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1 Introduction

The quantum extremal surface (QES) prescription [1] says that the entropy of a boundary
region B in AdS/CFT is given by

S(B) = min extγ
[
A(γ)
4G + Sbulk(γ)

]
. (1.1)

Here we are extremizing over bulk surfaces γ that are homologous to B, A(γ) is the area
of the surface γ, G is Newton’s constant and Sbulk(γ) = − tr(ρ ln(ρ)) is the von Neumann
entropy of the state ρ of the fields in the bulk region (known as the entanglement wedge)
bounded by the surface γ and the boundary region B.1 The combination of the two terms
is known as the generalized entropy.

The perceived role of the Sbulk term has shifted over time. Because of the explicit factor
of 1/G, the area term becomes very large in the semiclassical limit G→ 0. The bulk entropy
term, which has no such factor, was therefore initially regarded as a small, perturbative
correction. In the last year or two, this view has changed. It has become clear that the QES
prescription is still valid — and indeed plays a crucial role — even in situations where Sbulk
is very large, and so competes with the area term. In particular, it was shown in [2, 3] that
the QES prescription gives a unitary Page curve for the entanglement entropy of an evapo-
rating black hole. This Page transition happens when the bulk entropy of the trivial ‘empty’
QES becomes larger than the area term for a non-trivial QES that lies near the horizon.

However, as we shall see, in such situations considerable care is needed when apply-
ing the QES prescription. For many states, a naïve application of the QES prescription
gives contradictory answers, which are incompatible with basic properties of von Neumann
entropies, even at leading order in 1/G.

The primary aim of this paper is to (1) show that such contradictions exist, (2) show
how the contradictions are resolved by more careful calculations, producing leading order
corrections to the QES prescription, and (3) give general conditions for when the naïve
QES prescription is valid, and when it needs to be replaced by a more refined version.

The contradictions can arise whenever there are two extremal surfaces, with O(1/G)
bulk entropy in the intermediate region between the two. While common enough in
AdS/CFT, this situation is also central to the phase transition that provides the Page curve
of the evaporating black hole. Indeed, in section 2 we show that black hole evaporation can
still lead to entropies inconsistent with unitarity, when using the naïve QES prescription.

Returning to AdS/CFT, a useful example setup was given in [4]. Consider 2+1d AdS,
with the boundary divided into four regions as shown in figure 1. Let two diametrically op-
posed regions be slightly larger than the other two, such that the union of those two, named
B, has a connected entanglement wedge in the absence of bulk entropy. The complement
of the boundary region B shall be labelled B. There are two extremal surfaces homologous

1In this paper, we will maintain the traditional fiction that bulk subregions are associated with subsys-
tems of the bulk Hilbert space, and hence that we can construct the reduced state on a subregion by taking
a partial trace. In reality, bulk subregions should instead be associated with von Neumann subalgebras of
bulk operators.
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Figure 1. Setup in which we derive a contradiction from a naïve application of the QES prescrip-
tion. The boundary is divided into two subregions, B and B. For both, there are two competing
quantum extremal surfaces, γ1 and γ2, with γ1 homotopic to B and γ2 to B. We take B to be
larger, such that the area of γ2 is bigger than that of γ1 at O(1). Between these surfaces is a large
amount of matter (the “dustball”), such that some states of the matter have entropy much larger
than the difference in areas of the two surfaces.

to B: one homotopic to B and labelled γ1, and one homotopic to B and labelled γ2. These
surfaces divide the bulk into three regions: one named b that neighbours B, one named b
that neighbours B, and a central region labelled by b′ that is bounded by the two extremal
surfaces. Let there be matter in b′ with energy O(ε/G), for some ε� 1.

The backreaction is under control for small enough ε, and the bulk matter can have
entropy roughly equal to its energy. We can therefore easily dial the size of B such that
some bulk states have a bulk entropy larger than the area difference, while all states have
the same approximate classical geometry.

Consider two states: in the first, the bulk matter is in a pure energy eigenstate.
The matter therefore does not contribute to Sbulk, and the entanglement wedge of B is
connected. In the second, the matter is in a thermal state with the same average energy. We
tune the region B such that the large entropy of the thermal state causes its entanglement
wedge to be disconnected. Hence, the von Neumann entropies are

Matter pure: S(B) = A1/4G , (1.2)
Matter thermal: S(B) = A2/4G . (1.3)

Here A1 and A2 are the areas of γ1 and γ2 respectively.
Now we can formulate the contradiction. What is S(B) for a state that is a mixture

of the pure state and the thermal state? In other words,

ρmatter = p |ψ〉 〈ψ|+ (1− p)ρthermal . (1.4)

– 2 –
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A naïve application of the QES prescription tells us that, at leading order, the answer is

Mixture: S(B)naïve = min
(
A1/4G+ (1− p)Sthermal, A2/4G

)
. (1.5)

However, this can’t be correct. The AdS/CFT bulk-to-boundary map is linear, so the global
boundary state must also be a mixture of the two boundary states. And, if the global state
is a mixture of the two states, the reduced state will also be a mixture of the two reduced
states. In general, the von Neumann entropy S(ρ) of a mixture of quantum states

ρ =
∑
i

piρi (1.6)

of density matrices ρi is bounded from above and below by∑
i

piS(ρi) ≤ S (ρ) ≤
∑
i

piS(ρi)− pi ln pi , (1.7)

see e.g. [5].2 Together, the bounds (1.7) are quite restrictive, forcing a mixture of k states
to have entropy at most O(ln k) different than the average entropy of those states. In
particular, the entropy of a mixture of O(1) states is within O(1) of the average entropy
within the mixture.

