
Prog. Theor. Exp. Phys. 2022 013B13(30 pages)
DOI: 10.1093/ptep/ptab163

Evaporation of black holes in flat space entangled
with an auxiliary universe
Akihiro Miyata1,� and Tomonori Ugajin2,3

1Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
2Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
3The Hakubi Center for Advanced Research, Kyoto University, Yoshida Ushinomiyacho, Sakyo-ku, Kyoto
606-8501, Japan
�E-mail: miyata@hep1.c.u-tokyo.ac.jp

Received October 12, 2021; Accepted December 10, 2021; Published December 14, 2021

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We study a thermofield double type entangled state on two disjoint universes A and B,
where one of the universes is asymptotically flat containing a black hole. As we increase the
entanglement temperature, this black hole receives back-reaction from the stress–energy
tensor of the state. This results in lengthening of the wormhole region in the black hole
interior, and decreasing of its horizon area, both of which are key features of an evaporating
black hole. We then compute the entanglement entropy in universe A through the island
formula, and argue that it naturally follows the Page curve of an evaporating black hole in
flat space. We also study the effects of local operations in the gravitating universe with the
black hole. We find that they accelerate the evaporation of the black hole, thereby disrupting
the entanglement between the two universes. Furthermore, we observe that, depending on
whether the operation can be regarded as a local operation and classical communication or
not, the behavior of the entanglement entropy changes. In particular, when the operation is
made neither in the entanglement wedge of the radiation system nor that of the black hole,
the transition between the island phase and the no-island phase can happen multiple times.
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1. Introduction
Recently it has been claimed that in the presence of semi-classical gravity, the island formula
gives the correct prescription to compute entanglement entropy [1–5]. This formula is inspired
by the holographic entanglement entropy formula [6–8] and its quantum corrections [9,10] in
the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. When this formula is ap-
plied to a semi-classical black hole that is evaporating due to Hawking radiation, the entropy
of the radiation naturally follows the Page curve [11,12]. This provides a resolution of the black
hole information loss problem, and implies that semi-classical gravity is consistent with unitar-
ity of quantum theory. The way in which this new rule provides the correct entropy involves a
region called an “island” in the black hole. This island region naturally arises when we compute
the entanglement entropy using a gravitational path integral through the replica trick [4,5]. In
fact, the rule to evaluate a gravitational path in the semi-classical limit appears to include all
saddles consistent with the given boundary conditions. It has been argued that there is an over-
looked gravitational saddle in Hawking’s calculation of the radiation entropy. This new saddle
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is called a replica wormhole, and this saddle gives the dominant contribution after the Page
time. See Ref. [13] for a review of this topic.

One way to efficiently study black hole evaporation is by introducing another auxiliary uni-
verse, say universe A, which we assume to be non-gravitating, and consider an entangled state
|�〉AB on A and the original gravitating universe B with the black hole.1 One can think of
this new system as being generated out of the system in the single universe with an evaporat-
ing black hole, by gathering all Hawking quanta, and sending them to the auxiliary universe.
Therefore the entanglement of |�〉AB mimics that of the Hartle–Hawking state on the evapo-
rating black hole. This setup has been used to study the entropy of Hawking radiation of 2D
black holes in anti-de Sitter (AdS) space and de Sitter in JT gravity [28,29]. For studies with a
similar approach, see Refs. [4,30]. Other applications of the island formula to de Sitter space
can be found in Refs. [21,30–32]. Indeed, the entanglement entropy of this new system on AB
naturally follows a Page curve as a function of the entanglement temperature.

In this paper, we generalize this analysis to black holes in flat space. The evaporation of such
2D asymptotically flat black holes, as well as the time evolution of their radiation entropy, has
been studied since the early 1990s [33–35]. Previous applications of the island formula to black
holes in asymptotically flat space can be found, e.g., in Refs. [36–43]. Since the total state |�〉AB

induces the stress–energy tensor expectation value 〈�|Tab|�〉 to the gravitating universe, the
black hole in this universe receives a back-reaction from it. As in the cases of dS and AdS black
holes in JT gravity, we show that this back-reaction is crucial to get the Page curve for the black
hole in flat space. Two key effects of the back-reaction on the black hole are the following. First,
it makes the wormhole in the interior region longer; second, it reduces the horizon area. This
implies that, when we compute the entanglement entropy S(ρA) of the non-gravitating universe
using the island formula, it starts to decrease when the entanglement temperature is increased
above some threshold value. This is in contrast to the case of AdS black holes, where the entropy
is saturating to some constant value. The decrease in the entropy is plausible, because a black
hole in flat space evaporates through Hawking radiation and loses its entropy.

We believe that our setup clarifies several ambiguities in the previous discussions on the island
formula applied to asymptotically flat black holes. In the previous discussions, the radiation
subsystem (the heat bath) is often naively taken to be the region R located far away from the
black hole, but it is still gravitating. However, such a choice for the radiation region R is worri-
some for several reasons. First, there is no consistent way to defined a “region” in the presence
of gravity, in a diffeomorphism-invariant manner. In addition, the Hilbert space of quantum
gravity never has a factorized into the Hilbert space on R and its complement, due to the edge
modes on the boundary of the region R. Second, when the heat bath is gravitating, the naive
island formula is no longer valid, as has been shown in the recent papers [19,23,44,45]. This is
because in the setup there is a novel wormhole connecting the gravitating bath and the black
hole appearing in the path integral for the Rényi entropies. This is a concrete realization of the
ER = EPR [46] conjecture, which predicts the existence of such a wormhole connecting the
early radiation and the black hole interior.

These two concerns are avoided in a very clear manner in our setup of two disjoint universes.
Namely, in our setup, since the radiation region is located on the non-gravitating universe A,
which differs from the gravitating universe with the black hole, there is no ambiguity in defin-

1Another way to efficiently study the evaporation process is to holographically realize the system, by
introducing branes on which gravitational degrees of freedom are living [1,4,14–27].
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ing the radiation region in the first place. This in particular means that our definition of the
entanglement entropy is unambiguous. Also, since the two universes in our setup are disjoint,
we can safely turn off gravity in one of the universes; thus we do not need to worry about the
existence of the wormhole connecting the bath and the black hole.

We then addressed the question of whether the entropy computed from the island formula is
operationally meaningful from a quantum information theoretical point of view.To this end we
study perturbations of the black hole by local operations in the gravitating universe. One way to
model such a local operation is applying an operator well localized in the region of the interest,
and this protocol is known as a local quench. The time evolution of the entanglement entropy
in such quench processes has been extensively studied, e.g., in Refs. [47–57]. We find that such
local operations “accelerate” the evaporation, especially when the operators are inserted in the
interior of the black hole. The effects of such shock waves on the radiation entropy has been
studied in Refs. [2,58–62] using the island formula.

We indeed find that our results obtained from the island formula are operationally meaning-
ful. For instance, when the insertion is made either in the entanglement wedge of the radiation
or in the similar wedge of the black hole, then the resulting entanglement entropies always de-
crease. This is consistent with the interpretation that such a local operator insertion is an LOCC
(local operation and classical communication).

This paper is organized as follows. In Sect. 2 we explain our setup and the previous results
for the island formula in this setup in detail. In Sect. 3, we introduce the black hole solution
of interest and study how it is deformed due to the back-reaction of the stress–energy tensor
expectation value of the total state. We then use the island formula to compute the entangle-
ment entropy of the non-gravitating universe A. The result naturally follows a Page curve of an
evaporating black hole. In Sect. 4, we study the Page curve in the presence of local operations
in the gravitating universe. After classifying possible quantum extremal surfaces, we discuss the
effects of the local operations on the entanglement entropy. We conclude this paper in Sect. 5.
In Appendix A we review and discuss the time dependence of the entanglement entropy in a
local quench in a 2D conformal field theory with a large central charge.

2. Setup
2.1 Two disjoint asymptotically flat universes
Let us first explain the setup that we consider in this paper. First of all, we prepare two disjoint
universes, say A and B, which are asymptotically flat (see Fig. 1). We then define two identical
CFTs, one on each universe A and B. For simplicity, in this paper, we only consider 2D space-
times. Furthermore, we turn on semi-classical gravity in universe B. Thus the effective action
of each universe reads

log ZA = log ZCFT, log ZB = −Igrav + log ZCFT. (1)

As the gravitational part Igrav of the above effective action, we choose the CGHS action [33],

Igrav = 1
4π

∫
dx2√−g (�R − �) , (2)

which is a theory of gravity in 2D asymptotically flat space. This action involves two fields,
namely dilaton � and metric gμν . Also, we introduced an auxiliary parameter �, for later
purposes.2

2The reader should not confuse this parameter � with a cosmological constant.
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Fig. 1. We consider a system with two disjoint asymptotically Minkowski spaces, A and B. In this figure,
these universes are embedded in a larger Minkowski space.

