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Abstract In this paper we study the effective lepton fla-
vor violating vertex of an electroweak Z gauge boson and
two charged leptons with different flavor, lk and lm , that is
generated to one-loop in low scale seesaw models with right
handed neutrinos whose masses are heavier than the elec-
troweak scale. We first compute the form factor describing
this vertex by using the mass insertion approximation, where
the flavor non-diagonal entries of the neutrino Yukawa cou-
pling matrix are the unique origin, to one-loop level, of lepton
flavor changing processes with charged leptons in the exter-
nal legs. Then, by considering the proper large right handed
neutrino mass expansion of the form factor, we derive a for-
mula for the Zlklm effective vertex which is very simple and
useful for fast phenomenological estimates. In the last part of
this work we focus on the phenomenological applications of
this vertex for simple and accurate estimates of the Z → lk l̄m
decay rates. Concretely, this vertex will allow us to conclude
easily on the maximum allowed decay rates by present data
in the inverse seesaw model. The found rates are promising,
at the reach of future lepton colliders.

1 Introduction

One of the most interesting aspects of low scale seesaw mod-
els [1–7] with moderately heavy right handed (RH) neutri-
nos is that they can accommodate easily and successfully the
low energy neutrino data, and at the same time they may pro-
vide sizable rates for processes with Lepton Flavor Violation
(LFV) in the charged lepton sector. The origin of these poten-
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tial large LFV rates is the allowed large neutrino Yukawa
coupling matrices in these models, Yν � O(1), which under
the assumption of being non-diagonal in flavor and consid-
ering loops involving the RH neutrinos in the internal legs
may generate radiatively such LFV processes [8–27].

Here, we consider the Inverse Seesaw model (ISS) [1–4]
as a specific realization of these low scale seesaw models,
and work with three pairs of RH neutrinos with opposite
lepton numbers, which for simplicity are assumed to be quasi-
degenerate. The RH mass scale MR introduced in the ISS by
the mass term involving the RH neutrinos is assumed here,
also for simplicity, to be flavor diagonal and degenerate in
the three diagonal entries. In the present context, we consider
this new scale MR to be above the electroweak (EW) scale,
say at the energy interval O(0.1–10) TeV, that is accessible
at the LHC.

Regarding the specific LFV processes, we focus here on
the particular case of the LFV Z boson decays (LFVZD)
to charged leptons with different flavor, Z → �k �̄m , which
have also interesting rates in low energy scale seesaw models
with heavy neutrinos [3,4,7–12,20,25], and in particular in
the ISS model, as studied in [20,25] working in the physical
basis or in [21] by computing the relevant Wilson coeffi-
cients. These decays, as well as the LFV Higgs decays, are
being intensely searched for nowadays at the LHC [28–32]
and, the absence of any experimental evidence of these Z
decays already sets very stringent bounds on the correspond-
ing decay rates. We summarize in Table 1 the present upper
bounds on the various LFVZD channels from both the LEP
data and the LHC data. On the other hand, the expectations for
improving the sensitivities to these LFVZD rates in the future
experiments are quite promising. In particular, the future lin-
ear colliders claim an expected sensitivity of 10−9 [35,36],
and in the Future Circular e+e− Colliders (such as FCC-ee
(TLEP) [37]), where it is estimated that up to 1013 Z bosons
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Table 1 Present experimental
bounds on Lepton Flavor
Violating Z boson decays. Here
BR(Z → �k�m) ≡ BR(Z →
�k �̄m)+BR(Z → �̄k�m)

LFV Obs. Present upper bounds (95% CL)

BR(Z → μe) 1.7 × 10−6 LEP (1995) [33] 7.50 × 10−7 ATLAS (2014) [28]

BR(Z → τe) 9.8 × 10−6 LEP (1995) [33] 5.8 × 10−5 ATLAS (2018) [30]

BR(Z → τμ) 1.2 × 10−5 LEP (1995) [34] 1.3 × 10−5 ATLAS (2018) [30]

would be produced, the sensitivities could be improved even
further.

The purpose of the present work is to compute the LFVZD
rates in the ISS with a different technique: the mass insertion
approximation (MIA). The main motivation to use the MIA
is that, in contrast to the alternative full one-loop computa-
tion [11,20,25], it provides very simple analytical results and
these are written explicitly in terms of the main input parame-
ters of the ISS, concretely, the neutrino right handed mass MR

and the neutrino Yukawa coupling matrix Yν . Thus, working
directly in the electroweak interaction basis, instead of the
physical mass basis, the MIA leads to the simplest results
which in turn can be used to further analyze the interesting
decoupling behavior of the heavy right handed neutrinos in
these LFVZD. We follow here the same method for the MIA
as in our previous works [27,38] where we applied it to the
case of LFV Higgs decays. Other similar methods using the
mass insertion technique to compute observables in flavor
physics have also been explored in [39,40].

Our final aim here is to compute the one-loop effective
vertex, Z�k�m associated to the proper large MR expansion
of the involved form factors, which will show as a series in
powers of v2/M2

R , with v = 174 GeV characterizing the EW
scale. We believe that the simple formulas provided here for
this Z�k�m effective vertex can be very useful to test rapidly
the compatibility of these models with LFV data. As an illus-
tration of this utility, we will explore here with the obtained
Z�k�m effective vertex the maximum allowed LFVZD rates
by present data in a specific low scale seesaw models, the
ISS model. We will discuss here that these predicted rates
are indeed within the reach of the future experiments.

The paper is organized as follows: in Sect. 2 we summarize
the main features of the ISS model in terms of the EW interac-
tion basis, and we present the computation of �(Z → �k �̄m)

to one-loop within the MIA in all covariant Rξ gauges and
in the unitary gauge. Our proof of the gauge invariance of
the on-shell form factor is also included in that section. Sec-
tion 3 contains the computation of the one-loop effective
vertex for LFVZD and the comparison of the MIA with the
full results. Section 4 is devoted to explore the maximum
allowed LFVZD rates using our MIA-effective vertex. The
main conclusions are summarized in Sect. 5. The technicali-
ties of the present computation, including the conventions for
the one-loop integrals, the analytic expressions of the form
factors for each diagram of the full and MIA computations in

the Feynman–’t Hooft gauge, the expansions of the one-loop
functions and the effective vertex at zero external momenta,
are collected in the Appendices A, B, C, D and E respectively.

2 �(Z → �k�̄m) to one-loop within the MIA

Our computation of the partial decay width for the LFVZD in
the MIA is performed in the EW basis. Therefore the starting
point is the ISS Lagrangian in the EW basis, i.e., in terms of
the right and the left handed neutrinos. We follow the same
notation and conventions for this Lagrangian as in [27]:

LISS = −Y i j
ν Li˜�νRj − Mi j

R νcRi X j − 1

2
μ
i j
X X

c
i X j + h.c.,

(1)

where L is the SM lepton doublet, ˜� = iσ2�
∗ with � the

SM Higgs doublet and i, j are indices in flavor space that
run from 1 to 3. Correspondingly, Yν , μX and MR are 3 × 3
matrices. The C-conjugate fermion fields are defined here as
f cL = ( fL)c = ( f c)R and f cR = ( fR)c = ( f c)L .

The mass matrix of the ISS, in the EW interaction basis
(νcL , νR, X) is:

MISS =
⎛

⎝

0 mD 0
mT

D 0 MR

0 MT
R μX

⎞

⎠ , (2)

with mD = vYν , and v = 174 GeV. For simplicity, we
choose here MR diagonal in flavor space and with degenerate
diagonal entries1. In Appendix B we summarize the relevant
couplings in the neutrino mass basis. Notice that in the ISS
model μX is assumed to be small, related to the smallness of
light neutrino masses, and therefore its contributions to our
LFV process are negligible [27].

The relation between the neutrino electroweak interac-
tion basis (νcL , νR, X) and the neutrino mass eigenstate basis,
ni (i = 1, . . . , 9) is given by

⎛

⎝

νcL
νR
X

⎞

⎠ = Uν PR

⎛

⎜

⎝

n1
...

n9

⎞

⎟

⎠
,

⎛

⎝

νL
νcR
Xc

⎞

⎠ = U∗
ν PL

⎛

⎜

⎝

n1
...

n9

⎞

⎟

⎠
, (3)

1 For a generalization to the non-degenerate case see Appendix C.
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where Uν is the rotation matrix leading to the physical neu-
trino masses mni , given by:

UT
ν MISSUν = diag(mn1, . . . ,mn9). (4)

For the charged lepton sector we use the physical mass eigen-
state basis in the whole paper.

Next, we write the relevant amplitude for these Z(p1) →
�k(−p2)�̄m(p3) decays in terms of the proper form factors
with p1 = p3 − p2. In the present case of the ISS with right
handed neutrinos and neglecting the lepton masses there is
just one form factor involved [12], FL . This will be explicitly
shown in our forthcoming computation. Thus we write,

iM = iελ
Z (p1)ū�k (−p2)(FLγλPL)v�m (p3). (5)

Then, the partial width is simply

�(Z → �k �̄m) = mZ

24π
|FL |2, (6)

where the lepton masses have been safely neglected in the
phase space factor.

