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The Hartle-Hawking and tunneling (Vilenkin) wave functions are treated in the Hamiltonian formalism.
We find that the leading (i.e., quadratic) terms in the fluctuations around a maximally symmetric
background are indeed Gaussian (rather than inverse Gaussian), for both types of wave function, when
properly interpreted. However, the suppression of non-Gaussianities—and hence the recovery of the
Bunch-Davies state—is not transparent.
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I. INTRODUCTION

Inflationary cosmology is not past eternal. Under the
assumption that the average Hubble parameter hHi > 0—
i.e., that on average the Universe has been expanding in the
past—both null and timelike geodesics cannot be arbitrarily
extended to the past [1]. In fact unlike the cosmological
singularity theorems, which relied on the use of the weak
energy condition (violated by inflationary cosmology), this
argument does not need such a condition.
On the other hand the standard calculation of the scalar

and tensor fluctuation spectrum around the inflationary
background assumes that in the distant past [conformal
time η → −∞ð1 − iϵÞ], the inflationary background
remains valid, and correlation functions in any state of
the system (defined in the interaction picture) at some
conformal time τ are related to those in the “Bunch-Davies”
(BD) vacuum state j0 > by the “in-in” formula [2,3],

hΩðτÞjŴðτÞjΩðτÞi
hΩðτÞjΩðτÞi ¼ h0jU†ðτ;−∞ÞWðτÞUðτ;−∞Þj0i; ð1Þ

Uðτ;−∞Þ ¼ T exp

�
−
i
ℏ

Z
τ

−∞ð1−iϵÞ
Ĥ1Iðτ0Þdτ0

�
: ð2Þ

In the above the Hamiltonian for fluctuations around the
(time-dependent) inflationary background is taken to be of
the form H0ðtÞ þH1ðtÞ, where the first term governs
quadratic fluctuations and the second cubic and higher
order fluctuations. Also Ĥ1I isH1 in the interaction picture.

The important point to note here is that both H0 and H1

are time dependent, with this dependence given by the slow
roll inflationary background metric. The projection onto the
matrix element in the BD vacuum is a consequence of
taking the limit of infinite negative conformal time. This
however seems to be in apparent conflict with the theorem
of Ref. [1], in which inflation is not past eternal.
This motivates us to search for some explanation as to

the emergence of an inflationary background starting from
“nothing.” This has been discussed since the early 1980s,
and there are two main proposals. One is the “no boundary”
wave function of Hartle and Hawking (HH) [4]. The other
is the tunneling (T) wave function of Vilenkin [5].1 While
both wave functions could in principle be valid solutions to
the Wheeler-DeWitt equation without truncation—in prac-
tice the explicit forms of the wave functions have been
obtained only in the so-called minisuperspace model,
where only the temporal dependence of the fields is kept.
Recently this basis for justifying the BD state in the

inflationary background has been questioned [9–12]. Using
the Picard-Lefschetz theory of saddle point approximations
to the integral over the lapse N of the Arnowitt-Deser-
Misner formulation of general relativity, it was claimed in
Ref. [9] that this method justifies the tunneling wave
function but not the HH wave function. In a subsequent
paper [10] Feldbrugge et al. then argued that quadratic
scalar/tensor fluctuations around both T and HH wave
functions were unsuppressed, having an inverse Gaussian
form. This seemed to cast doubt on the quantum cosmology
justification for a smooth BD beginning to inflationary
cosmology.
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In a rebuttal of these claims one of the original
proponents of the HH wave function (Hartle) and collab-
orators [13], argued that there is a choice of contour that
justifies the HH wave function. Furthermore, whereas the T
wave function (following from the contour of Ref. [9]) was
indeed unstable due to unsuppressed fluctuations (as
argued a while ago also in the references quoted in
Ref. [13]), the HH wave function is not. Subsequently in
Ref. [11] it was argued that the contour chosen in Ref. [13]
actually should pick up subdominant saddle points, which
restores the unsuppressed fluctuations in the HH wave
function as well.
A new round of claims and counterclaims were made in

2018. Reference [14] considered a generalization of min-
isuperspace, replacing the round S3 by axial Bianchi IX
geometry. Diaz Dorronsoro et al. argued, using a circular
contour for the integration over the lapse N, that the HH
wave function is well defined, and hence that the original
HH wave function was stable under deformations. This
choice of contour was criticized in Ref. [12] on the grounds
that it was not physically well motivated and that it leads to
“mathematical and physical inconsistencies.” Finally in a
very recent paper Vilenkin and Yamada [6] argued,
provided that certain boundary/initial conditions on the
scalar fluctuations are satisfied, that the scalar field fluc-
tuations around the tunneling wave function (T) are well
behaved.
Our point of view is that quantum gravity should be

defined in terms of the Wheeler-DeWitt (WdW) equation,
which is a constraint equation whose solutions are possible
wave functions of the Universe. The functional integral
definition of the wave function is simply a method for
computing it.2 But there are equally valid approaches to
solving the WdW equation, such as the WKB method. In
this paper we will use the latter method to discuss the
possible solutions to the WdWequation in the semiclassical
approximation, and to rederive solutions that had been
obtained before using the functional integral method.
Including the fluctuations around the cosmological de
Sitter background, we find four independent solutions.
Different choices of contour on the two sides of this dispute
just correspond to different choices of integration constants.
We do not believe that there is any “fundamental principle”
that dictates one or other choice, as seems to be the position
of Feldbrugge et al. [9]. In fact as the authors point out,
their contour leads to unsuppressed—i.e., inverse Gaussian
—fluctuations, in contradiction to what has been observed.
On the other hand as shown in Refs. [13,14], there exists an
alternate choice of contour which leads to the HH wave
function with suppressed fluctuations.