The total Hilbert space of this system is naturally bipartite HA⊗HB. Since these two uni-
verses A and B are disjoint, they cannot exchange classical information, but states on A and
B can be entangled quantum mechanically. In this paper, we are interested in the structure of
the entanglement of the states on the bipartite Hilbert space. To study this concretely, on the
bipartite system we will consider the thermofield double (TFD) state:

|�〉 =
∞∑

i=0

√
pi |i〉A |ψi〉B, pi = e−βEi

Z(β )
, (3)

where Z(β) is a normalization factor that makes sure that the condition 〈�|�〉 = 1, |i〉A is an
energy eigenstate of the CFT on the non-gravitating universe A, and |ψ i〉B is the same energy
eigenstate on the gravitating universe B. Although they are identical states, since gravity is act-
ing on universe B and the properties of the state are affected by this, we instead write them
differently. β in Eq. (3) characterizes the amount of entanglement in this state. For this reason,
1/β is sometimes called the entanglement temperature.

2.2 Islands in the setup
In our previous papers [28,29], we studied the entanglement entropy S(ρA) of the TFD state
(3) on the non-gravitating universe A. This quantity is defined by the von Neumann entropy:

S(ρA) = −trρA log ρA, ρA = trB|�〉〈�|. (4)

This von Neumann entropy is computed by the replica trick; i.e., first compute the Rényi en-
tropy trρn

A, which has a path integral representation on the gravitating universe B, then at the
end of the calculation send n → 1. This gravitational path integral is evaluated in the semi-
classical limit GN → 0 by including all saddles consistent with the given boundary conditions.
In particular, by taking into account a wormhole that connects all replicas (replica wormhole),
we obtained the following formula for the entanglement entropy:

S(ρA) = min{Sno-island, Sisland}. (5)
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Sno-island in the above formula coincides with the CFT thermal entropy Sno-island = Sβ(B),

Sth(B) = −
∑

i

pi log pi, (6)

with pi defined in Eq. (3). The other contribution Sisland in the above formula is given by taking
the extremum of the generalized entropy,

Sisland = Ext
C̄

[
�(∂C̄) + Sβ [C̄] − Svac[C̄]

] ≡ Ext
C̄

Sgen[C̄], (7)

over all possible intervals C̄ in the gravitating universe B. �(∂C̄) is the “area term” of the gen-
eralized entropy, which is in the current case given by the sum of the dilaton values at the
boundary of the interval C̄. Also, Sβ [C̄] is the entanglement entropy of thermal states on C̄,
and Svac[C̄] is the entropy of the vacuum state. Since the TFD state is pure on the total system
AB, the generalized entropy satisfies Sgen[C̄] = Sgen[AC]. This implies that the interval C in the
gravitating universe B can be identified with the island in our setup.

We are interested in the behavior of the entanglement entropy S(ρA) as we tune the entan-
glement temperature 1/β, especially when the gravitating universe B contains a black hole. It
has been argued that [28,29], in the low-temperature regime β 
 1, since Sno-island < Sisland this
entanglement entropy (5) coincides with the thermal entropy Sth(B), which is an analogue of
Hawking’s result for the radiation entropy of evaporating black holes. Also, this implies that
the entropy is linearly growing, as we increase the entanglement temperature 1/β. At sufficiently
high temperature Sno-island is larger than Sisland. According to the formula (5), in this regime
the entanglement entropy is given by Sisland, instead of the naive Hawking’s entropy Sno-island.
Furthermore, in this limit, Sisland almost coincides with the entropy of the black hole in the
gravitating universe B. This is how the Page curve of an evaporating black hole is reproduced
in the current setup.

2.3 Embedding of two universes
One way to study the setup is to embed the system in a larger Minkowski space M, as in Fig. 1.
Each universe is a wedge in the larger space. The non-gravitating universe is the left wedge of
M and similarly the gravitating universe is the right wedge. To be more specific, let us define
the light-cone coordinates x± = x ± t on each universe. Also, let (w+, w−) be the coordinates
of the larger Minkowski space M. The embedding map is defined by

w± = e
2π
β

x±
. (8)

The non-gravitating universe A is mapped to the left wedge of M, w± < 0, and the gravitating
universe B is mapped to the right wedge of M, w± > 0. Also, the thermofield double state on
AB is mapped to the global Minkowski vacuum of M.

3. An asymptotically flat black hole and its radiation entropy
The purpose of this paper is to study a similar entropy in asymptotically flat spacetime using
the island formula (5). To do so, we need to specify the dilaton profile � that appears in the
generalized entropy (7). Since the thermofield double state induces the thermal stress–energy
tensor expectation value 〈�|T±±|�〉 on the gravitating universe B, this dilaton receives a back-
reaction from it.

In the CGHS model with the action (2), the metric is always fixed to the flat one, as the
variation of the action with respect to � sets R = 0. We will find it convenient to use the compact
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Fig. 2. Left: A Penrose diagram of the black hole without the back-reaction. Right: A Penrose diagram
of the black hole with the back-reaction of the source (14). It develops a long wormhole region in its
interior.

coordinates (x+, x−), in which the flat metric is given by

ds2 = − dx+dx−

cos2 x+ cos2 x− , −π

2
≤ x± ≤ π

2
. (9)

These coordinates are related to the standard coordinates (X+, X−) with the metric ds2 =
−dX+dX− by X± = tan x±. In the coordinate system, x+ = ±π

2 and x− = ±π
2 correspond to

asymptotic infinities of the spacetime.
The equations of motion for the dilaton are given by

∇a∇b� − gab∇2� = �

2
gab − 2π 〈�|Tab|�〉. (10)

In general, in the light-cone gauge where the metric takes the form

ds2 = −e2ωdx+dx−, (11)

these equations of motion are reduced to

−e2ω∂±
[
e−2ω∂±

]
� = 2π 〈�| T±±|�〉, ∂+∂−� = 2π 〈�|T+−|�〉 + �

4
e2ω. (12)

3.1 The sourceless solution
Let us first discuss the dilaton profile when the stress–energy tensor is vanishing 〈�|Tab|�〉 =
0. In our setup, this happens when the entanglement temperature is low, β → ∞. It reads

�0 = φ0 + �

4
tan x+ tan x−, (13)

where � is the parameter in the CGHS action (2). As we will see, this dilaton profile corresponds
to an asymptotically flat eternal black hole, whose Penrose diagram is identical to the standard
4D Schwarzschild eternal black hole (refer to the left panel of Fig. 2).

3.2 The solution with the source
As we increase the entanglement temperature, it is no longer possible to neglect the back-
reaction of the stress–energy tensor to the dilaton profile. The stress–energy tensor expectation
value of the thermofield double state (3) is

〈�|T±±|�〉 = c
24π

(
2π

β

)2

. (14)

By solving Eqs. (12) for �, we get

�β = φ0 + �

4
tan x+ tan x− − Xβ

(
x+ tan x+ + x− tan x−) , Xβ ≡ c

24

(
2π

β

)2

. (15)

This solution corresponds to an eternal black hole with a long interior region (the right panel
of Fig. 2).

6/30



PTEP 2022, 013B13 A. Miyata and T. Ugajin

3.3 Penrose diagrams
Having presented the dilaton profile of interest (15), let us now discuss the causal structure of
the spacetime described by the profile. Since it turns out that it corresponds to an eternal black
hole, we are interested in the location of the singularity and the event horizon. A useful fact is
that the dilaton is vanishing � = 0 at the black hole singularity. Also, the bifurcation surface of
the black hole is a critical point ∂±� = 0. The entropy of the black hole is given by the dilaton
value at the critical point.

3.3.1 The sourceless solution. As a warm-up, let us describe the causal structure of the dilaton
profile (13) without the source. In this case, the location of the singularity satisfies

�0 = 0 ↔ tan x+ tan x− = −4φ0

�
. (16)

In the standard coordinates (X+, X−), this singularity is just a hyperbola X+X− = −4φ0/�,
which is expected. This singularity intersects with the right future null infinity x+ = π

2 at x− =
0. Similarly, it intersects with the left future infinity x− = −π

2 at x+ = 0. This fixes the location
of the event horizon to x+ = 0 and x− = 0. Indeed, this black hole has only one bifurcation
surface, i.e., at x± = 0. The value of the dilaton at the bifurcation surface is �(0) = φ0, which
is equal to the entropy of the black hole, and is independent of �.

3.3.2 The solution with the source. The structure of the spacetime is eventually deformed
by turning on the stress–energy tensor (14), due to the back-reaction, which is described by the
dilaton profile �β (15). We can read off the location of the singularity in the deformed spacetime
from �β . Near the right future null infinity x+ = π

2 , the dilaton profile is approximated as

�β = �

4
tan x+

(
tan x− − 2πXβ

�

)
, x+ → π

2
. (17)

Therefore, the singularity intersects with the future infinity at x− = x−
c with

tan x−
c = 2πXβ

�
. (18)

As we increase the entanglement temperature β → 0, Xβ on the right-hand side gets large and
the intersection approaches spatial infinity, x−

c → π
2 with x+ = π

2 . Similarly, the singularity in-
tersects with the left future null infinity x− = −π

2 at x+ = x+
c with

tan x+
c = −2πXβ

�
, (19)

again in the high-temperature limit; it satisfies x+
c → −π

2 , so this intersection approaches the
opposite spatial infinity. Since the dilaton profile (15) is invariant under time reflection x+↔x−,
the singularity intersects with the past null infinity in a similar fashion. Namely, it intersects with
the right past null infinity x− = π

2 at x+ = −x+
c with Eq. (19) and the left past null infinity x+ =

−π
2 at x− = −x−

c with Eq. (18). In summary, as one increases the entanglement temperature,
the singularity of the black hole comes close to the reflection symmetric slice x+ = x−.