Now, as explained in [27], the MIA computation is orga-
nized as an ordered expansion in powers of the neutrino
matrix Yν . The non-diagonal elements in flavor space of
this matrix, Y i j

ν with i �= j , are the unique origin of LFV
in this ISS context, and each (vY i j

ν ) factor acts as a mass
insertion changing lepton flavor. Thus, to a given order in
this expansion, O(Yn

ν ), these off-diagonal entries in the neu-
trino Yukawa coupling matrix, and via the loops with right
handed neutrinos, generate non-vanishing contributions to
the observable of our interest here, �(Z → �k �̄m). Specif-
ically, the one-loop form factors receive contributions from
leading order (LO) terms of O(YνY †

ν ) (O(Y 2
ν ) or O(Y 2),

in short) and from next to leading order (NLO) terms of
O(YνY †

ν YνY †
ν ) (O(Y 4

ν ) or O(Y 4), in short). The systematics
to compute these form factors in the MIA is fully explained
in our previous work [27] which we follow closely here.

Our diagrammatic procedure consists of the systematic
insertion of right handed neutrino (fat) propagators in all
the possible places inside the loops which are built with
the relevant interaction vertices and propagators summarized
in Fig. 1. One then follows the counting of the various Yν

appearing in each one-loop Feynman diagram. In the present
LFVZD these Yν come from just two sources, the coupling
of the νR to the Goldstone bosons and the insertions νL -νR
which go with mD = vYν . Generically, diagrams with one
right handed neutrino propagator will contribute to the form
factors at O(Y 2

ν ), whereas diagrams with two right handed
neutrino propagators will contribute to the form factors at
O(Y 4

ν ). The detailed computation of the fat right handed neu-
trino propagator leading to the expression in Fig. 1 can be
found in our previous work [27]. The most relevant feature of

this fat propagator is that it contains the resummation of all
the insertions given by the MR mass insertions (diagonal in
flavor) and it neglects the μX mass insertions which are not
relevant for the LFV processes of our interest. Thus, deal-
ing with this propagator is very convenient for the present
computation of the LFVZD as it was in [27] for the case the
LFV Higgs decays. It is important to note that there are no
couplings between the gauge bosons W and Z with the right
handed neutrinos because they are singlets of SU (2). Indeed,
these νR can only couple to the Higgs sector, as can be seen
in Fig. 1.

In Figs. 2, 3, 4 we show the relevant one-loop diagrams in
the MIA corresponding to the dominant contributions of the
LO, O(Y 2), and the NLO, O(Y 4), respectively, in a generic
covariant gauge. Notice that the different topologies in the
MIA are of vertex corrections type and of leg corrections
type, as in the full computation, and this suggests our use
of a correlated notation for the labelling in the two sets of
diagrams, the MIA and the full computation, summarized by
diagrams with topology of type (1), type (2), etc. The final
result for the full computation is collected in the Appendix
B, for completeness.

The final analytical result for the MIA is the sum of all the
contributions in Figs. 2, 3, 4. It gives the total form factor in
the MIA to O(Y 2 +Y 4) for arbitrary Z external momentum,
p1, that can be summarised as follows:

FMIA
L = FMIA (Y2)

L + FMIA (Y4)
L . (7)

At O(Y 2
ν ), the relevant topologies in a covariant gauge are

from diagrams all containing 1 right handed neutrino propa-
gator and one of these three combinations: (i) 1 vertex with
νR and 1mD insertion, (ii) 0 vertices with νR and 2mD inser-
tions, (iii) 2 vertices with νR and 0 mD insertions. Then, we
get:

FMIA (Y2)
L = F (1a)

L + F (1b)
L + F (1c)

L + F (1d)
L + F (2a)

L

+F (2b)
L + F (3a)

L + F (4a)
L + F (4b)

L

+F (5a)
L + F (5b)

L + F (6a)
L + F (6b)

L

+F (6c)
L + F (6d)

L + F (7a)
L + F (8a)

L + F (8b)
L

+F (8c)
L + F (8d)

L + F (9a)
L + F (10a)

L

+F (10b)
L + F (10c)

L + F (10d)
L . (8)

The explicit analytical results in the Feynman–’t Hooft gauge
for all the relevant diagrams are collected in Appendix C.
Notice that some diagrams are subleading since they are of
O(m2

lep) and their contributions will be neglected from now
on.

At O(Y 4
ν ), the relevant topologies in a covariant gauge are

from diagrams all containing 2 right handed neutrino prop-
agators and one of these three combinations: (i) 2 vertices
with νR and 2 mD insertions, (ii) 0 vertices with νR and 4
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Fig. 1 Relevant Feynman rules
and sign conventions for the
MIA computation in a generic
covariant gauge. The
momentum convention is that all
boson momenta are incoming.
The solid thick line denotes the
right handed neutrino fat
propagator, as defined and
computed in [27]. The cross
denotes our unique LFV
insertion given by mDi j = vYνi j

i i

/p − m i

G± i

p2 − ξW m2
W

νLi
PL

i

/p
PR

νRi
PR

i/p

p2 − M2
Ri

PL

W±

μ ν

−i gμν

p2 − m2
W

+
i pμpν

m2
W (p2 − m2

W )
− i pμpν

m2
W (p2 − ξW m2

W )

νRj νLi −i mDij PR

W−
μ

νLj

i

− ig√
2

δij γμPL

Zλ

i

j

− ig

cW

δij γλ − 1
2 PL + s2W

Zλ

νLi

νLj

− ig

2 cW
δij γλPL

G−

νLj

i

−i Y iδijPL
G−

i

νRj

i Yνij PR

Zλ

G+

G−

p+

p−

−ig
1−2s2

W

2cW
(p+ − p−)λ

Zλ

W+
μ

G−

−igmZs2W gλμ

Zλ

W+
μ

W−
ν

k+

k−pZ

igcW gλμ(pZ − k+)ν +g (k− − pZ)μ +gμν(k+ − k−)λ)

mD insertions, (iii) 1 vertex with νR and 3 mD insertions.
Thus, we find that in the Feynman–’t Hooft gauge the most
relevant diagrams are those of type (1), (6), (8) and (10) sum-
marized in Fig. 4 whose respective contributions are given
by:

FMIA (Y4)
L = F (1e)

L + F (6e)
L + F (8e)

L + F (10e)
L , (9)

and the explicit analytical results in the Feynman–’t Hooft
gauge for all the relevant diagrams are collected in
Appendix C. The rest of diagrams in Fig. 4 do not pro-
vide leading contributions in the large MR expansion in
the Feynman–’t Hooft gauge, but they will contribute in a
generic covariant gauge, as it will be shown in the next sub-
section. Specifically, the diagrams (2c), (2d), (2e), (3b), (4c),
(5c), (7b) and (9b), after performing the expansion in inverse

powers of MR give contributions to the form factor in the
Feynman–’t Hooft gauge of O(v4/M4

R), whereas they give
contributions of O(v2/M2

R) in a generic covariant gauge.
Besides, diagrams with more than two right handed neutrino
propagators will also provide subleading corrections in the
heavy MR case of our interest, since they will come with
extra powers of MR in the denominator. Then we neglect
contributions of O(Y 6

ν ) and higher terms.
All the previous results are given in terms of the stan-

dard loop functions whose definitions and conventions are
collected in Appendix A. The discussion of the results for
other gauge choices like the unitary gauge and the general
Rξ covariant gauges is included in the next Sect. 2.1, where
our proof of gauge invariance of the on-shell Z form factor
for LFVZD will be presented.
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Zλ

k

m̄
νLm

νRi

G
νLm

νLk

(1a)

Zλ

k

m̄
νRi

νLk

G

νLm

νLk

(1b)

Zλ

k

m̄
νLm

νLm

νRi

G

(1c)

Zλ

k

m̄

νLk

νLk

νRi

G

(1d)

Zλ

k

m̄
νLm

νRi

W
νLm

νLk

(2a)

Zλ

k

m̄
νRi

νLk

W

νLm

νLk

(2b)

Zλ

k

m̄

νLk

νRi

νLm

W

W
(3a)

Zλ

k

m̄

νLk

νRi

W

G

(4a)

Zλ

k

m̄

νLk

νRi

νLm

W

G

(4b)

Zλ

k

m̄

νRi

νLm

G

W

(5a)

Zλ

k

m̄

νLk

νRi

νLm

G

W

(5b)

Zλ

k

m̄

νRi

G

G

(6a)

Zλ

k

m̄

νRi

νLm

G

G

(6b)

Zλ

k

m̄

νLk

νRi

G

G

(6c)

Zλ

k

m̄

νLk

νRi

νLm

G

G

(6d)

Fig. 2 Relevant diagrams of O(Y 2
ν ) in a covariant gauge corresponding to vertex corrections

The final analytical result is the sum of all these contri-
butions in Eqs. (8) and (9), and this gives the total form
factor in the MIA for arbitrary Z external momentum, p1, in
the Feynman–’t Hooft gauge. Then, neglecting the fermion
masses mk and mm , we finally get:

FMIA (Y2)
L = 1

16π2

g

cW

(

YνY
†
ν

)km
{(

1

2
− s2

W

)

B1(MR,mW )

+ (1 − 2s2
W )C00(p2, p1, MR,mW ,mW )

+ 2m2
WC0(p2, p1, MR,mW ,mW )

+
(

1 − 2s2
W

)

m2
WC2(0, MR,mW )

+ m2
W

( − 2D00 + p2
1(D0 + D1 + D13

− D33)
)

(p2, 0, p1,mW , 0, MR, 0)

+ m2
W

( − 2D00 + p2
1(D0 + D1 + D12

− D22)
)

(p2, p1, 0,mW , 0, MR, 0)

+ 2c2
Wm2

W (2D00

− p2
1D2)(0, p2, p1, 0, MR,mW ,mW )

}

, (10)

and:

FMIA (Y4)
L = 1

16π2

g

cW
v2

(

YνY
†
ν YνY

†
ν

)km
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Zλ

k

m̄

m

W

νLm

νRi

νLk

(7a)

Zλ

k

m̄

m

G

νRi

(8a)

Zλ

k

m̄

m

G

νLm

νRi

(8b)

Zλ

k

m̄

m

G

νRi

νLk

(8c)

Zλ

k

m̄

m

G

νLm

νRi

νLk

(8d)

Zλ

k

m̄

k̄

W

νLk

νRi

νLm(9a)

Zλ

k

m̄

k̄

G

νRi

(10a)

Zλ

k

m̄

k̄

G

νRi

νLm(10b)

Zλ

k

m̄

k̄

G

νLk

νRi(10c)

Zλ

k

m̄

k̄

G

νLk

νRi

νLm(10d)

Fig. 3 Relevant diagrams of O(Y 2
ν ) in a covariant gauge corresponding to external leg corrections

×
{

1

2
C0(p2, p1,mW , MR, MR)

+
(

1

2
− s2

W

)

(

2D00(0, p2, p1, MR, MR,

mW ,mW ) + C2(MR, MR,mW )
)

}

. (11)

We have also checked that the total MIA form factor in the
Feynman–’t Hooft gauge, FMIA

L , presented in Eqs. (7), (10)
and (11), is finite. In fact, the only divergent diagrams in
the MIA computation are (6a), (8a) and (10a), and we have
proven that the divergences cancel out when adding these
three diagrams.

