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1 Introduction and summary

To understand the M-theory, a postulated eleven dimensional theory which unifies various
ten dimensional superstring theories non-perturbatively through an extra one dimension,
is an important theme of research in theoretical particle physics. In the eleven dimensional
supergravity there are BPS black brane solutions with dimension 2 + 1 (M2-brane) and
5+ 1 (Mb5-brane), each of which has the gravitational entropy scaling ~ N3/2 and ~
N3 [1] with respect to their charges N. These scalings of the entropy are in contrast
to the scaling for the 3 + 1 dimensional black brane in the ten dimensional type IIB
supergravity (D3-brane) which can be naturally understood as the degrees of freedom of
the D3-brane worldvolume theory originating from the open strings ending on the stack of
N D3-branes. The construction of the worldvolume theory of the M2-branes/M5-branes
which reproduce these scalings of the entropy, while preserving the required supersymmetry
and being compatible with the string theory under the compactification of the M-theory
direction, is an important step toward understanding the M-theory.



These theories have been mysterious for a long time. About the M2-branes, however,
there has been a series of progress using Chern-Simons matter theories starting with [2],
and finally the N' = 6 U(N)j x U(N)_j, superconformal Chern-Simons matter theory [3, 4]
was proposed as the theory of N M2-branes placed on the orbifold background C*/Z.
Later the S® partition function of this theory was calculated in the M-theory limit N — oo
with k kept finite [5] by using the supersymmetric localization formula [6], and it was found
that the free energy F' = —log Zgs behaves as F' =~ (w\/ﬁ /3)N 3/2 which perfectly agrees
with the result obtained from the supergravity [7].

The supersymmetric localization formula [6] allows us to rewrite the S partition func-
tion of the ABJM theory into an N dimensional matrix model, where the rewriting is exact
even for finite N. Hence this matrix model have been studied intensively [7-14] to reveal
the structure of the 1/N corrections which would be related to the quantum effects in the
M-theory. One of the largest breakthroughs in this direction was [15], where it was found
that the S® partition function of the ABJM theory has the same structure as the partition
function of one dimensional quantum mechanical system of N non-interacting fermions
with the one-particle density matrix given as! p = (2cosh#/2)71(2coshp/2)~!. Here Z
and p are the canonical position/momentum operators satisfying [z, p] = 2mik.

The Fermi gas formalism and various computational techniques developed based on
it [16-20] enabled us to study the 1/N perturbative corrections as well as the non-per-
turbative effects of order O(e_\/NTk, e“/m) [11] quantitatively at finite k. Finally in [21]
the large N expansion of the S3 partition function of the ABJM theory was completely
determined including all of the non-perturbative effects. Defining the grand potential
J(p) as SX_o N Z(N) =: 3,cq €/ WH2™) they found that the large y non-perturbative
effects of order O(e#/* e=#) in J(u), which correspond to (’)(e_\/m, e_‘/m) corrections
in the partition function, are precisely given by the topological string free energy and the
Nekrasov-Shatashvili limit of the refined topological string free energy both on local P! x P!
Later this result was also generalized to the case with non-equal ranks U(N); x U(N +
M)y [22].

On the other hand, it was recently discovered that the partition function of the ABJM
theory is also related to the Painlevé systems [23-25]. They found [23] that the grand
partition function of the ABJM theory coincides, under a particualr limit, to the Fredholm
determinant type solution of the 7 function of the Painlevé III3 equation which was found
in [26]. They further found [24] that the exact relations between the partition functions of
the rank deformed ABJM theory discovered in [27] can be reorganized into the 7-form of
the g-deformed Painlevé I1I3 equation.

Our motivation is to find other examples of the theories of M2-branes which enjoy the
similar relation. On one hand, such new examples may provide us a new way to char-
acterize a class of g-difference equations including ¢-Painlevé systems from the viewpoint
of the M2-branes on various background geometries. Such generalization would be also

In [15] the one-particle density matrix for the ABJM theory is given in a Hermitian form p =
(2coshz/2)~/?(2coshp/2) (2 coshz/2) "'/ instead of p = (2coshz/2)"'(2coshp/2)~!. The two ex-
pressions are related by a similarity transformation, and hence they are equivalent to each other as long as
we consider only the traces Trp™.



useful in the other direction: solving the M-theory by using g-difference equations. As a
generalization of the ABJM theory, we can consider its mass deformation [28, 29] where the
bifundamental chiral multiplets have supersymmetric mass term, whose partition function
were also studied in the large N limit [30-33] together with the 1/ corrections [34, 35].
Recently the partition function of this theory was found to be useful to understand the
correlation functions of the ABJM theory even for the supersymmetry non-protected sec-
tors by using the bootstrap technique [36-39], which were hoped to give a new information
about the M-theory [40-45]. The exact values of the partition functions for general NV or an
exact relation among them which holds beyond the 1/N perturbation may provide further
hints toward understanding the M-theory.

Indeed as a class of the generalization of the relation between the ABJM matrix model
and ¢-PIII3, it was already proposed that the 7-function of the affine SU(v) ¢-Toda equation
also allows a Fredholm determinant type solution, together with the concrete expression
for the matrix models [24], although it was not clear whether those matrix models can arise
in the context of the worldvolume theories of the M2-branes. In this paper we have found
that this matrix model with a special choice of the parameters, can be realized as the S3
partition function of the U(N); x U(N + M)_; ABJM theory with the N' = 6 preserving
mass deformation [3, 28, 29], where the mass parameter is pure imaginary and identified
with the rank v as m; = mg = —mi(v — 2a) /v (see (2.1) for the normalization). Here the
rank difference M is related to the time variable of the Toda system. To this 3d partition
function, various techniques which were used to solve the ABJM theory are applicable
straighforwardly. In particular, we find that the partition function can be written in so
called “open string formalism” [46], which allows us to calculate the partition function
exactly at finite k, mq, mo, N, M. These exact values provide a non-trivial check that the
matrix model proposed in [24] is actually a solution of the SU(v) ¢-Toda equation.

This paper is organized as follows. After fixing our notation for the partition function
of the mass deformed ABJM theory in section 2, in section 3 we display a conjectural
bilinear relation among the partition functions for m; = mgy (3.1). We also compare
our proposal with the known relation between the partition function of the ABJM theory
without mass deformation and the g-Painlevé I1I3 (or equivalently the affine SU(2) ¢-Toda)
system [25] and its higher rank generalization [24, 47]. In section 4, we rewrite the partition
function of the mass deformed ABJM theory in the open string formalism and calculate
the exact values of the partition function. By using these exact values we have checked
that our proposal (3.1) holds for a generic complex value of m; = ms up to O(z°) or higher
for some special values of k. In section 5 we summarize our results and discuss possible
future works. In appendix A we review the proof of the Cauchy-Vandermonde determinant
formula (3.4). In appendix B we display the explicit expressions for some of the exact
values of the partition function obtained by using the methods in section 4.

2 Partition function of mass deformed ABJM theory

The ABJM theory is an N' = 6 superconformal Chern-Simons matter theory which consists
of the two vector multiplets of the gauge groups U(N), U(N + M) with the Chern-Simons



actions with the Chern-Simons levels +k, and the two pairs of the chiral multiplets in the
bifundamental representation and the anti-bifundamental representation under the gauge
group U(N) x U(N + M) [3, 4, 48]. We can further add the mass term to the these chiral
multiplets while preserving AV = 2 supersymmetry by turning on the vevs of the background
vector multiplets of the flavor symmetries [49]. The partition function of the mass deformed

ABJM theory can be calculated by the supersymmetric localization formula [6] as?
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where mq, mg are the vevs of the scalar components of the background vector multiplets [35,
49], and \;, Xm are the vevs of the scalar components of the vectormultiplets which label
the localization locus. Here we have introduced the overall factor eNM(mi+m2)/2 for Jater
convenience. For M = 0 it is known that the partition function can be rewritten as the
partition function of N particle ideal Fermi gas [15, 34]

1 dNx N
Zro(N,m1,ma) = ]W/W%t@imd%), (2.2)

with the one particle density matrix p given as?