This also fixes the location of the event horizon of the black hole. The right future horizon
of the black hole is at x− = x−

c with Eq. (18). Similarly, the left future horizon is at x+ = −x+
c .

Since these two future horizons do not intersect on the reflection symmetric slice x+ = x−, this
black hole contains a region in its interior that is causally inaccessible from asymptotic infinities
(the right panel of Fig. 2). Such a region is called a causal shadow region. The fact that the
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black hole singularity approaches the reflection symmetric slice as we increase the entanglement
temperature means that the causal shadow region gets larger and larger in this limit.

One can also confirm this by finding locations of the bifurcation surfaces (x+
H , x−

H ) that sat-
isfy ∂±�β = 0. Because of the symmetry x+↔x− of the dilaton profile (15), these bifurcation
surfaces satisfy x+

H = x−
H ≡ y, and

�

4
tan y − Xβ (cos y sin y + y) = 0. (20)

We are interested in the β → 0 limit, where the two solutions y = y± of Eq. (20) satisfy

tan y± = 4Xβy±
�

. (21)

Both of these bifurcation surfaces get close to the spatial infinity, y± → ±π
2 . The dilaton value

at these bifurcation surfaces in the same limit is given by

�β (x±
H ) = φ0 − (πXβ )2

�
. (22)

Notice that the dilaton value �β (x±
H ) at the horizon decreases as we increase 1/β. This means

that, as we increase the entanglement between the two universes β → 0, the back-reaction of
the CFT stress–energy tensor makes the horizon area of the black hole smaller. This is closely
related to the fact that, quantum mechanically, a black hole in flat space evaporates by the
emission of Hawking quanta. Indeed, our setup can be regarded as an idealization of the black
hole plus a radiation system. The radiation degrees of freedom are modeled by the CFT degrees
of freedom in our setup, and the entanglement of the CFT thermofield double state between
A and B is the avatar of the entanglement in the Hartle–Hawking state. Therefore the increase
of the entanglement of the TFD state (which we do by hand) captures the late time physics of
the actual black hole evaporation process, and as a result the black hole in our setup loses its
entropy.

We cannot have a semi-classical description of the black hole at the very final stage of evap-
oration. This is because, as we increase the entanglement temperature, both future and past
singularities come close to the reflection symmetric slice, and eventually touch the slice. This
critical temperature can also be read off from the dilaton values at the bifurcation surfaces (22),
where it becomes zero.

3.4 Quantum extremal surfaces
Now, let us compute the entanglement entropy S(ρA) of universe A through the island formula
(5) with Eq. (7). For this purpose we need to extremize the generalized entropy for all possible
intervals C̄ whose end points are identified with quantum extremal surfaces. In the calculation,
it is reasonable to assume that C̄ is on the reflection symmetric slice x+ = x−, and is given by
the union of two intervals C̄ = C̄1 ∪ C̄2, C̄1 : −π

2 < x+ ≤ −πx
2 , C̄2 : πx

2 ≤ x+ < π
2 with 0 < x <

1. The generalized entropy reduces to a function of a single variable x,

Sgen(x) = 2�β (x) + 2c
3

log
[

β

πεUV
sinh

π2

2β
(1 − x)

]
− 2c

3
log
[

1
εUV

sin
π

2
(1 − x)

]
, (23)

where εUV is the UV cutoff. We show a plot of the above function in Fig. 3.
In the β → 0 limit, the quantum extremal surfaces (QESs) almost coincide with the classical

bifurcation surfaces of the black hole. This is because the QESs approach the spatial infinity
and therefore the CFT entropy part in Sgen(x) is vanishing in this limit. As a result, the island
is identified with the causal shadow region in the black hole interior (Fig. 4).
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Fig. 3. Plot of the generalized entropy Sgen(x) as a function of the size of the island in the interior. Here
we set the parameters to be φ0 = 1700, � = 500, c = 50 and β = 1.

Fig. 4. The location of the island C in the black hole with the back-reaction, denoted by the blue line.

Fig. 5. The resulting Page curve as a function of the entanglement temperature T = 1/β. Here we set the
parameters to be φ0 = 1700, � = 500 and c = 50.

By combining these results, we get the following approximate expression for the entanglement
entropy S(ρA):

S(ρA) =

⎧⎪⎨
⎪⎩

Sno-island = π2c
3β

β > βc

Sisland = 2
[
φ0 − (πXβ )2

�

]
β < βc,

(24)

where βc is the critical inverse temperature satisfying Sno-island = Sisland. We plot the Page curve
by using the above expression in Fig. 5.
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4. Black hole interior in the presence of a shock wave
We have seen that, by making the entanglement between the two universes stronger, the size
of the black hole interior in the gravitating universe B gets larger. So in some sense this inte-
rior region is created by the entanglement between the degrees of freedom in the gravitating
universe B and those in the other (non-gravitating) universe. To sharpen the intuition, in this
section, we would like to ask how the local operations in the gravitating universe B change the
entanglement.

We imagine that an experimental physicist in a laboratory has this system AB of two disjoint
universes (or the larger Minkowski space containing AB as in Fig. 1), and can perform any local
operation on the gravitating universe B even in the black hole interior. Such local operations can
be modeled by a shock wave in the null directions along which the CFT stress–energy tensor has
a delta functional peak. Such a peak of the stress–energy tensor can back-react to the dilaton
profile through the equations of motion (12).

We start from the state |�〉 on AB, prepared by inserting a local operator OB in the gravitating
universe B to the thermofield double state:

|�〉 = (1A ⊗ OB)|TFD〉 = 1√
Z(β )

∞∑
i=0

e− β

2 Ei |i〉A ⊗ OB |ψi〉B. (25)

We are interested in its entanglement entropy S(ρA) of the above state, which is computed by
the island formula (5). Since Sno-island does not change by the insertion of OB, we focus on Sisland

given by the generalized entropy,

Sgen = ExtC̄

[
�(∂C̄) + Sβ,E [C̄] − Svac[C̄]

]
, (26)

where Sβ,E [C̄] denotes the CFT entanglement entropy in the presence of the shock wave created
by OB.

Let (x+
0 , x−

0 ) be the location of the insertion of the operator O. Then the reduced density
matrix of universe B is

ρ = trA|�〉〈�| = 1
ZO

e−εHO
(
x+

0 , x−
0

)
ρβ O† (x+

0 , x−
0

)
e−εH . (27)

Here we introduced a UV regulator ε, to make the density matrix normalizable, and the nor-
malization factor

ZO = 〈O(2iε)O(0)〉β, (28)

which ensures tr ρ = 1. We also denote 〈···〉β ≡ tr[ρβ ···].
This local operator O affects the stress–energy tensor expectation value and therefore the

dilaton profile. The stress–energy tensor expectation value can be computed by the three-point
functions tr[ρβT±±OO], and it reads

〈�|T++(x+)|�〉 = c
24π

(
2π

β

)2

+ EShock δ
(
x+ − x+

0

)
,

〈�|T−−(x−)|�〉 = c
24π

(
2π

β

)2

+ EShock δ
(
x− − x−

0

)
(29)

in the ε → 0 limit. The coefficient of the delta functions is related to the conformal dimension
� of this local operator:

EShock = �

ε
. (30)
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Therefore, the insertion of a local operator creates a pair of shock waves in the black hole
geometry; one is left-moving and the other is right-moving. The existence of these shocks is
manifested by the delta functional peaks of the CFT stress–energy tensor expectation value.
For simplicity, we write E ≡ EShock below.

4.1 Dilaton part
Let us discuss in detail how the shock wave changes the dilaton �. It satisfies the following
equations of motion:

−e2ω∂±
(
e−2ω∂±�

) = 2Xβ + E δ
(
x± − x±

0

)
,

∂+∂−� = �

4
e2ω. (31)

These equations are obtained by substituting the stress tensor expectation value (29) into
Eq. (12) for arbitrary 〈T±±〉. By solving these equations, we obtain the dilaton profile in the
presence of the shock wave:

� = φ0 + �

4
tan x+ tan x− − Xβ

(
x+ tan x+ + x− tan x−)− E cos2 x+

0

(
tan x+ − tan x+

0

)
× θ

(
x+ − x+

0

)− E cos2 x−
0

(
tan x− − tan x−

0

)
θ
(
x− − x−

0

)
, (32)

where θ (x) is the step function:

θ (x) =
{

1 x > 0
0 x < 0.

