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Abstract To explore the possible clues for the extra dimen-
sion from the Event Horizon Telescope (EHT) observations,
we study the shadow of the rotating 5D black string in Gen-
eral Relativity (GR). Instead of investigating the shadow
in the effective 4D theory, we concern the motion of pho-
tons along the extra dimension z with a conserved momen-
tum Pz , which appears as an effective mass in the geodesic
equations of photons. The existence of Pz enlarges the pho-
ton regions and the shadow of the rotating 5D black string
while it has slight impact on the distortion. The EHT obser-
vations of M87* and SgrA* can rule out the black string
model with an infinite length along the extra dimension,
and support the hypothesis that the extra dimension is com-
pact to avoid the Gregory-Laflamme (GL) instability, where
the length of the black string/the compact extra dimension
can be constrained as 2.03125 mm � � � 2.6 mm and
2.28070 mm � � � 2.6 mm respectively.
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1 Introduction

The deflection of light was considered by J. Soldner in the
framework of Newtonian gravity, then in 1919 Eddington
and Dyson found that the deflection of light near Sun bet-
ter corresponds to GR predictions. While for the spacetime
near a black hole, the gravity will be so strong that the
photons can orbit the black hole and form photon spheres
(regions). Such photon orbits are unstable in general, slight
deviation will make the photons drop into the black hole or
run away to infinity, therefore a black hole looks like a dark
disk surrounded with a shine doughnut. The visible borders
of accretion disk surrounding a black hole are firstly rep-
resented in [1,2], while the shadow and optical appearance
from a luminous screen behind a rotating black hole were
discussed as theoretical concepts [3]. In [4,5] the shadow of
the supermassive black hole SgrA* at the galactic center was
further studied as a potentially observable quantity, where
the possibility of the shadow to be detected with the global
Very Long Baseline Interferometry (VLBI) at submillimeter
wavelengths was also discussed based on numerical results.
Whereafter, opportunities to evaluate the spin parameter and
the charge for a black hole in galactic center with forth-
coming millimeter and submillimeter VLBI facilities were
investigated [6,7]. Surprisingly, the reconstructed black hole
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images were represented by the EHT Collaboration [8,9],
which provides the more direct information of the geometry
near the event horizon of the black hole and develops as a
new research focus in recent years.

On the other side, extra-dimensional theories have always
been attractive and people used to pin their hope for detect-
ing extra dimensions on high-energy experiments. After
the achievement of the Gravitational Wave (GW) detection
[10], physicists tried to study the features of GWs in extra-
dimensional theories that can distinguish the effects of extra
dimensions from those in other modified gravity theories,
mainly the discrete high-frequency spectrum and shortcuts
(see review [11]), also recently the discrepancy of gravi-
tational memory effects that arise from bursts of compact
extra-dimensional gravitational radiation was discussed in
[12]. However, the discrete high-frequency spectrum (about
≥ 300 GHz) is far beyond the scope of GW detectors at
present, and not all GWs in extra-dimensional theories can
take shortcuts. Thanks to the accomplishment of the EHT
observation, the reconstructed black hole images may pro-
vide a promising way to detect extra dimensions.

The conception of extra dimensions was first introduced
by Gunnar Nordström in 1914, in order to unify electromag-
netism and gravity [13,14]. Then the 5D Kaluza-Klein (KK)
theory was proposed with the extra dimension to be a com-
pact circle [15–17], which could recover both the electromag-
netism and GR in 4D spacetime. In 1983, the domain wall
theory was constructed with an infinite extra dimension and
a bulk scalar field [18,19], where the effective potential well
along the extra dimension could localize the energy density
of the scalar field on a 3D hypersurface, i.e. the domain wall
embedded in the 5D spacetime. However, the zero mode of
gravity is hard to be localized on the domain wall, and also
the hierarchy problem (the huge discrepancy between the
Planck scale MPI ∼ 1019 GeV and the electroweak scale
MEW � 246 GeV) becomes a long-standing puzzle in parti-
cle physics. Finally, Lisa Randall and Raman Sundrum (RS)
proposed the well-known RS-I [20] and RS-II [21] models
to solve the hierarchy problem, in which a warped struc-
ture was introduced to the compact/infinite extra dimension
respectively.

Considering that the extra dimensions play an important
role in the early universe [22], Gregory and Laflamme made
the pioneering attempt to generalize the 4D Schwarzschild
black hole to 5D black string by the extension to an extra
dimension with the topology S

4
Sch × R

1 [23] which can be
regarded as an extra hair of black holes. Compared with a
hyperspherically symmetric black hole (5D Schwarzschild),
a hypercylindrical black hole (5D black string) possesses
higher entropy with the same mass M when the length of
black string is small enough

SBS = 4πM2

�
> SSch = 8

3

√
2π

3
M3/2,

(
� < �0 = √

27πM/8
)

. (1)

In other words, an uniform 5D black string with length � < �0

is thermodynamically preferred than the 5D Schwarzschild
black hole, indicating a possible mechanism to trigger dimen-
sional reduction. The 5D black string was thought to be sta-
ble under linear perturbations [23], unless the well-known
GL instability of black strings/branes [24,25] was addressed
using the general solution of 10D black strings branes in
the low-energy string theory [26]. Also in RS scenario,
the Reissner–Nordström (RN) metric was re-interpreted (but
with negative Q2) as a black hole localized on the brane with
a tidal charge arising from the fifth dimension [27].