This paper is aimed at reconciling these different points
of view. Our main argument is that the WdW equation
implies that there is no notion of time (and therefore of
time ordering). It is essentially like the time-independent
Schrödinger equation whose solutions are stationary states.
This of course is the famous “problem of time” in quantum
gravity. One can compare the probabilites for different
configurations of the fields of the system and its geometry.
But there is no notion of which configuration is prior
to which.
Thus in the present context there are four different

particular solutions of the WdW equations in the semi-
classical approximation, both inside and outside the effec-
tive potential barrier, which can then be matched as in the
standard WKB procedure. By appropriate choices of
integration constants, these solutions can be organized
either into tunneling-type wave functions or into HH-type
(real) wave functions, both with suppressed Gaussian
fluctuations. On the other hand one also has (for both
cases) solutions with unsuppressed (inverse Gaussian)
fluctuations. These are the solutions that were obtained
by Feldbrugge et al. [10,11] from their integration contour
for the lapse. Clearly these are unphysical (certainly
inconsistent with the observed smooth homogeneous iso-
tropic Universe) and hence should be rejected.
Wewill first discuss two simple problems which illustrate

one of themain pointswhichwewish tomake—namely, that
there is no advantage to using the functional integral and the
Picard-Lefschetz method to solve the WdWequation wher-
ever it is possible to solve the equation directly in the
semiclassical approximation, which is the case in all of these
examples. In fact in the simplest example, that of one-
particle nonrelativistec quantum mechanics, derived from a
time-reparametrization invariant action leading to a WdW
equation, it is clear that while one can indeed define
the semiclassical solution in terms of an integral over the
lapse—the dependence on the latter drops out of the classical
action when one uses the constraint equation. Next we
discuss the Schwinger process, where essentially the same is
true. In effect we argue that one needs some physical input to
decide what particular solution to pick, and that one cannot
do this onmathematical grounds or on the basis of an a priori
notion of causality. We then review the minisuperspace
solution for Universe creation from nothing—both the HH
and the T cases. Finally we discuss fluctuations around
minisuperspace.Wewill find that, properly interpreted, both
theHH andT cases lead to suppressedGaussian fluctuations
for the wave function in the classical regime, contrary to the
claims in Refs. [10–12]. On the other hand this wave
function (in both the HH or T cases) necessarily has
non-Gaussian (i.e., cubic and higher powers of fluctuations)
terms. In other words the emergence of the Bunch-
Davies vacuum wave function, which is just Gaussian,
does not appear to have any explanation from these
considerations.

2This appears to be the position of Hartle, one of the founding
fathers of quantum cosmology, and his collaborators as well—see
for instance the recent paper [15].
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II. QUANTUM MECHANICS EXAMPLES

In the following we will discuss two examples which
show that both the Hamiltonian argument and the path
integral one agree, and that the latter does not resolve the
ambiguity involved in the choice of wave function.

A. Particle in a potential

We consider a one-dimensional nonrelativistic particle
action with time-reparametrization invariance:

S ¼
Z

1

0

dt

�
NðtÞ−1 1

2
_x2 − NðtÞðV − EÞ

�
; ð3Þ

px ¼
_x
N
; pN ¼ 0; ð4Þ

H ¼ px _x − L ¼ N

�
1

2
p2 þ V − E

�
: ð5Þ

We have the secondary constraint

_pN ¼ fpN;Hg ¼
�
1

2
p2
x þ V − E

�
¼ 0;

i.e., the Hamiltonian is weakly zero,

H ≈ 0:

This is of course completely equivalent to the usual energy
conservation equation. Also we have

_N ¼ fN;Hg ¼ 0: ð6Þ

So we can choose the gauge N ¼ constant. The (time-
independent) Schrödinger equation is then the same as the
Wheeler-DeWitt equation, i.e., with px → p̂x ¼ −iℏ d

dx,

ĤΨðxÞ ¼
�
−
ℏ2

2

d2

dx2
þ VðxÞ − E

�
ΨðxÞ ¼ 0: ð7Þ

Solving this by putting Ψ½q;ϕ� ¼ e
i
ℏS½q;ϕ� with S ¼ S0 þ

ℏS1 gives

1

2

�
dS0
dx

�
2

þ V − E ¼ 0;
dS1
dx

¼ i
2

d
dx

ln
dS0
dx

:

This gives, in the semiclassical approximation, the usual
WKB result

ΨðxÞ ¼ c

j2ðE − VðxÞÞj1=4 e
� i

ℏ

R
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE−Vðx0ÞÞ

p
dx0 ; ð8Þ

and clearly both solutions are allowed. In the regime where
VðxÞ > E, we have both an exponentially rising and a

falling solution with absolutely no mathematical reason for
discarding one or the other. Similarly (assuming that the
potential is greater than zero only over a finite interval so
that what we have is a barrier rather than an infinite wall)
one has outgoing and incoming solutions, again with no
reason to discard either.
Now consider the path integral for the Feynman kernel

for this problem. The Feynman kernel to go from x0 at time
t0 ¼ 0 to x1 at t1 ¼ 1 is (noteK is a function of the first four
variables and a functional of N)

Kðx1; t1;x0; t0∶N�

¼ hx1jTe−
i
ℏ

R
t1
t0

Ĥdtjx0i

¼
Z Yt1

t0

dpðtiÞ

×
Z Yxðt1Þ¼x1

xðt0Þ¼x0

dxðtiÞe
i
ℏ

R
t1
t0

dt½pðtÞ_xðtÞ−NðtÞð1
2
p2ðtÞþVðxðtÞÞ−EÞ�

:

ð9Þ

Let us first integrate over p to get the Lagrangian form of
the path integral

Kðx1; x0Þ ¼
Z ½dN�ffiffiffiffi

N
p ½dx�ei

ℏ

R
1

0
dt½NðtÞ−11

2
_x2−NðtÞðV−EÞ�:

From Eq. (3) we have the following equations of motion:

δNS ¼ 0 ⇒
_x2

2
þ N2V ¼ N2E; ð10Þ

δxS ¼ 0 ⇒ ẍ ¼ −N2V 0ðxÞ: ð11Þ

Let us specialize to a linear potential [as in the minisuper-
space case with a positive cosmological constant (CC)]
V ¼ V0 − Λx, Λ > 0. The equation for x is solved by

x ¼ 1

2
N2Λt2 þ

�
x1 − x0 −

1

2
N2Λ

�
tþ x0: ð12Þ

Evaluating Eq. (10) at t ¼ 0 and using Eq. (12) gives a
quartic equation for N (after gauge fixing _N ¼ 0)

Λ2

8
N4 − N2

�
E − V0 þ

1

2
Λðx1 þ x0Þ

�
þ 1

2
ðx1 − x0Þ2 ¼ 0;

which has the four solutions

N ¼ �
ffiffiffi
2

p

Λ
½ðE − V0 þ Λx1Þ1=2 � ðE − V0 þ Λx0Þ1=2�;

corresponding to the four (in general complex) saddle
points found in Ref. [9] for the minisuperspace case.
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In effect Feldbrugge et al. would have calculated Eq. (9) in
the saddle point approximation and decided which contour
to integrate N over, and hence which saddle points to pick
up based on a Picard-Lefschetz analysis. In fact it has been
argued by those authors that one should integrate only over
positive N.
However, the classical action is completely independent

of these. Solving Eq. (10) for _x and substituting in Eq. (3),

S¼
Z

1

0

dt½N−1N2ðE−VÞþNðE−VÞ�¼
Z

1

0

dt½2NðE−VÞ�

¼
Z

x1

x0

dx
_x
2NðE−VÞ¼�

Z
x1

x0

dx

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE−VÞp N2ðE−VÞ

¼�
Z

x1

x0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE−VÞ

p
:

This is independent of the saddle points for N and gives for
Kðx1; x0Þ as expected two different results, as was the case
with the wave function calculation (8).
In any case as we argued in the Introduction, the analog

of the Feynman kernel is not a physically interesting
quantity to calculate. The probability for tunneling is given
by the squares of (or ratios of squares of) wave functions.
Again the point is that we are looking at energy eigenstates
and asking what the probability of finding the position of
the particle (which of course is not a variable which
commutes with the Hamiltonian) on one or the other side
of the potential barrier.