So in our example, it must be the case that the correct (or “refined”) answer is

Mixture: S(B)refined = pA1/4G+ (1− p)A2/4G+O(1) . (1.8)

This is generally different from the naïve QES at leading order, O(1/G). See figure 2.
Why does the naïve QES fail for the mixture when (we claim) it gives the correct

answer for both the pure state and the thermal state individually? Intuitively, this is
because it is a mixture of states that are on different sides of the phase transition. But this
notion is not very precise: the thermal state can itself be written as a mixture of states
that are on either side of the transition (admittedly in this case one either needs a large
number of states or some probabilities in the mixture to be very small), and yet it doesn’t
receive large corrections.

A more precise answer is that, unlike the pure state and the thermal state, the mixture
of the two is not perfectly compressible. We say a state ρ is perfectly compressible if we
can throw away all but eS(ρ) of the states in its support without changing the state very
much. More precisely, there must exist another state σ close to ρ such that ln rank(σ) =
S(ρ) + subleading. In the thermodynamic limit, thermal states are dominated by energies
close to the saddle point energy, and are therefore perfectly compressible. A pure state has
rank one and hence is trivially perfectly compressible.

A general mixture of the two is not: any state σ close to ρmatter will have almost the
same rank as an approximation to the thermal state itself, because

1
1− pσ −

p

1− p |ψ〉 〈ψ| ≈ ρthermal . (1.9)

2The lower bound formalizes an intuitive fact: the uncertainty of a mixture of states must be at least as
large as the average uncertainty of each of those states. The upper bound is true because ρ must have less
entropy than a state that includes a correlated reference system with orthonormal basis |i〉,

∑
piρi⊗ |i〉 〈i|.

The lower (upper) bound is saturated if and only if the ρi are all identical (all orthogonal).
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Naive

Refined

0 1/4 1/2 3/4 1
1 - p

A1/4G

A2/4G

S(B)

Figure 2. Comparison of the naïve QES entropy to the correct, “refined” answer, for the state (1.4)
in the setup of figure 1. While the slope of the refined answer is controlled by (A2 − A1)/4G, the
slope of the naïve answer is controlled by Sthermal > (A2 −A1)/4G. The naïve answer is in general
larger than the refined one by an O(1/G) amount.

In general the compressibility of a quantum state is characterized not by its von Neumann
entropy, but by a quantity known as the smooth max-entropy Hε

max(ρ) [6, 7]. This is defined
by the fact that you can throw away at most all but eHε

max(ρ) of the states in the support
of ρ, without changing ρ very much, for small ε. For thermal and pure states, the smooth
max-entropy is approximately equal to the von Neumann entropy — implying those states
are perfectly compressible — but in general it can be much larger. For example, in the
mixture of a thermal and pure state, we have3

Hε
max(ρ) ≈ S(ρ)

1− p . (1.10)

To understand why this should be relevant to the QES prescription, we need to intro-
duce the concept of entanglement wedge reconstruction (EWR) [10–12]. This says that the
bulk matter in the entanglement wedge is encoded in the boundary state on the boundary
subregion B. “Encoded,” here, means that the set of bulk operators local to the entangle-
ment wedge has a representation on B that acts faithfully on a “code” subspace of BB. It
turns out EWR is implied by the QES prescription [8, 12].4

3In general, we take ε to be polynomially small in G, though its exact size does not matter much. What’s
important is that it’s not exponentially small, because we will need to assume ln ε � O(1/G). Physically,
this is closely related to the fact that bulk reconstruction necessarily has exponentially small errors [8, 9].

4More carefully, EWR (as usually defined) is possible if and only if the QES prescription holds for every
state (pure or mixed) in the code subspace of states for which the reconstruction is supposed to be valid [8].
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EWR (and hence QES) is deeply connected to compressibility. The intuition is that
the number of degrees of freedom available in B to describe the bulk state in region b′

is given by the difference in areas (A2 − A1)/4G between the two extremal surfaces. If
the bulk state in region b′ cannot be compressed into these degrees of freedom, EWR for
region b′ cannot be possible, and hence the QES prescription, with γ1 the minimal QES,
cannot be valid, even if γ1 is the surface with the smallest generalized entropy. One of
the main goals of this paper will be to formalize this intuition by showing that EWR can
be reinterpreted as a particular information-theoretic task, called one-shot quantum state
merging, where Alice has to communicate a compressed version of a quantum state to Bob.

To make a precise statement, detailing how the QES prescription needs to be mod-
ified given the discussion above, it is helpful to write the naïve QES prescription in the
following form:

S(B)naïve =

A1/4G+ S(bb′), S(b′|b) ≤ A2−A1
4G

A2/4G+ S(b), S(b′|b) ≥ A2−A1
4G .

(1.11)

The quantity S(b′|b) = S(bb′)− S(b) is the conditional von Neumann entropy.
We will argue that this naïve prescription only works when bulk states are perfectly

compressible, because it implies the inclusion (or not) of b′ in the bulk entropy term only
depends on the von Neumann entropy S(b′|b). In reality, the information from b′ is only
accessible in B (and hence its entropy is only included in S(B)) when the quantum infor-
mation in b′ can be compressed into (A2−A1)/4 ln(2)G qubits. The relevant bulk entropy
is therefore not the conditional von Neumann entropy S(b′|b), but the conditional smooth
max-entropy Hε

max(b′|b). We’ll explain Hε
max(b′|b) in detail in section 3 (along with the

smooth conditional min-entropy Hε
min(b′|b)), but, roughly speaking, Hε

max(b′|b) character-
izes the compressibility of b′ when there is entanglement between b′ and b (and Hε

min(b′|b)
is complementary to Hε

max(b′|b)). For all states, we have Hε
max(b′|b) ≥ S(b′|b) ≥ Hε

min(b′|b).
A central result of this paper will be to refine the conditions for the QES prescrip-

tion (1.11), replacing it by5

S(B)refined =


A1/4G+ S(bb′), Hε

max(b′|b) ≤ A2−A1
4G

(depends on details), Hε
min(b′|b) ≤ A2−A1

4G ≤ Hε
max(b′|b)

A2/4G+ S(b), Hε
min(b′|b) ≥ A2−A1

4G .