A lot of efforts have been made to explore the fate of
the black strings/branes instability. Gregory and Laflamme
speculated that the instability could potentially fragment the
horizon and form the known periodic black hole solutions
(hence violating the cosmic censorship), or will not form
in the first place from collapse [24]. However, Horowitz and
Maeda then proved that classical event horizons can not pinch
off and proposed that the spacetime is most likely to set-
tle down to a new nonuniform black string (NUBS) [28].
Almost a decade later, the numerical results of a perturbed
5D black string gave strong evidence that the classical evo-
lution does not stop at any stable configuration but proceeds
in a self-similar cascade to smaller scales [29]. While for a
large number of extra dimensions, the weakly NUBS was
found to have larger entropy and the large D approach gives
a stable NUBS generically as the end point of the instabil-
ity [30]. Nevertheless, the fate of the black string instability
with less extra dimensions is still inconclusive. (For more on
instability of black strings/branes, see the review [31]).

Intriguingly, the GL instability can also be evaded by the
compactification of the extra dimensions where the wave-
length along the circle is required to be smaller than a critical
value given by the numerical results and in agreement with
the entropy argument [24]. This ingenious idea was proposed
initially together with the GL instability. In this work, we are
devoted to explore the topology of the extra dimension (com-
pact or not), using the EHT observations of the black hole
shadow. We choose the simplest rotating 5D black strings in
GR, M4

Kerr ×R
1 and M

4
Kerr × S

1, the latter is also a funda-
mental black hole solution in KK theory. In KK theory, one
can start with a 4D vacuum solution of GR, then take the prod-
uct with S

1 to obtain a 5D translationally invariant solution,
and finally boost the solution along the extra dimension [32].
When reinterpreted in 4D, such solution has nonzero charge
and a nontrivial dilaton field, because the 5D vacuum GR can
be dimensionally reduced to 4D Einstein-Maxwell-Dilaton
(EMD) theory. Recently, the observational appearence of the
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most general black hole solution in KK theory has been stud-
ied elaborately in 4D, where small electric/magnetic charges
of the black holes can meet the EHT observations while they
are still indistinguishable from the Kerr case [33]. (When the
electric/magnetic charges both disappear, the general black
hole solution in 5D reduces to the simple model we choose.)
This result shows that the simple model M4

Kerr × S
1 can be

regarded as a proper approximation for the realistic situation.
As we shall see later, the reduction of the parameters is con-
ductive to give an independent constraint for the length of
the compact extra dimension, this interesting result has been
briefly reported in [34].

Actually in early times, people considered to find signa-
tures of extra dimension from shadow analysis of super-
massive black holes, for instance, the approach to con-
strain/evaluate the parameters from the shadow of the black
hole solution with a tidal charge in RS-II braneworld model
[35,36]. After the black hole images were unveiled, more
and more attempts have been made to construct the geom-
etry of the supermassive black holes M87* and SgrA* with
additional matter sources or in modified theories, includ-
ing the representative extra-dimensional theories. The first
quantitative constraint � � 170AU (here � is the AdS5 cur-
vature radius) for the scale of the extra dimension in the
RS scenario was given from the deviation of quadrupole
moment from the Kerr prediction [37]. After that, the shadow
of a rotating squashed KK black hole was studied with
the specific angular momentum of photon from the fifth
dimension [38]. Later, the black hole shadow was calcu-
lated on the 4D effective brane of the 5D GR theory [39].
In type IIB superstring/supergravity inspired spacetimes, the
shadow of 5D black holes was found to be significantly dis-
torted and shrink with the brane number [40]. Moreover, the
quasinormal modes and the shadow of string-corrected D-
dimensional black holes were investigated in [41]. Further-
more, the shadow of rotating braneworld black holes in the
RS-II model was revisited by considering not only the metric
in the near region of the black hole but also the linearized met-
ric in the far region where the observer stays [42]. Recently
the constraints and parameters estimation of the RN metric
with a tidal charge from the extra dimension in RS model
have also been revisited with the EHT observations [43,44].

This paper is organized as follows. In Sect. 2 we obtain the
geodesic equations for a massive test particle in the rotating
5D black string spacetime, where the momentum Pz along
the extra dimension plays the role like an effective mass. Then
in Sect. 3 we study the photon regions and the stability with
the effects of PE . In Sect. 4 we investigate the black string
shadow observed at both finite and infinite distances, and
make the parameters estimation from the EHT observations.
Most importantly, in Sect. 5 a constraint for the length of the
extra dimension can be given from the estimation of param-
eter Pz/E0. Subsequently, in Sect. 6 we calculate the energy

emission rate and find that existence of the extra dimension
amplify the energy emission rate without changing the posi-
tion of the peak. Finally in Sect. 7 we conclude the main
results and discussions.