(33)

4.2 Classical extremal surfaces
Now we would like to specify the classical extremal surfaces in the spacetime with the dilaton
profile (32). We will see that the actual locations of these surfaces strongly depend on where we
insert the local operator. In the right wedge of the local operator x± > x±

0 , the dilaton coincides
with �β, E defined by

�β,E = φ0 + �

4
tan x+ tan x− − Xβ

(
x+ tan x+ + x− tan x−)

− E cos2 x+
0

(
tan x+ − tan x+

0

)− E cos2 x−
0

(
tan x− − tan x−

0

)
. (34)

In the left wedge x± < x±
0 , it agrees with with the original profile � = �β, E = 0 ≡ �β (15); see

Fig. 6. We also argued that in the absence of the shock wave, i.e., E = 0, the black hole has
a causal shadow region in its interior, so it has two bifurcation surfaces. In the presence of
the shock, the dilaton profile (32) also has two critical points, one near the left spatial infin-
ity (x+, x−) = (−π

2 , −π
2 ) and the other near the right spatial infinity (x+, x−) = (π

2 , π
2 ). In this

section, we only consider the operator insertions, which do not change the location of the left
horizon of the undeformed dilaton �β . This is equivalent to restricting the range of the in-
sertion to 0 < x+

0 + x−
0 . Under this restriction, we can focus on the change of the location of

the right critical point below. A similar discussion for operator insertions in the x+
0 + x−

0 < 0
region can be had.

To identify the right extremal surface, it is convenient to introduce two characteristic points
of the dilaton profile �. First, let x± = x±

H (0) be the critical point of the original dilaton profile
�β(x±), i.e.,

∂±�β |x±=x±
H (0) = 0 → tan x±

H (0) = 2π

�
Xβ. (35)
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Fig. 6. The dilaton profile (32) in the presence of the shock wave. In the right wedge of the local operator,
x± > x±

0 , we have � = �β, E with Eq. (34). On the left wedge, x± < x±
0 , the dilaton profile coincides with

�β, 0, which is identical to Eq. (15).

Fig. 7. Three possible locations of the local operator O on the reflection symmetric slice �: x+ = x−.
Left: When x0 < xH(0) < xH(E), the extremal surface is at x± = xH(E). Middle: When xH(0) < x0 <

xH(E), both x± = xH(0) and x± = xH(E) are extremal. Right: When xH(0) < xH(E) < x0, the extremal
surface is at x± = xH(0).

The second characteristic point is x± = x±
H (E ), which is the critical point of the deformed dila-

ton profile �β, E (34). It satisfies

tan x±
H (E ) = 4

�

(π

2
Xβ + E cos2 x0

)
. (36)

These are candidates of the extremal surfaces of the total dilaton (32), but whether these are the
critical points of the actual dilaton (32) depends on the location of the local operator x± = x±

0 .
In order to simplify the discussion below, instead of exhausting all possible cases, let us first

consider the symmetric insertions x+
0 = x−

0 ≡ x0. Now these two candidate extremal surfaces
are also symmetric, i.e., they are on the reflection symmetric slice: x+

H (0) = x−
H (0) ≡ xH (0) and

x+
H (E ) = x−

H (E ) ≡ xH (E ). In general, the relation xH(0) < xH(E) holds. In this setup, there are
three distinct cases for the operator insertions (see Fig. 6). Namely, the location of the operator
is (1) behind the original horizon x0 < xH(0); (2) in the middle of two horizons, xH(0) < x0 <

xH(E); and (3) in the exterior of the deformed horizon, xH(E) < x0.

Case 1: In the first case, the local operator O is inserted to the left of the original horizon:
x0 < xH(0) (left panel of Fig. 7). In this case, only the extremal surface is the deformed
horizon x± = xH(E). This is because x± = xH(0) is not a critical point of the dilaton profile
(32) since around this point this profile coincides with the deformed one �β, E (34) due to
the condition x0 < xH(0). The dilaton value at the extremal surface is given by �(xH(E))
= �β, E(xH(E)).

Case 2: In the second case, the local operator is inserted in between two would-be extremal
surfaces xH(0) < x0 < xH(E) (middle panel of Fig. 7). In this case, both horizons x± =
x±

H (0) and x± = x±
H (E ) are actually extremal surfaces of the dilaton profile (32).

Case 3: In the third case, the local operator is inserted to the right of the deformed horizon
xH(E) < x0 (right panel of Fig. 7). In this case, only the extremal surface is the origi-
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nal horizon x± = x±
H (0). This is again because the deformed horizon x± = x±

H (E ) is not
the critical point of the dilaton. The dilaton value at the extremal surface is given by
�β (x±

H (0)).

4.3 CFT entropy part
The second ingredient of the generalized entropy (26) is the CFT entropy Sβ,E [C̄] of the density
matrix (27) on C̄ in the gravitating universe B. Because we focus on the high-temperature limit
β → 0, this region is the disjoint union of two pieces C̄ = C̄1 ∪ C̄2, as in the previous section.
We put the coordinates of C̄ as follows:{

x±
2 = −π

2 ,

x±
3 = x3 ± t3,

for C̄1,{
x±

5 = x5 ± t5,

x±
6 = π

2 ,
for C̄2.

In the β → 0 limit, x±
3 → x±

2 and x±
5 → x±

6 holds. Therefore, in the absence of the shock wave
E = 0, the CFT entanglement entropy for C̄ = C̄1 ∪ C̄2 at finite temperature β is given by

Sβ [C̄] = c
6

log
[

β

πεUV
sinh

(
π

β

(
x+

3 − x+
2

))]+ c
6

log
[

β

πεUV
sinh

(
π

β

(
x−

3 − x−
2

))]

+ c
6

log
[

β

πεUV
sinh

(
π

β

(
x+

6 − x+
5

))]+ c
6

log
[

β

πεUV
sinh

(
π

β

(
x−

6 − x−
5

))]
.

(37)

We also need the CFT entropy for C̄ = C̄1 ∪ C̄2 at zero temperature, and it is given by

Svac[C̄] = c
6

log
[

1
εUV

sin
(
x+

3 − x+
2

)]+ c
6

log
[

1
εUV

sin
(
x−

3 − x−
2

)]

+ c
6

log
[

1
εUV

sin
(
x+

6 − x+
5

)]+ c
6

log
[

1
εUV

sin
(
x−

6 − x−
5

)]
. (38)

4.3.1 CFT entropy for a single interval. Next, we discuss the entanglement entropy Sβ,E [C̄] in
the presence of a shock wave. This kind of entanglement entropy was studied in Ref. [51], which
we review in Appendix A. As a warm-up, let us compute the entanglement entropy Sβ,E [C̄] of
the single interval,

C̄ : x±
5 < x± < x±

6 = π

2
, (39)

which ends at the asymptotic infinity x±
6 = π

2 . In presenting the expression of the CFT entropy,
it is convenient to first fix the subsystem C̄, i.e., fixing x±

5 .
This entanglement entropy can be computed by first writing the Rényi entropy trρn

C̄
by a

four-point function involving twist operators,

trρn
C̄

= tr
[
ρβ O⊗n(x1)σn(x5)σ−n(x6)O⊗n(x4)

]
, (40)

and taking the n → 1 limit of the correlator. Here x1 and x4 are related to x0 through Eq. (A4).
When the central charge of the theory is large c 
 1 and its spectrum is sparse, the right-hand
side can be approximated by the vacuum conformal block with a choice of branch [51]. Again,
details can be found in the appendix.

The possible form of the CFT entropy is constrained by the causal relation between the
location of the operator x± = x±

0 and the region C̄ [47–57,63]. Indeed, the insertion creates
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Fig. 8. Three possible causal relations between the operator at x± = x±
0 and the interval C̄. Left and

middle: The local operator is spatially separated from C̄. In this case, the non-trivial part of the CFT
entropy �S in the generalized entropy is vanishing due to causality. Right: When the local operator and
C̄ are causally connected, the right-mover emitted by the quench can enter the causal diamond of D[C̄].
In this case only, �S is non-vanishing.

shock waves, both left-moving and right-moving, which are roughly speaking interpreted as
an entangled pair of particles. Then the CFT entropy can be non-trivial only when one of
these shock waves enters the causal diamond of the region D[C̄], whereas its partner does not.
Therefore, for the fixed end point of the subsystem, x± = x±

5 , we have four possible behav-
iors of the entropy, according to the location of the local operator relative to the end point as
in Fig. 8.

(1) When the end point x5 is in the right wedge of the location of the operator x0, i.e.,
x±

5 > x±
0 , neither left-mover nor right-mover enter the causal diamond D[C̄] of the sub-

system C̄. Therefore, the shock wave cannot affect the state on the subsystem C̄, the
entanglement entropy remains unchanged due to causality.

(2) Similarly, when the end point is in the left wedge of the insertion x±
0 > x±

5 , both shock
waves enter the causal diamond, and the entanglement entropy again remains un-
changed.