We are mainly interested here in the form factor for the
LFVZD, i.e. when the Z boson is on-shell. Then, the proper
form factor is obtained by setting p2

1 = m2
Z in the previous

equations. We get:

FMIA (Y2)
L |p2

1=m2
Z

= 1

16π2

g

cW

(

YνY
†
ν

)km

×
{ (

1

2
− s2

W

)

B1(MR,mW )

+ (1 − 2s2
W )Ĉ00(p2, p1, MR,mW ,mW )

+ 2m2
WĈ0(p2, p1, MR,mW ,mW )

+
(

1 − 2s2
W

)

m2
WC2(0, MR,mW )

+ m2
W

( − 2D̂00 + m2
Z (D̂0 + D̂1 + D̂13

− D̂33)
)

(p2, 0, p1,mW , 0, MR, 0)

+ m2
W

( − 2D̂00 + m2
Z (D̂0 + D̂1 + D̂12

− D̂22)
)

(p2, p1, 0,mW , 0, MR, 0) + 2c2
Wm2

W (2D̂00

− m2
Z D̂2)(0, p2, p1, 0, MR,mW ,mW )

}

, (12)

and:

FMIA (Y4)
L |p2

1=m2
Z

= 1

16π2

g

cW
v2

(

YνY
†
ν YνY

†
ν

)km
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G

W
(5c)

Zλ

k

m̄

νRi

νLa

νRj

G

G

(6e)

Zλ

k

m̄

m

W

νLm

νRa νLj

νRi

νLk

(7b)

Zλ

k

m̄

m

G

νRj

νLa

νRi

(8e)

Zλ

k

m̄

k̄

W
νLk

νRi
νLj

νRa

νLm

(9b)

Zλ

k

m̄

k̄

G

νRi

νLa

νRj

(10e)

Fig. 4 Relevant diagrams of O(Y 4
ν ) in a covariant gauge

×
{

1

2
Ĉ0(p2, p1,mW , MR, MR)

+
(

1

2
− s2

W

)

(

2D̂00(0, p2, p1, MR, MR,mW ,mW )

+C2(MR, MR,mW ))

}

, (13)

where the loop functions with a ‘hat’ means that they are eval-
uated at p2

1 = m2
Z (and, p2

2 = p2
3 = 0, since we are neglect-

ing the lepton masses). The definitions of all these loop func-
tions above and their interesting limits for the present paper
are collected in Appendices A and D.

2.1 Check of gauge invariance of the on-shell form factor
for LFVZD

An interesting check of our results in Eqs. (12) and (13)
for the form factor FL of the Z decay in the Feynman–’t
Hooft gauge is to verify the equivalence with the results in
the unitary gauge (UG) and with an arbitrary covariant Rξ

gauge. In order to perform a systematic computation, we start

with the UG’s calculation. We consider the contributions of
O(Y 2

ν ) and O(Y 4
ν ) corresponding only to diagrams of type

(2), (3), (7) and (9) of Figs. 2, 3 and 4 because there are not
Goldstone bosons in this gauge. We then split the propagator
PUG
W of the W gauge boson into two parts, Pa

W and Pb
W :

PUG
W = Pa

W + Pb
W = − igμν

p2 − m2
W

+ i pμ pν

m2
W (p2 − m2

W )
. (14)

In this way, the first part Pa
W matches with the propagator of

the W gauge boson in the Feynman–’t Hooft gauge. Thus, we
classify the different contributions arising from each domi-
nant diagram. Those contributions at O(Y 2

ν ) coming from
Pa
W are the same contributions as in the Feynman–’t Hooft

gauge. In addition to them, there are new contributions corre-
sponding to Pb

W in diagrams (2a), (2b), (3a), (7a) and (9a) of
Figs. 2 and 3. On the other hand, the dominant contributions
ofO(Y 4

ν ) correspond to Pb
W in diagrams (2c), (2d), (2e), (3b),

(7b) and (9b) of Fig. 4. In the following, we show the result
of the form factor FL in the UG at O(Y 2

ν + Y 4
ν ) for arbitrary

Z external momentum p1:
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FUG
L = FUG (Y2)

L + FUG (Y4)
L , (15)

where,

FUG (Y2)
L

= 1

16π2

g

cW

(

YνY
†
ν

)km
{ (

1

2
− s2

W

)

B1(MR,mW )

+
(

2c2
W − p2

1

m2
Z

)

C00(p2, p1, MR,mW ,mW )

+ 2c2
W p2

1C0(p2, p1, MR,mW ,mW )

+ (

1 − 2s2
W

)

m2
WC2(0, MR,mW )

+ m2
W (−2D00 + p2

1(D0 + D1 + D13

− D33))(p2, 0, p1,mW , 0, MR, 0)

+ m2
W (−2D00 + p2

1(D0 + D1 + D12

− D22))(p2, p1, 0,mW , 0, MR, 0)

+ 2c2
Wm2

W (2D00 − p2
1D2)(0, p2, p1, 0, MR,mW ,mW )

}

,

(16)

and,

FUG (Y4)
L

= 1

16π2

g

cW
v2 (

YνY
†
ν YνY

†
ν

)km
{

1

2
C0(p2, p1,mW , MR, MR)

+
(

2c2
W − p2

1

m2
Z

)

D00(0, p2, p1, MR, MR,mW ,mW )

+
(

1

2
− s2

W

)

C2(MR, MR,mW )

}

. (17)

These general expressions are not equal to Eqs. (10) and
(11), but for the particular case of the Z decays (setting p2

1 =
m2

Z in the previous equations) and using the relations s2
W +

c2
W = 1 and m2

W = c2
Wm2

Z , we arrive to Eqs. (12) and (13)
exactly. Thus, we verify the equivalence of the form factors
for the Z decay in the Feynman–’t Hooft gauge and the UG
when the Z is on-shell.

Finally, we present the computation in an arbitrary covari-
ant Rξ gauge. The relevant gauge-fixing parameter ξ ≡ ξW
corresponds to SU (2)L gauge group. In this case, we may
split the propagator into three parts, the two previous ones,
Pa
W and Pb

W , and a new part, Pc
W , that contains the ξ depen-

dence:

P
Rξ

W = Pa
W + Pb

W + Pc
W

= − igμν

p2 − m2
W

+ i pμ pν

m2
W (p2 − m2

W )

− i pμ pν

m2
W (p2 − ξm2

W )
. (18)

The contribution to the form factor from Pc
W can be easily

obtained from that of Pb
W by simply changing the global

sign and by replacing mW → √
ξmW in the corresponding

argument of masses of the involved one-loop functions.
On the other hand, the Goldstone boson propagator is now

given by:

P
Rξ

G = i

p2 − ξm2
W

, (19)

thus, in comparison with the previous computation of the
Feynman–’t Hooft gauge, we now have to replace mW →√

ξmW in the masses of the one-loop functions correspond-
ing to the Goldstone bosons.

Taking into account all the above commented properties,
we find the form factor FL in an arbitrary covariant Rξ gauge
at O(Y 2

ν +Y 4
ν ), for arbitrary Z external momentum p1, from

the computation of all diagrams in Figs. 2, 3, 4. This is given
by:

F
Rξ

L = F
Rξ (Y2)

L + F
Rξ (Y4)

L , (20)

where,

F
Rξ (Y2)

L = 1

16π2

g

cW

(

YνY
†
ν

)km
{

(

2c2
W B0

+
(

1

2
− s2

W

)

B1

)

(MR,mW )

−
(

p2
1

m2
Z

− 2c2
W

)

C00(p2, p1, MR,mW ,mW )

+ 2c2
W p2

1C0(p2, p1, MR,mW ,mW )

+ (

1 − 2s2
W

)

m2
WC2(0, MR,mW )

+ m2
W (−2D00 + p2

1(D0 + D1 + D13

− D33))(p2, 0, p1,mW , 0, MR, 0)

+ m2
W (−2D00 + p2

1(D0 + D1 + D12

− D22))(p2, p1, 0,mW , 0, MR, 0)

+2c2
Wm2

W (2D00 − p2
1D2)(0, p2, p1, 0, MR,mW ,mW )

− 2c2
W B0(MR,

√

ξmW )

+
(

1 − p2
1

m2
Z

)

C00(p2, p1, MR,
√

ξmW ,
√

ξmW )

+
(

p2
1

m2
Z

− 1

)