2 Geodesic equations

In general, astrophysical black holes can be described by
Kerr metric in four dimensions, if an extra spatial dimension
z is introduced in the simplest (uniform) way, then the con-
structed spacetime is still a solution of the vacuum Einstein
equations of GR in five dimensions [45]

ds2 = − 1

�

(
� − a2 sin2 ϑ

)
dt2 + �

�
dr2 + �dϑ2

+ 1

�

(
ρ4 − �a2 sin2 ϑ

)
sin2 ϑdϕ2

−4aMr

�
sin2 ϑdtdϕ + dz2, (2)

where

� = r2 + a2 cos2 ϑ,

� = r2 − 2Mr + a2,

ρ2 = r2 + a2. (3)

This solution describes a rotating uniform black string,
where M is the mass density proportional to the mass of the
black string M = M� (� is the length of the black string),
and a is associated to the angular momentum J = M�a.
When the last term in the metric disappears, the dimensions
of all the quantities reduce to the normal ones in Kerr case.

If we consider the extra spatial dimension z as a compact
circle to avoid the GL instability, then periodic conditions
along the extra dimension will be required (we assume the
circumference of the compact extra dimension is the same as
the length of black string �). Throughout the paper we use
the units c = G = h̄ = 1, unless the units are specifically
mentioned.

The radius of Cauchy horizon r− and event horizon r+
can be obtained from � = 0

r± = M ±
√
M2 − a2, (4)

where a2 ≤ a2
max = M2. While the ring singularity is located

at r = 0 and ϑ = π/2, solved from � = 0. Due to the rota-
tion, the ergoregion and causality violation region appear
with gtt > 0 and gϕϕ < 0 respectively, as in 4D Kerr space-
time.

The geodesic equation of a test particle (uncharged) with
mass m is given by

d2xα

dλ2 + �α
μν

dxμ

dλ

dxν

dλ
= 0, (5)
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where λ is an affine parameter related to the proper time τ =
mλ. This equation can also be derived from the Lagrangian

L = 1

2
gμν ẋ

μ ẋν, (6)

where a dot over a symbol represents the derivative with
respect to λ. We can calculate the momentum of the particle
and the Hamiltonian

Pμ = ∂L
∂ ẋμ

= gμν ẋ
ν = ẋμ, (7)

H = Pμ ẋ
μ − L = 1

2
gμν ẋ

μ ẋν = −1

2
m2. (8)

To obtain the geodesic equations with separate variables,
the Hamilton–Jacobi equation is required

∂S

∂λ
+ 1

2
gμν ∂S

∂xμ

∂S

∂xν
= 0, (9)

where S is the Jacobi action. Considering the conservation
of the rest mass m, energy E0, angular momentum Lϕ and
momentum Pz

∂S

∂λ
= −1

2
gμνPμPν = 1

2
m2, (10)

∂S

∂t
= ∂L

∂ ṫ
= −E0, (11)

∂S

∂ϕ
= ∂L

∂ϕ̇
= Lϕ, (12)

∂S

∂z
= ∂L

∂ ż
= Pz, (13)

a separable solution with the constants of motion m, E0, Lϕ ,
Pz can be assumed as

S = 1

2
m2λ − E0t + Lϕϕ + Pzz + Sϑ(ϑ) + Sr (r). (14)

With the separation constant K [46], the geodesic equations
can be finally separated as

ṫ=a4E0−a2E0 sin2 ϑ
(
a2−2Mr+r2

)+2a2E0r2+aLϕ (−2Mr) +E0r4(
a2+r(r−2M)

) (
a2 cos2 ϑ+r2

) ,

(15)

ϕ̇ = Lϕ csc2(ϑ)
(
a2 − 2Mr + r2

) − a
(
aLϕ − 2E0Mr

)
(
a2 + r(r − 2M)

) (
a2 cos2 ϑ + r2

) , (16)

ṙ =
√
R

a2 cos2 ϑ + r2 , (17)

ϑ̇ =
√

�

a2 cos2 ϑ + r2 , (18)

ż = Pz , (19)

where

R =
(
E0

(
a2 + r2

)
− aLϕ

)2

−K�(r) − r2
(
m2 + P2

z

)
�(r), (20)

� = K − a2
(
m2 + P2

z

)
cos2 ϑ −

(
aE0 sin2 ϑ − Lϕ

)2

sin2 ϑ
.

(21)

In the first four equations, the momentum Pz always
appears as square P2

z together with m2, indicating that the
momentum along the extra dimension participates as an

effective mass
√
m2 + P2

z for the particle. For photons with a
momentum Pz along the extra dimension, the motions along
t , r , ϑ , ϕ directions are exactly the same as the motions of
a massive particle m = Pz without the extra dimension. It
is worth noting that recently the general theory of massive
particle surfaces was developed in [47], and we will com-
pare the results for the static case. When the extra dimension
disappears or the motion of the particle is within the 4D
hypersurface, i.e. Pz = 0, the equations reduce to those for
4D Kerr spacetime, which implies that if a particle can not
move along the extra dimension then we can not recognize
the existence of extra dimensions via the motion of particle
or shadow.