(1.12)

We will not give a “one answer fits all” description of the middle regime; it does not admit
one as convenient as the naïve QES prescription. The entropy there depends on the details
of the bulk entanglement. (That said, one can often estimate the answer by finding the
average entropy of a set of constituent states, up to a Shannon term.) This refinement can
be derived using replica trick calculations, and resolves the contradictions discussed above.

A heuristic way to understand the difference between these two prescriptions is that
our refinement of the QES prescription recognizes that different parts of the wavefunction
might be on different sides of the phase transition, whereas the naïve prescription assumes

5We defer to section 7 for more general conditions, applicable to setups with more than two compet-
ing QES.
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that the entire state has to be on one side or the other. The min-/max-entropies appear
because they describe the largest/smallest parts of the wavefunction respectively. If the
smooth max-entropy is less than (A2 − A1)/4G, we can be sure that no significant part
of the wavefunction has undergone the transition. Similarly, if the smooth min-entropy is
greater than (A2 − A1)/4G, we know that almost the entire wavefunction has undergone
the transition. If they straddle (A2−A1)/4G, then the entropy will depend on which parts
of the wavefunction have crossed the transition.

Overview of paper. The paper is organized as follows.
In section 2, we illustrate the problem with a naïve application of the QES prescription

in more detail. We give several closely related examples of the naïve QES prescription
violating the bounds on the von Neumann entropy of mixtures of states.

In section 3, we review two quantities that are crucial for understanding the re-
fined QES prescription: the smooth conditional min-entropy Hε

min(A|B) and max-entropy
Hε

max(A|B).
In section 4, we return to the simple examples from sections 1 and 2 and carefully cal-

culate their entropies using the replica trick. By avoiding using the Lewkowycz-Maldacena
assumption, we find an answer that disagrees with the naïve QES prescription but is con-
sistent with the bounds on entropy of mixtures. This answer depends on the relative sizes
of three quantities: the smooth conditional min- and max-entropy, and the difference in
area of the two competing quantum extremal surfaces.

In section 5, we present general arguments that justify the conditions given in (1.12) for
the existence of large corrections to the naïve QES prescription. We start by arguing this for
so-called fixed-area states, and then argue that this extends to general holographic states,
up to subleading corrections. A key tool is the connection between gravity calculations in
fixed-area states and calculations in random tensor networks.

In section 6, we update the conditions for entanglement wedge reconstruction (EWR),
explaining how to generalize the results of Dong, Harlow, Wall [12] and Hayden, Pening-
ton [8], given this refinement of the QES prescription. These updated conditions clarify the
relationship between EWR and a well-known quantum information task, one-shot quantum
state merging. Our results demonstrate that EWR can be a maximally efficient form of
one-shot quantum state merging, using zero-bits instead of the usual classical bits.

In section 7, we present a more general refinement of the QES prescription conditions,
applying in situations where there are more than two competing extremal surfaces. To do
so, we first introduce two interesting new physically relevant subregions of the bulk: the
min-entanglement wedge (min-EW) and max-entanglement wedge (max-EW). The naïve
QES prescription applies if and only if the min-EW and max-EW are the same.

In section 8, we mention some further implications of these results. In particular, we
discuss how the smooth min- and max-entropies should be renormalized to get a UV-finite
quantity.

Related work. This paper has some technical overlap with the recent papers [13, 14].
They too find corrections to the QES prescription by carefully including more than one
saddle in the replica trick, and they too use fixed-area states to simplify the calculation
enough to do so.
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There are three key differences between our corrections and theirs. One, the corrections
we discuss can be O(1/G), not just O(1/

√
G). Two, our corrections can exist for an O(1)

range of A2 − A1, a window that does not vanish as G → 0. Finally, our corrections do
not arise from fluctuations in the geometry, but rather from the bulk state affecting the
boundary entropy in a different way than previously expected. In particular, the corrections
in [13, 14] are correctly computed by the expectation of the naïve QES prescription over
all the classical geometries that can be created by the fluctuations.

We also provide a different argument justifying the use of fixed-area states in lessons
about general states. Our argument also applies to the setups in [13, 14], bounding the
error in some of their assumptions.

2 Mixtures and contradictions

In this section, we further illustrate the need for a careful, refined application of the QES
prescription, first generalizing the prior example by adding entanglement, then discussing
the importance of the refinement for black hole entropy and the unitarity of black hole
evaporation.

Contradiction 1: dustball. Our first example is the dustball geometry, which was
already presented in the introduction. However, we emphasize that many of the details, as
presented there, were unimportant. The contradiction can easily be generalized to higher-
dimensions, to mixtures where neither state is pure, or to mixtures of a larger number of
states (so long as the number is not exponential in 1/G).

We also note that we can easily adapt this example to find a similar contradiction
where the state in b′ is highly entangled with the state in b, eventually illustrating the
necessity of using conditional min- and max-entropies in (1.12).