B. Particle creation in an electric field (E field)

In Ref. [16] Brown and Teitelboim used a Euclidean
instanton to describe pair creation in an electric field (the
Schwinger process) in 1þ 1 dimensions, then extended it
to brane nucleation in higher dimensions. Wewill focus just
on the former in flat space and will ignore the dynamics of
the electromagnetic field:

S¼−m
Z

dsð−ημν _xμ _xνÞ1=2−e
Z

ds_xμAμ; _xμ≡dxμ

ds
:

ð13Þ

Introduce a proper time metric factor NðsÞ to write the
action in quadratic form, and choose the gauge potential for
a constant electric field E as Aμ ¼ ðEx; 0Þ, so

S ¼ −
Z

ds

�
m

2NðsÞ ð_t
2 − _x2Þ þm

2
NðsÞ

�
− eE

Z
ds_tx:

ð14Þ

In the canonical formalism we have conjugate momenta

πt ¼ −
m
N
_t − eEx; πx ¼ m

_x
N
; πN ¼ 0;

and Hamiltonian

H¼N

�
−
π2t
2m

þ π2x
2m

−
ðeExÞ2
2m

−
e
m
πtExþ

m
2

�
≡NH: ð15Þ

The dynamics is given by Hamilton’s equations for the
phase space variables fαg ¼ N, πN , x, πx, t, πt,

_α ¼ fα;Hg; ð16Þ

with the following relations/constraints.
Poisson brackets:

fN; πNg ¼ fx; πxg ¼ ft; πtg ¼ 1: ð17Þ

Primary constraints are

πN ≈ 0: ð18Þ

Secondary constraints are

_πN ¼ fπN;Hg ¼ −H ≈ 0: ð19Þ

The equations of motion are

_N¼fN;Hg¼ 0; _t¼−
N
m
ðπtþeExÞ; _x¼N

πx
m
;

_πt¼ 0; _πx ¼NðeEÞ2 x
m
: ð20Þ

Since πt is constant, let us choose

πt ¼ πt0 ¼ 0: ð21Þ

Also in the passage to quantum mechanics (QM),
πq → −iℏ δ

δq, etc., acting on the Schrödinger wave function
Ψ. In particular πN ≈ 0 implies

δ

δN
Ψ ¼ 0;

and H ≈ 0 implies the “Wheeler-DeWitt” equation

H

�
q;−iℏ

δ

δq

�
ΨðqÞ ¼ 0:

(We are assuming there is no boundary in space and hence
no boundary Hamiltonian.)
In the WKB approximation (ignoring the prefactor)

Ψ ∝ e
i
ℏScl ; ð22Þ

where the classical action (evaluated on a solution) is
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Scl ¼
Z

ds½πt_tþ πx _xþ πN _N −HÞ ¼
Z

πxdx: ð23Þ

In the last step we used Eqs. (18) and (21). Again, as in the
previous example, we see that imposing the classical
constraints on the motion leaves the classical action
completely independent of the lapse N. Also from
Eqs. (19) and (21) we have, solving for πx,

πx ¼ �jeEj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −

�
m
eE

�
2

s
:

Evaluating the integral between the two turning points, one
gets (defining γ ¼ m=jeEj)

Scl ¼ �jeEj
Z þγ

−γ
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − γ2

q

¼ �jeEj
�
1

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − γ2

q
−
1

2
γ2 lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − γ2

q �þγ

−γ

¼ � iπm2

2jeEj ð2nþ 1Þ; n ∈ Z≥: ð24Þ

This gives a probability (from the dominant solution n ¼ 0)

P ∝ jΨj2 ∝ e−
πm2

jeEj ; ð25Þ

which is in agreement with Brown and Teitelboim’s instan-
ton calculation (and the leading term in Schwinger’s
calculation). Note that here we have rejected the possible
positive sign in the exponent on physical grounds since
otherwise we would haveP rising with a decreasing electric
field E. In other words there is no way that one can get the
right sign from the formalism.
Let us redo the calculation in the Lagrangian formulation

with the lapse gauge fixed to NðsÞ ¼ N (a constant as in
Ref. [9]). The action is again given by Eq. (14), and the
Lagrangian equations of motion are

̈t ¼ α_x; ẍ ¼ α_t; α≡ −
eEN
m

;

from varying with respect to xμ, and from varying with
respect to N,

−
m
2N2

ð_t2 − _x2Þ þm
2
¼ 0:

Define x� ¼ t� x so that the above equations become

ẍ� ¼ �α_x�; N2 ¼ _xþ _x−:

With an appropriate choice of initial conditions we have the
solutions

_x� ¼ _x�0 e
�αs; x� ¼� _x�0

α
e�αs; N2¼ _xþ0 _x

−
0 : ð26Þ

The equation for the orbit is

t2 − x2 ¼ −
_xþ0 _x

−
0

α2
¼ −

m2

ðeEÞ2 ; ð27Þ

where in the last step we used the last equation of Eq. (26).
Note that at t ¼ 0 we have

xðt ¼ 0Þ ¼ � m
eE

≡�γ: ð28Þ

In the Brown-Teitelboim description of pair creation, the
particle on the left propagates backward in time (antipar-
ticle) t, while the particle on the right propagates forward.
This is to be interpreted as pair creation at time t ¼ 0 at the
points given by Eq. (28). Along the spacelike tunneling
trajectory _xþ0 _x

−
0 ¼ −j_xþ0 _x−0 j, which implies that the saddle

points for the integration over N are pure imaginary,
N ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffij_xþ0 _x−0 j
p