C00(p2, p1, MR,
√

ξmW ,mW )

+
(

p2
1

m2
Z

− 1

)

C00(p2, p1, MR,mW ,
√

ξmW )

+ (

ξc2
Wm2

W − c2
W p2

1

+ s2
Wm2

W

)

C0(p2, p1, MR,
√

ξmW ,mW )

+ (

ξc2
Wm2

W − c2
W p2

1

+ s2
Wm2

W

)

C0(p2, p1, MR,mW ,
√

ξmW )

}

, (21)
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and,

F
Rξ (Y4)

L

= 1

16π2

g

cW
v2 (

YνY
†
ν YνY

†
ν

)km
{

1

2
C0(p2, p1,mW , MR, MR)

+ 2c2
WC0(MR, MR,mW )

−
(

p2
1

m2
Z

− 2c2
W

)

D00(0, p2, p1, MR, MR,mW ,mW )

+
(

1

2
− s2

W

)

C2(MR, MR,mW )

−2c2
WC0(MR, MR,

√

ξmW )

+
(

1 − p2
1

m2
Z

)

D00(0, p2, p1, MR, MR,
√

ξmW ,
√

ξmW )

+
((

p2
1

m2
Z

− 1

)

D00 + (

ξc2
Wm2

W − c2
W p2

1

+ s2
Wm2

W

)

D0
)

(0, p2, p1, MR, MR,
√

ξmW ,mW )

+
((

p2
1

m2
Z

− 1

)

D00 + (

ξc2
Wm2

W − c2
W p2

1

+s2
Wm2

W

)

D0
)

(0, p2, p1, MR, MR,mW ,
√

ξmW )

}

. (22)

On the other hand, from the integral definition of the one-
loop functions (see Appendix A), we obtain the following
useful relations:

2c2
W

(

B0(MR,mW ) − B0(MR,
√

ξmW )
)

− (1 − ξ) c2
Wm2

WC0(p2, p1, MR,
√

ξmW ,mW )

− (1 − ξ) c2
Wm2

WC0(p2, p1, MR,mW ,
√

ξmW )

≈ O(m2
lep) ≈ 0 , (23)

and

2c2
W

(

C0(MR, MR,mW ) − C0(MR, MR,
√

ξmW )
)

− (1 − ξ) c2
Wm2

W D0(0, p2, p1, MR, MR,
√

ξmW ,mW )

− (1 − ξ) c2
Wm2

W D0(0, p2, p1, MR, MR,mW ,
√

ξmW )

≈ O(m2
lep) ≈ 0 , (24)

which can be used to further simplify the previous results of
O(Y 2

ν ) and O(Y 4
ν ) respectively. It is worth noticing that the

general result for an arbitrary p2
1 is not gauge invariant, since

the ξ dependence is not fully cancelled in Eqs. (21) and (22).
Finally, to get the form factors in an arbitrary Rξ gauge

in the case where the Z gauge boson is on-shell, we set
p2

1 = m2
Z in Eqs. (21) and (22), and use the above relations

in Eqs. (23) and (24). Simplifying the final expression by
means of the identities s2

W + c2
W = 1 and m2

W = c2
Wm2

Z , we
find out that the expected cancellations among the ξ depen-

dent terms take place and the final result for F
Rξ

L |p2
1=m2

Z
turns

out to be ξ independent, leading to the same result for all ξ

choices and coinciding with the results of the previous sec-

tion for the Feynman–’t Hooft gauge, FMIA (Y2)
L |p2

1=m2
Z

and

FMIA (Y4)
L |p2

1=m2
Z

in Eqs. (12) and 13, respectively. There-
fore, having found the same result for all Rξ gauges as well
as for the unitary gauge, we conclude that our result for the
on-shell form factor describing the LFVZD, FL |p2

1=m2
Z
, is

gauge invariant. This is as expected, since this is a physical
quantity defining an observable, the partial LFVZD width.

Another interesting discussion arises when considering
the zero external momenta approximation, and testing if this
approximation is or is not appropriate to estimate the LFVZD
rates. We have also explored this question in detail in this
work, and our conclusion is that it is not appropriate, because
it is not a gauge invariant quantity. Since this issue is not
needed for the central results in this paper, we present this
discussion separately, and leave it to Appendix E. There we
present the results of the form factors in the case of zero Z
external momentum, p2

1 = 0, and include our proof that the
result in that case is not gauge invariant. This is in contrast,
with the on-shell case presented in this section, being fully
gauge invariant.

3 Computation of the one-loop effective vertex for
LFVZD

Here we present the computation of the one-loop effective
vertex that is the proper one for the description of the LFVZD.
This leads us to set first the Z external leg to be on-shell, and
second to explore the proper analytic expansion of the MIA
form factor FMIA

L that is valid at large MR . The effective
vertex that we look for then summarizes the one-loop effects
of the heavy right handed neutrinos, and it is obtained from
the result of this large MR expansion, generically, as:

V̂ eff
Z�k�m

= V eff
Z�k�m

|p2
1=m2

Z
= FMIA

L |p2
1=m2

Z
(MR), (25)

where the mass MR in boldface means that the function
FMIA
L |p2

1=m2
Z

has been expanded at large MR . Specifically,
this expansion should valid for MR 	 v, with v = 174 GeV
being the characteristic scale providing all the electroweak
masses involved. In practice, this implies MR being much
heavier than all the other particle masses involved in the loop
contributing diagrams, therefore, larger than mZ , mW , mlep,
etc.

The result of this large MR expansion must provide a local
function in spacetime, hence, leading in momentum space,
to an expansion (up to logarithms) given in inverse powers of
M2

R . In fact, our explicit computation presented in this work
shows that the first term in this expansion is of O(v2/M2

R),
the second term is of O(v4/M4

R) and so on, leading to an
expansion, valid at large MR 	 v, of the generic form:
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V̂ eff
Z�k�m

� c1
v2

M2
R

+ c2
v4

M4
R

+ · · · , (26)

where the coefficients c1,2,... contain contributions that are
generically either constants with MR or logarithmic contri-
butions like log(m2

W /M2
R), which are originated from the

heavy neutrino loops with W gauge bosons and/or Gold-
stone bosons. This functional dependence with MR typically
signals the decoupling behavior of the heavy neutrinos in
the one-loop generated LFV form factors, leading to one-
loop radiative effects in the LFVZD decays that vanish in the
asymptotically infinite right handed mass limit.

In order to get this expansion of the on-shell form factors
in inverse powers of M2

R , we start with the previous results

of the Feynman–’t Hooft gauge, FMIA (Y2+Y4)
L , in Eqs. (12)

and (13) and insert into these equations the corresponding
expansions for the loop functions that we have also computed
and whose results are collected in Appendix D. This leads us
to very simple results for the on-shell form factors, which in
turn define the wanted on-shell effective vertex, such that:

iM � iελ
Z (p1)ū�k (−p2)V̂

eff
Z�k�m

γλPLv�m (p3), (27)

and

�(Z → �k �̄m) � mZ

24π
|V̂ eff

Z�k�m
|2, (28)

with,

V̂ eff
Z�k�m

= 1

16π2

g

cW

(

YνY
†
ν

)km
{(

1

2
− s2

W

)

B1(MR,mW )

+ (1 − 2s2
W )Ĉ00(p2, p1,MR,mW ,mW )

+ 2m2
W Ĉ0(p2, p1,MR,mW ,mW )

+ (

1 − 2s2
W

)

m2
WC2(0,MR,mW )

+m2
W

( − 2D̂00 + m2
Z (D̂0 + D̂1 + D̂13

− D̂33)
)

(p2, 0, p1,mW , 0,MR, 0)

+m2
W

( − 2D̂00 + m2
Z (D̂0 + D̂1 + D̂12

− D̂22)
)

(p2, p1, 0,mW , 0,MR, 0)

+ 2c2
Wm2

W (2D̂00 − m2
Z D̂2)(0, p2, p1, 0,MR,mW ,mW )

}

+ 1

16π2

g

cW
v2 (

YνY
†
ν YνY

†
ν

)km

×
{

1

2
Ĉ0(p2, p1,mW ,MR,MR)

+
(

1

2
− s2

W

)

(

2D̂00(0, p2, p1,MR,MR,mW ,mW )

+C2(MR,MR,mW ))

}

. (29)

Here we have used again the notation in boldface for MR ,
to mean that all these functions have been expanded at large
MR 	 v, and we have kept just the first terms in these
expansions. Specifically, we select all the needed terms in the
involved loop functions that lead to contributions in FMIA

L
of O(v2/M2

R), which are the first order terms in this large
MR expansion of the form factor. For shortness, we leave
the technical details of the loop functions expansions for the
Appendix D, and present here just the final result for the
effective vertex. By plugging the results of Appendix D into
Eq. (29), we finally get:

V̂ eff
Z�k�m

= g

16π2cW

[

m2
W

M2
R

(

f (c2
W ) + g(c2

W ) log

(

m2
W

M2
R

))

(

YνY
†
ν

)km − v2

2M2
R

(

YνY
†
ν YνY

†
ν

)km
]

= g

16π2cW

[

m2
W

M2
R

(

4.1 + i 2.1 + 1.4 log

(

m2
W

M2
R

))

(

YνY
†
ν

)km − v2

2M2
R

(

YνY
†
ν YνY

†
ν

)km
]

, (30)

where, for practical purposes, the resulting coefficients
f (c2

W ) and g(c2
W ), which are functions of the squared W

and Z mass ratio, m2
W /m2

Z = cos2 θW ≡ c2
W , have been

evaluated numerically in the second line, for c2
W = 0.77.