(3) When the local operator is in the future or past of the end point, the entanglement en-
tropy can be non-trivial. When it is in the future light cone of the end point x5, i.e., x−

5 >

x−
0 and x+

0 > x+
5 , then only the left-moving shock contributes to the entropy. The differ-

ence between this entanglement entropy and the thermal one �S ≡ Sβ,E [C̄] − Sβ [C̄] is
given by [51]

�SF = c
6

log

[
β

πε

sin πα

α

sinh π
β

(
x+

0 − x+
5

)
sinh π

β

(
x+

6 − x+
0

)
sinh π

β

(
x+

6 − x+
5

)
]

. (41)

When the operator is in the past light cone of the end point, x−
0 > x−

5 and x+
5 > x+

0 , then only
the right-mover contributes, and the entropy difference is

�SP = c
6

log

[
β

πε

sin πα

α

sinh π
β

(
x−

0 − x−
5

)
sinh π

β

(
x−

6 − x−
0

)
sinh π

β

(
x−

6 − x−
5

)
]

. (42)

4.3.2 CFT entropy for two disjoint intervals. In the actual calculations of the generalized
entropy, we need an expression of the CFT entanglement entropy for two disjoint intervals C̄ =
C̄1 ∪ C̄2. Again, the behavior of the entanglement entropy is strongly constrained by causality.
In the previous section, we saw that these two intervals become smaller and smaller C̄1, C̄2 → 0
in the high-temperature limit β → 0. This means that the entropy of these two disjoint intervals
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gets factorized,

S[C̄] = S[C̄1] + S[C̄2], (43)

so the result for the single interval is enough to fix the generalized entropy in this limit. For
simplicity, we assume that the shock wave does not intersect the left interval C̄1, i.e., x±

0 , so only
the entropy of the right interval S[C̄2] can change non-trivially.

4.4 Quantum extremal surfaces
We are interested in how the dominant quantum extremal surface changes as we tune the lo-
cation of the operator x0. We are especially interested in the high-temperature limit β → 0,
where the classical horizon is getting close to infinity x± = π

2 . It is convenient to decompose
the CFT entropy Sβ,E [C̄] − Svac[C̄] in Eq. (26) into a trivial part Sβ [C̄] − Svac[C̄], which does
not involve a shock wave, and a non-trivial part �S = Sβ,E [C̄] − Sβ [C̄]. Then the trivial part
does not play any role in the generalized entropy in the high-temperature limit. As we saw in
the previous section, the classical extremal surfaces in this limit are given by the bifurcation
surfaces of the black hole. Therefore, we can focus on the non-trivial part of the CFT entropy
to find the quantum extremal surfaces. Without going into detail, let us describe two limiting
cases.

First, when the insertion is made in the deep interior of the black hole x0 ∼ 0, the true quan-
tum extremal surface almost coincides with the classical horizon of the deformed black hole
(the one with back-reaction of the shock wave) at x± = x±

H (E ), defined in Eq. (36). This is be-
cause the local operator is spatially separated from the horizon, so the non-trivial part of the
CFT entropy �S is vanishing due to causality.

On the other hand, if the operator is inserted at the exterior of the horizon, i.e., x0 > xH(E),
then, since again the non-trivial part of the CFT entropy is vanishing, the QES coincides with
the classical extremal surface, which is identified with the horizon of the original black hole
(i.e., the black hole without the shock wave) at x± = x±

H (0) (35). Below, we discuss the details
of the dynamics of QESs.

We remark that the generalized entropies also have a contribution from the left classical ex-
tremal surface, which is independent of the location of the operator as long as the operator is
inserted at the region x+

0 + x−
0 > 0. The contribution from the left extremal surface is given by

Eq. (22) in the high-temperature limit; let us denote it by SL. Then, the generalized entropies
for each case are given as follows.

Case 1: When the local operator is inserted inside of the original horizon (the left panel of
Fig. 8), x0 < xH(0), the quantum extremal surface coincides with the bifurcation surface
of the deformed black hole at x± = xH(E). Also, since �S = 0 in this case, we get the
following expression for the generalized entropy:

Sgen = �β,E (xH (E )) + SL

= φ0 − 4
�

[(
πXβ

2

)2

+ πXβE cos2 x0

]

− 4
�

E2 cos4 x0 + 2E cos2 x0 tan x0 + SL. (44)
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Case 2: When we insert the operator in between two bifurcation surfaces (the middle panel
of Fig. 8), xH(0) < x0 < xH(E), the generalized entropy is given by

Sgen = min
{
�β (xH (0)), �β,E (xH (E ))

}+ SL

= φ0 − (πXβ )2

�

+ min
{

0, −2E cos2 x0

(
2πXβ

�
+ 2

�
E cos2 x0 − tan x0

)}
+ SL. (45)

Again in this case the non-trivial part of the CFT entropy �S vanishes.
The transition point x± = xT, at which the dominance in the minimization of the above
expression changes, satisfies the equation

tan xT = 2πXβ

�
+ 2

�
E cos2 xT . (46)

Case 3: When the operator is inserted at the outside of the deformed horizon (the right panel
of Fig. 8), xH(E) < x0, we have

Sgen = �β (xH (0)) + SL

= φ0 − (πXβ )2

�
+ SL. (47)

Net result: By combining the above results, we get the generalized entropy in the high-
temperature limit as a function of x0:

Sgen (x0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ0 − (πXβ )2

�
− 2E cos2 x0

(
2πXβ

�
+ 2

�
E cos2 x0 − tan x0

)
+ SL for x0 < xT

φ0 − (πXβ )2

�
+ SL for xT < x0.

(48)

We plot the above generalized entropy for several values of E in Fig. 9.3

From the plot we see that, when the operator is in the exterior of the horizon, the generalized
entropy does not change. On the other hand, when it is inserted in the black hole interior it
always make the entropy decrease. Also, we observe that, as the location of the local operator
goes deeper into the interior of the black hole, the entropy decreases significantly. This is be-
cause, if the shock wave is created inside of the horizon, it makes the interior wormhole region
longer (which is seen from the relation xH(0) < xH(E)) and reduces the entropy of the black
hole �β(xH(0)) > �β, E(xH(E)). Therefore, in some sense what the shock wave does is to make
the black hole further “evaporate”. This black hole in universe B has been evaporating due to
the entanglement with the non-gravitating universe A, and the insertion of the local operator
accelerates the evaporation, which leads to the faster decrease of the entropy.

The actual entanglement entropy S(ρA) is given by the minimum between Sno-island and
Sgen(x0). We plot this curve in Fig. 10. Since we are interested in how this S(ρA) changes as
we increase the entanglement temperature 1/β, we plot it as a function of 1/β while the loca-
tion of the operator x± = x±

0 is kept fixed. As we increase the entanglement temperature, the
bifurcation surface of the black hole approaches the asymptotic infinity, and the operator at

3The plots shown in this paper are obtained by full numerical calculations by faithfully extremizing the
generalized entropies, in contrast to the analytical expressions appearing in the body of the paper.
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Fig. 9. Plots of Sgen (48) as a function of x0 (0 ≤ x0 ≤ π /2) with φ0 = 1700, β = 1, � = 500, c = 50, ε =
0.1. � = 8 (E = 80) (top) and � = 1 (E = 10) (bottom). The dotted line is the value of the entropy for
the shockless case, � = 0 (E = 0).

Fig. 10. Plots of the Page curves corresponding to the shockless case (24) and the case with a shock
(49) as a function of T = 1/β with fixing the position of the operator, which we place on the reflection
symmetric slice x+

0 = x−
0 . φ0 = 1700, � = 500, c = 50, � = 10, ε = 0.01, x+

0 = x−
0 = 1.343. The island

begins dominating at T � 0.993 and the location of the corresponding QES is x+
H (0) = x−

H (0) � 1.328.
The entanglement entropy with a shock decreases faster than the one without it.

x± = x±
0 is eventually absorbed into the black hole. We again observe that, above some crit-

ical temperature, the entanglement entropy is dominated by the generalized entropy Sgen(x0)
(48). In the high-temperature limit, since the operator goes into the deep interior of the black
hole, Sgen(x0) is given by the first line of Eq. (48). Therefore an approximate expression for the
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entanglement entropy reads:

S(ρA) =
{

Sno-island = π2c
3β

β 
 βc

Sgen(x0) = φ0 − (πXβ )2

�
− 2E cos2 x0

(
2πXβ

�
+ 2

�
E cos2 x0 − tan x0

)
+ SL β � βc.

(49)

It is interesting to compare this result with the Page curve without the operator insertion (24).
In this case, above the critical temperature the entropy decreases as

Sisland = φ0 − (πXβ )2

�
+ SL. (50)

By comparing this with Eq. (49), we see that the entropy in the presence of the shock wave is
reduced faster than the entropy without the shock, by increasing the entanglement temperature.
This also supports the point of view that the shock wave accelerates the evaporation of the black
hole.

4.5 QESs with non-trivial CFT entropy
In the above examples, the CFT entropy did not play any role. This is because, when the oper-
ator is inserted in the time reflection symmetric slice x+

0 = x−
0 , the quantum extremal surfaces

and the local operator are always spatially separated; therefore the non-trivial part of the CFT
entropy �S = Sβ,E [C̄] − Sβ [C̄] vanishes in the generalized entropy. As a result, the QESs coin-
cide with the classical extremal surfaces, which can be identified with the bifurcation surfaces
of the black hole. On the other hand, when we insert the operator in the future light cone of the
original horizon x± = x±

H (0), then the non-trivial part of the CFT entropy is non-vanishing. In
this case, we insert the local operator in the region x+

0 > x+
H (0), x−

0 < x−
H (0). Let us first derive

the location of the classical extremal surface. The dilaton profile is still given by Eq. (32), and
since we expect that the new bifurcation surface is in the past light cone of the operator, we
extremize

�R
(
x±) = φ0 + �

4
tan x+ tan x− − Xβ

(
x+ tan x+ + x− tan x−)

− E cos2 x−
0

(
tan x− − tan x−

0

)
. (51)

The critical point (x+
H(E ), x−

H(E )) of this dilaton profile �R(x±) satisfies

x−
H(E ) = x−

H (0), tan x+
H(E ) = tan x+

H (0) + 4E
�

cos2 x−
0 . (52)

We remark that this is different from the critical point (x+
H (E ), x−

H (E )) of �β, E (34) discussed
in the previous subsection.