. But the point is that the E dependence
of the action at the classical solutions comes only from the
second term of Eq. (14), which is independent of which
solution for N one chooses. Evaluating the last term in the
action over the tunneling trajectory gives an imaginary part
to the action from the term,

eE
Z

x¼γ

x¼−γ
ds_tx ¼ −

Z
γ

−γ
dxtðxÞ ¼∓

Z
γ

−γ
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − γ2

q
;

which is the same as before, i.e., Eq. (24), and hence gives
the same probability for pair creation, Eq. (25).
The point of this exercise was to show that picking one or

other solution for N does not resolve the sign ambiguity
that we had in the Hamiltonian discussion, as there this
ambiguity comes from the two solutions for t, which in that
case was from solving the Hamiltonian constraint, while
here it comes from solving the orbit equation (27).
Feldbrugge et al. [10] claim to be able to resolve this

difference by computing the Feynman kernel for propaga-
tion from t0, x0 to t1, x1 (as in the case of the simple QM
calculation of the previous example). However, the reason
for this resolution is the imposition of a certain “causality”
criterion on the integral over N. However, the forward
direction of time is ambiguous in this one-particle quantum
mechanics discussion of what is essentially a field theoretic
process. Does one regard this as an electron traveling first
backward in time and then forward or a positron traveling
forward in time and then backward or vice versa? In the field
theoretic argument on the other hand unitarity can resolve
this ambiguity as in the original Schwinger calculation.
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III. MINISUPERSPACE

A. Background wave function

Let us now discuss minisuperspace in the
Hamiltonian formalism. The action is given by (after setting
M−1

P ¼ 8πG¼ 1)

S ¼
Z

1

0

dtð−N−13a _a2 þ ð3ka − a3ΛÞNÞ: ð29Þ

Note for future reference that the actual action (in 3þ 1
dimensions) has a factor of the unit three sphere volume and
is 2π2S. Also _x≡ dx

dt. Change the variable to q ¼ a2,
N → N=a:

S ¼
Z

dt
�
−

3

4N
_q2 þ Nð3k − ΛqÞ

�
;

πN ¼ 0; πq ¼ −
3

2N
_q; _q ¼ −

2Nπq
3

; ð30Þ

H ¼ N

�
−
π2q
3
þ ðΛq − 3kÞ

�
≡ NH: ð31Þ

The primary and secondary constraints are

πN ¼ 0; _πN ¼ fπN;Hg ¼ H ≈ 0:

So on a classical trajectory

π2q ¼ 3ðΛq − 3kÞ; πq ¼ �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q − k

r
:

TheWheeler-DeWitt equation for the system is obtained by
putting πq → −iℏ∂=∂q in the Hamiltonian constraint and is

�
þℏ2

3

∂2

∂q2 þ ðΛq − 3Þ
�
Ψ ¼ 0: ð32Þ

Consider tunneling to a de Sitter space with Λ > 0, k ¼ 1.
The classical action is

Z
q1

q0

πqdq ¼ �3

Z
q1

q0

dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q − k

r

¼∓ 6i
Λ

��
1 −

Λ
3
q1

�
3=2

−
�
1 −

Λ
3
q0

�
3=2

�
:

This is pure imaginary for “under the barrier” propagation
q0, q1 <

3
Λ. In the semiclassical approximation (and ignor-

ing the fluctuations) this gives the transition amplitude
(ignoring prefactors)

Kða1; a0Þ

∼ exp

�
i2π2

Z
q1

q0

πqdq

�

¼ exp

�
� 12π2

Λ

��
1 −

Λ
3
a21

�
3=2

−
�
1 −

Λ
3
a20

�
3=2

��
:

ð33Þ
Thus again the Hamiltonian analysis shows that both signs
are allowed; i.e., both HH and T are valid solutions. The
two signs come again from the fact that the H constraint is
quadratic in π. As in the case of the particle in an E field, the
sign has to be chosen on physical grounds. One might argue
as in the latter case that the upper sign (T) is physically
more plausible. Actually the probability of finding a scale
factor a1,

Pða1Þ ∼ jΨða1Þj2; ð34Þ
depends on the initial wave function since

Ψða1Þ ¼
Z

da0μða0ÞKða1; a0ÞΨ0½a0�:

If we take the “initial” minisuperspace Universe to be an
eigenstate of the scale factor with zero scale factor
(nothing), Ψ0 ∝ δða0Þ. So

Pða1Þ ∼ exp

�
∓ 24π2

Λ

�
1 −

�
1 −

Λ
3
a21

�
3=2

��
: ð35Þ

The upper sign gives a falling probability with increasing
a1 [T (Vilenkin)] while the lower sign a rising probabil-
ity (HH).
We should note in passing that this wave function is an

asymptotic expression that is valid only in the region that is
not only inside but also far from the turning point. In

particular it cannot be used at the turning point a ¼
ffiffiffi
3
Λ

q
itself. We shall discuss this further in the next subsection.
Feldbrugge et al. [9] claim to fix the sign ambiguity by

first integrating over q and then doing an integral over
positive N and picking what they claim is the correct saddle
point. Somehow this seems to imply that the above calcu-
lation must fail for the “wrong” sign. As in the case of the
nonrelativistic particle and that of the charged particle in an E
field, it is clear from this analysis that this ambiguity cannot
be fixed by an extraneous notion of causality.

B. Hartle-Hawking or Tunneling

We argued in the previous subsections that the choice of
the overall sign of the exponent in Eqs. (33) and (35) is not
determined by any mathematical consistency argument, but
it may be fixed by physical considerations. To discuss this,
we need to match each under the barrier (real) wave func-
tion to the appropriate (linear combination of) oscillating
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wave functions. This is done by the standard WKB
matching conditions.
In fact if one ignores the fluctuations, one simply has a

linear potential, and the exact solution is well known (see,
e.g., Ref. [17]). Thus defining

z ¼
�

3

ℏ2Λ2

�
1=3

ð3 − ΛqÞ; ð36Þ

the Wheeler-DeWitt equation (32) becomes the Airy
function equation

d2fðzÞ
dz2

− zfðzÞ ¼ 0:

The exact solution for the wave function is thus

ΨðqÞ ¼¼ AAiðzðqÞÞ þ BBiðzðqÞÞ: ð37Þ

The asymptotic behavior of the Airy functions in the

classical region z ≪ −1, i.e., a ≫
ffiffiffi
3
Λ

q
, is

AiðzÞ ∼ π−1=2jzj−1=4 cos
�
2

3
jzj3=2 − π

4

�
; ð38Þ

BiðzÞ ∼ −π−1=2jzj−1=4 sin
�
2

3
jzj3=2 − π

4

�
: ð39Þ

On the other hand in the nonclassical regime z ≫ 1 (which
of course can exist only for a very small cosmological
constant Λ ≪ 1), one has

AiðzÞ ∼ 1

2
π−1=2jzj−1=4 exp

�
−
2

3
z3=2

�
; ð40Þ

BiðzÞ ∼ π−1=2jzj−1=4 exp
�
2

3
z3=2

�
: ð41Þ

Suppose that we interpret the observed condition of an
expanding Universe to mean that Ψ should be an eigenstate
of momentum