_imgz _img o>
N e 2 ¥ e 2m

PO = = =.
2cosh § 2cosh §

(2.4)

2The results for M = 0 in this paper overlap with those displayed in [34] where we have defined the
partition function with the same normalization as (2.1) under the following parameter identifications:

34 34 34 imy 34 ima
W=k K=k = G =

3Here we adopt the following notation and normalization:

e ,p: canonical position/momentum operators with [z, p] = 2mik,

x): position eigenstate, |p)): momentum eigenstate,

o (z|z') =278(x — '), (p|p’) = 275(p — p'), and correspondingly, f g—:|x>(x| = f g—mp)) {p| =1,

izp

izp _
o (alp) = Jre3E, ((pla) = dem

We also use the following formulas several times

-~ i T2 1 i .2
PremTnk ™ |p)) = —eT=k? |p), 2.3
Iph =7 p) (2.3)

TR T f(P)e TS e TEP — [(7), e T

where in the second formula |p)) is a momentum eigenstate, while |p) is a position eigenstate with the
eigenvalue p.



We also define the grand partition function =i as(2z,m1,m2) of the mass deformed
ABJM theory as

o
Err(zma,ma) = > 2N Zg y (N, ma, ma). (2.5)
N=0

For M = 0 the Fermi gas formalism (2.2) implies that Z (2, m1, m2) is given as a Fredholm
determinant

Ek0(z,m1,mg) = det(1 + zpo). (2.6)

3 Conjecture of bilinear identity for Zy (N, mq, m2)

In this paper we conjecture the following bilinear relation among the partition functions of
the mass deformed ABJM theory with mq = ms:

Ek’M+1(—6_mIZ; mi, ml)Ek,M,l(—emlz; mi, ml) (1 + eim(lf%)>

Zp M+1(0) Zp m—1(0) - Cri(1—2MY _ -
_ Zrar1 (0 Zkar )[:k,M(Z%mlyml)z“‘e mi(1=2% ):k,M(—e mlz;m17m1):k,M(—€mIZ;m1,m1)},

Zi,m(0)?
(3.1)

where =y p7(2;m1, mg) is the grand partition function defined as (2.5) and Zj 3/(0) is the
partition function of N'=2 U(M)_j pure Chern-Simons theory

Zp(0) =i 7 Mem "o k% [ 2sin 22 (3.2)

M2 M _ miM(M2-1) 7T(7‘ — S)
r>Ss k

This relation (3.1) can be checked order by order in z once we know the exact values of
the partition functions Zj a7 (N, m1,m2), which we compute in section 4.

Note that when m; = mg = —7wi(v — 2a)/v with v,a € N (1 < a < v -1, va
coprime), (3.1) is a higher rank generalization of the relation between the grand partition
function of the ABJM theory and the affine SU(2) ¢g-Toda equation obtained in [25]. Indeed
as we see below the partition function Zj pr(N,m1,mg) for m; = my coincides with the
fermionic spectral trace of the inverse quantum mirror curve of Y*¥ geometry [24] whose
relation to the affine SU(v) ¢-Toda system was also argued in [47].

3.1 Closed string formalism and relation to g-Toda system

Our goal here is to rewrite the partition function Zj pr(IN,mq,mg) (2.1) into the follow-

ing form

1 ADY .
Zim(N,my,mg) = Zk,M(O)M/W(%eﬂ/\i\PM!/\j)y (3.3)

with some one dimensional quantum mechanical operator pys.* Here Zi,m(0) is the parti-
tion function (2.1) for N = 0, which is simply given as (3.2). For this purpose, first of all

4This rewriting is called the closed string formalism [46], and was studied for the ABJM theory without
mass deformation in [50, 51].



we rewrite the one-loop determinant factors in the integrand of the partition function (2.1)
by using the following Cauchy-Vandermonde determinant formula [46] (see appendix A for
the proof)

N 3 Ti—Tj N+M ynz Yn
[lic; 2sinh =5~ J[;, 5, 2sinh
Ti—Ym
[1;m 2 cosh =57

N+M

1
M N .M |: . mi—z/n:|
:(_1)MN62 i=1%ieT 2 Zm=1 Yndet | LZeOSh =5 1y N (N M) ,
Cryn
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- (-1)
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COSL ™57 Lo j:(N+M)x N

(3.4)
where £, = M +1/2 —r withr =1,2,--- | M as
1
1 ANX  dNTM) Lk A=A — mlk]
Zk,m (N, det cosh 252 |
e (N, my,mo) = N'(N+M)'/( N (a4 [1 mn}
Vol
r,n
o [ [t L] [ L]
2kcoshw . Vk s
(3.5)

Here we have also rescaled the integration variables )\Z-,Xm as ()\,;,Xm) — (\i/k, A /k)
for later convenience. If we introduce the 1d quantum mechanical bra-ket notations (see
footnote 3), we can further rewrite the partition function as

imjp

1 dANA  dN+MY [(Ale = An >]
/( t ,n

2cosh §

Zim (N, mi,ma) =

NIV + 301 N oy
[<<27”£T’)‘n>]nn
_ im2;
~ 3 2m 7 ~ 3
et | | e ™™ ———eTa® |\;) | [(Anle™ 77 [2mil) |
2cosh & A m,s
m7]
(3.6)
Second we simplify the matrix elements of the second determinant by replacing

i) = €T N, [Am) = em P N, (3.7)

which results in

lm1A2 7,777.1"2
e or PT o (& on PT o
(Ail =[An) = (i =[An
2cosh & 2cosh &



o~

imap img y

Ounle 707 T ema® 3y o =7 on5(Rn — Ay),
ZCoshg 2 cosh 5
]_ Wilg ~
(A m|e Fro ]2m€ N — 767T27T(5(/\m — 2mily). (3.8)
i

Here to obtain the last two expressions we have used the formulas (2.3). Third, after these
replacements we further “trivialize” the second determinant in (3.6) as follows

[ @ detl o) detlyi (@) = N [ Ve det]fi(a) (H gi<wi>) , (3.9)

to obtain

zml’\

1 DY dN"_MX M it [<A|e ELE |)\ >‘|
' [«zmermn)}

r=1
rn

N 6237:2>\ M ]_ 7rz£
— o\ — N — e 2w (AN — 2mil
Z.:r[l2cosh)‘ mo( % (1_[1\/ molhs m )>

r

(3.10)

Now we can perform the Xm—integrations trivially just by replacing them according to the
d-functions. If we use the Cauchy-Vandermonde determinant formula (3.4) inversely we can
rewrite the determinant factor in the first line of (3.10) back into the product of hyperbolic
functions. This product can be rearranged into those which we can combine again into the
Cauchy determinant (3.4) with M = 0 and the rest. Thus we finally obtain the following

N
Zont (N, my, my) = sz(O)]\lﬂ/(d )A det(ilpr ) (3.11)

with Zj, 1/(0) given as (3.2) and

zm2 . ’\_2 il _iml/\
Mm 27 z 2Slnhw 27 p
P = (—1)Me™ 5t ] S (3.12)

2 cosh % r—1 2 cosh W 2cosh &

By using the quantum dilogarithm function ®;(x) [54]