The first step is to consider a purification of the mixed dustball state, where the
dustball is entangled with a second, identical dustball in a different bulk spacetime, as in
figure 3. In other words, where the bulk state is

ρ = p

(
|ψ〉b′ 〈ψ|b′ ⊗ |ψ〉r 〈ψ|r

)
+ (1− p) |Φ〉 〈Φ| , (2.1)

and |Φ〉 is a purification of ρthermal. From a boundary perspective, the mixed CFT state is
purified by a second identical CFT, which we shall call the reference system R. Consistent
with our notational conventions, we use r to denote the bulk Hilbert space associated to
the second CFT.

Introducing the reference system R does not change the entropy S(B). However,
since the overall state is pure, we have S(BR) = S(B). The entropy S(BR) can also be
calculated using the naïve QES prescription. This time, the degrees of freedom in the
homology region shared by both extremal surfaces (in this case b ⊗ r) are entangled with
the degrees of freedom between the two surfaces (region b′ as before). Unsurprisingly,
the naïve QES prescription gives the same answers as before, and hence we again find a
contradiction.

– 7 –
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Figure 3. Two entangled dustballs. Like figure 1, but now we consider the entropy of BR, where
R is an entire extra copy of the boundary, dual to its own dustball. The two dustballs are in a
mixture of entangled states, given by (2.1). A naïve application of the QES prescription gives the
wrong answer for the entropy S(BR).

Contradiction 2: black hole. A practically identical setup reaches the same contra-
diction, if we replace the dustballs with black holes [8]. See figure 4 for the setup with a
mixed state black hole (though we also consider two entangled black holes, which would
look very similar to figure 3).

The advantage of this setup is that it’s familiar to consider black holes with entropy
growing with 1/G. We can, for example, consider all states in an energy band of width
∆E ∼ O(1), centered on some high energy E. There are eO(1/G) states in this subspace, and
generic density matrices in this band are expected to be black holes. Additionally, unlike
the dustball, we can also use a single interval (in AdS3/CFT2) for our boundary region,
because the black hole geometry has extremal surfaces on either side of the black hole.

The big disadvantage — indeed the reason we did not lead with this example — is
that black hole microstates seem somewhat mysterious. One might worry that mixtures
of black hole states, like (2.1), are secretly mixtures of classically distinct geometries,
mixtures which people already expected to give averaged answers in the QES prescription.
For example, a special case of the mixture of entangled black holes is the mixture of an
energy eigenstate and the thermofield double (TFD) state.6 The TFD state is

|TFD〉 =
∑
i

e−βEi/2 |Ei〉b′ |Ei〉r , (2.2)

for some inverse-temperature β and energy eigenstates |Ei〉. Two black holes entangled
like this are connected by a wormhole [15], and hence there is a nontrivial homology
constraint. This is very different from a factorized energy eigenstate, which has trivial

6Perhaps projected onto its dominant energy window, to fit into a finite-dimensional subspace.
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Figure 4. Black hole setup in which we derive a contradiction from the QES prescription. Prac-
tically identical to the setup of figure 1, this setup replaces the dustball with a black hole, and its
boundary regions B and B are now connected.

homology constraints. The mixture of the two,

special case: ρb′r = p

(
|E〉b′ 〈E|b′ ⊗ |E〉r 〈E|r

)
+ (1− p) |TFD〉 〈TFD| , (2.3)

must therefore have the QES prescription applied to it with care, since it is a mixture of
two distinct classical geometries. There is a history of speculating that — for this state —
the naïve QES prescription gives an S(B) that is indeed the average entropy (1− p)A/4G
(see e.g. [16]). The argument was that the area operator is linear, and so its expectation
value in this mixture of states must be the average of its expectation value in each.

While that argument is fine, we emphasize that it does not explain away the contradic-
tions we are pointing out. This can be made sharp using the insights from quantum error-
correction in [17].7 From the quantum error-correction point of view, it is not necessary to
count the black hole entropy as part of the “area.” A choice of code subspace that includes
the black hole microstates will regard the black hole entropy as part of the matter entropy.
This would be inconsistent, giving an answer that does not equal S(B) = (1− p)A/4G, if
the entropy of a mixture of black hole states is given by the naïve QES answer.

7Another way to see this is from the UV-finiteness of the generalized entropy A/4G+ S, which implies
that G acts as a counterterm for the divergences in the von Neumann entropy, suggesting that as one flows
to different energy scales, one changes which degrees of freedom contribute to A/4G rather than S. We
thank Netta Engelhardt for emphasizing this to us.
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Contradiction 3: Hawking radiation. Our final contradiction appears in evaporating
black holes. It was shown last year that using the QES prescription allows a gravity
calculation of the decrease in entropy of Hawking radiation after the Page time [2, 3]. This
goes a long way towards resolving the famous black hole information paradox. However,
there’s a lingering paradox in those calculations, if the QES prescription is applied in the
naïve way. We demonstrate this now.

Consider a post-Page time black hole B, having already emitted radiation R in state
ρR. Introduce an ancilla qubit q, and entangle it with R in the following way. First, put q
in a superposition √

1− p |0〉q +√p |1〉q . (2.4)

Then, perform a joint operation on qR, measuring the radiation if q is in state |1〉, and
otherwise doing nothing. This measurement need not be complicated — a factorized mea-
surement on each Hawking photon is simple and will suffice. Given measured state |ψ〉R,
the reduced state of the radiation becomes

ρ̃R = p |ψ〉R 〈ψ|R + (1− p)ρR . (2.5)

Assuming that the evaporating black hole was following the Page curve, the entropy of the
radiation, at leading order, will then be (1− p)Ahor/4G (+ subleading), where Ahor is the
area of the black hole horizon.