−iℏ
d
dq

Ψ ¼ pΨ;

where by identifying the eigenvalue with the classical
momentum, Eq. (30), we have

p ¼ πclq ¼ −
3

2N
_q < 0;

for an expanding Universe. Thus we need

Ψout ∼ e−i
6
ℏΛðΛq3 −1Þ3=2þiπ

4

∝ AiðzðqÞÞ þ iBiðzðqÞÞ; ð42Þ

which gives p¼−3ðΛq
3
−1Þ1=2 < 0, and hence _a > 0. Thus

the corresponding under the barrier (i.e., for Λq
3
< 1) wave

function is

ΨunderðqÞ ¼ Aπ−1=2
��

3

ℏ2Λ2

�
1=3

ð3 − ΛqÞ
�
−1=4

×

�
1

2
e−

6
ℏΛð1−Λq

3
Þ3=2 þ ie

6
ℏΛð1−Λq

3
Þ3=2

�
: ð43Þ

This is Vilenkin’s tunneling wave function proposal. The
condition that the observed Universe is expanding (much as
we observe electrons coming out of the nucleus in β decay)
is used to impose this outgoing boundary condition. Note
that we have not normalized these functions. Indeed it is not
clear to us whether wave functionals in a quantum field
theory (let alone in quantum gravity) are even in principle
normalizable. However, the relative probability may still
make sense. So the relevant probability for tunneling from
nothing is

PTunnelða; 0Þ≡ jΨoutðqÞj2
jΨunderð0Þj2

∼ exp

�
−
12

ℏΛ

�
: ð44Þ

On the other hand Hartle and Hawking argued that the
under the barrier wave function is given by Euclidean
quantum gravity. This amounts to demanding that the first
term in Eq. (43) be the only allowed wave function (i.e., we
must pick the solution Ai). Then in the large q regime

Ψ ∼ AiðzðqÞÞ → cos

�
6

ℏΛ

�
Λq
3

− 1

�
3=2

−
π

4

�
; ð45Þ

corresponding to a superposition of an expanding and
contracting Universe. In other words one does not have a
classical expanding background, and needs to appeal to
some sort of decoherence argument to account for the
observed expanding Universe. In this case

PHHða; 0Þ≡ jΨoutðqÞj2
jΨunderð0Þj2

∼ exp

�
12

ℏΛ

�
: ð46Þ

All of this is well known and is included here for
completeness and to set the stage for identifying the
fluctuation spectrum around these solutions.

C. Fluctuations

Now one might ask whether the ambiguity as to which
wave function is physical might be fixed by the inclusion of
tensor perturbations. According to Refs. [10,11], the
leading order calculation of tensor perturbations has the
wrong (inverse Gaussian) sign for both wave functions,
implying that there is no smooth beginning to the Universe
in either case. This is contrary to the claim of Ref. [13] (and
citations therein) that HH leads to Gaussian fluctuations,
while the tunneling wave function is unstable to quadratic
fluctuations.
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The tensor modes are expanded in S3 spherical harmon-
ics labeled by integers l, m, n. Suppressing the last two
indices, the action for a mode ϕl in the de Sitter background
is, to quadratic order [11],

Sl ¼
1

2

Z
dt

�
q2

_ϕ2
l

N
− Nlðlþ 2Þϕ2

l

�
: ð47Þ

So (dropping also the subscript l)

πϕ ¼ q2
_ϕ

N
; _ϕ ¼ Nπϕ

q2
; ð48Þ

giving the total Hamiltonian

H¼NH¼N

�
−
1

3
π2qþðΛq−3Þþ π2ϕ

2q2
þ1

2
lðlþ2Þϕ2

�
:

ð49Þ

The WdWequation is (πq →−iℏ∂=∂q, πϕ → −iℏ∂=∂=∂ϕ)

�
þℏ2

3

∂2

∂q2þðΛq−3Þ− ℏ2

2q2
∂2

∂ϕ2
þ1

2
lðlþ2Þϕ2

�
Ψ¼ 0:

ð50Þ

Building on the solution in the absence of ϕ, we try

Ψ½q;ϕ� ∼ exp
�
1

ℏ

�
6

Λ
c1

�
1 −

Λ
3
q
�

3=2
þ c2

1

2
qϕ2σðqÞ

��
;

ð51Þ

where c1 ¼ �1, c2 ¼ �1, and σl is a function that is to be
determined by Eq. (50). Computing derivatives, we get

∂qΨ ¼ 1

ℏ

�
−c13

�
1 −

Λ
3
q

�
1=2

þ c2
1

2
ϕ2ðσðqÞ þ qσ0ðqÞÞ

�
Ψ;

ℏ2

3
∂2
qΨ ¼

�
ð3 − ΛqÞ − c1c2ϕ2ðσðqÞ þ qσ0ðqÞÞ

�
1 −

Λ
3
q

�
1=2

þOðϕ4Þ þOðℏÞ
�
Ψ;

−
ℏ2

2q2
∂2
ϕΨ ¼

�
−
1

2
ϕ2σ2ðqÞ þOðℏÞ

�
Ψ: ð52Þ

Thus ignoring the ϕ4 and ℏ corrections, the WdW equation (50) becomes�
−c1c2ϕ2ðσðqÞ þ qσ0ðqÞÞ

�
1 −

Λ
3
q

�
1=2

−
1

2
ϕ2σ2ðqÞ þ 1

2
lðlþ 2Þϕ2

�
Ψ ¼ 0: ð53Þ

Thus σl is required to be a solution of

−c1c2ðσðqÞ þ qσ0ðqÞÞ
�
1 −

Λ
3
q

�
1=2

−
1

2
σ2ðqÞ þ 1

2
lðlþ 2Þ ¼ 0: ð54Þ

Putting

σðqÞ ¼ gl
ð1 − Λ

3
qÞ1=2 þ fl

;

we see that Eq. (54) is satisfied with

fl ¼ �ðlþ 1Þ; gl ¼ c1c2lðlþ 2Þ: ð55Þ

Thus (since c22 ¼ 1) we have the four solutions for the wave function [up to terms Oðϕ4Þ, OðℏÞ in the exponent]:

Ψ ∼ exp

�
c1
ℏ

�
6

Λ

�
1 −

Λ
3
q

�
3=2

þ 1

2
qϕ2

lðlþ 2Þ
ð1 − Λ

3
qÞ1=2 � ðlþ 1Þ

��
ð56Þ

¼ exp

�
c1
ℏ

�
6

Λ

�
1 −

Λ
3
q

�
3=2

þ 1

2
qϕ2

lðlþ 2Þð−ð1 − Λ
3
qÞ1=2 � ðlþ 1ÞÞ

Λ
3
qþ lðlþ 2Þ

��
: ð57Þ
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Similarly we have four possible solutions in the classically allowed region,