00 e2minb? J2mb(z+cy )
Oy(z) = o Z(lo(_l e 2627rb( - )zb)) o = % (b + lly> ’ (3.13)
which satisfy the following recursive relation
Qp(z +indb) 1
() L (14 S
Qy(x +inb”t) 1 o1
R (1 A )



the partition function (3.11) can be rewritten as (b = vk)

A _ iM | ib A _ mb
~im2) q)b (27rb 5+ 2) Py (27rb 27 )

1 dV A 1
Z,m (N, m1,ma) = Ziwr(0) L H

ITic (QSmh 55 )
I, 2b2cosh{' J+m1]'

(3.15)

Comparing this result for m; = ma = —7i(v — 2a)/v with a,v € N with the fermionic
spectral trace of the inverse quantum mirror curve of Y*? geometry at the one period
phases obtained in [24]

Zl/(070)"' 707N)O)O)"' 707C7b)

1 ol W(V—f;—Z)bC_F(vf;z)xi @y (Qg;ib g + %) P, (27rb + C + i(v— a)b)
NI i 2 (2545 - o0 o, (2% “om)
[Tic; (2 sinh 57 ')2

Hm’ 2b2 cosh {122;2901 _ (u2;2a)} )

(3.16)

we find that the two results coincide with the following parameter identifications

Nt (N,  mi(v — 2a) ’ _mi(v — 2a)>
v v
ri(142 ) s TG avi) \ Y ib M
:Zk,M(O) € v v z Zy 0707"'707N70701"'>07_2+b7b>'
a
(3.17)
Hence our conjecture (3.1) can be rewritten as
_ 2mi(l—a) 17 _ _ 2mi(l—a) 7 2r¢
(3.1) < Ei(—e v /-f,(—l—b;b):a(—e v H,C—b;b> (1+eb)
= Za(k, (D)2 + €5 2, (55, G5b) Za (7575, G50) (3.18)
with
o0
Ea("ia Ca b) = Z HNZV(O7 07 Tt 707 N7 07 07 e 707 Ca b) (319)
N=0 “

This is indeed a natural higher rank generalization of the relation between the spectral
determinant of quantum mirror curve of local P! x P! and the affine SU(2) ¢-Toda equation
found in [25] More explicitly, by defining the 7-function 7; in the following way

—miv(1-2M4 2miy
A (6 (1-% )7 er )_ _ 2miaM  27iaj
Zk,M(O) ‘—’k,M (e v v Z) 3
1

A(w, q) = H (1 + (q_m_”_lw)i) , (3.20)

m,n>0




the bilinear relation (3.1) for m; = mg = —7i(v — 2a)/v reduces to the bilinear form of

the affine SU(v) ¢-Toda equation written in [47]:°

B1) o 7(qu)Tilg w) = TH(w) + wr Ty (W) (w). (3.21)

4 Check of (3.1) for small z using open string formalism

In this section we consider another way to rewrite the partition function of the mass
deformed ABJM theory (2.1), the variation of so called open string formalism [46] which is
useful for the computation of the exact values of the partition function. Starting from (3.6)

we use the following formula
1
w1 [ A detllielisov] detllgs (@l jovn] = det | [ dafialgy@)] . (41)
for the integration variables {X }N +M {6 rewrite the partition function Zj M(N,mi,mo) as

Zi,m (N, m1,ma)

o~

. 'Lm%; _7;2 . 1,7;7,72; #22 . imﬂl'p
(il ~e Tk ~ednk |\ ;) (il ~e” T |2mil)
1 /(d)\) det 2cosh § 2cosh § ij 2cosh § is
€ —~ p s
N' 7'(' 2P
[«zme B Mpem”m} [(2mit,|e= 7" |2mit, >>LS
2 cosh rj )

(4.2)

With this result, the grand partition function = ps(z;m1,m2) (2.5) can be written as

_iml;\ i~ _imz;\ i~ _’Lml;\ i~
¢ 2 eIk & 2T oIk ® 2 | &—Fmem T | 2mily))
S

2cosh & 2cosh & 2cosh &

1+2 (
Eg,m(z;m1,mg) = Det .y _
[({2772(3 le” 47rk5252”Ae4;k§2] {((27ri€r|e_ﬁ§2|27riﬁs>>}
T8
,

-Hh P
2 cosh 5 s

= Ek0(z, m17m2)det[ Hy (2, k,ma,ma)l,

(4.3)

®Note that in [52] the relation between the grand partition function of the U(N) x U(N + M) ABJM
theory and the partition function of the 5d A/ = 1 pure SU(2) Yang-Mills theory on S* was also discussed,
where the bilinear equation for the grand partition function (3.21) follows from the Nakajima-Yoshioka
blowup equation for the 5d partition function [53].



where
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By performing similarity transformations of the 1d quantum mechanical operators we can
further rewrite =y (2, m1, mg) and det H, 4(z) as

Ek.0(z,m1,m2) = Det(1 + zpp),

M miM@AaM2-1) e ) )
det Hy5(2) =i 2e ok det E (—2)"(2mily|py|2mils) |, (4.5)
T,8
n=0

with pp given as (2.4).

4.1 Recursive calculation of (z|pj|y) and (27il,|pj|T)

In the previous section we have rewritten the grand partition function of the mass deformed
ABJM theory Zj ar(2,m1,m2) as (4.3), which implies that we can calculate the partition
function Zy, ps (N, m1, ma), the expansion coefficients of =y p/ (2, m1, m2) in z, by calculating
Trph and ((2mil,.|pR|z).° Though the first terms of these sequences can be obtained easily

. 1 e N 1
(@mitrle) = —e®, Tipo = 4k cosh "5t cosh T2

vk &3

the calculation is non-trivial for higher n. Below we show two ways to calculate these quan-

(k, mi,mg € (C) (46)

tities recursively in n. The results are listed in appendix B, with which we can check that
the conjectured bilinear relation (3.1) indeed holds for various values of k, M and m; = ma.

4.1.1 Algorithm with fixing 22 € Q

To explain the first method, which was used in [34, 35] by generalizing the method used
for the massless case of [17, 55|, first we write the matrix element (z|poly) as

_ imgg zt+y
27 e 2k

(F=% + b3 alpoly) = ——=—, (47

6 Although we could also perform the same calculation directly for Trp}, both in the method of sec-
tion 4.1.1 and in the method of section 4.1.2, the calculation becomes more complicated as M grows.

~10 -



which implies

- cm e 2 -
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Using this relation repeatedly we obtain
~ e i;"r ~ ~
A = (—1) et T +Z fel= Hm g =~ e |0}) (0]
2cosh‘”

This implies that the matrix element of pf is written as

1 _img y
1 6(% 2 )“‘ n—1 p
x o0 == nm n ]- x — ] — 9
el = e oy U N )
with
imeo ~ -1 imeo -~
emy 2 [ e oo v e =T 3
po(x) = €72 (zle” 2% =] Do =e2k|0)),
2cosh 3 2cosh 3
_bm EQ% _x
o) = e 2 (0]e3 phe™ % [z) = gu(w)

mi——mi

The vector ¢y(x) obeys the following recursion relation and the initial condition

1
z) = (x|0) = —,
¢o(z) = ([0)) T
imeo -~ -1 imo -~
m dy _2 (& 27r2$ - e_ 27T2$ 2
dea(e) = [ ialemst | S e y)e(y)
* 2m 2 cosh 3 2 cosh £
1 /d e(%"'%_i;ﬁ)y bo(y)
=5 Y z oY)
2k (e% + e—mleﬁ) (e +1)

(4.10)

(4.11)

(4.12)

When k£ € Q and ims/(27) € Q we can further rewrite the recursion relation (4.12)

follows. By choosing R € N such that the following S, T are integers

R L ima)
2 o )’

1
S==, T=R(-
(it
the integration can be rewritten as (u = /1, v = e¥/R)

k

S

2

UTfl

Po1(u) =

S (05 o) f 1 1) )

If we further assume that ¢¢(u) has the following structure’

=> o

3>0

Y(log u), <Z>§j) u

(u): rational function of w,

This property is inductively correct in £.