Their complete analytical expressions are given by:
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f (c2
W ) = 8(c2

W + 2)c4
W arctan2

[

(4c2
W − 1)−

1
2

]

+ 1

6

(

− 11c2
W + 12c4

W + 4π2(c2
W + 1)2 − 26

)

+ 1

6

(

c−2
W + 18 − 28c2

W − 24c4
W

)

(4c2
W − 1)

1
2 arctan

[

(4c2
W − 1)−

1
2

]

+ 1

72
(10 − 5c−2

W )

− log(c2
W )

(

3 + 2c2
W + (c2

W + 1)2 log(c2
W )

)

− 2(c2
W + 1)2Li2(c

2
W + 1)

− iπ
(

3 + 2c2
W + 2(c2

W + 1)2 log(c2
W )

)

, (31)

g(c2
W ) = 1

12
(c−2

W + 16). (32)

Notice that in this on-shell Z boson effective vertex there is
an imaginary contribution. We have checked that it comes
from diagrams (2a) and (2b) in Fig. 2, and is due to the
possible crossing through the physical threshold of pro-
ducing two light neutrinos (mainly νL ) from the on-shell
Z boson. We have also checked that our analytical result
for this imaginary part is in agreement with the analytical
result of the limit of heavy singlets in reference [7], i.e. for
mni 	 mW .

In Figs. 5 and 6 we present the numerical results for
our predictions of the partial widths and the corresponding
branching ratios for the LFVZD. For illustrative purposes
we have chosen two examples of input neutrino Yukawa cou-
pling matrices, following [19,22,23,25]. Concretely, in these
figures we use:

Y TM4
ν = f

⎛

⎝

0.1 0 0
0 1 0
0 1 0.014

⎞

⎠ , Y TM5
ν = f

⎛

⎝

0 1 −1
0.9 1 1
1 1 1

⎞

⎠ .

(33)

These particular textures were selected as illustrative exam-
ples belonging to a type of scenarios (named TM scenarios
in [25]) in which the LFV is always extremely suppressed in
the μe sector, which is well-known to be highly constrained,
but it can lead to large LFV in the τμ sector, which is less
severely constrained. These scenarios are known to produce
interesting phenomenological implications. For instance, in
collider physics they can lead to the production of exotic
τ -μ-jet-jet events at LHC [23]. Notice that the Yukawa cou-
pling matrices in these examples are usually given in terms
of a scaling factor f that characterizes the global strength of
the coupling. We have also tried other examples of textures
leading instead to large LFV in the τe sector (the so-called
TE scenarios in [25]) and the results are quite similar to the
ones presented here for the τμ sector. Since our aim in this
section is mainly to provide useful and accurate formulas
for the LFV effective vertex, we believe that the choice of
these two textures should be sufficient for the check of the
V̂ eff
Z�k�m

accuracy. It should also be noted that in checking
our numerical results from the MIA with the previous full
one-loop numerical results of [25], which is our choice here,

Fig. 5 Predictions for the partial width �(Z → τ μ̄) and branching
ratio BR(Z → τ μ̄) as a function of MR . The dashed lines are the pre-
dictions from the MIA to O(Y 2

ν ). The solid lines are the predictions
from the full one-loop computation of the mass basis. Here the exam-

ples TM4 (left panel) and TM5 (right panel) with f = 0.1, 0.5, 1, as
explained in the text, are chosen. In the bottom of these plots the ratio
R = �MIA/�full is also shown
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Fig. 6 Predictions for the partial width �(Z → τ μ̄) and branching
ratio BR(Z → τ μ̄) as a function of MR . The dashed lines are the
predictions from the MIA to O(Y 2

ν + Y 4
ν ). The solid lines are the pre-

dictions from the full-one loop computation of the mass basis. Here the

examples TM4 (left panel) and TM5 (right panel) with f=0.1,0.5,1, as
explained in the text, are chosen. In the bottom of these plots the ratio
R = �MIA/�full is also shown

we are also simultaneously checking the agreement with all
the other numerical results of the physical basis in [7,12,20]
since they are all consistent.

In Figs. 5 and 6 we have compared the MIA results with
the full results in order to learn on the goodness of our approx-
imate formulas for the on-shell effective vertex. We show the
results both to O(Y 2

ν ), Fig. 5, and to O(Y 2
ν + Y 4

ν ), Fig. 6, for
comparison. The first thing worth noticing is that with the LO
result, i.e. taking just theO(Y 2

ν ) solution for the effective ver-
tex, the agreement between the MIA and the full result is not
so good as taking also the NLO terms ofO(Y 4

ν ). It is also clear
from these plots that our simple formula in Eq. (30) for the
MIA effective vertex to O(Y 2

ν + Y 4
ν ) provides very accurate

results, leading to LFV rates which are very close to the full
results, even for large Yukawa couplings, with global strength
f of order 1. It is only for relatively low values of MR , say
well below 1 TeV, and very large Yukawa couplings, say with
f ≥ O(1), where the initial assumption of mD � MR does
not hold anymore, that we get a significant deviation from the
full results. For all the other input parameters the agreement
is excellent. Therefore the MIA approximation works pretty
well in the present case of LFVZD.

Finally, to end this section we find interesting to com-
pare our result for V̂ eff

Z�k�m
in Eq. (30) with our previous

result in [27] for the corresponding on-shell Higgs effective
vertex V̂ eff

H�k�m
which is the proper one for the LFV Higgs

decays H → �k �̄m . This Higgs effective vertex computed in
[27] was obtained in exactly the same context of ISS with
heavy right handed neutrinos and following the same MIA
and large MR techniques as in the present paper, therefore
this comparison gives us a valuable information. In the Higgs
case, the amplitude and partial decay width can be written
as:

iM � −i ū�k V̂
eff
H�k�m

PLv�m , (34)

�(H → �k �̄m) � mH

16π

∣

∣V̂ eff
H�k�m

∣

∣

2
, (35)

and the on-shell vertex, i.e. for p2
1 = m2

H , found is [27]:

V̂ eff
H�k�m

= g

64π2

m�k

mW

[

m2
H

M2
R

(

r
(m2

W

m2
H

)

+ log

(

m2
W

M2
R

))

(

YνY
†
ν

)km

− 3v2

M2
R

(

YνY
†
ν YνY

†
ν

)km
]

, (36)

with a numerical value for the coefficient given by r(m2
W /

m2
H ) � 0.3. We clearly see that the two effective vertices

V̂ eff
Z�k�m

and V̂ eff
H�k�m

have the same functional form as func-
tions of the input parameters MR and Yν . Both show a decou-
pling behavior with the heavy neutrino masses as ∼ 1/M2

R ,
both have a term with log(m2

W /M2
R), and both have contri-

butions from the LO, O(Y 2
ν ), and from the NLO, O(Y 4

ν ).
Besides, we have checked that both contributions LO and
NLO in the two decays, H and Z , are needed to get a good
numerical agreement of the MIA with the full one-loop result.
The main difference, therefore, is just the numerical values
of the coefficients in front of these terms. First, in the Higgs
case the on-shell effective vertex is real. There is not an imag-
inary part because, contrary to the Z decays, there are not
diagrams with two light neutrino lines (mainly νL ) from the
Higgs boson. Instead, the two neutrino lines connected to a
Higgs particle are one light (mainly νL ) and the other one
heavy (mainly νR) that cannot be produced on-shell in the
Higgs decay, under our assumption of heavy MR 	 v. Sec-
ond, notice that the Z effective vertex, V̂ eff

Z�k�m
, is universal
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in flavor, namely, its size does not depend on the mass of
the charged leptons involved, m�k,m . This is also in contrast

with the Higgs case, where V̂ eff
H�k�m

shows a linear depen-
dence with the heaviest charged lepton mass, m�k , indicating
a larger LFV effect for heavier charged leptons.

4 Numerical estimates with the MIA-effective vertex of
maximum allowed LFVZD rates

In order to show the applicability and simplicity of the MIA
results, in this section we use the effective vertex in Eq. (30)
to compute the maximum LFVZD rates in the ISS model
that are allowed by present experimental constraints. For that
purpose, we use the constraints derived in [41], where the
non-unitary matrix N describing the mixing between the light
neutrino mass eigenstates and the SM charged leptons via W
interactions was parametrized in terms of a small Hermitian
matrix η defined by [41]:

N = (1 − η)UPMNS. (37)

This η matrix then encodes the deviations from the unitary
UPMNS induced by the mixing with the extra heavy neutrinos.

By performing a global fit analysis, upper bounds2 on the
η matrix were set to

ηmax
3σ =

⎛

⎝

1.62 × 10−3 1.51 × 10−5 1.57 × 10−3

1.51 × 10−5 3.92 × 10−4 9.24 × 10−4

1.57 × 10−3 9.24 × 10−4 3.67 × 10−3

⎞

⎠ . (38)

In our case of interest with degenerate MR and vYν � MR ,
the η matrix can be written, following [41], approximately
as:

η = v2

2M2
R

YνY
†
ν , (39)

what allows us to define a scenario that easily implements
these bounds. Following [27], we define this scenario by con-
sidering the following neutrino Yukawa matrix:

YGF
ν = f

⎛

⎝

0.33 0.83 0.6
−0.5 0.13 0.1
−0.87 1 1

⎞

⎠ . (40)

This Yν leads to a YνY †
ν with the same pattern as in Eq. (38)

and saturates the ηmax
3σ bounds for f/MR = (3/10) TeV−1.