Actually the geodesic motions in this rotating black string
spacetime have been comprehensively studied [45]. In this
paper, we focus on the photon orbits that stay on a sphere
(with constant r ), the regions accommodating such photon
orbits constitute the so-called photon region. The geometry
of such photon surface with definition and theorems have
been investigated in [48].

3 Photon regions

For the spherical orbits, the conditions ṙ = 0 and r̈ = 0 are
required, which are equivalent to R(r) = 0 and R′(r) = 0.
Using these conditions we can obtain the constants of motion
KE ≡ K/E2

0 and LE ≡ Lϕ/E0 selected by the radius rp of
photon orbits

KE = 2rp�(rp)

�′(rp)2

(
2
√

2rp
√

2rp − P2
E�′(rp)

−P2
E�′(rp) + 4rp

)
− r2

p P
2
E , (22)

LE = a+r2
p

a
− �(rp)

a�′(rp)

(√
2rp

√
2rp − P2

E�′(rp) + 2rp

)
,

(23)

where PE ≡ Pz/E0, the prime represents the derivative with
respect to r and we have set m = 0 for photons. For static
case, without the introduce of K , the function R(r) is origi-
nally

R(r) = ṙ2r4 = E2
0r

4 + r(2M − r)
(
L2

ϕ + P2
z r

2
)

, (24)
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Fig. 1 The photon regions outside the event horizon (left panel) and
inside the Cauchy horizon (right panel) are plotted with M = 1 and
a = 2

5amax. The parameter PE does not change the positions of hori-
zons (red dashed circles) and ergoregion (cyan region). Besides, the

stable regions (right panel) for the spherical photon orbits are filled
with oblique lines, where the solid boundary is for Pz/E0 = 0 and the
dashed boundary is for Pz/E0 = 0.1

then the conditions R(r) = 0 and R′(r) = 0 lead to

E2
0

P2
z

=
(
rp − 2M

)2

rp(rp − 3M)
,

L2
ϕ

P2
z

= Mr2
p

rp − 3M
, (25)

while the condition R′′(rp) = 0 gives the Innermost Sta-
ble Circular Orbit (ISCO) rI SCO = 6M and the corre-
sponding angular momentum is Lϕ = 2

√
3PzM . Consid-

ering the equivalence of Pz and m, they are exactly same
with the results in [47] for the massive particle surfaces in
Schwarzschild case.

The condition � ≥ 0 gives the photon region
(
rx�p − �p�

′
p

)2 ≤ 4a2rprx�p sin2(ϑ)

−a2P2
E sin2(ϑ)�′

p

(
�p�

′
p + 2rp�p

)
, (26)

where �p ≡ �(rp), �′
p ≡ �′(rp), �p ≡ �(rp) and

rx = 2rp + √
2rp

√
2rp − P2

E�′
p. (27)

For each value of rp, a range of ϑ for photon orbits can be
obtained from the above inequality (26). For the static case
a = 0, the photon region degenerates a photon sphere, the
radius of which can be solved from

rx�p − r2
p�

′
p = 0. (28)

We know that the effective potential Veff can be defined
from the difference between the total energy and kinetic
energy, therefore the stable condition V ′′

eff(rp) > 0 for the
photon orbits is equivalent to (ṙ2)′′ = (R/�2)′′ < 0. Using
the conditions R(rp) = 0 and R′(rp) = 0, we can obtain the

stable condition R′′(rp) < 0 with respect to radial perturba-
tions. With the relations (22) (23), the stable condition can
be expressed as

�′2
p

2E2
0

R′′(rp) = 2rp�
′2
p

(
2rp − P2

E�′
p

)

−�p

(
P2
E�′

p − 2
√

2rp
√

2rp − P2
E�′

p − 4rp

)

×
(
�′

p − rp�
′′
p

)
< 0. (29)

When PE → 0 all the relations (22)–(29) will reduce
back to those in Kerr case. In Fig. 1, we plot the photon
regions and the stable region for the spherical photon orbits
in the 5D rotating black string, compared with the Kerr case
(Pz/E0 = 0). (Although the spacetime with negative r is also
allowed in rotating case, for simplicity here we do not show
the photon regions and the causality violation regions that
with negative r .) It shows that with the increase of PE , the
photon regions outside the event horizon move out with larger
radius, while the photon regions inside the Cauchy horizon
move in with smaller radius. Similar with the Kerr case, the
photon regions outside the event horizons are unstable while
the photon regions inside the Cauchy horizons are divided
into stable parts and unstable parts (Pz/E0 = 0.1). However,
if we further raise Pz/E0, for example Pz/E0 = 0.5, the
photon regions inside the Cauchy horizon will disappear.