- 11 -

(4.13)

(4.14)

(4.15)



D

Figure 1. Left: the integration contour v used in the first line of (4.16); center and Right:
deformation of the contour to derive the second line of (4.16).

N
\

v f N\
= ! = Z 2miRes[-, v — w]

the integration (4.14) can be rewritten as [17]

S 2mi)) vT 1 log™) v
dera(w) = zﬁz<_(j+)1 | s J“< m ))

>0

S (2mi)it+t Z { pT 1 ) logt) v
=— —— Res — ¢p " (v)Bjy1 - o= wl| |,
o = ( i+l poles 1 C\Rso (vS 4+ e~muS)(vE 4 1) 2mi
(4.16)

where log(*) is the logarithm with branch cut R>o (ie. log™) (re®) = logr + if with
0 < 6 < 2m), ~ is the contour depicted in figure 1 (left) and Bjii(z) is the Bernoulli
polynomial. The poles to be collected when we calculate ¢py1 from ¢, are the union of
{v = e7M/SyeCmi/a=1/21n8 =Ly = Cri/B)O-1/24 and the poles of ¢¢(v). The
poles of ¢g(u) can be listed exhaustively in the following way [34]. As the locations
of the first set of the poles {v = e ™1/SyePm/9)@=1/218 = are y-dependent, the re-
cursion relation (4.16) generates new poles through the resudies at these u-dependent
poles. Therefore from {v = eCm/RO-1/21E we find ¢y (u) has poles at Ui {u =
e/ S e~ (2mi/S)(a=1/2) 2mi/R)(b=1/2)15 = Also, if ¢y(u) has a pole at u = wug, it follows
through the same process that ¢py1(u) has poles at {u = e™/Se=(mi/S)a=1/2)y 18
Taking into account that the initial condition ¢o(u) has no poles, we conclude that the

poles of ¢p>1(u) are

¢ S R "m TN / 7rz s
poles of ¢y(u U U U {u _ e TE e Modlr 2] 2 (a_;)ezR(b_;)} . (4.17)
a=1b=1

Once we obtain ¢y(u) with £ = 0,1,--- ,n—1 we can calculate Trpj (4.10) by the same
change of integration variable and the contour deformation:

" dr

17 = [ & i
1 Man n—1
= o o dx de(x)tbn—1-¢(x)
2 (e_Tl 7(71)7@71) / hg [ZO e

R (2mi)i+1 -5-1 log™t) w
— T o Z ( ] i 1 Z Res A( )(U)Bj+1 o LU — W s

21 <€7 2 —(—1)”ET> >0 w: poles

(4.18)

- 12 —



where AY )(u) are the rational functions given by

n—1
ST (=D bp(w)trn-1-e(u) = > AD (u)(logu)’. (4.19)
=0 7>0

The poles to be collected for the calculation of Trpy in (4.18) are

n—1 n—1
w—émmm*mﬁgu(Uum%awmm)u(umww&mwmw+m0

/=0 (=0

= {u = @m/RO=12NE G (poles of ¢p_1(u)) U (poles of Gn—1(u)| (4.20)

m1—>—m1)’

where the poles of ¢y(u) are given in (4.17).
The calculation of (27il,|p{|x) can be performed in the same way as ¢p(u). Writing
(2mil,|pg|z) as

o~

(@it le) = (o), xen(o) = 5 (2mit]e~F (o3

z
2k

?r‘5'3>

) @), (421)

poe”
Xrn(2) obeys the following recursion relation and the initial condition

e (tr=3)2

XT,O( ) 7 ;

c(i+3-3)y

dy
27rl<: (ek —I—emlek)(ey+1)

Xr,n-i-l( ) Xr,n(y)' (422)

The recursion relation is nothing but the one for v,(z) (except an extra overall factor
¢™/2). When k € Q and imy/(27) € Q it is rewritten as

Xro(u) = 7 ultr=2)3,
m S (2mi)7 Tt ; log™) v
—er 2 () () B
Xrn+1(u 2 o >0( 41 /dv US+€m1U5)( R+1)X7',n(v) j+1 ( i
my S (2mi)I+1 vl ; log*) v
—e 2 ) (4) .
T 2; ( T Z ‘Reb |:(US+€m1uS)(UR+ 1)Xr,n(v)Bj+1 ( o o= wl |,
> w: poles
(4.23)
with
Xrn (1) = Z ngn )(log u)? Xﬁ{)l(u) rational function of u. (4.24)

The poles to be collected for the calculation of X, ,1(u) are
fo = e=m/SyeCri/Sa1DYS | fy = (@HRE-YDYR | (poles of xpn(v)),  (4.25)

with (poles of x;.,(v)) = (poles of ¢y, (V))|m1——m, -

~13 -



v = = Z 2miRes[f(z),z = w
we [l

Figure 2. Contour + used in (4.30) and its deformation.

4.1.2 Algorithm without fixing mso

We can also calculate (z|pg|y) and (27il,|pg|z) without fixing mi,m2 (and ¢,) in the
following way [14, 57]. Since these quantities are meromorphic functions in mj,mo, we
assume m1, me € R in the calculation and the results for mi, ms € C are obtained by the
analytic continuation. The algorithm works for general k € Q, which we denote k = p/q
with p, ¢ coprime.
First we consider ((27if,|p"|z) which obeys the following recursion relation
1 o

k

(2mil,|x) = 7 ,

e(%_i;?)y

C i~ Y
27l T /— (2mil, T / , 4.26
{ rlPol) 2 [v)(ylolz) = 8T k\f coshycosh 7%127,;”1’“ (4.26)

(2rity 5+ ) = [ S (2mity 1) (olpole). (427)

To perform the integration (4.27), let us consider the following integration
oo
= / dzf(z). (4.28)
— 00

If we assume that f(z) is quasi-periodic as f(x + 2mwip) = Af(z) with some constant A

(this is true for the integrand of (27il,|po|z) (4.26), with A = (-1 )erqe( — )2”ip), then
we find that the integration (4.28) is invariant, up to an overall factor, under the shift of
the integration contour

/OO+27rip dzf(z / dzf(z + 2mip) = A/ dzf(z (4.29)

—oo+2mip

Hence the integration I[f] can be evaluated as
1 21
f]_l—A/v/de(z)_ 1_A%:Res[f(z),z—>w], (4.30)

where the integration contour 7/ is as displayed in figure 2. For example, applying this

calculation to (2mil,|po|z) (4.26) we obtain

iy P 7 (% izw )27”(” %)
(2mil,|po|x) = 2 T { 2i(—1)"

1
8mkvkq _ (—1 )erqe(Lr_L =1 cosh {% <2m ( — %) —T— mﬂﬂﬂ

2 gik(—1)re(E5R) (mikt2nik(n-3)
n—1 cosh [% (g; + mak + 2mik ( %)H (4.31)

— 14 —



Next we consider ((2mif,.|p3|z) which is given as (4.27)

m

2
(&} 27ry

(2rity 781e) = [ SL(mitolo) oliole) = o [ dulmitsloly)

y—z—mik "

cosh ¥ cosh =",
(4.32)