Ψ ∼ exp

�
c1
ℏ

�
6

Λ
i

�
Λ
3
q − 1Þ3=2 − 1

2
qϕ2

lðlþ 2Þ
iðΛ

3
q − 1Þ1=2 � ðlþ 1Þ

��

¼ exp

�
c1
ℏ

�
6

Λ
i

�
Λ
3
q − 1

�
3=2

þ 1

2
qϕ2

lðlþ 2ÞðiðΛ
3
q − 1Þ1=2 ∓ ðlþ 1ÞÞ

Λ
3
qþ lðlþ 2Þ

��
: ð58Þ

Note that these four solutions are in agreement with the
solutions for the classical action including quadratic fluc-
tuations given in Eq. (30) of Ref. [11]. It is clear that two of
the four solutions (both under and outside the barrier) give
Gaussian fluctuations, while two give inverse Gaussian
fluctuations. Obviously the general solution which would
be a linear superposition of these four solutions will
necessarily have components which would invalidate the
smooth background which is the starting assumption of this
analysis. Feldbrugge et al. [11] claim that their path integral
argument (essentially involving an ordinary integral over
the lapse N) necessarily includes a non-Gaussian compo-
nent in both the T and HH solutions. In other words
depending on the choice of contour (i.e., with a given sign
for c1), one needs to include both� signs [corresponding to
the two signs for fl in Eq. (55)] in the solution.
Nevertheless as we will discuss below, once one uses the

matching conditions to evaluate the wave function in the
classical regime, it will be seen that we get different linear
combinations of the under barrierwave functions. In fact one
can choose to pick those linear combinations which admit
only Gaussian fluctuations [with the appropriate choice of
sign in fl in Eq. (55)]. This can be done for both the
tunneling wave function and the Hartle-Hawking wave
function.
Before we discuss this, wewould like to point out that the

wave function necessarily contains non-Gaussian fluctua-
tions. Even ignoring ℏ corrections, there are Oðϕ4Þ terms

1

12
ðσðqÞ þ qσ0ðqÞÞ2ϕ4

in Eq. (52) which imply that the quadratic (in ϕ) term in the
log of the wave function Ψ in Eq. (51) needs to include a
quartic term in ϕ. This does not necessarily imply measur-
able non-Gaussianities in the cosmic microwave back-
ground spectrum since it is possible that they are
significant only at points in field space where the perturba-
tive analysis of this paper—namely, the expansion in
fluctuations ϕ—breaks down.3

D. Wave function with fluctuations

Using the matching conditions for the zeroth order (in
fluctuations) wave functions given by the asymptotic

behavior of the Airy functions (38)–(41), and the correla-
tion that we found between the sign of the fluctuations and
the particular solution to the zeroth order equation (56) [see
also Eqs. (72) and (74)], we can now write down the wave
function in the classically forbidden and allowed regions
for the asymptotic regimes and for small ϕ fluctuations. To
simplify the formulas, let us first make the following
definitions:

λðqÞ≡ 6

Λ

				
�
1 −

Λq
3

�				3=2; Δ≡ Λ
3
qþ lðlþ 2Þ > 0:

For Λq
3
≪ 1 we have

Ψinðq;ϕÞ ¼ Aþe
−1
ℏ

n
λðqÞþ1

2
qϕ2

lðlþ2Þð−ð1−Λ
3
qÞ1=2þðlþ1ÞÞ
Δ

o

þ A−e
−1
ℏ

n
λðqÞþ1

2
qϕ2

lðlþ2Þð−ð1−Λ
3
qÞ1=2−ðlþ1ÞÞ
Δ

o

þ Bþe
þ1

ℏ

n
λðqÞþ1

2
qϕ2

lðlþ2Þð−ð1−Λ
3
qÞ1=2þðlþ1ÞÞ
Δ

o

þ B−e
þ1

ℏ

n
λðqÞþ1

2
qϕ2

lðlþ2Þð−ð1−Λ
3
qÞ1=2−ðlþ1ÞÞ
Δ

o
: ð59Þ

Note that the Aþ and B− terms have Gaussian fluctuations
while the A− and Bþ terms have inverse Gaussian fluctua-
tions. Hence one might choose the solution with

A− ¼ Bþ ¼ 0 ð60Þ

in order to avoid quadratic instabilities. Of course
this is not a guarantee that the solutions are indeed stable
since we have nothing to say about the sign of higher order
fluctuations.
In the asymptotic classical regime Λq=3 ≫ 1 the general

solution may be written as (we include a constant phase
factor for later convenience)

Ψoutðq;ϕÞ¼C−þe
1
ℏfiλðqÞ−q

2
ϕ2lðlþ2Þ

Dþ g−iπ
4 þCþ

−e
−1
ℏfiλðqÞ−q

2
ϕ2lðlþ2Þ

Dþ gþiπ
4

þCþ
þe

1
ℏfiλðqÞ−q

2
ϕ2lðlþ2Þ

D−
g−iπ

4 þC−
−e

−1
ℏfiλðqÞ−q

2
ϕ2lðlþ2Þ

D−
gþiπ

4

ð61Þ

with3I thank an anonymous referee for emphasizing this.
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1

D�
¼ −iðΛq=3 − 1Þ1=2 � ðlþ 1Þ

Δ
:

In Eq. (61) as well as in Eq. (59) the particular combination
of the fluctuation term ∝ϕ2 and the background term ∝λðqÞ
is determined by theWheeler-DeWitt equation, as indicated
in Eq. (58). To avoid having solutions which are unstable to
quadratic fluctuations in the classical region, we need to set

Cþ
− ¼ 0; Cþ

þ ¼ 0: ð62Þ

Let us now impose the requirement of suppressed quadratic
fluctuations in both the inside and outside wave functions,
and then match the two in the limit where ϕ ¼ 0. In this
case we may use the matching conditions of the unper-
turbed theory (38)–(41), which imply

1

2
e−

λðqÞ
ℏ ⟷

1

2
fei

ℏλðqÞ−iπ4 þ e−
i
ℏλðqÞþiπ

4g;

e
λðqÞ
ℏ ⟷

1

2i
fei

ℏλðqÞ−iπ4 − e−
i
ℏλðqÞþiπ

4g;

where the lhs of each relation corresponds to a classically
forbidden region, and the rhs to a classically allowed region
solution. These conditions then determine C−þ ¼Aþ− 1

2iB−,
C−
− ¼ Aþ þ 1

2i B−. For the sake of clarity let us then write
out explicitly the solutions with suppressed Gaussians in
the two regions4:

Ψinðq;ϕÞ ¼ Aþe
−1
ℏ

n
λðqÞþ1

2
qϕ2

lðlþ2Þð−ð1−Λ
3
qÞ1=2þðlþ1ÞÞ
Δ

o

þ B−e
þ1

ℏ

n
λðqÞþ1

2
qϕ2

lðlþ2Þð−ð1−Λ
3
qÞ1=2−ðlþ1ÞÞ
Δ

o
ð63Þ

Ψoutðq;ϕÞ ¼
�
Aþ −

1

2i
B−

�
e

1
ℏfiλðqÞ−q

2
ϕ2lðlþ2Þ

Dþ g−iπ
4

þ
�
Aþ þ 1

2i
B−

�
e−

1
ℏfiλðqÞ−q

2
ϕ2lðlþ2Þ

D−
gþiπ

4: ð64Þ

Consider now Vilenkin’s tunneling wave function
case. The boundary condition here is that there is
only an outgoing component in the classical region
corresponding to an expanding Universe, which means
setting Aþ þ B−=2i ¼ 0. Thus we get

ΨðTÞ
out ðq;ϕÞ ¼ 2Aþe

−1
ℏfiλðqÞ−q

2
ϕ2lðlþ2Þ

D−
gþiπ

4: ð65Þ

This should be compared with Ψin,

ΨðTÞ
in ðq → 0Þ ¼ Aþ½e− 6

ℏΛ − 2ie
6
ℏΛ�:

The probability of the Universe emerging in a Bunch-
Davies vacuum relative to remaining in a state of nothing
(i.e., with zero sale factor a ¼ ffiffiffi

q
p ¼ 0) is (after restoring

the 2π2 factor which we had dropped)

PðTÞðq;ϕÞ ¼ jΨðTÞ
out ðq;ϕÞj2

jΨðTÞ
in ðq → 0Þj2

¼ e−24π
2=ℏΛe−

2π2

ℏ qϕ2lðlþ1Þðlþ2Þ
Δ :

ð66Þ

Now let us consider the Hartle-Hawking case. Here if we
insist that the boundary conditions are given by Euclidean
quantum gravity, we would need the wave function to be
real. In this case using Eq. (62) in Eq. (61) and imposing
reality, we get (we choose ℑAþ ¼ 0 so ℜB− ¼ 0)

ΨðHHÞ
out ¼ 4Aþ cos

�
1

ℏ
ðλðqÞ

þqϕ2

2

�
Λq=3−1Þ1=2 lðlþ2Þ

Δ

�
−
π

4

�
e−

2π2

ℏ ϕ2lðlþ1Þðlþ2Þ
2Δ ;

ð67Þ

in agreement with Eq. 3.23 of Ref. [13]. Furthermore the
under the barrier solution in this case in the limit of zero
scale factor is

ΨðHHÞ
in ðq → 0Þ ¼ 2Aþe−

6
ℏΛ:

Thus we have (after restoring the factor of 2π2)

PðHHÞðq;ϕÞ ¼ jΨðHHÞ
out ðq;ϕÞj2

jΨðHHÞ
in ðq→ 0Þj2

¼ e24π
2=ℏΛe−

2π2

ℏ qϕ2lðlþ1Þðlþ2Þ
Δ

× 4cos2
�
2π2

ℏ
ðλðqÞ

þqϕ2

2

�
Λq=3− 1Þ1=2 lðlþ 2Þ

Δ

�
−
π

4

�
: ð68Þ

The Hartle-Hawking wave function is time symmetric
between an expanding and a contracting Universe. The
observed Universe is of course expanding, so somehow
the two branches must decohere—in which case the only
difference between the two probabilities is in the prefactor—
with the tunneling case (as is well known) favoring a larger
cosmological constant, and the Hartle-Hawking case favor-
ing a smaller CC.

4A similar analysis for the case of tunneling boundary
conditions was done more than 30 years ago by Vachaspati
and Vilenkin [18].
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E. Solving the Hamilton-Jacobi equation
beyond quadratic order

In the previous subsection we considered just the quad-
ratic fluctuations around the minisuperspace HH and tun-
neling solutions. However, as we mentioned at the end of
Sec. III C, it is clear that the wave function necessarily
contains non-Gaussianities.
To investigate the solutions systematically, it is conven-

ient to write

Ψ½q;ϕ� ¼ e
i
ℏS½q;ϕ�: ð69Þ

Substituting in the WdW equation (50), we have the
Hamilton-Jacobi (HJ) equation plus its quantum correction:

−
1

3

�∂S
∂q

�
2

þ ðΛq − 3Þ þ 1

2q2

�∂S
∂ϕ

�
2

þ 1

2
lðlþ 2Þϕ2

þ iℏ

�
1

3

∂2S
∂q2 −

1

2q2
∂2S
∂ϕ2

�
¼ 0: ð70Þ

The limit ℏ → 0 give the classical Hamilton-Jacobi equa-
tion. Ignoring the quantum correction, we try a solution of
the form (as before, an overall factor of 2π2 is understood)

iS½q;ϕ� ¼ c1

�
6

Λ

�
1 −

Λ
3
q

�
3=2

þ q

�X∞
n¼1

1

2n!
σnðqÞϕ2n

��
:

ð71Þ

The HJ equation then gives

− 2

�
1 −

Λ
3
q
�

1=2 X∞
n¼1

1

2n!
ðσnðqÞ þ qσ0nðqÞÞϕ2n

þ
�X∞

n¼1

1

2n!
ðσnðqÞ þ qσ0nðqÞÞϕ2n

�
2

−
1

2

�X∞
n¼1

1

ð2n − 1Þ! σnðqÞϕ
2n−1

�
2

þ 1

2
lðlþ 2Þϕ2 ¼ 0:

Equating powers of ϕ2 gives a set of recursion relations
which in principle can be solved iteratively to determine σn.
For instance from the coefficient of ϕ2 we get [see Eqs. (54)
and (55)]

−
�
1 −

Λ
3
q

�
1=2

ðσ1ðqÞ þ qσ01ðqÞÞ −
1

2
σ21 þ

1

2
lðlþ 2Þ ¼ 0;

which is solved by

σ1 ¼
lðlþ 2Þ

ð1 − Λ
3
qÞ1=2 � ðlþ 1Þ : ð72Þ

From the coefficient of ϕ4 we also get

2

4!