What does the naïve QES prescription say that the entropy will be? As long as we don’t
measure the most recent Hawking quanta to escape into R, the locations of the quantum
extremal surfaces will be unchanged. The generalized entropy of the empty surface will
be (1 − p)Srad, where Srad is the semiclassical, thermal entropy of the radiation. The
generalized entropy of the nonempty surface near the horizon will be Ahor/4G as before.

As with our previous contradictions, this is just incorrect (assuming unitarity), even
at leading order. The naïve QES prescription is giving an answer that is qualitatively just
as wrong as the Hawking, information-loss answer. Indeed, for small values of (1− p), the
naïve QES prescription answer and the Hawking answer are the same.

A very similar contradiction can be created using purely unitary processes, without
any measurements. One just creates an ancilla system A, in the state |0〉, that is a copy of
the radiation Hilbert space R. Then one applies a conditional swap operator (which again
factorizes into a product of local interactions) that swaps A and R if and only if the qubit
q is in the state |1〉. Assuming unitarity, the form of the reduced state on R will again
be given by (2.5). The generalized entropy of the empty surface will again be (1− p)Srad,
while the generalized entropy of the nonempty surface will be Ahor/4G+ pSrad. Again, we
find a contradiction with unitarity at leading order.

Summary. This section showed classes of examples in which a naïve application of the
QES prescription gets the entropy wrong at leading order. In section 4 we do a careful
calculation that gets the entropy in these examples right, and then in section 5 we describe
more generally when and why there are corrections. First, however, we need to introduce
two quantities that will characterize when the naïve QES prescription receives these large
corrections.
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3 Smooth min- and max-entropies

While naïvely the QES prescription compares only von Neumann entropies to areas, we
will find that a more careful prescription compares to the area two other quantities: the
smooth conditional min-entropy and smooth conditional max-entropy. These information-
theoretic quantities have historically found use in “one-shot” protocols, settings in which
only a single copy of a quantum state is used or transferred.

We explain these quantities now, and in all future sections refer to them heavily. We
start with the simplest version, the classical min- and max-entropy, and gradually work up
to what we really want, the (quantum) smooth conditional min- and max-entropy.

Non-conditional versions. To introduce the idea of one-shot entropies, it is helpful
to temporarily forget about quantum mechanics and simply consider classical probability
distributions.

Let us first recall the information-theoretic role of the Shannon entropy S(p) of a clas-
sical probability distribution p(x) (analogous to the von Neumann entropy in quantum
mechanics). Imagine you randomly sample from a large number of copies n of the prob-
ability distribution, getting outcomes {xi}. You, Alice, now want to communicate those
outcomes to your friend Bob.

How much information do you need to send to Bob to do this? To always be successful,
for any {xi}, you need to send at least n log2 d bits, where d is the number of values x can
take with nonzero probability. However, if you only insist that the communication succeed
with high probability (i.e. succeed for a variety of possible outcomes {xi} that collectively
have probability p > 1− ε for some small ε), the task becomes much easier. One can show
that, at leading order for large n, you only need to send nS(p)/ ln(2) bits. Essentially, this
comes from the law of large numbers ensuring that ‘typical’ samples from many copies of
the distribution have a probability p such that8

ln p = n 〈ln p(x)〉p(x) + o(n) = nS(p) + o(n) . (3.1)

Hence, you and Bob simply need to agree on a code, in which the nS(p)/ ln(2) bits you
send tell Bob which of the enS(p)+o(n) “typical strings” you sampled.

The story in quantum mechanics is very similar: given any density matrix ρ, we can
project ρ⊗n into a ‘code subspace’, while only changing the state a small amount. This code
subspace is just built out of products of states in the Schmidt decomposition of ρ that have
typical entropy, as in the classical case. Such states dominate the Schmidt decomposition
of ρ⊗n at large n.

The number of qubits needed for the code subspace grows, in the limit of large n, as
nS(ρ)/ ln(2), where S(ρ) is the von Neumann entropy. If Alice has a pure state randomly
sampled from ρ⊗n, she can therefore communicate that state to Bob with high success
probability, just by sending nS(ρ)/ ln(2) qubits.

However, both in classical probability and in quantum mechanics, we often (perhaps
even typically) encounter situations where we don’t have a large number of copies of a

8The notation “o(n)” represents terms subleading to n, vanishing in limn→∞ o(n)/n .
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single density matrix or distribution. Instead, we only have a single state or distribution,
which may still be very large in size. An example, of course, is holography. In the limit
G → 0, the boundary Hilbert space dimension blows up exponentially, but this does not
mean we have a large number of independent copies of the same state.

In this ‘one-shot’ setting, the von Neumann entropy does not have an important oper-
ational role.9 It is therefore somewhat surprising that the von Neumann entropy has been
playing such a central role in holography, for example in determining whether entanglement
wedge reconstruction is possible! As we shall see, the resolution is that the real quantities
that are important in holography are smooth max- and min-entropies, which do have a
natural operational interpretation in one-shot quantum Shannon theory. It just so hap-
pens that these ‘one-shot entropies’ have been approximately equal to the von Neumann
entropy, in most of the situations that have been considered in the literature until now.