The net effect of the shock wave is to shift the horizon along the x+ direction. In order for
this critical point (x+

H(E ), x−
H(E )) to be really in the past light cone of the operator, we need

tan x+
H (0) + 4E

�
cos2 x−

0 < tan x+
0 . (53)

Now let us add quantum effects. The expression of the generalized entropy can be obtained
from Eq. (41):

Sgen
(
x±) = �R

(
x±)+ c

6
log

[
β

πε

sin πα

α

sinh π
β

(
x+

0 − x+
5

)
sinh π

β

(
x+

6 − x+
0

)
sinh π

β

(
x+

6 − x+
5

)
]

+ Sβ [C̄] − Svac[C̄] + SL, (54)
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where SL is the contribution of the left horizon, as in the previous subsection. In the high-
temperature limit, SL = �β (x±

H (0)), defined in Eq. (22).
We then specify the location of the quantum extremal surface x± = x±

Q1
by finding the critical

point of the above generalized entropy (54). Since its derivative along the x− direction is not
affected by the non-trivial part of the CFT entropy �S, tan x+

Q1
is still given by

tan x+
Q1

= tan x+
H (0) + 4E

�
cos2 x−

0 . (55)

The derivative along the x+ direction is modified by �S. By ignoring its trivial part Sβ [C̄] −
Svac[C̄], we get

tan x−
Q1

= 4
�

⎡
⎣π

2
Xβ + cπ

6β
cos2 x+

Q1

⎛
⎝ 1

sinh π
β

(
x+

0 − x+
Q1

) − 1

sinh π
β

(
x+

6 − x+
Q1

)
⎞
⎠
⎤
⎦ . (56)

The contribution of this quantum extremal surface is given by plugging the solutions of
Eqs. (55) and (56) into the expression of the generalized entropy (54).

There is another quantum extremal surface, x± = x±
Q2

located at the right wedge of the op-
erator x±

Q2
> x±

0 . In this case, the non-trivial part of the CFT entropy �S is vanishing, so it
coincides with the bifurcation surface of the original black hole x±

Q2
= x±

H (0).
Although we have two candidates for the quantum extremal surface at x± = x±

Q1
and x± =

x±
Q2

, they cannot appear simultaneously. This is due to the non-symmetric insertion of the lo-
cal operator. If we put the local operator in the future light cone of the bifurcation surface
of the original black hole x+

0 > x+
H (0), x−

0 < x−
H (0), then the bifurcation surface is moved to

(x+
H(E ), x−

H(E )). In this case x±
H (0) = x±

Q2
is no longer extremal, and only x± = x±

Q1
is the quan-

tum extremal surface. On the other hand, if the operator x±
0 is in the exterior of the horizon

x±
0 > x±

H (0), then only x± = x±
Q2

is the quantum extremal surface. Thereby, the generalized en-
tropy is given by

Sgen,E
(
x+

0 , x−
0

) =
⎧⎨
⎩

Sgen

(
x±

Q1

)
for x−

H (0) > x−
0

Sgen

(
x±

Q2

)
for x−

H (0) < x−
0 .

(57)

In the high-temperature limit, Sgen(x±
Q1

) is obtained by plugging the solution of Eq. (56) into
Eq. (54). Sgen(x±

Q2
) coincides with the entropy of the original black hole �β (x±

H (0)). The actual
entanglement entropy is given by the minimum between this generalized entropy and Sno-island:

S(ρA) = min
{
Sno-island, Sgen,E

}
. (58)

4.5.1 Plot of the result. Let us focus on the case where the location of the left-mover x+ = x+
0

is fixed but the location of the right-mover x− = x−
0 is varied, as in the right panel of Fig. 11. We

also demand x+
0 > x+

H (E ), so that the location of the operator interpolates between the interior
and the exterior of the black hole. We plot the generalized entropy Sgen,E (x±

0 ) in Fig. 12. By
decreasing the value of x−

0 , the local operator is falling to the black hole horizon, and we are
interested in how the entropy changes as the local operator falls to the horizon and eventually
enters the interior.4

4In studying the Page curve for an evaporating black hole, the setup where an AdS black hole is attached
to a non-gravitating heat bath at the asymptotic boundary is often used, e.g., in Refs. [2,58,59]. In such a
setup, the local operator itself is inserted in the (non-gravitating) bath region, and the shock wave created
by the operator can enter the bulk region. Instead, in our setup, we insert the operator in the gravitating
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Fig. 11. Left: The operator inserted in the time reflection symmetric slice (the blue line). In this case the
operator is spatially separated from the bifurcation surface of the black hole at x± = x±

H (0). (The black
hole horizon is shown by the red lines.) Right: The operator inserted in the non-time reflection symmetric
slice. In this case, the bifurcation surface can causally contact the operator.

Fig. 12. Plot of the generalized entropy given in Eq. (57) as a function of x−
0 with x+

0 kept fixed (the
case of the non-symmetric insertion), with the choice of parameters φ0 = 1700, � = 500, c = 50, β =
1, � = 7, ε = 0.1, x+

0 = 1.373. The dotted line corresponds to the shockless case � = 0.

The plot in Fig. 12 for the asymmetric insertion is compared to the similar plot shown in
Fig. 9, where we insert the operator on the time reflection symmetric slice (48), as in the left
panel of Fig. 11. These two plots share a common feature. Namely, when the operator is in-
serted outside of the horizon x− > x−

H (0), the values of these two entropies both approach the
classical entropy of the original black hole �β (x±

H (0)), defined in Eq. (22). This happens be-
cause the non-trivial part of the CFT entropy �S vanishes since the local operator is in the
causal diamond of C̄.

However, these two generalized entropies behave differently when the operator is inserted in
the black hole interior x−

0 < x−
H (0). In particular, there is a bump in the entropy plot for the

asymmetric insertion in Fig. 12, which is absent in the plot for the symmetric insertion (Fig. 9).
This difference is a direct consequence of the fact that the quantum extremal surface for the
asymmetric insertion is in the past of the local operator, so the non-trivial part of the CFT
entropy �S is non-vanishing. On the other hand, in the case of the symmetric insertion, the
QES is spatially separated from the local operator, so �S is vanishing.

This bump in Fig. 12 can be understood as a result of the dynamics of the black hole. For this
purpose, it is useful to follow the plot backward in the x−

0 direction. By decreasing x−
0 , the black

universe, and the operator itself can enter the black hole interior. We regard our shock waves as a kind
of “heavy diary”; see, e.g., Refs. [3,58,60].
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Fig. 13. Plots of the Page curves corresponding to the shockless case (24) and the case with a shock wave
(58) as a function of T = 1/β with fixing the position of the operator, which is not on the reflection
symmetric slice, i.e., x+

0 �= x−
0 , with the choice of parameters φ0 = 1700, � = 500, c = 50, � = 7, ε =

0.1, x+
0 = 1.373, x−

0 = 1.332. The island begins dominating at T � 0.993 and the location of the corre-
sponding QES is x+

H (0) = x−
H (0) � 1.328.

hole gets bigger due to its absorption of the local operator, and this causes the sudden increase
in the entropy in the plot. After the increase in its size, the black hole starts to evaporate again,
and as a result the generalized entropy starts decreasing.

One can characterize the difference between these two generalized entropies by the difference
in the natures of these two insertions. The symmetric insertion can be regarded as a local op-
eration, because in this case the local operator is always in either the causal diamond of the
island D[C] (which can be regarded as part of the radiation system) or the entanglement wedge
of the black hole D[C̄], as in the left panel of Fig. 11. Since they are LOCCs, they can only de-
crease the entanglement entropy. On the other hand, operators inserted asymmetrically enter
a region of the black hole interior that belongs to neither of these two entanglement wedges
(the right panel of Fig. 11). Therefore, these insertions are not LOCCs, so they can increase the
entanglement between the two wedges.