A turning point, by definition, must correspond to a local
maximum of the potential. By examining the effective poten-
tial, if we can not find a second local maximum apart that cor-
responds to the photon sphere, then there must be a shadow. In
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[45], all possible geodesics in 5D rotating black string space-
time have been classified and discussed. The bound orbits
can not be seen by the observer, while the escape orbits and
the terminating orbits are divided by the effective potential,
where the local maximum of the potential corresponds to the
unstable spherical orbit rp which has smaller radius than the
escape orbits. It is not difficult to prove that there is no turning
point between the event horizon and the unstable spherical
orbit rp for the escape orbits, thus no escape photon comes
from the radius smaller than rp.

4 Shadows of rotating 5D black string

The unstable photon regions outside the event horizon make
the direct observation of black holes possible. The photons
that escape the spherical photon orbits of a black hole due to
the instability and are received by an observer in the domain
of outer communication, form the boundary of the dark sil-
houette of the black hole. This dark silhouette is the so-called
black hole shadow from the view of the observer.

4.1 Observer at a finite distance

Consider an observer at position (ro, ϑo) and equipped with
an orthonormal tetrad

e0 = ρ2∂t + a∂ϕ√
��

∣∣∣∣
(ro,ϑo)

, (30)

e1 = ∂ϑ√
�

∣∣∣∣
(ro,ϑo)

, (31)

e2 = −∂ϕ + a sin2 ϑ∂t√
� sin ϑ

∣∣∣∣
(ro,ϑo)

, (32)

e3 = −
√

�

�
∂r

∣∣∣∣
(ro,ϑo)

, (33)

e4 = ∂z
∣∣
(ro,ϑo)

, (34)

where the timelike vector e0 can be regarded as the five-
velocity of the observer and the vector e3 gives the spatial
direction towards the center of the black hole. The tetrad
has been chosen such that e0 ± e3 are tangential to the
principal null congruences.

For each light ray sent from the observer into the past,
the initial direction can be described by two angles in the
observer’s sky (celestial coordinates), a colatitude angle θ

defined as the angle deviation from the e3 and an azimuthal
angle ψ defined as the angle deviation from the e1 on the
plane perpendicular to e3. (The direction towards the black
hole corresponds to θ = 0. Clear illustration can be found in
Fig. 7 and Fig. 8 in [49].) In the black string case, an extra
angle is produced as the angle deviation from the direction
e4 of the extra dimension. Although this angle can not be

perceived by human beings, but the extra dimension also
leaves imprints on the other two angles θ and ψ .

For fixed (ro, ϑo), each value of ψ corresponds to one
radius rp of the spherical photon orbits that the past-oriented
light ray spirals and ends on. The colatitude angle θ of this
light ray is also determined by the rp. A pair of such (θ, ψ)

gives one point of the shadow boundary. For a > 0, when
the azimuthal angle ψ varies from right (ψ = −π

2 ) to left
(ψ = π

2 ), the corresponding rp changes from its maximal
value to minimal value. This depicts the lower half of the
shadow boundary and the upper half is symmetric.

In Boyer–Lindquist coordinates, the tangent vector of the
geodesic can be written as

∂λ = ṫ∂t + ṙ∂r + ϑ̇∂ϑ + ϕ̇∂ϕ + ż∂z, (35)

while at the observation event it can also be described in
celestial coordinates as

∂λ = α (−e0 + e1 sin θ cos ψ + e2 sin θ sin ψ

+e3 cos θ + e4 cos φ) , (36)

where the factor α can be obtained by comparison

α = aLϕ − E0ρ
2

√
��

. (37)

In this way we can assign the celestial coordinates to Boyer–
Lindquist coordinates at (ro, ϑo)

sin θ =
√

�
(
KE + r2P2

E

)
ρ2 − aLE

∣∣∣∣
(ro,ϑo)

, (38)

sin ψ = LE − a sin2 ϑ

sin ϑ

√
KE + r2P2

E

∣∣∣∣
(ro,ϑo)

, (39)

cos φ = − PE
√

��

ρ2 − aLE

∣∣∣∣
(ro,ϑo)

. (40)

Inserting the expressions (22) (23) for KE and LE , it gives
the boundary curve

(
θ(rp), ψ(rp)

)
of the shadow as function

of rp.
The shadow is always symmetric with respect to a horizon-

tal axis, since the points (θ, ψ) and (θ, π − ψ) correspond
to the same constants of motion KE and LE . For a > 0, the θ

coordinate takes its maximal value along the boundary curve
at ψ = −π

2 (rpmax) and its minimal value at ψ = π
2 (rpmin),

where rpmax and rpmin can be solved from the equation

�p�
′
p − rx�p∓a sin ϑo√
P2
E

(
ro2 − r2

p

)
�′2

p + 2rp�p

(
2rx − P2

E�′
p

)
= 0,

(41)

where ∓ corresponds to ψ = ±π
2 .

