 3. 
At the threshold α = αt , with the increasing T/

√
ρ, the value of the HSC first decreases and then 

increases. It should be noted that the threshold becomes larger with the higher excited state, i.e., 
αt = 0.2400 for the ground state n = 0, αt = 0.2470 for the first state n = 1 and αt = 0.2478
for the second state n = 2. Whereas as α goes up to the Chern-Simons limit α = 0.25, this non-
monotonic behavior of the HSC will convert to a monotonic increasing function of T/

√
ρ, which 

is contrary to the case of α < αt . Besides, we find that the normal phase always has a smaller 
HSC than the superconducting phase except for the situation of the Chern-Simons limit, namely, 
the value of the HSC in the normal phase is larger than that in the superconducting phase for 
α = 0.25. Under the influence of the Gauss-Bonnet parameter, these special features of the HSC 
with respect to the temperature imply that the curvature correction makes a difference to the 
properties of the spacetime and changes the geometric structure.

On the other hand, for the fixed temperature, from Figs. 6 and 7 we note that the larger Gauss-
Bonnet parameter α leads to the larger values of the HEE and HSC. To further illustrate this, 
13
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Fig. 8. The HEE and HSC of the scalar operator O+ versus Gauss-Bonnet parameter α at the temperature T/
√

ρ = 0.02
with some chosen values of the widths, i.e., l√ρ = 0.80 (blue), l√ρ = 1.00 (red) and l√ρ = 1.20 (green). The panels 
from left to right represent the ground (n = 0), first (n = 1) and second (n = 2) states, respectively.

in Fig. 8, we plot the HEE and HSC versus the Gauss-Bonnet parameter α, respectively, from 
the ground state to the second excited state at a fixed temperature T/

√
ρ = 0.02 with different 

widths, i.e., l
√

ρ = 0.80, l
√

ρ = 1.00 and l
√

ρ = 1.20. We observe clearly that, regardless of the 
width and the number of nodes, the HEE and HSC increase with the increase of the Gauss-Bonnet 
correction. Moreover, in each panel, the HEE and HSC become larger as the width increases.

4. Conclusion

In this work, we first study the HEE and HSC for the excited states of holographic supercon-
ductors with full backreaction in the 4-dimensional Einstein gravity. We note that the changes of 
the HEE and HSC both for the scalar operators O− and O+ are discontinuous at the critical tem-
perature Tc, and Tc in the excited states is lower than that in the ground state, which indicates that 
the higher excited state makes the scalar condensate harder to form. The values of Tc reflected by 
the HEE and HSC are consistent with the results obtained from the condensate behavior, which 
means that both the HEE and HSC can be utilized as good probes to the superconducting phase 
transition in the excited state. However, there are some differences between the HEE and HSC. 
We observe that, for the ground state and excited states, the value of the HEE in the normal phase 
is larger than that in the superconducting phase and increases as the temperature increases, which 
is the opposite to the behavior of the HSC, namely, the normal phase always has a smaller HSC 
than the superconducting phase and the HSC decreases as the temperature increases. Meanwhile, 
with a fixed temperature T in the superconducting phase, the higher excited state leads to a lager 
value of the HEE but a smaller value of the HSC.

Next, we extend the investigation on the HEE and HSC for the excited states of backreacting 
superconductors to the 4-dimensional Einstein-Gauss-Bonnet gravity. One remarkable feature is 
that, for the scalar operator O+, the critical temperature Tc decreases as the higher curvature 
correction α increases, but slightly increases as α grows to the Chern-Simons limit, and this 
non-monotonic behavior of Tc is more pronounced in the ground state than in the excited state, 
which can be supported by the findings obtained from both the HEE and HSC. On the other 
hand, regardless of α, we find that the HEE always increases monotonously with the increase 
of the temperature and the superconducting phase always has a smaller HEE than the normal 
14
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phase below Tc both for the ground state and excited states. Furthermore, the higher excited 
state leads to a lager value of the HEE for a given temperature T in the superconducting phase, 
regardless of the Einstein gravity or the Einstein-Gauss-Bonnet gravity. Obviously, these may 
be the general features for the HEE in the holographic superconductors. However, the story is 
completely different if we study the HSC for the excited states of holographic superconductors in 
the Einstein-Gauss-Bonnet gravity. The noteworthy feature is that the effect of α on the relation 
between the HSC and the temperature is nontrivial in the ground state and excited states, which 
is a distinguishing property of the HSC and has not been found in the HEE. Specifically, the 
HSC always behaves as a monotonic decreasing function of the temperature till α reaches some 
threshold αt . At this critical point αt , the HSC changes non-monotonously with the temperature, 
i.e., it first decreases and then increases with the increasing temperature. It is shown that the value 
of αt will be closer to the Chern-Simons limit in the higher excited state. More interestingly, 
when α approaches to the Chern-Simons limit, the HSC will convert to a monotonic increasing 
function of the temperature. Besides, the value of the HSC in the normal phase is less than that 
in the superconducting phase for α ≤ αt , but it is just on the contrary for the Chern-Simons limit. 
Lastly, we find that, for the ground state and excited states, the increase of α makes both the HEE 
and HSC increase, which is independent of the strip width. Thus, we conclude that the HEE 
and HSC provide richer physics in the phase transition and scalar condensate for holographic 
superconductors with excited states.
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