4.6 The entanglement entropy
The entanglement entropy S(ρA) is given by putting these results into the formula (58). Again
we plot this as a function of the entanglement temperature 1/β with the location of the operator
x± = x±

0 kept fixed in Figs 13 and 14. As we increase the temperature, the horizon expands and
the local operator is absorbed into the black hole. So in this case too we can see the identical
physics that leads to the result obtained by varying x−

0 .
When the location of the operator is properly chosen, the resulting entanglement entropy

behaves in a complicated manner as in Fig. 14. This is compared to the same entropy without the
shock wave (24), where the transition between Sno-island and Sisland happens only once. Instead,
in the presence of the shock, the transition can happen multiple times. In the actual plot in
Fig. 14, we observe that, at sufficiently low temperatures, Sno-island dominates, and by increasing
the entanglement temperature Sisland becomes dominant, as we can also see in the case without
the shock wave. However, this is not the end of the story. Namely, a further increase in the
temperature makes the horizon expand, so the local operator falls to the horizon. This will
lead to a size change of the black hole and to a sudden increase of Sisland. Now this Sisland gets
larger than the naive Hawking’s entropy, so above this temperature Sno-island again dominates.
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Fig. 14. Similar plot to Fig. 13 but the shock wave has a larger energy than the previous case. We plot
the Page curve only around the points at which the non-trivial dominance changes happen, unlike the
previous case (Fig. 13). The Page curve is given by the minimum of them. We set the parameters to φ0 =
1700, � = 500, c = 50, � = 8, ε = 0.01, x+

0 = 1.373, x−
0 = 1.332. In this case, the transitions between

them happen several times. The first transition is at T � 0.993 and the location of the corresponding
QES is x+

H (0) = x−
H (0) � 1.328.

After this, the size of the black hole is eventually reduced due to the emission of Hawking
quanta, so eventually Sisland gets smaller than Sno-island and becomes dominant once again.

5. Conclusion
In this paper, we have studied the dynamics of black holes in flat space when it is entangled
with an auxiliary non-gravitating universe. We find that the back-reaction of the entanglement
between them reduces the horizon area of the black hole and lengthens its interior region. This
lengthening can be understood in terms of the monogamy property of entanglement [28]. Since
the gravitating universe B contains two horizons, the Hilbert space of B can be naturally de-
composed into two horizon Hilbert spaces HBL ⊗ HBR . Since both of these degrees of freedom
are strongly entangled with HA, the entanglement between the two horizons should be sup-
pressed, according to the monogamy of entanglement. This suppression is geometrized by the
long interior region of the black hole. We then computed the entanglement entropy between
the two universes, and found a Page curve for an evaporating black hole.

We also the studied actions of local operations on the black hole. Such a local operation is
modeled by the insertion of a CFT operator. In our setup, it is natural to consider the insertions
in the black hole interior in addition to those in the exterior. This insertion can back-react to
the black hole through its stress–energy tensor. The (quantum) extremal surfaces in the back-
reacted black hole strongly depend on the location of the insertion. There are several differences
between the insertions in the interior and exterior. When the operator is in the exterior of the
black hole, it does not change the entanglement entropy. On the other hand, the entropy is
significantly reduced when the operator is in the interior. The disruption becomes stronger as
the location of the insertion gets deeper into the interior of the black hole.

It would be interesting to study how an observer in the non-gravitating universe A can recover
information on shock waves in the black hole interior in the gravitating universe B. One way to
do so is using the modular flow of the reduced density matrix ρA. Our setup is especially suitable
for this purpose. This is because these two universes can be embedded in the larger Minkowski
space, in which AB are both realized as the left and right wedges of the origin. Furthermore,
the TFD state on AB is identified with the vacuum of this larger Minkowski space. By focusing
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on the code subspace, the modular Hamiltonian of ρA is approximated by the CFT vacuum
modular Hamiltonian of the CFT on AC, − log ρA = KCFT

AC , where C is the island region in
the gravitating universe B [64]. In a CFT with a large central charge and a sparse spectrum,
this modular Hamiltonian is given by the sum of two modular Hamiltonians for single inter-
vals, each of which connects the end points of A and C. In 2D CFT, this vacuum modular
Hamiltonian has a particularly simple form as an integral of the stress–energy tensor. Since
this modular flow is geometric, one can visualize how an operator in the black hole interior
gets out of the horizon under the flow.
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Appendix A. Entanglement entropy and local quench for two disjoint intervals
In this appendix we derive the results presented in Sects. 4.3.1 and 4.3.2 for the CFT entangle-
ment entropy in the presence of a local operator insertion by following the argument of Ref.
[51]. We are interested in the state (25) of the total system AB and its reduced density matrix
on two disjoint intervals C̄ in universe B. In the body of this paper, this region C̄ is identified
with the complement of the island C in universe B.

Let ρC̄ denote the reduced density matrix on two disjoint intervals C̄ = C̄1 ∪ C̄2, whose end
points are given by x±

2 and x±
3 (x±

2 ≤ x±
3 ) for C̄1 and x±

5 and x±
6 (x±

3 < x±
5 ≤ x±

6 ) for C̄2 respec-
tively (see Fig. A1), i.e., ρC̄ = trC ρ, where ρ is given by the reduced density matrix of universe

Fig. A1. The two intervals in universe B.
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B (27). The CFT entanglement entropy of the density matrix can be calculated by using the
replica trick. For this purpose, we first consider the nth Rényi entanglement entropy

S(n)[C̄] ≡ 1
1 − n

log tr ρn
C̄

(A1)

and, by taking the limit

S[C̄] = lim
n→1

S(n)[C̄], (A2)

we obtain the CFT entanglement entropy.
To evaluate tr ρn

C̄
, we need to compute a normalized 2n-point function on an n-sheeted replica

manifold branched along C̄. Since the reduced density matrix ρC̄ has a thermal form, each
replica sheet is a cylinder with the period β. This 2n-point function is identical to the normalized
six-point function including twist operators on a (non-replicated) manifold (thermal cylinder)
in the cyclic orbifold theory CFT⊗n/Zn. We adopt the later description and compute the six-
point function

tr ρn
C̄

= 〈O⊗n
(
x+

1 , x−
1

)
σn
(
x+

2 , x−
2

)
σ−n

(
x+

3 , x−
3

)
σn
(
x+

5 , x−
5

)
σ−n

(
x+

6 , x−
6

)
O†⊗n

(
x+

4 , x−
4

)〉β(〈O (x+
1 , x−

1

)
O†
(
x+

4 , x−
4

)〉β)n ,

(A3)

where 〈···〉β means the thermal trace tr[ ρβ ···].
In the above correlation function, we introduced the UV regulator ε in the location of the

operators as follows: {
x±

1 = x±
0 ∓ iε,

x±
4 = x±

0 ± iε;
(A4)

O⊗n and O†⊗n represent the products of the operators Oi and O†
i , which are the ith copies of

the operators in the cyclic orbifold theory,

O⊗n = O1O2 · · ·On,

O†⊗n = O†
1O

†
2 · · ·O†

n, (A5)

with the conformal dimension nhO; σ n and σ−n are twist and anti-twist fields respectively with
the conformal dimension 2Hn:

Hn = c
24

(
n − 1

n

)
. (A6)

We will compute the six-point function (A3) in a conformal field theory with gravity dual.
Such a CFT has a large central charge and a sparse spectrum. In this class of theories, one can
approximate the correlation function by a six-point Virasoro vacuum conformal block with an
appropriate choice of branch, following the argument of Ref. [51]. In doing so, it is convenient
to map the thermal cylinder to a plane by

w±(x±) = exp
(

2π

β

(
x± − x±

0

))
(A7)

and additionally apply a conformal transformation

z±(w±) =
(
w±

1 − w±)w±
34

w±
13

(
w± − w±

4

) , (A8)
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where we use the notation w±
i j = w±

i − w±
j . By the conformal map w± → z±, one can relate tr ρn

C̄
in Eq. (A3) to the correlator on the plane,

tr ρn
C̄

= ((1 − z+) (1 − z−))2Hn
(
z+

65z−
65

)2Hn

×
{(

β

πεUV

)4

sinh
(

π

β
x+

65

)
sinh

(
π

β
x−

65

)
sinh

(
π

β
x+

32

)
sinh

(
π

β
x−

32

)}−2Hn

× 〈O⊗n
∣∣σn
(
z+, z−) σ−n(1, 1)σn

(
z+

5 , z−
5

)
σ−n

(
z+

6 , z−
6

)∣∣O⊗n〉, (A9)

where we introduce the UV cutoff εUV and the notation

〈O⊗n
∣∣σn
(
z+, z−) σ−n(1, 1)σn

(
z+

5 , z−
5

)
σ−n

(
z+

6 , z−
6

)∣∣O⊗n〉
≡ lim

z+
4 ,z−

4 →∞

(
z+

4 z−
4

)2nhO 〈O†⊗n (z+
4 , z−

4

)
σn
(
z+, z−) σ−n (1, 1)

× σn
(
z+

5 , z−
5

)
σ−n

(
z+

6 , z−
6

)
O⊗n (0, 0)〉. (A10)

Next, we evaluate Eq. (A10) with the insertion of a complete set as follows:

〈O⊗n
∣∣σn
(
z+, z−) σ−n(1, 1)σn

(
z+

5 , z−
5

)
σ−n

(
z+

6 , z−
6

)∣∣O⊗n〉
=
∑

α

〈O⊗n
∣∣σn
(
z+, z−) σ−n(1, 1)|α〉〈α|σn

(
z+

5 , z−
5

)
σ−n

(
z+

6 , z−
6

)∣∣O⊗n〉, (A11)

where the sum runs over all possible intermediate states. However, in the ε → 0 limit, z± ap-
proach 1, and since the OPE σ n(z)σ−n(1) starts from the identity, one can approximate the
six-point function as a product of four-point functions,