Note that the integrand does not enjoy the quasi-periodicity in y any more. Nevertheless,
if we look at the contributions from each pole (4.31), they separately enjoy the quasi-
periodicity, hence we can repeat the same calculation as above. In principle we can repeat
this algorithm indefinitely for higher n by applying the formula (4.30) to each term in
(2mit.| oy~ y) (y|polz) which takes the following form

1
8
ac® ] — el (4.33)

54
sV eam cosh T2 5@ 5 cosh

with a, 8 being some constants and AN = {5 1)}a,A(2) {(5,()2)}1, being some sets of
constants. Explicitly, the multlphcatlon of po to (2mil|pg ~1 from the right transforms
each term of the form (4.33) as follows

imo
d imaB 1 1 6_ 2w Y
27yae ] H 7(1) H () y S
7T -
sWea cosh 4= 5Zeat cosh Lo y 4k cosh § cosh =

/ 1 1
_ Z o/ BT H — H —— (4.34)

85
(CRNONNO)) sMea’a cosh £ s e’ cosh —5

I

where (o/, 8/, A'M A'®) runs over all of the following (i), (ii), (iii)

l

(i) (o, 8, A'M A'?) for each s e AW U {0} and j € I((S(l)) U I((S( )) given as

i 1y~ (3 42mii-1)
a0 Q) D (G eIy
+2m(j7’)7 +2mi(j—3)—0'
[y cawugoy cosh ° 2 Il5cr® cosh 2 S
12 5(1)
o = (@#58)
_LTYIZ (1) - ,
) 2i(—1)’e (-8 (#m-) (j € I(6M))
2 66 +2mi(j—3) o s omi(-1) o a
[yecam Du{o} cosh ———5—2— [[5ea cosh ———gr—2-—
@#5)
g =0,
A =g,

A'® = {5(1)+Qm <J—%> —mlk}

(4.35)
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(i) (o/, 8, A" M A'?) for each (5,()2) e A® and j € J(é,SZ)) U j(5£2)) given as

2ik(—1)e (8- zﬂ)(§(2)+2mk( ))
0 e D) et ARCR)
[Iseamugoy cosh % [15caw@ cosh %
o = (CE2)
. - (B35 5 yorik i—3 ’
@ 2ik(=1)%e -3 )( G )) )
2 83 yomik(j—1) o' 3 p2mik(j-3) -0 (7€ 7(57)
[Iscamuoy cosh ———2—[] yca@ cosh t———2—
@#0,%)
B =0,
A=},

1
A'® = {(5 + 2mik (j — 5) —mlk} ,

(4.36)
(iii) and (o, 8, A'M, A'®) for each j =1,2,--- ,q given as
o = ap - 2ik(—1)e(F=5F) (mk+2mik(j=3))
zm
B=B-5_",
A'D = {5511) — myk — 2mik <j - 1)} ,
2/ ) sMWeamugoy
: 1
A'®@ = {59 — maik — 2mik <j - )} , (4.37)
2 6£2)6A(2)
with
o — o 2mi
P8R ] (q)na0 [+1)a(A® ) (- F2) 2w
100y = {j € Z|0 < Im[6M] + 27 (j — ;) < 27Tp} ,
16) = {3 € 2 1mfo®] + 2x (5 - 3 ) = 0,27}
1
T = {g € Z|0 < Im[s”] + 27k <j - 2) < 27Tp} ,
1
76 = {7 € 2 tmlef?) + 2k (5 - ) = 0,270} (1.39)

where |[AM| |A®)| are the length of AW AR). Here the elements of I, T label the poles
of the first cosine factor in (4.33) and the elements of .J,.J label the poles of the second
cosine factors in (4.33). Note that the integrations are well defined by the principal value
prescription when the poles are on top of the integration contour 4 depicted in figure 2
As a result, these poles contributes in the integration (4.30) with the residue weighted by

1/2. We have counted these poles separately from I(ét(ll)), J(5lg2)) as f(&(ll)), ,]_(552)).
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The same integration technique is also applicable to the calculation of Trp™ through
the decomposition (4.10), which we can also rewrite as

1 = _(n=1-20m;

S (-1 T

Trpg =

2T (6_% — (_1)m€%) =
1 1mo
) 0 (an—1—¢
/ Sy cosh [«“'Po!aﬁ}mﬁ%l (milpg™ " ). (4.39)

The integrand in the last line is a linear combination of the terms of the form (4.33), hence
the integration can be evaluated with the following formula

/ | %é() I1 %é() (4.40)

sWea cosh =2 5£2)€A(2) cosh —2

271
= 1— (,1)p|A(1>|+q|A<2)|62mﬁp (4.41)

. (1) (i1

1 2i(_1)J65(5a +27r1(g 2))

Z Z *3 Z s pami(j—1) o 5 4omi(j—4) s

sMea) \jeres®) jereD) H5/€A<1) coshfna,eA(z) cosh ————2-—
@ #s5)

X (2) . .1
oy [ 3 )
2 Z 5 pomik(j—L) -6 5 pomik(j—L) -6
2 2
5@eca® \jes6®)  jeie®) ) [sean cosh 2——=—=—[] s cosh 2—7F—"—
5! 5(2)
(8 #5)

I

(4.43)

with I,1,.J,.J defined as (4.38).

We have displayed the results for n < 2 in appendix B.1. Though the exact expressions
for ((2mil,|pg|x) and Trpg with n > 2 are too lengthy to display, we can proceed by
using Mathematica for higher n. We have performed the computation for n < npyax with
Nmax = 7 for k = 2, nypax = 6 for k = 3, nypax = 5 for k = 2/3,3/2,4,5,6 and npax = 4
for several other £ € Q. Plugging them into the grand partition function Zj ar(z, m1, ma)
and substituting a generic complex irrational value to m; = mqy (see table 1, 2, 3 for an

example) we have checked that the conjectured difference identity (3.1) indeed holds up
to O(zMmaxt1) 8

5 Discussion

In this paper we have studied the S® partition function of the mass deformed U(N); x
U(N + M)_ ABJM theory for finite k, N, M. For M = 0 this model was studied by the

80ne can generate the exact expressions before the substitution of my, m2 (and £,.) by using the Math-
ematica notebook (201130_ZkMNanalytic_withoutfixingmlandm2_forarXiv.nb) attached to this paper as
supplementary material.