Suppose we consider the same task as above (sending the outcome of sampling a
probability distribution from Alice to Bob), but now we only sample from a single copy
of the distribution. How many bits do we need to send to communicate the outcome with
high probability? We need to be able to send a distinct message for each outcome that
we want to be successfully communicated, and our success probability is maximized by
choosing the outcomes with the highest probability of occurring. So the number of bits
that need to be sent is log2N

(ε) where N (ε) is the smallest integer such that

N(ε)∑
i=1

pi > 1− ε , (3.2)

with the probabilities pi ordered from largest to smallest.
Again, there is an obvious quantum mechanical generalization, which gives the mini-

mum number of qubits needed to send a quantum state, sampled from a single copy of a
density matrix ρ, from Alice to Bob. This is given by

Hε
0(ρ) = inf

‖ρ̃−ρ‖1≤ε
H0(ρ̃) = inf

‖ρ̃−ρ‖1≤ε
ln(Rank(ρ̃)) . (3.3)

Let’s unpack this for a moment. We first defined the Rényi 0-entropy (also known as the
Hartley entropy) as

H0(ρ) = lnRank(ρ) = lim
α→0

1
1− α ln tr(ρα) , (3.4)

and then we ‘smoothed’ this quantity by minimizing it over all ρ̃ close to ρ (which in this
case just meant throwing away small eigenvalues). We measured this distance with the
trace distance, or Schatten 1-norm, ||X||1 = tr

(√
X†X

)
.

In fact, (3.3) is the original definition of the smooth max-entropy [7]. It turns out
however that H0(ρ) can be replaced [19] by the Rényi entropy

Hα(ρ) = 1
1− α ln tr(ρα) , (3.5)

9For an exception to this general principle, see [18].
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for any α < 1, while only changing the smooth entropy by a small amount. Specifically,

Hε
0(ρ) ≥ Hε

α(ρ) ≥ H2ε
0 (ρ)− 1

1− α ln(1/ε) . (3.6)

As we shall see below, H1/2(ρ) generalizes better to conditional entropies. It is therefore
conventionally used in the modern definition of the smooth max-entropy [20],

Hε
max(ρ) = inf

ρ̃∈Bε(ρ)
H1/2(ρ̃) , (3.7)

where we are taking an infimum over all states ρ̃ within an ε-ball Bε(ρ) of ρ.10

In summary, the number of qubits needed to send Bob your quantum state with high
fidelity, if you only sample the distribution one time, is the smooth max-entropy (3.7), up
to the factor of ln(2). The smooth max-entropy is always greater than or equal to the
von Neumann entropy; sending many samples from the distribution can only improve the
efficiency of the communication rate.

We can also define a complementary quantity, the smooth min-entropy, as

Hε
min(ρ) = sup

ρ̃∈Bε(ρ)
H∞(ρ̃) . (3.8)

Again, H∞(ρ̃) could be replaced by Hα(ρ̃) for any α > 1 while changing the definition
by at most O

(
ln(1/ε)

)
. It’s operational interpretation is less intuitive than the smooth

max-entropy, so we motivate it simply by its relationship to the conditional max-entropy,
as we’ll explain. Note that the smooth min-entropy is always less than or equal to the von
Neumann entropy.

Together, these two quantities establish upper and lower bounds on the confidence
interval for the value of (non-negligible) eigenvalues of ρ. The smooth max-entropy encodes
the size of the smallest eigenvalues in the density matrix (which cannot be thrown away
with small error), while the smooth min-entropy captures the size of the largest eigenvalues
(that cannot be thrown away).

If the spectrum is close to flat (i.e. is dominated by a small range of eigenvalues) then
the smooth min- and max- entropies will be close to the von Neumann entropy (which char-
acterizes the average (log-)eigenvalue). In particular, thanks to the law of large numbers,
this happens at leading order in n when you take a large number of copies ρ⊗n of a state
ρ. This explains the importance of the von Neumann in traditional asymptotic quantum
Shannon theory, which deals with exactly this limit.

It is also what has led to the success (so far) of the naïve QES prescription; it’s been
used for bulk states with an (approximately) flat spectrum, where the smooth min- and
max-entropy are roughly the same as the von Neumann entropy.

10For technical reasons, the distance measure used to define this ε-ball is conventionally the purified
distance, defined as the minimum trace distance between purifications of ρ and ρ̃. However, again, any
reasonable distance measure will work fine (up to unimportant changes in the scaling of ε).
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Conditional versions. The most general quantities we will need are the smooth con-
ditional min- and max-entropies, which generalize the conditional von Neumann entropy.
Unfortunately, the definition of these quantities is somewhat more technical, and somewhat
less intuitive, than their unconditional counterparts.

The operational spirit of these quantities is the following. Let us return to the example
in which Alice is trying to send a quantum state on A to Bob. However, now the state is
sampled from a density matrix ρAB, where subsystem B is already held by Bob and the two
subsystems may be entangled. Can this entanglement help Alice send her part of the state
to Bob? It can! For a particular version of this task, called quantum state merging [21],
the number of qubits that need to be sent from Alice to Bob is the smooth conditional
max-entropy Hε

max(A|B), which is generally less than Hε
max(A). We discuss quantum state

merging in detail in section 6.
Here are the technical definitions. The conditional von Neumann entropy, which the

conditional min- and max-entropy generalize, is normally defined as

S(A|B) = S(AB)− S(B) . (3.9)

However, this definition does not generalize well to smooth entropies. Instead, our starting
point will be a definition of the conditional entropy in terms of the relative entropy as

S(A|B) = −min
σB

D(ρAB|1A ⊗ σB) . (3.10)

To see that this is equivalent to (3.9), note that

D(ρAB|1A ⊗ σB) = tr (ρAB ln ρAB)− tr (ρB ln σB)
= −S(AB) + S(B) +D(ρB|σB)
≥ −S(AB) + S(B)

(3.11)

with equality if σB = ρB.

Smooth conditional min-entropy. To generalize (3.10) to a smooth conditional min-entropy,
we use the fact that there is a unique quantum generalization of the classical Rényi max-
divergence D∞(ρ|σ) which satisfies the data-processing inequality and additivity. This is
given by

D∞(ρ|σ) = inf{λ : ρ ≤ eλσ} . (3.12)

In words, the quantum max divergence of ρ relative to σ is the smallest number λ such
that eλσ − ρ is positive semi-definite.