Consequently, it provides a simple way for concluding on
maximum allowed rates within this model. Notice that one

2 Notice that we have corrected a typo in the ηmax
3σ given in [27], which

was present only in the text, not in the codes.

can always take Yν and MR as independent input parameters
as long as μX accommodates light neutrino oscillation data
by means of the μX -parametrization introduced in [19].

We show in Fig. 7 the results for the three LFVZD chan-
nels in the GF scenario defined in Eq. (40). Solid lines are
the exact one-loop results, computed with the expressions
in Appendix B after diagonalizing to the mass basis, while
dashed lines have been obtained using the effective vertex in
Eq. (30) in terms of the parameters in the EW basis. Shad-
owed areas represent the regions disallowed by some of the
constraints: in the purple area, covering the upper and left
parts of the figures, the upper bounds in Eq. (38) are not
fulfilled; in the yellow area, in the upper right corners, the
Yukawa coupling matrix becomes non-perturbative. Our cri-
teria for perturbativity is imposing |Yi j |2/4π < 1 for all the
entries, what implies f <

√
4π for this scenario.

The first thing we conclude from these plots is that
the computed effective vertex works extremely well in the
allowed white region. Applying the constraints from both
global fits and perturbativity imposes an upper bound on
vYν/MR , which further supports our criteria of not com-
puting higher order terms in Eq. (7). For masses below the
TeV scale, when MR is close to the EW scale, the assumption
v/MR � 1 breaks down and the effective vertex stops being
a good approximation. Nevertheless, from these plots we see
that the MIA results work very well in the allowed region
also for lighter MR . Consequently, we can conclude that our
effective vertex is a very powerful tool to easily estimate the
LFVZD rates in the region of MR � 300 GeV that is allowed
by present constraints.

Second, we see that the shape of the excluded purple area,
or the complementary allowed white area, is different in the
μe sector with respect to the τe and τμ ones, specially in
the low f and low MR regime. The origin of this differ-
ence comes from the strong bound on ηeμ, coming from the
upper bound on μ → eγ by MEG [42], which suppresses
the O(Y 2

ν ) contributions that are the most relevant ones at
this low f regime.

Finally, we can use Fig. 7 to conclude on the maximum
allowed rates for the LFVZD. As it happens for the Higgs
case [27], these large rates are found in the crossing between
the global fit and perturbativity bounds, which happens at
heavy masses around 10 TeV. Taking the benchmark sensi-
tivities of 10−9 for the future linear colliders and assuming a
modest improvement in the sensitivities of 10−11 at FCC-ee,
we see that these rates could be accessible at both experiments
for the three LFVZD channels. This is in contrast to the H
decays, where the H → μe channel is further suppressed
due to the small lepton masses. The difference between the
Z and H decays comes from the the flavor universality in
the LFVZD, as we discussed before.

Interestingly, these future experiments could access not
only the high MR regime, but also lighter values, meaning
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Fig. 7 Predictions for Z → μē (top), Z → τ ē (left) and Z → τ μ̄

(right) using the effective vertex computed with the MIA (dashed lines)
and the full results in the mass basis (solid lines) for YGF

ν in Eq. (40)

and f = 0.1, 0.5, 1, 2. The chosen example GF is explained in the
text. Shadowed areas are disallowed by global fit results (purple) or for
giving non-perturbative Yukawa couplings (yellow)

that they could be complementary to direct searches at the
LHC (for a recent summary, see for instance [43]). Indeed,
the FCC-ee could be able to explore the full allowed mass
range from the EW scale up to masses above the TeV scale
in the τe and τμ sectors.

Summarizing our findings, we conclude that our effective
vertex provides a simple and useful tool for estimating the
LFVZD rates in the allowed region, which can be as large as,

BR(Z → μe) � 10−9 (

10−13)

for MR ∼ 10 TeV (500 GeV), (41)

BR(Z → τe) � 10−7 (

10−10)

for MR ∼ 10 TeV (500 GeV), (42)

BR(Z → τμ) � 10−8 (

10−11)

for MR ∼ 10 TeV (500 GeV), (43)

implying that future lepton colliders could probe this kind of
low scale seesaw models looking for LFVZD.

5 Conclusions

In this work we have studied the lepton flavor violating
decays of the Z boson into two leptons with different flavor.

We have computed in full detail the one-loop contributions
from the heavy right handed neutrinos to these decays within
the inverse seesaw and by using the mass insertion approx-
imation, which works with the electroweak neutrino basis,
instead of the usual full one-loop computation that works
with the neutrino mass basis. Our analytical results of the
involved form factors from the mass insertion approxima-
tion are presented explicitly in terms of the relevant inverse
seesaw parameters: the right handed neutrino mass, MR , and
the neutrino Yukawa coupling matrix, Yν . The formulas pre-
sented here are simple and useful. They contain the LO con-
tributions of O(Y 2

ν ) and the NLO contributions of O(Y 4
ν ),

both being relevant for the kind of scenarios that we are inter-
ested in with large neutrino Yukawa couplings, Yν ∼ O(1).
We have then presented our computation of the one-loop
effective vertex Z�k�m which is derived from the large MR

expansion, valid for MR 	 v, of the form factors and by
keeping the first order in this expansion which turns out to be
of O(v2/M2

R). This demonstrates explicitly the decoupling
behavior of the heavy right handed neutrinos.

As a very important test of our analytical results, the work
has been completed with an explicit demonstration of the
gauge invariance of our results for the on-shell effective one-
loop vertex.

In the last part we have applied this effective vertex for an
easy and accurate estimate of the maximum allowed lepton
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flavor violating Z decay rates by present data in these low
scale seesaw models. The rates found are indeed promising,
since they are at the reach of future lepton colliders.
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Appendix A: Conventions for the one-loop integrals

In all this work, we use the following definitions and conven-
tions for the one-loop integrals and the involved momenta:

μ4−d
∫

ddk

(2π)d

{1; kμ}
[k2 − m2

1][(k + p1)2 − m2
2]

= i

16π2

{

B0; Bμ
}

(p1,m1,m2), (44)

μ4−d
∫

ddk

(2π)d

{1; kμ; kμkν}
[k2 − m2

1][(k + p1)2 − m2
2][(k + p1 + p2)2 − m2

3]
= i

16π2

{

C0;Cμ;Cμν
}

(p1, p2,m1,m2,m3), (45)

μ4−d
∫

ddk

(2π)d

{1; kμ; kμkν}
[k2 − m2

1][(k + p1)2 − m2
2][(k + p1 + p2)2 − m2

3][(k + p1 + p2 + p3)2 − m2
4]

= i

16π2

{

D0; Dμ; Dμν
}

(p1, p2, p3,m1,m2,m3,m4). (46)

In terms of momenta, the decompositions are:

Bμ(p1,m1,m2)

= pμ
1 B1(p1,m1,m2)

Cμ(p1, p2,m1,m2,m3)

= {

pμ
1 C1 + pμ

2 C2
}

(p1, p2,m1,m2,m3)

Cμν(p1, p2,m1,m2,m3)

= {

gμνC00 + pμ
1 pν

1C11 + pμ
1 pν

2C12

+ pμ
2 pν

1C21 + pμ
2 pν

2C22
}

(p1, p2,m1,m2,m3)

Dμ(p1, p2, p3,m1,m2,m3,m4)

= {

pμ
1 D1 + pμ

2 D2 + pμ
3 D3

}

(p1, p2, p3,m1,m2,m3,m4)

Dμν(p1, p2, p3,m1,m2,m3,m4)

= {

gμνD00 + pμ
1 pν

1 D11 + pμ
1 pν

2 D12 + pμ
1 pν

3 D13

+ pμ
2 pν

1 D21 + pμ
2 pν

2 D22 + pμ
2 pν

3 D23 + pμ
3 pν

1 D31

+ pμ
3 pν

2 D32 + pμ
3 pν

3 D33
}

(p1, p2, p3,m1,m2,m3,m4).

(47)

We adopt the usual definitions in dimensional regularization,
with:

� = 2/ε − γE + log(4π), (48)

and d = 4 − ε. We name μ the usual regularization scale.
In the following we use a shorten notation for the loop

functions when evaluated at zero external momenta:

B(m1,m2) ≡ B(p1,m1,m2)|p2
1=0,

C(m1,m2,m3) ≡ C(p1, p2,m1,m2,m3)|p2
1=p2

2=0,

D(m1,m2,m3,m4) ≡ D(p1, p2, p3,m1,m2,m3,m4)|p2
1=p2

2=p2
3=0.

(49)

We also use a shorten notation for the case when the loop
functions are evaluated at on-shell Z external momentum,
i.e. for p2

1 = m2
Z . Specifically, we refer to all these functions

by using a hat notation. For instance:

Ĉ0(p2, p1, MR,mW ,mW )

≡ C0(p2, p1, MR,mW ,mW )|p2
1=m2

Z
, (50)

and similarly for the other functions with a hat appearing
in the text. Since, we are neglecting the external fermion
masses, we are also taking p2

2 = 0 and p2
3 = 0, though for

shortness these are not explicitly written through the text.

Appendix B: Full form factors (Feynman–’t Hooft gauge)

For completeness, and to better clarify the comparison with
our MIA computation, we include here the full form factors in
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Fig. 8 One-loop diagrams in the Feynman–’t Hooft gauge contributing to the full computation of Z → �k �̄m decays in the physical neutrino mass
eigenstate basis

the Feynman-’t Hooft gauge of the different diagrams in the
neutrino physical basis, shown in Fig. 8. We took the formulas
from [12] and rewrite them using the notation introduced in
Appendix A.