17 -



Z5,0(3) = +0.0000034444420172682385395798807365420 — 0.0000337240454862038672844932152635140%
Z5,1(3) = +0.0000382099395880497741652506265650111 — 0.00013069885540078331080508171315837611
Z52(3) = 4+0.0055770715242095177114384716730471315 — 0.00515941741581066159671214039314457714
Z5,0(4) = —0.0000000775897470159198305637599547446 — 0.0000001011756518921727471059758984641%
Z51(4) = 4+0.0000009438711663593511086188163930089 + 0.0000004087405746241788655917811738612:
Za2(4) = —0.0001653504285917934939286704610670769 — 0.0000528040240442483985487431414015146¢
Z5,0(5) = —0.0000000002198192586914478736409798007 — 0.0000000000144573441669505148954356116%
Z5,1(5) = —0.0000000015615260083466536155975551341 + 0.00000000330546725757932059074167403741
Z52(5) = +0.0000005400191436028444411690234941665 + 0.0000017398055036685492156632905623505:
Z5,0(6) = —0.0000000000001225246907691902070000592 + 0.0000000000001453383429551384996297813%
Z5,1(6) = —0.0000000000061037631599002379463797156 — 0.00000000000251615956279510930029337931
Z52(6) = 4+0.0000000051898016505482834873280920880 — 0.00000000801489607024767913593062252331
Z5,0(7) = +0.0000000000000000268721667025249750661 + 0.0000000000000000828755420390328416172%
Z51(7) = 4+0.0000000000000016760647686768458500438 — 0.0000000000000061933585687191762144848:
Z52(7) = —0.0000000000260602425659273907179156714 + 0.0000000000052426275884208123545727589:
Z3,0(3) = —0.0000003624144197490739076461212007997 — 0.00000357288565995661749167765948787961
Z31(3) = —0.0000001940966004085613459049092799252 — 0.0000060497222546970602430145904606661%
Z35(3) = +0.0000718812214806444033399076526720526 — 0.00006136570716237748215465784123936921
Z33(3) = +0.0120243169893872814065687444287212973 — 0.0007771609148023198010871 7580843554821
Z30(4) = —0.0000000032544047194544247743023756588 — 0.0000000020599834540448572324793551042%
Z3,1(4) = +0.0000000114317197421452279343587437785 — 0.0000000008397033914139095727378915180:
Zs32(4) = —0.0000004361592923084441504010568557759 — 0.00000006896435237394779403254184745771
Z3.3(4) = +0.0001904527781369864160904152841709314 + 0.00003401071927135457568760398857907907
Z3,0(5) = —0.0000000000014252023675918460374692040 + 0.00000000000070585942742306344537162361
Zs3,1(5) = +0.0000000000019660390582181447625458308 + 0.00000000000846606711652746208051383131
Z32(5) = +0.0000000005084964943090853649315955503 + 0.0000000006502428131574895212907640101%
Z33(5) = +0.0000011428358881531566757794631500549 + 0.00000035250147201407711926566972322731
Z3,0(6) = 4+0.0000000000000000054084266859084506734 + 0.0000000000000002802794650757403098217:
Z31(6) = —0.0000000000000025585161793699259602065 + 0.0000000000000013503932352293413300482%
Z35(6) = —0.0000000000000106248072872002466459743 — 0.0000000000006771417343271320006643413:
Z33(6) = 4+0.0000000030000077098180098252306104505 + 0.0000000009795347258697361512361540985:

Table 1. Exact values of Zj ar(N,m1,me) for a generic complex value of m; = mo which we
have chosen as m; = my = (V2 + /3i)/2. Together with the exact values of Ze (N, myp,mg)
for N = 1,2 in appendix B.1, the displayed digits of the numerical values of Zj, as(N,mq,mg) for
N > 3 are sufficient for checking the bilinear relation (3.1) at order ~ 10735 which is smaller than
the values of Zj ar (N, m1, m2) themselves.

Fermi gas formalism in [34]. In this paper we have extended the Fermi gas formalism to
the case with non-equal ranks of the gauge group, M > 0. As a result we have found non-
trivial evidences that the partition functions for mq = mo satisfies an infinite set of exact
bilinear relations (3.1). For m; = mg = —mi(v — 2a)/v with v,a € N, 1 <a <v —1 our
proposal (3.1) coincides with the higher rank generalization of the result in [25] which relates
the partition function of the ABJM theory without mass deformation to the 7-function of
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Z40(3) = —0.0000001596445009149086866982190156886 — 0.00000058937545577406244227590352725411
Z4,1(3) = —0.0000001465567737466335850362187127074 — 0.00000050524114443978398208152233922631
Z4,2(3) = +0.0000021297854747687939618273009442509 — 0.00000227861806235803429005112145092274%
Z43(3) = +0.0001155417403895295862777530358554630 + 0.00005814611001898949472637300105402261
Z4,4(3) = +0.0116701618018141557201394071902443487 + 0.02836432058408625777973313597821580141
Z4,0(4) = —0.0000000002245870767997434170393719570 — 0.0000000000638120085896578696576695863%
Z4,1(4) = +0.0000000002875651177599830256526624701 — 0.00000000014283933322668072294888612461
Z4,2(4) = —0.0000000040596022308156277167049398712 + 0.0000000004564191665086604 7670928431961
Z4.3(4) = +0.0000004159888885917629489285579166084 + 0.00000024164403912557397388359240415707
Zy4(4) = —0.0003489532990006297368756008335046954 — 0.0002558696412186837064061226844274205:
Z4,0(5) = —0.0000000000000185361279593027355181683 + 0.00000000000002298560872101079381592931
Z4.1(5) = +0.0000000000000476042209753415980590695 + 0.0000000000000488828659066468711588651%
Z42(5) = +0.0000000000016888416635275940690630909 + 0.00000000000084912937288946181750423061
Z4,.3(5) = +0.0000000005586786092183451398692303713 + 0.0000000002729603154846334571280718182:
Z4,4(5) = +0.0000020161976172384442584214274868772 — 0.00000011025025422890310437346796112584
Zs50(3) = —0.0000000538625413287777439633839437026 — 0.0000001281089497721297597582235865907:
Zs51(3) = —0.0000000321427810923591851335759476735 — 0.0000000606385523646245934882290279881:
Zs52(3) = +0.0000001054299649109944217978475462033 — 0.00000015265523560507220359200515473061
Zs5 3(3) = +0.0000023320730371956212019514911064430 + 0.0000018610142153383560982821863284218:
Z5.4(3) = —0.0001585068672956752422494115548000845 + 0.00021355619519702034067986938399091841%
Zs55(3) = —0.1031259742500562377075939448189562446 + 0.0169135517524590855900487880467794458:
Zs5 0(4) = —0.0000000000218467249584324831444784896 — 0.00000000000080418658239154823847829561
Z5.1(4) = +0.0000000000111875420459892425591996463 — 0.0000000000111723004607663049088415939:
Zs2(4) = —0.0000000000759496509405361365876994969 + 0.00000000003149521320681556091752997741
Zs5 3(4) = 4+0.0000000027354044065362251696623063658 + 0.0000000017927990586668796068172405500:
Z5.4(4) = —0.0000000789784616504830649623848447496 — 0.0000009199022388064039967710790197935%
Zs 5(4) = —0.0001327526369363546108485177212160229 + 0.0014890277071277731403881595972723 7481
Zs5 0(5) = —0.0000000000000003057542357421243675205 + 0.0000000000000009445915970088848706607:
Z5.1(5) = +0.0000000000000010548737730173241160021 + 0.0000000000000003724121013099469111795%
Zs52(5) = +0.0000000000000114832614530517613964406 + 0.0000000000000004142818726145883299348:
Zs5 3(5) = 4+0.0000000000010626921634047207137704265 + 0.00000000000037952143327965801123239561
Zs5.4(5) = +0.0000000008029802739792686237250302548 + 0.0000000005636755082281322268136100023%
Zs55(5) = 4+0.0000060720706481889983498408540301161 + 0.0000011165583251916960037326425189206:

)

Table 2. Exact values of Zj ar(N,m1,me) for a generic complex value of m; = mo which we
have chosen as m; = my = (V2 + /3i)/2. Together with the exact values of Ze (N, my,mg)
for N = 1,2 in appendix B.1, the displayed digits of the numerical values of Zj, as(N,mq,mg) for
N > 3 are sufficient for checking the bilinear relation (3.1) at order ~ 10735 which is smaller than
the values of Zj ar (N, m1, m2) themselves.
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Zg,0(3) = —0.0000000188552626197705052571074987233 — 0.0000000338401370969072059866884900532%
Zs,1(3) = —0.0000000072482340441164305163800784622 — 0.0000000093594423868278760651176075790:
Zg2(3) = +0.0000000072320414195529983402543733231 — 0.00000001479164474498647231881885157611
3(3) = +0.0000000868445304639474070144098687386 + 0.00000007919039958828715406072455767114
4(3) = —0.0000040512839031169591125997384833314 + 0.0000014525922292652764348565975468802¢
.5(3) = —0.0001452106841333720748498550817956855 — 0.0007071062081518852152195075771069289
6(3) = +0.2505254348678724153644915439688414008 — 0.35696551655836911930539474433 775828954