We then define the conditional min-entropy as

Hmin(A|B)ρ = −min
σB

D∞(ρAB|1A ⊗ σB) , (3.13)

and the smooth conditional min-entropy as

Hε
min(A|B)ρ = sup

ρ̃∈Bε(ρ)
Hmin(A|B)ρ̃ . (3.14)
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We can gain some intuition by rewriting the conditional min-entropy as

Hε
min(A|B) = inf

ρ̃∈Bε(ρ)

(
− ln |A| − sup

ΦB
lnF ((1A ⊗ ΦB)ρ̃AB, τAA′)

)
, (3.15)

where F is the fidelity F (ρ, τ) =
(

tr
√
ρ1/2τρ1/2

)2
, τAA′ is a maximally entangled state

on two copies of A, and ΦB is a completely positive trace preserving map from B to A′.
This illustrates that Hε

min(A|B), in a sense, quantifies how close ρAB is to a maximally
entangled state, equaling its minimum − ln |A| when A is maximally entangled with B,
and its maximum ln |A| when it’s completely decoupled.

Smooth conditional max-entropy. The smooth conditional max-entropy is most cleanly
defined as a complement to the smooth conditional min-entropy. Recall that for any
purification |ρ〉ABC of ρAB, we have

S(A|B) = −S(A|C) . (3.16)

A generalization of this equality will define the smooth conditional max-entropy. One can
show that

−Hmin(A|C) = ln |A|+ sup
σB

lnF
(
ρAB,

1A
|A|
⊗ σB

)
. (3.17)

This right hand side is a natural candidate definition for Hmax(A|B). We can test this by
considering the special case where subsystem B is trivial (i.e. the state on AC is pure).
We then have

−Hmin(A|C) = 2 ln tr ρ1/2 = H1/2(A) . (3.18)

Recall that we previously used H1/2(A) in our formal definition of the smooth max-entropy.
It is indeed therefore natural to define the smooth conditional max-entropy Hε

max(A|B) as

Hε
max(A|B) = −Hε

min(A|C) = inf
ρ̃∈Bε(ρ)

(
ln |A|+ sup

σB
lnF (ρ̃AB,

1A
|A|
⊗ σB)

)
. (3.19)

This definition provides some intuition for the smooth conditional max-entropy, as quanti-
fying, in a sense, how close ρAB is to a decoupled state 1A/|A| ⊗ σB, equaling ln |A| when
A is completely decoupled from B, and − ln |A| when it is maximally entangled with B.

4 Replica trick calculations

The replica trick is a standard technique for computing the von Neumann entropy S(B),
based on interpretting tr(ρnB) as a certain observable in n copies (or replicas) of the sys-
tem [22]. We first illustrate the standard technique for computing tr(ρn) holographically —
using the saddle point approximation and analytically continuing the dominant saddle —
which is well-known to give the naïve QES prescription [9, 23–26]. We then do a more care-
ful calculation, where we analytically continue a sum over an entire family of saddles. To
make this calculation analytically tractable, we make use of the fixed-area states of [27, 28].
This more careful calculation gives results that differ from the naïve QES answer and avoid
any contradictions.
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4.1 Replica trick in holography

Given a state ρBB, the goal is to compute

S(B) ≡ − tr (ρB ln ρB) = lim
n→1

1
1− n ln tr (ρnB) . (4.1)

The last equality is useful because tr(ρnB) can be computed using a path integral. Schemat-
ically, the Euclidean path integral preparing ρBB looks like,

. (4.2)

The final picture is just a more schematic version of the first. The orange dots, with index
i, label a basis of states, prepared by different boundary conditions, that are summed over.
This represents the fact that a general density matrix is not just a product of a ket and a
bra, but a sum of such products. In future diagrams, we suppress this index and the sum.

To construct the reduced density matrix ρB, we glue together B in the bras and kets:

(4.3)

Then the path integral for e.g. tr
(
ρ3
B

)
involves gluing together the different copies of B

“cyclically” as

(4.4)

These boundary conditions can be applied with a “twist operator” τ , which acts on n copies
of the B Hilbert space to cyclically permute the state on each copy:

tr (ρnB) = tr
(
ρ⊗n
BB
τ
)
. (4.5)
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We call this n-replica geometry Mn. By evaluating the path integral on Mn for arbi-
trary n, and analytically continuing the answer to the limit n → 1, we can compute the
entanglement entropy.

We can map this boundary path integral to a bulk computation using the AdS/CFT
dictionary,

tr
(
ρ⊗n
BB
τ
)

= ZB,n
ZnB,1

, (4.6)

where ZB,n is the bulk partition function, defined by integating over all bulk geometries
with boundary Mn. In the semiclassical limit, this can be approximated by a sum over
classical saddles. Crucially, the saddle-point geometries are not simply n copies of the
original geometry glued together. They are whatever the equations of motion provide,
given that boundary data.

Partially for this reason, and partially because the number of saddles depends on n,
this sum over saddles is generally too difficult to evaluate, let alone analytically continue.
So historically, the following trick was used [23]. Assume that a replica-symmetric config-
uration dominates the sum, and that all other contributions to the path integral can be
ignored, such that

ZB,n ≈ e−Igrav[gs,n]Zmat
B,n [gs,n] , (4.7)

where gs,n is the saddle-point metric, Igrav[gs,n] is the gravitational action, and Zmat
B,n [gs,n]

is the matter partition function on this semiclassical background. We shall call this the
Lewkowycz-Maldacena (LM) assumption. Because the saddle is replica-symmetric, we can
equivalently consider the quotient of the saddle-point geometry by the Zn replica symmetry.
This is also a solution to the equations of motion, except at the fixed-points of the Zn action,
where there is a conical singularity with opening angle 2π/n.