Using the stereographic projection from the celestial
sphere onto a plane (see Fig. 8 in [49]), we can express the
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Fig. 2 The shadows of 5D rotating black string being observed at
ro = 5M and ϑo = π

2 with various values of Pz/E0 are shown as
a = 0.2 amax, a = 0.4 amax, a = 0.8 amax and a = 0.99 amax respec-

tively. In all the figures we have set M = 1, and the black dashed curve
represents the Kerr case, while the dashed red circle is the projection of
the celestial equator

shadow boundary in standard Cartesian coordinates as

x(rp) = −2 tan

(
θ(rp)

2

)
sin(ψ(rp)), (42)

y(rp) = −2 tan

(
θ(rp)

2

)
cos(ψ(rp)). (43)

The shadows of 5D rotating black string being observed at
ro = 5M and ϑo = π

2 with various values of a and Pz/E0 are
depicted in Fig. 2. It shows that with the increase of Pz/E0,
the shadow region expands larger in all the directions, while
the growth of a only translate and distort the shadow towards
the right direction. It is known that the existence of elec-

tric/magnetic charge will make the shadow region shrinks for
Kerr–Newman case, therefore the effect of the extra dimen-
sion is easily to be distinguished from the effects from other
parameters like a and e.

Similar effects of enlargement can be found in Kerr–
Newman-NUT black holes [49] and other extra-dimensional
theories. For instance, in RS scenario, a negative tidal charge
enlarges the shadow of a rotating braneworld black hole and
reduces its deformation with respect to Kerr spacetime [50].
It is intriguing that the shadows of black holes in most modi-
fied theories of gravity, in loop quantum gravity (LQG) [51]
and also black holes with additional sources surrounding [52]
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Fig. 3 The shadows being observed at spatial infinity and ϑo = π
2 with various values of Pz/E0 are shown as a/M = 0.2, a/M = 0.4, a/M = 0.8

and a/M = 0.99 respectively. The black dashed curve represents the Kerr case

or hairy black holes [53] have been studied to be smaller
and more distorted compared with the Kerr black hole case.
Maybe the enlargement is a representative characteristic for
the black hole shadow with extra dimensions.

4.2 Observer at infinity

The parameter PE = Pz/E0 associated with the existence of
the extra dimension is expected to be constrained from the
EHT observations. For this purpose, we need to construct the
shadow being observed at an infinite distance, the boundary
of which can described as Cartesian coordinates on the pro-
jected plane,

X = lim
ro→∞

(
−r2

o sin ϑo
dϕ

dr

)
, (44)

Y = lim
ro→∞

(
r2
o
dϑ

dr

)
. (45)

Substituting the geodesic equations and taking the limit ro →
∞, we can delineate the shadow boundary as

X = − LE csc ϑo√
1 − P2

E

, (46)

Y = ±
√

−a2P2
E cos2 ϑo−a2 sin2 ϑo+2aLE+KE−L2

E csc2 ϑo√
1−P2

E

.

(47)
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The shadows being observed at infinity are depicted in
Fig. 3, where the similar properties have been discussed in
the previous section.

4.3 Parameter estimation

The boundary of shadow can be approximated by a reference
circle and estimated by the radius Rs of this circle and the
deviation δs of the left edge of the shadow from the circle, pro-
posed by Hioki and Maeda [54]. Using the top (Xt ,Yt ), right
(Xr , 0), left (Xl , 0) edges of the shadow and the leftmost
edge

(
X ′
l , 0

)
of the reference circle, the size and distortion

of the black hole shadow can be characterized as

Rs = (Xt − Xr )
2 + Y 2

t

2|Xr − Xt | , (48)

δs = |Xl − X ′
l |

Rs
. (49)

Later, Kumar and Ghosh defined the area A and oblateness
D to estimate shadows with haphazard shapes

A = 2
∫

Y
(
rp

)
dX

(
rp

)

= 2
∫ rpmax

rpmin

(
Y

(
rp

) dX (
rp

)
drp

)
drp, (50)

D = Xr − Xl

Yt − Yb
, (51)

where Yb = −Yt in our case. For an equatorial observer in
Kerr spacetime, the oblateness D varies from D = 1 (static

case) to D =
√

3
2 (extremal case) [55].

Moreover, the average shadow radius R̄ and the circularity
deviation �C have been defined in [56]

R̄ =
√

1

2π

∫ 2π

0
R2 (�) d�, (52)

�C = 1

R̄

√
1

2π

∫ 2π

0

(
R(�) − R̄

)2
d�, (53)

where R(�) and � are the polar coordinates describing the
shadow boundary

R(�) =
√

(X − Xc)2 + (Y − Yc)2, (54)

� = tan−1
(
Y − Yc

X − Xc

)
, (55)

and (Xc,Yc) is the origin of the polar coordinates with Xc =
(Xl + Xr ) /2 and Yc = 0. Besides, the axial ratio Dx is
another way to describe the circular asymmetry by

Dx = �Y

�X
= Yt − Yb

Xr − Xl
= 1

D
. (56)

Most importantly, the angular diameter θd of the shadow
can be obtained as [57]

θd = 2Ra

d
= 2Ra/M

d/M
, Ra = √

A/π. (57)