)
)
)
)
)
)
)
0(4) = —0.0000000000027387887443163394257723892 + 0.0000000000004611866521191426865762459
;.1(4) = +0.0000000000005618528091890240720302622 — 0.0000000000010045912002074928039342322i
2(4) = —0.0000000000022182480127013892637886726 + 0.0000000000017243523490919009395982825:
3(4) = +0.0000000000387395572622789905734941030 + 0.00000000002175877378925571340959416114

)

)

)

)

)

)

)

)

)

)

.4(4) = +0.0000000015402164805127717313043091631 — 0.00000000423207251936357069340793620014
5(4) = —0.0000025978094878185641913656163819865 + 0.00000032753903333280047415702119434454¢
6(4) = +0.0069687367541545497982908774232373760 + 0.00073557300322389625634697096209235704
5.0(0 -+0.0000000000000000000879700106831326479 + 0.00000000000000005074802120365138412421
(5 +0.0000000000000000305872509274290405211 — 0.00000000000000000174949227829292444551
2(5 -+0.0000000000000001272083900029037914798 — 0.00000000000000004837051885547894635274
5,3(0 -+0.0000000000000047728643339697233439353 + 0.0000000000000006192448266768018586371%
(b -+0.0000000000008438128108008514841707056 + 0.0000000000010303530135401057545733039%
5(D +0.0000000005482179698263412525780693423 + 0.0000000025277154129660903777324105713%
Z6,6(5 -+0.0000156795115141421507588569121456007 + 0.00002403443452685375781146402883343174%

NI NEN

Table 3. Exact values of Zj pr(N,my, ma) for a generic complex value of m; = mgy which we
have chosen as m1 = ma = (v/2 + v/3i)/2. Together with the exact values of Zy (N, my,ma)
for N = 1,2 in appendix B.1, the displayed digits of the numerical values of Zj, a7 (N, mq,mg) for
N > 3 are sufficient for checking the bilinear relation (3.1) at order ~ 1073 which is smaller than
the values of Zy pr(N, mq, ms2) themselves.

the ¢-Painlevé 1113 (or affine SU(2) ¢-Toda) equation. Remarkably, we have observed that
the bilinear relation (3.1) is satisfied not only for m; = mg = —mi(v — 2a)/v but also
for general m; = my € C. Hence (3.1) also provides relations between the derivatives of
the partition functions with respect to the mass parameter which gives some of the OPE
coefficients for the stress tensor multiplet [40].

There are several possible future directions related to this work. First, although in this
paper we have found the relation only for m; = ma, it would be nice if we can generalize the
result to m1 # ma. Second, we can consider 3d superconformal Chern-Simons theories with
more general quivers. It is known that the S3 partition function of a quiver superconformal
Chern-Simons theory with the quiver given by the affine Dynkin diagram of A,, D,, E,
scales in the large N limit as —log Z ~ N3/2 in the limit of N — oo if the ranks of the
gauge groups are proportional to the comarks of each node and the total Chern-Simons
level weighted by the comarks vanishes [56]. For the affine A,, quivers and the affine D,
quivers the fermi gas formalism was already found [15, 58, 59], and for the affine A,, quivers
it was further extended to the case with mass deformations [34] as well as to the cases with
non-equal ranks [60-63] separately. We expect that for the latter cases it is also possible
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to turn on both of the mass deformation and the rank deformation at the same time,
and if so, it would be interesting to identify the corresponding g-difference equations and
check them as the identities among the partition functions for different ranks. It would
also be interesting to consider the generalization which are natural from the viewpoint
of the g¢-difference equations, such as the ¢-deformed Painlevé of the other types or the
generalization of the affine SU(v) Toda system to the Toda systems for other Lie groups.
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A Proof of Cauchy-Vandermonde determinant formula (3.4)

In this section we display a proof for the Cauchy-Vandermonde determinant formula (3.4)
by using the Cauchy determinant formula for the equal rank

[nén' (9m = @n) inn' (bm =) _ 0 { ]
T A TREM (am + bn) am, + bn L (N M) x (N+M)

LA

as explained in [46].
First we take the limti ayi+as — oo in the Cauchy determinant formula for rank
N + M (A.1). Under this limit the left-hand side becomes

HZIQJ (am — an) H%I%(bm - bn) _ H%I?jy_l(am an) H%Z%(bm - bn) H%_'_iw_l(am - aN+M)

[T 2" T (am + bn) T T M (am + bn) I M (angar — by)
aN 400 IV EM=Y = an) TINEM (b — by) (—1)N ML Ot ),
HT]XZ{W ! Hg:—i_lM(am + bn) AN+M N+M

(A.2)

To take the same limit of the right-hand side of (A.1) we expand the (N + M)-th row of
the matrix as

[amibn } mn:(N+M—1)x(N+M)

det {] = det 2
am + b L s (N0 x (N4-M) [aNiM (1 — a]fiM + (G;IM) +...
n:N—+M
a —00 1 { . b }
N+MS det am+on [ ni(N+M—1)x (N+M) +O(a]_VQ+M)' (A.3)
AN+M N+M
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By equating the leading part of (A.2) and (A.3) we hence obtain

N+M-—1 N+M 1
Hmzn (am — an) Hml_n (bm — bn) — (_1)N+M—1 det ([aerb"}m,n:(N-‘rM—l)X(N—i-M)) .

[ T2 (am + b)

N+M
(A.4)

Now we further take the limit ayyar—1 — 0o in (A.4). The calculation is the same as
above, and from the left-hand side we obtain

m<n m<n m<n m<n
N+M—-1y77N+M N+M-2 y7N+M 2
Hmil Hn:+1 (am + bn) Hmil Hn:_‘_l (am + bn) aN+M71

+O(GE1M—1>-

HN+M_1(am — an) HN+M (b — bn) AN+M |00 HN+M_2(am —an) HN+M (bm — bn) (_1)N+MiQ

(A.5)
From the right-hand side we obtain
kren

[ 1 } am+bn |y (N+M—2)x (N+M)

am+b . 2
det( n m,n.(N+M—1)><(N+M)) = det { 1 (1_ bn +( bn ) +

AN+M—-1 AN+M-—1 AN+M—1
N+M n:N+M

N+M

1
[a +b ] . -~
aAN4M—1—700 1 mTEn Imon:(N+M—=2)x (N+M)

———det

bnln:
a’%\/'—i—M—l [ n]n.N-‘rM

N+M

+ O(a;\fiMﬂ)a
(A.6)

where in the expansion of the (N + M — 1)-th row we picked up the sub-leading terms

——bn instead of the leading terms
AN+ M1 AN+M-—1

the N + M-th row and can be subtracted by the elementary row operation. Hence from

since the leading terms are proportional to

the leading part of (A.4) in the limit ay4p/—1 — 00 we obtain

1
— |:a7n+bn:|mn~ —
vin P (am — an) TImEn" (bm — bn) _ (ﬁ(_l)NJrlﬂé(_l)Zl) det [’b '}(NJFM 2)X (N+M)
H%i{w72 HT]:[;lJVI(am+bn) P nn:N+M
N+M
(A.7)
By repeating the same procedures for ayyyr—2,an+p—3, -+ ,an+1 we obtain
N j(ai = a) TINEY (b — bu) a5
i<j\% — %) lm<n \¥m 7 Un) (—1)MN det aitbn | n: N x (N+M) (A.8)
M T (0 +00) M= ' '
i=11lp=1 (@ n [bn ]fr,n:MX (N+M)

If we substitute a; = €%,b,, = e¥" in (A.8) we finally obtain the first line of the
formulas (3.4). The second line of (3.4) is obtained if we instead substitute a; = e™%i, b, =
e Ym to (A.8).
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B List of exact values of trp"” and ((2wil,|p"|x)

As we explained in section 4 the grand partition functions =y ps(IV, m1, ma), or its expansion
coeflicients Zy pr(IN, m1, mg), can be obtained from Trpg (n =1,2,--- , N) and (27il,|pg|x)
(n=20,1,--- ,N, r =1,2,--- /M) through (4.3) and (4.5). Below we display the exact
values of these quantities.