�
1−

Λ
3
q

�
1=2

ðσ2þqσ02Þþ
1

6
σ1σ2 ¼

1

4
ðσ1þqσ01Þ2: ð73Þ

Since σ1 þ qσ01 ≠ 0, this shows that σ2 ≠ 0. Clearly the
higher order terms will all be nonzero. Note also that in the

classical regime


Λ
3
q > 1, a > adS ≡

ffiffiffi
3
Λ

q �
the sigmas are

complex since, as we remarked before,

σ1 ¼
lðlþ 2Þ

h
�ðlþ 1Þ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q − 1

q i
Λ
3
q − 1þ ðlþ 1Þ2 ; etc: ð74Þ

The above calculation seems to indicate that the solution of
the WdW equation in the minisuperspace approximation
has non-Gaussian terms. It is however unclear whether all
of them are suppressed under the same conditions that
enabled us to get suppressed Gaussian fluctuations.
In view of the importance of this question, let us inves-

tigate this further using a slightly different parametrization—
i.e., the one used by Vachaspati and Vilenkin [18]. First we
rewrite the WdWequation (50) in terms of the scale factor a
to get �

þℏ2

� ∂2

∂a2 þ p
∂
∂a

�
þ 12a4ðΛa2 − 3Þ

− 6ℏ2
∂2

∂ϕ2
þ 6lðlþ 2Þa4ϕ2

�
Ψ ¼ 0: ð75Þ

This is essentially (apart from a trivial normalization differ-
ence) the equation analyzed inRef. [18] (but for a givenmode
ϕ≡ ϕl) except that the direct substitution q ¼ a2 would
have given us p ¼ −1 in the above, whereas they chose
p ¼ þ1. But this is just a difference in factor ordering which
is relevant only for theOðℏÞ correction, which we ignore. So
let us work with the latter choice for p. In this case we may
substitute x ¼ lna to get

�
þℏ2

∂2

∂x2 þ −6ℏ2
∂2

∂ϕ2
− Vðx;ϕÞ

�
Ψ ¼ 0; ð76Þ

Vðx;ϕÞ ¼ V0ðxÞ þ V2ðxÞϕ2

≡ −12e4xðΛe2x − 3Þ − 6lðlþ 2Þe4xϕ2: ð77Þ

We write the wave function as (we will write out explicitly
only the under the barrier growing mode)

Ψðx;ϕÞ¼ exp

�
−S0ðxÞ−

1

2
S2ðxÞϕ2−

1

4
S4ðxÞϕ4þOðϕ6Þ

�
:

ð78Þ

Substituting in Eq. (76), we get a set of recursion relations
as before—namely (denoting by a prime derivation with
respect to x),
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S00
2 ¼ V0; ð79Þ

S00S
0
2 − S22 ¼ V2; ð80Þ

1

2
S00S

0
4 þ

1

4
ðS02Þ2 − 2S2S4 ¼ 0; ð81Þ

1

t
S00S

0
2tþ

Xt−1
r¼1

S02r
2r

S0
2ðt−rÞ

2ðt− rÞ−6
Xt

r¼1

S2rS2ðtþ1−rÞ ¼ 0 for t≥ 2:

ð82Þ

Clearly all of the coefficients S2t may be recursively
determined in principle. Solving the equation for S4 for
instance, we get

S4ðxÞ¼−
1

2
e
24
R

x

−∞
dx0S2

S0
0

ðx0ÞZ x

−∞
dx0e

−4
R

x0
−∞

dx00S2
S0
0

ðx00Þ ðS02ðx0ÞÞ2
S00ðx0Þ

:

ð83Þ

Once a choice of S00 ¼ � ffiffiffiffiffiffi
V0

p
is made, this equation

[together with the choice of solution for Eq. (80), which is
essentially given by qσ1—see Eqs. (72) and (74)] determines
uniquely the coefficientS4. In fact in the classically forbidden
regionwhereV0 > 0 and S02 is real, we see that for the choice
S00 ¼ −

ffiffiffiffiffiffi
V0

p
[giving S0 ¼ þ2

ffiffiffi
3

p ð3 − Λa2Þ3=2], we have
S4 > 0 corresponding to suppressed quartic fluctuations in
the rising under the barrier wave function, but the choice
S00 ¼ þ ffiffiffiffiffiffi

V0

p
gives growing quartic fluctuations signaling an

instability in the falling under the barrier wave function.
What does this imply for the tunneling vs the Hartle-

Hawking wave function? For the latter case (since we can
set B− ¼ 0) we have suppressed quartic fluctuations.
However, for the former case since B− is necessarily
nonzero, we would have unsuppressed quartic fluctuations
in the under the barrier wave function. If this sign persists
for all higher order (i.e., ϕ2t) terms, then clearly the
requirement of suppressed fluctuations will favor the HH
wave function. Unfortunately [as can be seen from
Eq. (82)] analyzing the higher order (i.e., 2t ≥ 6) fluctua-
tions is not straightforward, so at this point we cannot say
anything about these, and a definite conclusion regarding
these alternative solutions to the problem of tunneling from
nothing cannot be made.
While we cannot say anything about the sign of the

higher order (i.e., beyond quartic order) fluctuations, the
recursion relations (73), (81), and (83) (barring some
unlikely cancellations) imply that this framework may in
general lead to non-Gaussianities. However, as we
observed earlier, this does not necessarily imply a break-
down of the Bunch-Davies vacuum ansatz since it may be

the case that these quartic (and higher order) corrections
become significant only at values of ϕwhere our expansion
breaks down.

IV. CONCLUSIONS

We have argued that there is no particular advantage to
the saddle point (Picard-Lefschetz) method in solving the
WdW equation in the minisuperspace truncation. Contrary
to the work of Feldbrugge et al. [9–12], which ascribes
certain a priori criteria on properties of the integral over the
lapse and furthermore essentially computes a propagator
rather than a wave function, our point of view is essentially
similar to that of Diaz and co-workers [13,14], where the
functional integral is treated as a means towards computing
solutions to the WdW equation.
We have also argued that whether or not one picks the

Hartle-Hawking or the tunneling wave function is a matter
of choosing one or the other boundary condition, so it must
be determined by some physical input and is not a matter of
consistency of the saddle point method. Furthermore we
have shown how to include fluctuations around the min-
isuperspace model, and indeed the general solution does
contain terms with inverse Gaussian fluctuations, as shown
by Feldbrugge et al. [10,11]. However, we have demon-
strated that one can choose to set some of the arbitrary
constants by multiplying such terms by zero, so properly
interpreted, the quadratic fluctuations around both com-
peting wave functions are indeed of Gaussian form and are
suppressed.
On the other hand we have been unable to say anything

definitive about the sign of higher order fluctuations
(apart from the quartic one, which appears to have the
wrong sign for the tunneling wave function), hence it is
difficult to rule out either formulation of quantum cosmol-
ogy based on purely theoretical grounds (as was the claim
of Refs. [10,11]). However, as argued at the end of the
previous section, even if the stability issue was settled it is
hard to see how non-Gaussianities could be suppressed (as
required observationally) in this framework.
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