Now we consider the realistic parameter values for the
supermassive black hole in M87∗. Firstly the inclination
angle ϑo = 17◦ can be given by the orientation of the jets
in M87∗ [58]. Then the distance d = 16.8 ± 0.8Mpc is
adopted based on the three recent stellar population mea-
surements [59]. However, the mass estimates from stellar
and gas dynamics does not agree with each other, here we
use the average value M = (6.5 ± 0.7) × 109M� inferred
from the geometric models, General Relativistic Magneto-
hydrodynamic (GRMHD) models and image domain ring
extraction, where the distance d = 16.8 ± 0.8Mpc has been
applied. In fact, only a ratio d/M is required for the calcula-
tions

d/M = 16.8Mpc

6.5 × 109M�
� 5.40573 × 1010 (c = G = 1).

(58)

It is worth mentioning that here we assign the value of mass
to M instead ofM = M�, because this value is inferred from
the Kerr case, in which M is the mass. Using these realistic
parameter values, we plot the angular diameter θd and other
observables δs , �C , Dx in Fig. 4. Presupposing a Kerr black
hole geometry, the EHT observations confirmed �C � 0.1
and Dx � 4/3, in agreement with the predictions of black
string model.

Similarly, we also plot the angular diameter θd of the 5D
rotating black string shadow using the EHT observations of
SgrA* [9] in Fig. 5, where M = 4.0×106M�, d = 8121 pc
(average distance of the three measurements) and ϑo = 5◦
(using the jet inclination [60]) have been applied.

5 Constrain the extra dimension

Not as we anticipate before the calculations, the length of
the extra dimension does not appear in the expressions of the
shadow boundary (46), (47), but we still expect to find some
clues of the extra dimension from the present results.

Firstly, for fixed Pz/E0, we can constrain the dimension-
less quantity cPz/E0 from the lower bound θd = 39 μas of
the EHT observation of M87*

Pz
E0

= cPz
E0

= cPz
pc

= vz

c
� 0.35, (59)

where 0.35 is the possible maximum value of the lower bound
within the spin measurement in Fig. 4.

However, this constraint could not be proper for an infi-
nite extra dimension, where in principle the value of Pz/E0

can be arbitrary within 0 ∼ 1. Especially for large enough
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Fig. 4 The angular diameter θd , deviation of the left edge of the shadow
from the reference circle δs , the circularity deviation �C and the axial
ratio Dx of the 5D rotating black string shadow are plotted as functions
of a/M and Pz/E0, which are in agreement with the EHT observations

of M87∗, i.e. �C � 0.1 and Dx � 4/3. In the first panel, the black
curves represent the ring diameter θd = 42±3 μas from the EHT obser-
vations of M87*, while the two red lines denote the spin measurement
a/M = 0.90 ± 0.05 from the radio intensity data [61]

Pz/E0, the shadow boundary lies outside the outer boundary
θd = 45 μas as of EHT observations, which indicates that the
luminosity distribution produced by these photons is beyond
the observed bright region and hence it contradicts with the
EHT observations. (It is rational to suppose the luminosity
distribution produced by all the photons lying right side of
the right black curve in Fig. 4 is non-negligible).

Interestingly, a compact extra dimension can exactly give
a reasonable excuse for the particular choices of Pz/E0. For
a compact extra dimension with a length �, the momentum
Pz of the photons is limited to be box normalized Pz =
2π h̄n/�, n = 0,±1,±2, . . . , in this way we can relate the

length of the extra dimension to the momentum Pz as

vz

c
= cPz

E0
= 2π h̄nc

E0�
= nλ0

�
, (60)

where λ0 is the wavelength of the photons. Note that for
a given length � of the extra dimension, there are infinite
choices of n (i.e. choices of Pz), but an upper limit for the
velocity vz/c ≤ 1 can result in truncation of the larger values
of n.

Now let us go through all the possibilities. Primarily for
n = 0, the ground state Pz = 0 (Kerr case) is within the
range of the observation. Subsequently if the choice n = 1 is
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Fig. 5 The angular diameter θd , deviation of the left edge of the
shadow from the reference circle δs , the circularity deviation �C and
the axial ratio Dx of the 5D rotating black string shadow are plot-

ted as functions of a/M and Pz/E0, compared with the ring diameter
θd = 51.8±2.3 μas (black solid curves in the first panel) from the EHT
observations of SgrA*

also permitted by the observation, then the shadow boundary
for the corresponding Pz/E0 should be smaller than the outer
boundary of the bright annulus

Pz
E0

= λ0

�
� 0.64, ⇒ � � λ0

0.64
� 2.03125 mm, (61)

here we have applied the EHT observing wavelength λ0 =
1.3 mm. If the series requires to be cut off at n = 2, i.e.

vz

c
= cPz

E0
= 2λ0

�
> 1, ⇒ � < 2λ0 � 2.6 mm, (62)

then the only allowed values of Pz are Pz = 0 and Pz =
2π h̄/�, in agreement with the observations. Finally if only

choices n = 0, 1, 2 are permitted, similar calculations will
lead to invalid scope 4.0625 mm � � � 3.9 mm.