〈O⊗n
∣∣σn
(
z+, z−) σ−n(1, 1)σn

(
z+

5 , z−
5

)
σ−n

(
z+

6 , z−
6

)∣∣O⊗n〉
� 〈O⊗n

∣∣σn
(
z+, z−) σ−n(1, 1)|O⊗n〉〈O⊗n|σn

(
z+

5 , z−
5

)
σ−n

(
z+

6 , z−
6

)∣∣O⊗n〉, (A12)

in the ε → 0 limit. By further applying a conformal map

z̃± (z±) =
(
z±

1 − z±) z±
64

z±
16

(
z± − z±

4

) (A13)

to the second four-point function in Eq. (A12), we get

tr ρn
C̄

(t) =
{(

β

πεUV

)4

sinh
(

π

β
x+

65

)
sinh

(
π

β
x−

65

)
sinh

(
π

β
x+

32

)
sinh

(
π

β
x−

32

)}−2Hn

× ((1 − z+)(1 − z−))2Hn
〈
O⊗n

∣∣σn
(
z+, z−) σ−n(1, 1)

∣∣O⊗n〉
× ((1 − z̃+

5

) (
1 − z̃−

5

))2Hn
〈
O⊗n

∣∣σn
(
z̃+

5 , z̃−
5

)
σ−n(1, 1)

∣∣O⊗n〉 . (A14)

Generally, it is difficult to get a complete analytic expression for the four-point functions since
they depend on the details of the dynamics of the theory. However, because we focus on the
theory that has a large central charge c 
 1 and a sparse spectrum, the four-point functions can
be well approximated by the vacuum Virasoro conformal blocks. Moreover, in evaluating the
entanglement entropy by taking the n → 1 limit of the twist operators in the correlator (A14),
we only need the heavy–heavy–light–light Virasoro blocks, because the conformal dimension
of the twist operators becomes light, Hn/c → 0, n → 1. Upon taking the limit, we keep the
conformal dimension hO of the local operator O, which we assume to be proportional to the
central charge c, fixed. The dominant contribution of such a four-point function under the limit
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is given by [65] ((
1 − z+) (1 − z−))2Hn

〈
O⊗n

∣∣σn
(
z+, z−) σ−n(1, 1)

∣∣O⊗n〉

�
(

(z+)
1−α

2
(
1 − (z+)α

)
(z−)

1−α
2
(
1 − (z−)α

)
α2(1 − z+)(1 − z−)

)−2Hn

, (A15)

where α =
√

1 − 24hO
c =

√
1 − 12�

c . By plugging this result in Eq. (A14) and taking the n → 1

limit, we get the result for the CFT entanglement entropy S[C̄] = Sβ [C̄] + �S[C̄] with

Sβ [C̄] = c
6

log

[(
β

πεUV

)4

sinh
(

π

β
x+

65

)
sinh

(
π

β
x−

65

)
sinh

(
π

β
x+

32

)
sinh

(
π

β
x−

32

)]

�S[C̄] = c
6

log

⎡
⎣(z+) 1−α

2
(
1 − (z+)α) (z−) 1−α

2
(
1 − (z−)α)

α2 (1 − z+) (1 − z−)

⎤
⎦

+ c
6

log

⎡
⎣(z̃+

5

) 1−α
2
(
1 − (z̃+

5

)α) (
z̃−

5

) 1−α
2
(
1 − (z̃−

5

)α)
α2
(
1 − z̃+

5

) (
1 − z̃−

5

)
⎤
⎦ . (A16)

Sβ [C̄] is the CFT entanglement entropy of the two disjoint intervals at finite temperature T =
1/β and �S[C̄] is the contribution to the CFT entanglement entropy from the perturbation by
the local operator O.5

The right-hand side of the above formula (A16) contains branch cuts; therefore, to make it
well defined, we need to properly specify the branch. This is achieved by demanding that the
resulting entanglement entropy is consistent with causality and positivity of �S[C̄]. In impos-
ing these conditions, it is convenient to adopt the quasi-particle picture [47,54,55] for the time
evolution of the entanglement entropy in a local quench. It claims the following: By a local
quench, a pair of entangled quasi-particles is created, one of which propagates along one spa-
tial direction at the speed of light, the other along the opposite direction.

The change in the CFT entanglement entropy �S[C̄] can be non-zero only when one of such
particles is in C̄ while the other is not [47–57,63]. This condition constrains possible branches,
since vanishing of the entanglement entropy �S[C̄] = 0 is equivalent to choosing the branch
where (z, z5) → 1 in the ε → 0 limit. If we have multiple branches satisfying the condition, the
intuition coming from the dual holographic setup suggests that we should take the one giving
the minimal value of �S[C̄].

In our setup, the causality condition tells us that the CFT entanglement entropy is vanishing
in the following three cases: (1) We insert the operator in the domain of dependence of the
intervals, i.e., x0 ∈ D[C̄1] or x0 ∈ D[C̄2]. (2) We do not insert the operator in these domains of
dependence, but the right-moving particle created by the quench enters D[C̄2] and the left-mover
enters D[C̄1]. (3) We insert the operator in D[C], where C is the complement of C̄.

More explicitly, the conditions that the CFT entanglement entropy must vanish in the above
regions imply that we should choose the branch (z+, z−) → (1, 1) and (z̃+

5 , z̃−
5 ) → (1, 1) when

the operator O is inserted at

(I) D[C̄1]: x+
0 < x+

3 , x−
0 < x−

3 ,
(II) D[C̄2]: x+

5 < x+
0 , x−

5 < x−
0 ,

5Note that, if we choose the other channel, then Sβ [C̄] and �S[C̄] take a different form.
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Fig. A2. The regions in which �S[C̄] must vanish. The shaded regions correspond to (I)–(V).

(III) Union of the causal pasts of D[C̄1] and D[C̄2]: x+
0 < x+

3 , x−
5 < x−

0 ,
(IV) Union of the causal futures of D[C̄1] and D[C̄2]: x+

5 < x+
0 , x−

0 < x−
3 ,

(V) D[C]: x+
3 < x+

0 < x+
5 , x−

3 < x−
0 < x−

5 .

(See Fig. A2)
The expression of �S[C̄], when the operator is inserted in other regions, is given by suitable

analytic continuations of Eq. (A16) in x0 from the above regions (I)–(V). By using the above
standard choices, we can determine branch cuts on the other regions from the consistency of
the analytic continuation for x±

0 .
We take the region x+

0 < x+
3 and x−

3 < x−
0 < x5 as an example of such a calculation and de-

termine possible branch choices in the region. Starting from the three regions (I), (III), and (V),
which are adjacent to the region x+

0 < x+
3 and x−

3 < x−
0 < x−

5 , we move the operator O to the
region x+

0 < x+
3 and x−

3 < x−
0 < x−

5 . We expand z± and z̃±
5 to the first order in ε, which is very

small compared to β, and focus on the change of their imaginary parts under the move. For
case (I), the imaginary part of z− changes sign from plus to minus at x−

0 = x−
3 , but the others

do not. In such a case, we choose the branches as (z+, z−) → (1, e2π i) and (z̃+
5 , z̃−

5 ) → (1, 1). For
case (III), the imaginary part of z̃−

5 changes sign from plus to minus x−
0 = x−

5 , but the others do
not. Similarly, we choose the branches as (z+, z−) → (1, 1) and (z̃+

5 , z̃−
5 ) → (1, e2π i ). For case

(V), the imaginary part of z+ changes sign from minus to plus at x+
0 = x+

3 , but the others do
not. In this case, we choose the branches as (z+, z−) → (e2π i, 1) and (z̃+

5 , z̃−
5 ) → (1, 1). By the

above calculation, we have finished determining possible branch choices in the region x+
0 < x+

3

and x−
3 < x−

0 < x−
5 .

Having specified the branch cuts in the region, we can calculate the analytic expression for
�S[C̄] in the region. Each branch cut gives a different �S[C̄] and, as noted before, we must
pick up the dominant contribution corresponding to the minimum �S[C̄] in the region [50].
For example, we focus on the region x+

0 < x+
3 and x−

3 < x−
0 < x5 and calculate �S[C̄]. In this
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region, x+
0 < x+

3 and x−
3 < x−

0 < x−
5 , we must compare the above three branch choices obtained

from the three regions (I), (III), and (V) and choose the minimum one. This gives

�S[C̄] = c
6

log

⎡
⎣ β

πε

sin πα

α

sinh
(

π
β

(
x+

3 − x+
0

))
sinh

(
π
β

(
x+

0 − x+
2

))
sinh

(
π
β

(
x+

3 − x+
2

))
⎤
⎦

for the region x+
0 < x+

3 and x−
3 < x−

0 < x−
5 . (A17)

Similar results hold for the other regions. By combining the above results and Sβ [C̄], we get the
final expression for the entire region in universe B.

We have focused on the CFT entanglement entropy of two disjoint intervals. However, we
can easily extend the above analysis to the single interval case by removing either region C̄1 or
C̄2 and following a similar procedure.
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