B.1 n <2 without fixing m, mo

B.1.1 n=0

(2mil,|z) = —=eF (B.1)

where 0, = M +1/2 —r.

B.12 n=1

1
4k cosh Tt cosh %2’

1 1 z
2 .ET 0 = im -
(2mitr|pof) o2rkvVk 1_ (_1)p+qe27rip(%—?f) [ nz::l cosh [i (x +myk —2mi (n — %))}

q —1)’”6(% i;;)(z+m1k+27rzk( %))
1) ’
2

n—1 cosh [% (:13 +mik + 2wk (n -

Trpo =

Ly

(_1)%(7—127)27”(" 3)

(B.2)
where for ((2mil,|po|x) we have assumed k = p/q € Q with p, ¢ coprime.
B.1.3 n=2
: 1
Tipg = 4k2 s;lh my 1 — (—1)plcosh[m2p [ sinh m4 Z Z < " g (Enmllf 227:((: _;2))))]}>
B Z (—1)" sinh[myn] B <1>psmh[m2p1] (B3)
i cosh [gp (mak +2min)| cosh [ (mak — 2min)] 2 (cosh ) |

1 1
4k2Vk 1 - (—1 )HQQQW’(TT* 72)

(—’"— 27r )Qﬂz(n——)

ot

(@mit,|pgle) =

=

n=

(—yrema(mh)

(Z cosh 5= (z+mik —2mi (m — 3))] cosh [5 (m1k — 2mi(n —m))]

ike— 32 (vtmik+2mik(m—1))

(:r+m1k+27rik (m— %))] sinh [2—116 (x+2m1k — 27 (n— %))]
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+ +1 —l(—1)ne 3 (Trmakr2mi(n=g)tamik(m—3))
et 2 ; sinh [% (mlk — 2mik (m — %))} sinh [i (w—f— 2mqik — 2mi (n — l))}

(%7%)(mlk+2wik(n7%>)

n=1 1—(—1)‘76(%7“7%)27”?

i =52 )2mi(m=1)

p k
(mz:l blnh 1 m1k+27rzk: ( %))] cosh [ﬁ (:z:—|—m1k: —2mi (m— %))}

2

(= 1)mel 5 =52 (s+make2mik(m—1)) )] 34

+ (—]_) ( _t )( m1k 2772k(n77)+27rz(m—%))
me \ me < | sinh [ (mik+27ik (n— 3))] sinh [5 (z+ 2mik — 270 (m — 3))]

n

M=

+

cosh [§ (z+mik + 2mik (m — 3))] cosh [§(z + 2mik + 2mik(n +m —1))]

=1 2

3

Here again we have assumed k = p/q € Q with p, ¢ coprime,” and the index sets I,, I,
Jy, J, are defined as

1 1
meZ\0<27r<n—2)+27rk<m—2> <27rp},

ne
= {mezion(n- 1) 4amk (m- 1) <0205},
e

1 1
m€Z|0<—27Tk(n—2>+27r(m—2) <27rp}7

{meZ\—27rk(n—;)+27r(m—;>:0,27rp}. (B.5)

B.2 n > 3 with fixing mq, mo

Jn

Below we display Zi ar (N, m1, ms) instead of (27il,|p|x) whose expressions are unneces-
sarily complicated.

B.2.1 Zyy(N) formi=me=-% (v=3,a=1),k=6, M <3

648 + 144+/37 — 14572

Zo0l8) = 27993677 ’
Zoa(3) = 1FIE 648/3 + (10368 — 21060v3i)m — (1854v/3+ 63072i)7* + (8 + 18725 3)m*)
4031078473 )
Zoa(3) = —33048- 972031 + (142286v/3 — 210924i) + (192510 — 26730V/3i)? + (491753 +36651)7°
’ 24186470473
(1+)(—4968 4 1656v/3i + 913(v/3 —i))
Z63(3) = — .

67184641
(B.6)

9Note that Trpg were already obtained in [31, 57] for k € N. We have checked that the expression (B.3)
is consistent with the known result.
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B.2.2 Zyy(N) formy=me=-% (v=4,a=1), k=2, M <2

V2+(1—+2)m
Z20(3) = 64 ’
—2—2i—2v2+ (3= 5i+ (—1+4i)V/2)rm
Z21(3) = 2567 ’
1+i)(24 (—24+V2)7
Z2a(9) = (EOE LT,
—12+4 (1+2V2)7
Z2,0(4) = 10247 )
(14i)(4+4m + (—13+8v2)7?)
Zoad) == 409672 ’
i(—124 (1+2v2)n)
Z22(4) = 10247 ’
1+ (5—v2)7+(3—3v2)7n?
Z2005) = 102472 ’
—4 4 47+ 42 + (68 + 600 — (4 — 64i)\/2)7 + (21 — 37i — (29 + 8i)v/2) 72
Z2a(5) = 1638472 ’
(1—4)(V2+ (—2+5v2)7 + (—6+ 3v/2)7?)
Z220) = = 204872 ’
8v2 + (724 28v/2)m + (10 — 33+/2) 7>
Z20(6) = 3276872 ’
Zaa(6) = i(—24+/2 — 10827 + (288 4 16661/2)72 + (—1296 4 333v/2)7?)
S 117964873 ’
—8v/2 — (72 +28v2)m — 107% 4 33+/272
Z22(0) = 327682 ’
_—6v2+ (18 + 72V/2)m — (270 + 287v/2) 7% + (216 — 9v/2) 7
Z20(7) = 29491273 ’
1 . . . .
201(7) = rigrogs ((24 — 24) — 241/2i + ((900 + 11167) — (1008 — 108i)/2)7

+ (—(1152 — 36827) — (2530 — 4834i)v/2)72 + (— (711 + 22414) + (1476 — 7652')\/5)773),
(14+4) (=64 (724 9v2)m + (=287 — 135v/2) 72 + (=972 + 108V/2)7?)
29491273 '

B.2.3 Z; pm(N) for mqp = mg = —%i (v=4,a=1), k=4, M <2

Zoo(7) = —

(B.7)

2 — 107 + 372
71008 = " Hgpppr
Zur() = 8200 (36 -+ 54i)m — (40 — 238i)72 + (9 — 814)7
SIS/ 36864273 ’
i(3 + 2872 — 93
Z12(3) = ( )

921673 ’
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70+ 6w — 91

Z10(4) = 4915272 7
Za1(4) = —3 + 3i — (60 + 48i)7 + (1040 — 6264)72 + (382 — 418i)7> — (225 — 198i)7*
- 589824+/274 ’
1 —i)(48 — 7087 — 65672 + 27973
Zia() = — L= ) (B.5)

117964873
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