For the general case, if the permitted choices are n =
0, 1, 2, . . . , k, then we have

kλ0/0.64 � � < (k + 1)λ0, (63)

which is only valid for k ≤ 1. Therefore the only possible
cases are n = 0 and n = 0, 1. The former case implies the
photons can not move along the extra dimension, and requires
the length of the compact extra dimension to be smaller than
the wavelength of the photons. While the latter case in turn
constrains the length of the extra dimension as

2.03125 mm � � � 2.6 mm, (64)
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Fig. 6 The energy emission rates for 5D rotating black string with various values of Pz/E0 are shown as a/M = 0.2, a/M = 0.4, a/M = 0.8
and a/M = 0.99 respectively. In all the figures we have set ϑo = π

2 , and the black dashed curve represents the Kerr case

and the parallel analysis from the EHT observations of SgrA*
gives a tighter constraint

2.28070 mm � � � 2.6 mm. (65)

The above analysis indicates that we could give a possible
constraint on the length of the extra dimension from the EHT
observations, which is surprising for the first consideration
since it supports the hypothesis that the extra dimension is
compact avoiding the GL instability. Nevertheless, the pos-
sibility that there is no extra dimension or the photons can
not move in the extra spatial direction is still hard to rule out.
Besides, it is noticed that if the length of the compact extra
dimension is smaller than the wavelength of the photons, then
the photons can not move along the extra dimension even if
the extra dimension exists. This conclusion can be inferred
from the Eq. (60). Therefore such constraint is based on the
EHT observing wavelength and only valid when the length of
the compact extra dimension is larger than the EHT observ-
ing wavelength.

It is worth noting that the critical length of the 5D static
black string to avoid the GL instability is �GL = 2πr+/0.88
[31], which is much larger than the constraints we obtained.

6 Energy emission rate

The black hole shadow observed at infinity corresponds
to a high energy absorption cross-section, which oscillates
around a constant limiting value σlim for a spherically sym-
metric black hole. This limiting constant σlim is the same as
the geometrical cross-section of photon sphere [62] and for
rotating black holes it can also be approximated as the area
of the black hole shadow [63]

σlim ≈ πR2
s . (66)

Then the energy emission rate can be calculated as

d2E(ω)

dωdt
= 2π2σlim

eω/T − 1
ω3 = 2π3R2

s

eω/T − 1
ω3, (67)

where ω is photon frequency and the Hawking temperature
at the event horizon

T ≡ ∂S
∂M = ∂(SKerr�)

∂(M�)

= ∂SKerr

∂M
=

√−a2 + M2

2π
(√−a2 + M2 + M

)2 + 2πa2
(68)

is the same as the Kerr case.
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In Fig. 6, the energy emission rate E(ω) is plotted as a
function of the photon frequency ω. It shows that the peak
decreases and shifts to lower frequency with the increase
of a/M . While the existence of the motion along the extra
dimension makes the amplitude larger without changing the
position of the peak, indicating that the energy emission will
be more easily observed in the future.

7 Conclusions

In this paper, we study the geodesic equations, photon regions
and shadow of the 5D rotating black string in GR, with a con-
served momentum Pz of the photons along the extra dimen-
sion. We find that the conserved momentum Pz appears as
an effective mass in the geodesic equations of the photons,
and enlarges the size of the shadow, while it almost has no
impact on the distortion of shadow. Then we calculate var-
ious observables and compare them with the EHT observa-
tions. The results suggest that the observation requirements
�C � 0.1 and Dx � 4/3 from EHT can not rule out the
black string in the current model.

More significantly, a constraint cPz/E0 � 0.35 can be
given from the lower bound θd = 39μas of the EHT obser-
vation for M87* under the assumption that the dimensionless
quantity cPz/E0 is fixed for all the photons. However, for an
infinite extra dimension, there seems no proper interpreta-
tion to keep all the photons in same Pz/E0 and the scenario
permitting all values of Pz/E0 within 0 ∼ 1 is inconsistent
with the observations. Intriguingly, a compact extra dimen-
sion can exactly give a reasonable excuse by the box nor-
malization, in which the momentum Pz of the photons is
confined to be Pz = 2π h̄n/� . In this way we can relate
the length of the extra dimension to the dimensionless quan-
tity as cPz/E0 = nλ0/� and an upper limit for the velocity
vz/c ≤ 1 can result in truncation of the larger values of n.
Through the careful analysis, we elicit that the only possible
cases are n = 0 and n = 0, 1, the latter case constrains the
length of the extra dimension as 2.03125 mm � � � 2.6 mm
and 2.28070 mm � � � 2.6 mm respectively from the obser-
vations of M87* and SgrA*.

In the end, we calculate the energy emission rate and
find that existence of the extra dimension amplify the energy
emission rate without changing the position of the peak. In
the future work we shall study the observational appearance
of the rotating 5D black string using ray-tracing method to
seek a more realistic answer for the extra dimension.
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