F (1)
Z = 1

2
B�kni B

∗
�mn j

{

−Cnin j xi x j m
2
WĈ0

+C∗
ni n j

√
xi x j

[

m2
Z

(

Ĉ12 − Ĉ22
) − 2Ĉ00 + 1

2

]

}

,

(51)

where Ĉ0,00,12,22 ≡ Ĉ0,00,12,22(p2, p1,mW ,mni ,mn j );

F (2)
Z = B�kni B

∗
�mn j

{

−Cnin j

[

m2
Z

(

Ĉ0 + Ĉ1 + Ĉ12

−Ĉ22

)

− 2Ĉ00 + 1
]

+ C∗
ni n j

√
xi x j m

2
WĈ0

}

, (52)

where Ĉ0,1,00,12,22 ≡ Ĉ0,1,00,12,22(p2, p1,mW ,mni ,mn j );

F (3)
Z = 2c2

W B�kni B
∗
�mni

{

m2
Z

(

Ĉ1 + Ĉ12 − Ĉ22

)

−6Ĉ00 + 1
}

, (53)

where Ĉ1,00,12,22 ≡ Ĉ1,00,12,22(p2, p1,mni ,mW ,mW );

F (4)
Z + F (5)

Z = −2s2
W B�kni B

∗
�mni xi m

2
WĈ0, (54)

where Ĉ0 ≡ Ĉ0(p2, p1,mni ,mW ,mW );

F (6)
Z = −(1 − 2s2

W ) B�kni B
∗
�mni xi Ĉ00, (55)

where Ĉ00 ≡ Ĉ00(p2, p1,mni ,mW ,mW );

F (7)
Z + F (8)

Z + F (9)
Z + F (10)

Z

= 1

2
(1 − 2c2

W ) B�kni B
∗
�mni {(2 + xi )B1 + 1} , (56)

where B1 ≡ B1(mni ,mW ).
In all these formulas, sum over neutrino indices, i, j =

1, . . . , 9 has to be understood and xi ≡ m2
ni /m

2
W . As before,

the loop functions with a hat means that they are evaluated at
on-shell external momenta, i.e. at p2

1 = m2
Z , and p2

2 = p2
3 =

0 since we are neglecting the charged lepton masses.
In the neutrino mass basis, the relevant couplings are given

by the following terms in the Lagrangian:

LW = − g√
2

3
∑

i=1

9
∑

j=1

W−
μ �̄i B�i n j γ

μPLn j + h.c., (57)

LZ = − g

4cW

9
∑

i, j=1

Zμ n̄iγ
μ
[

Cnin j PL − C∗
ni n j

PR

]

n j ,

(58)

LH = − g

2mW

9
∑

i, j=1

H n̄iCni n j

[

mni PL + mn j PR

]

n j ,

(59)

LG± = − g√
2mW

3
∑

i=1

9
∑

j=1

G−�̄i B�i n j

[

m�i PL − mn j PR

]

n j

+ h.c, (60)

LG0 = − ig

2mW

9
∑

i, j=1

G0 n̄iCni n j

[

mni PL − mn j PR

]

n j ,

(61)
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where U ν is a unitary rotation matrix that diagonalizes the
neutrino mass matrix, MISS, according to,

U νT MISS U
ν = diag(mn1, . . . ,mn9), (62)

and

B�i n j = U ν∗
i j , (63)

Cnin j =
3

∑

k=1

U ν
kiU

ν∗
k j . (64)

Notice that in this model we consider the right handed
neutrinos as singlets of SU (2), so in the electroweak inter-
action basis there are no couplings between the right handed
neutrinos νR with the SU (2) gauge bosons W and Z . Indeed,
the right handed neutrinos only interact with the Higgs sector,
i.e. with the Higgs boson and the Goldstone bosons.

The relation between the normalization of FL and FL is:

FL = g3

32π2cW
FL . (65)

Appendix C: MIA form factors (Feynman–’t Hooft
gauge)

The results of the MIA form factors toO(Y 2) in the Feynman-
’t Hooft gauge are the following:

F (2a)
L = 1

16π2

gm2
W

cW

(

YνY
†
ν

)km ( − 2D00 + p2
1(D0 + D1

+ D13 − D33)
)

(p2, 0, p1,mW , 0, MR, 0),

F (2b)
L = 1

16π2

gm2
W

cW

(

YνY
†
ν

)km (

−2D00 + p2
1(D0 + D1

+D12 − D22)) (p2, p1, 0,mW , 0, MR, 0),

F (3a)
L = 1

16π2 2gcWm2
W

(

YνY
†
ν

)km

× (

C0(p2, p1, MR,mW ,mW )v

+ (2D00 − p2
1D2)(0, p2, p1, 0, MR,mW ,mW )

)

,

F (4a)
L = 1

16π2 gs
2
WmWmZ

(

YνY
†
ν

)km

× C0(p2, p1, MR,mW ,mW ),

F (5a)
L = 1

16π2 gs
2
WmWmZ

(

YνY
†
ν

)km

× C0(p2, p1, MR,mW ,mW ),

F (6a)
L = − 1

16π2

2g

cW

(

−1

2
+ s2

W

)

(

YνY
†
ν

)km

× C00(p2, p1, MR,mW ,mW ),

F (7a)
L = − 1

16π2

2gm2
W

cW

(

−1

2
+ s2

W

)

(

YνY
†
ν

)km m2
k

m2
k − m2

m

× C2(0, p2, 0, MR,mW ),

F (8a)
L = − 1

16π2

g

cW

(

−1

2
+ s2

W

)

(

YνY
†
ν

)km

× m2
k

m2
k − m2

m

B1(p2, MR,mW ),

F (9a)
L = − 1

16π2

2gm2
W

cW

(

−1

2
+ s2

W

)

(

YνY
†
ν

)km

× −m2
m

m2
k − m2

m

C2(0, p3, 0, MR,mW ),

F (10a)
L = − 1

16π2

g

cW

(

−1

2
+ s2

W

)

(

YνY
†
ν

)km

× −m2
m

m2
k − m2

m

B1(p3, MR,mW ). (66)

All the remaining diagrams are of O(m2
lep), and since we are

neglecting the lepton masses in our computation they will
provide vanishing contributions to the form factor. Specifi-
cally, these vanishing diagrams are:

F (1a)
L , F (1b)

L , F (1c)
L , F (1d)

L , F (4b)
L , F (5b)

L , F (6b)
L , F (6c)

L , F (6d)
L

, F (8b)
L , F (8c)

L , F (8d)
L , F (10b)

L , F (10c)
L , F (10d)

L .

The results of the MIA form factors toO(Y 4) in the Feynman-
’t Hooft gauge are the following:

F (1e)
L = 1

16π2

g

2cW
v2

(

YνY
†
ν YνY

†
ν

)km

× C0(p2, p1,mW , MR, MR),

F (6e)
L = 1

16π2

g

cW

(

1 − 2s2
W

)

v2
(

YνY
†
ν YνY

†
ν

)km

× D00(0, p2, p1, MR, MR,mW ,mW ),

F (8e)
L = − 1

16π2

g

cW

(

−1

2
+ s2

W

)

v2
(

YνY
†
ν YνY

†
ν

)km

× m2
k

m2
k − m2

m

C2(0, p2, MR, MR,mW ),

F (10e)
L = − 1

16π2

g

cW

(

−1

2
+ s2

W

)

v2
(

YνY
†
ν YνY

†
ν

)km

× −m2
m

m2
k − m2

m

C2(0, p3, MR, MR,mW ). (67)

Regarding the divergences in the MIA computation in the
Feynman–’t Hooft gauge we have found the following: (1) to
O(Y 2) the only divergent diagrams are (6a), (8a) and (10a),
and we have checked that all these divergences cancel out
when adding the three diagrams. So, our final result toO(Y 2)

is finite. (2) to O(Y 4) all the loop functions are finite, and
therefore all the diagrams are also finite. In summary, we
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have checked that the total form factor, FMIA
L , is finite for an

arbitrary p2
1.

Finally, notice that these formulas are valid for the degen-
erate MRi = MR case. Nevertheless, they can be easily gen-
eralized to the non-degenerate case, as explained in [27]. For
example, it would be enough to change

(YνY
†
ν )kmCα(p2, p1, MR,mW ,mW )

→ (Y ka
ν Y †am

ν )Cα(p2, p1, MRa ,mW ,mW ),

(YνY
†
ν YνY

†
ν )kmCα(p2, p1,mW , MR, MR)

→ (Y ka
ν Y †ai

ν Y ib
ν Y †bm

ν )Cα(p2, p1,mW , MRa , MRb ),

(68)

and similarly for all the other loop functions and terms.

Appendix D: Large MR expansion of the loop integrals

Here we summarize the results of the large MR expansion
for all the one-loop functions entering in the calculation of
the on-shell effective vertex. Concretely, the ones involved
in the Feynman-’t Hooft gauge that are given in Eq. (29). We
use here the same notation as in the text, i.e, we use a hat to
denote the functions when evaluated at on-shell external Z
boson with p2

1 = m2
Z . Besides, we neglect the lepton masses

in all these one-loop functions, and provide their main result
from the large MR expansion, namely, by keeping just the
relevant terms that lead to the first order contribution in the
effective vertex, i.e. the O(v2/M2

R) term in Eq. (26). We also
use here the same notation as in text with MR in boldface to
mean that we are performing the large MR expansion of the
given function.

We find the following results:

B1 (MR,mW )

= −�

2
− 3

4
+ 1

2
log

(

M2
R

μ2

)

− m2
W

2M2
R

(

2 log

(

m2
W

M2
R

)

+ 1

)

,

Ĉ0 (p2, p1,MR,mW ,mW )

= 1

M2
R

(

2(4r − 1)
1
2 arctan

[

(4r − 1)−
1
2

]

−1 + log

(

m2
W

M2
R

))

,

Ĉ0 (p2, p1,mW ,MR,MR)

= − 1

M2
R

,

Ĉ00 (p2, p1,MR,mW ,mW )

= �

4
+ 3

8
− 1

4
log

(

M2
R

μ2

)

+ m2
W

72M2
R

(

(

6 − r−1
)

(

6 log

(

m2
W

M2
R

)

− 5

)

+12
(

4 − r−1
)

(4r − 1)
1
2 arctan

[

(4r − 1)−
1
2

])

,

C2 (0,MR,mW )

= − 1

2M2
R

(

1 + log

(

m2
W

M2
R

))

,

C2 (MR,MR,mW )

= 1

2M2
R

,

(D̂0 + D̂1 + D̂13 − D̂33) (p2, 0, p1,mW , 0,MR, 0)

= − 1

2m2
Z M

2
R

− 1 + r

m2
Z M

2
R

{

(2r + 1)Li2(r + 1)

− 2

(

π2

6
(2r + 1) − 1 − iπ

)

+
(

r + 1

2

)

log2(r)

+ (

2 + iπ(2r + 1)
)

log(r)

}

= (D̂0 + D̂1 + D̂12

− D̂22) (p2, p1, 0,mW , 0,MR, 0) ,

D̂00 (p2, 0, p1,mW , 0,MR, 0)

= D̂00 (p2, p1, 0,mW , 0,MR, 0)

= − 1

24M2
R

{

− 6 log

(

m2
W

M2
R

)

+ 12(r + 1)rLi2(r + 1)

− 4π2r2 + 6
(

2iπr2 + 2iπr + 2r + 1
)

log(r)

}

− 1

24M2
R

{

− 4π2r + 12iπr + 12r + 6(r + 1)r log2(r)

+ 6iπ + 9

}

,

D̂00 (0, p2, p1, 0,MR,mW ,mW )

= 1

M2
R

{

1

4
log

(

m2
W

M2
R

)

− 3

8
+ r

2

+ 1 − 2r

2
(4r − 1)

1
2 arctan

[

(4r − 1)−
1
2

]

+ r2 arctan2
[

(4r − 1)−
1
2

]

}

,

D̂2 (0, p2, p1, 0,MR,mW ,mW )

= 2

m2
Z M

2
R

{

− 4r arctan2
[

(4r − 1)−
1
2

]

+ 2(4r − 1)
1
2 arctan

[

(4r − 1)−
1
2

]

− 1

}

,
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D̂00 (0, p2, p1,MR,MR,mW ,mW )

= − 1

4M2
R

. (69)

In these above formulas we have denoted the W and Z
squared mass ratio by r = c2

W = m2
W /m2

Z to shorten the
result, and mW = gv/

√
2. Besides, μ is the usual regulariza-

tion scale of dimensional regularization, and the divergence
� is defined in Eq. (48).

Finally, for completeness, we also provide here the results
for the additional loop functions in the zero external momenta
case which are needed to get the results of the following
appendix. These are:

C0 (MR,mW ,mW )

= 1

M2
R

(

1 + log

(

m2
W

M2
R

))

,

C0 (mW ,MR,MR)

= − 1

M2
R

,

C00 (MR,mW ,mW )

= �

4
+ 3

8
− 1

4
log

(

M2
R

μ2

)

+ m2
W

4M2
R

(

2 log

(

m2
W

M2
R

)

+ 1

)

,

D00 (mW , 0,MR, 0) = 1

4M2
R

log

(

m2
W

M2
R

)

,

D00 (0,MR,mW ,mW ) = 1

4M2
R

(

1 + log

(

m2
W

M2
R

))

,

D00 (MR,MR,mW ,mW ) = − 1

4M2
R

. (70)

Appendix E: The one-loop effective vertex Z�k�m at zero
external momenta

As we have mentioned in the text, it is an interesting exer-
cise to evaluate the one-loop effective vertex Z�k�m at zero
external momenta, V eff

Z�k�m
|p2

ext=0 with p2
ext = 0 meaning

p2
1 = p2

2 = p2
3 = 0, and find out if this is a valid and

accurate result to be used inside a physical observable, like
the LFV Z partial decay width, or other low energy LFV pro-
cesses that can be mediated by a Z boson. In principle, one
would naively expect that this effective vertex could provide
a good approximation to the Z-penguin mediated contribu-
tions in low energy observables, like LFV three body lepton
decays, �m → 3�k , μ−e conversion in heavy nuclei and oth-
ers. In those cases, working in the limit of very small transfer
momentum at the intermediate Z boson propagator is a good
approximation, and therefore to provide a simple formula

for the V eff
Z�k�m

|p2
ext=0 vertex seems to be useful. However, we

have found that it is indeed not the case, since our results
show explicitly that it is a gauge dependent quantity and can-
not be used separately from the other contributions in these
low energy observables, like the photon-penguin contribu-
tions, box diagrams and others.

We present next our analytical results for thisV eff
Z�k�m

|p2
ext=0

vertex with several gauge choices. Firstly, we find that the
O(Y 4

ν ) contribution is gauge independent and coincides in
all covariant gauges with the result obtained for the on-shell
case, i.e, we get the same analytical result as in Eq. (30).
Secondly, we find that the result of the O(Y 2

ν ) contribution
in the unitary gauge is divergent. Specifically, the divergence
is:

FUG(�)
L |p2

ext=0 = g

16π2cW

�

4

(

YνY
†
ν

)km
. (71)

This divergent result, shows that the unitary gauge does not
provide a physical result for this vertex when the external
momenta are set to zero. Furthermore, we have also stud-
ied in detail the particular case of �m → 3�k decays and
we have checked by an explicit computation that by adding
all the contributions, this divergence of the Z -penguin in
Eq. (71) cancels with the divergent contributions from the
photon penguin and box diagrams, providing a finite result
for the partial width of �m → 3�k decays. However, this zero
external momenta result of the UG cannot be used for the Z
decays.

Thirdly, for the case of the Feynman–’t Hooft gauge (FH),
we get the following finite result:

V eff
Z�k�m

|FH
p2

ext=0

= g

16π2cW

[

m2
W

M2
R

(

5

2
+ 3

2
log

(

m2
W

M2
R

))

(

YνY
†
ν

)km

− v2

2M2
R

(

YνY
†
ν YνY

†
ν

)km
]

. (72)

We have checked that this result is in agreement with the Fll ′
Z

of [7], given in the physical neutrino mass basis, once we
take the heavy neutrino limit with mN 	 v, and after using
the following relations,

∑

i∈Heavy

B�kni B
∗
�mni � v2

m2
N

(

YνY
†
ν

)km
, (73)

∑

i, j∈Heavy

B�kni Cni n j B
∗
�mn j

� v4

m4
N

(

YνY
†
ν YνY

†
ν

)km
. (74)

We have also checked that the logarithmic contributions
within Eq. (72) coming from the specific one-loop diagrams
with only one neutrino propagator in the loops, i.e., from dia-
grams of type (3) through type (10), are in agreement with the
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logarithmic contribution provided in Eqs. 11–14 of [21] in the
proper limit of heavy neutrinos, i.e. for xi = m2

ni /m
2
W 	 1.

Notice that this reference [21] presents their results as a Tay-
lor expansion around zero external Z momentum, therefore
they cannot be compared with our on-shell Z results, but just
with our zero external Z momentum results. Concretely, we
find for this partial subset of diagrams of the Feynman–’t
Hooft gauge the following result for the logarithmic term to
O(YνY †

ν ):

V eff
Z�k�m

|FH
p2

ext=0
(only diags 3′s + · · · + 10′s)

= g

16π2cW

m2
W

M2
R

5

2
log

(

m2
W

M2
R

)

(

YνY
†
ν

)km + . . . , (75)

which is in agreement with the log xi contribution in
Eqs. (11–14) of [21]. We cannot perform a complete com-
parison with [21], i.e. including other contributions like the
finite non-logarithmic term nor the contributions from the full
set of diagrams containing two neutrino propagators (heavy-
heavy, light-heavy, light-light), since they are not provided
in this reference [21] in the needed limit of the heavy ni ,
namely, for xi = m2

ni /m
2
W 	 1.

And, finally, for the case of an arbitrary Rξ gauge we get
the following finite result:

V eff
Z�k�m

|Rξ

p2
ext=0

= g

16π2cW

[

m2
W

M2
R

(

h(ξ) + 3

2
log

(

m2
W

M2
R

))

(

YνY
†
ν

)km − v2

2M2
R

(

YνY
†
ν YνY

†
ν

)km
]

,

(76)

where the ξ parameter dependence is included in the func-
tion:

h(ξ) = ξ + 3

4
+ 3

2

ξ log ξ

ξ − 1
. (77)

Notice that we expanded the one-loop functions in the large
MR limit taking into account the gauge-fixing parameter:
MR 	 mW ,

√
ξmW .

The previous result of Eq. (76) clearly demonstrates that
the one-loop effective vertex at zero external momenta is not
a physical quantity since it is manifestly gauge dependent. In
this Rξ gauge case, we have also checked by an explicit com-
putation of all the contributions to the �m → 3�k decays that
the previous ξ dependence from the Z penguin is cancelled
by the photon penguin and boxes contributions, leading to a
gauge invariant result, as it must be. On the other hand, we
would like to emphasize that, although the results in Eqs. (72)
and (76) can be useful for a discussion of the (gauge depen-
dent) Z penguin contribution in a low energy processes, they
cannot be used for the Z decays case, since as proven here,
they are gauge dependent.
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