We can now analytically continue the quotiented geometry to non-integer values of
n. In particular, in the limit n → 1, the geometry approaches the original unbackreacted
geometry, with a weak conical singularity at the Zn fixed-points. The entanglement en-
tropy ends up being the generalized entropy of the Zn fixed-points [24], which is forced
to be a quantum extremal surface by the equations of motion [9, 25, 26]. The dominant
semiclassical saddle is the one where the QES has the smallest generalized entropy, leading
to the naïve QES prescription.

Since this traditional derivation reaches a conclusion that we have shown is contra-
dictory, the obvious next step is to do the replica trick more carefully, without the weak
link of the LM assumption. This requires we introduce some other simplifying trick to
analytically continue the sum over saddles. This trick will involve the use of fixed-area
states, which we now explain.

4.2 Fixed-area states and their use

The fixed-area states of [27, 28] are (approximate) eigenstates of certain area operators.
To define such a state, consider the Euclidean path integral that prepares a particular
bulk geometry, then insert into that path integral a delta function that fixes the area of
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some gauge-invariantly defined surfaces.11 We might physically prepare such a state by
measuring the area of these surfaces. Saddle-points of this restricted path integral must
satisfy the bulk equations of motion everywhere except at the fixed-area surfaces, where
they may have a conical singularity. This is because the conical deficit angle is conjugate to
the area operator and is therefore undetermined in fixed-area states, due to the uncertainty
principle.12

Replica trick for fixed-area states. Consider a state ρBB with two fixed-area surfaces,
γ1 and γ2. We depict its path integral as

(4.8)

Fixing the areas in the initial state is a boundary condition and so also fixes the areas
of that surface in path integrals featuring any number of replicas of that geometry. This is
what makes the sum over geometries in ZB,n doable.

Indeed, we can form geometries that satisfy all boundary conditions of ZB,n — asymp-
totic boundaryMn plus fixed areas of all fixed-area surfaces — simply by gluing together
n copies of the original n = 1 bulk around the fixed-area surfaces.

Since we glue the boundary region B together in the bra and the ket path integral
to make the density matrix ρB, the neighbouring bulk region b (shown in orange) is also
always glued together

(4.9)
11Of course, in reality the area cannot be measured exactly. Instead, we must specify to what precision

we fix the area. It will be sufficient to fix it to be within a window that is polynomially small in G.
12This uncertainty in the geometry makes it impossible to fix the area of two overlapping surfaces — but

there is no problem simultaneously fixing the area of two surfaces that do not cross (and therefore have
commuting area operators) [29, 30].
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Similarly, because we glue the boundary regions B together cyclically, the bulk regions b get
glued together cyclically. However, because we can have conical singularities at γ1 and γ2,
the different copies of the region b′ can be glued together using an arbitrary permutation
π ∈ Sn. To evaluate the full path integral, we sum over all saddles, and hence sum over all
permutations π. For example,

(4.10)

Since the replica geometry consists of n copies of the original unbackreacted geometry,
the gravitational action away from the fixed-area surfaces cancels between the numerator
ZB,n and the denominator ZnB,1. The only contribution to the gravitational action that
doesn’t cancel out is the contribution to the Einstein-Hilbert action from the conical singu-
larities, which are different in the numerator and the denominator. Each conical singularity
gives a contribution equaling (φ− 2π)A/8πG, where φ is the opening angle of the conical
singularity.

If the b′ regions are glued together using a permutation π, the full contribution to the
action from the conical singularities in the replica geometry is therefore

(nφ1 − 2πC(π)) A1
8πG +

(
nφ2 − 2πC(τ−1 ◦ π)

) A2
8πG , (4.11)

where C(g) is the number of cycles in the permutation g, and φ1, φ2 are the conical sin-
gularity angles associated to γ1, γ2 in the unreplicated geometry. After normalization, the
dependence on φ cancels. Including the matter partition function, we are then left with

ZB,n
ZnB,1

= tr(ρnB) =
∑
π∈Sn

e(C(π)−n)A1/4G+(C(τ−1◦π)−n)A2/4G tr(ρ⊗nbb′ τbπb′) . (4.12)

This further simplifies because we do not need to sum over all Sn. Any permutation that
does not maximize C(π) + C(τ−1 ◦ π) corresponds to an action subleading by factors of
the area. The areas A1 and A2 are IR divergent, so those permutations are infinitely
suppressed. The remaining permutations lie on the geodesic in the Cayley graph (i.e.
shortest path in permutation space, where each step is a transposition) connecting τ and
the identity. These are the so-called “non-crossing” permutations NCn, which all satisfy
C(π) + C(τ−1 ◦ π) = n+ 1 (see e.g. [31]).

Without the tr(ρ⊗nbb′ τbπb′) factor, we could evaluate this sum explicitly. The number
of non-crossing permutations with C(τ−1 ◦ π) = k is the Narayana number N(n, k). With
that, we could organize the terms into a sum over k and get an analytic answer in terms
of hypergeometric functions.
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The bulk term interferes because it depends not just on the number of cycles C(τ−1◦π),
but also on the number of elements per cycle. Fortunately, there is a way, presented in [9],
to reorganize this sum into one over the number of elements per cycle.

Resolvent method. To make the calculation tractable, we will need to assume that the
entropy of b is small and can be ignored,13 so that (4.12) becomes

tr(ρnB) =
∑

π∈NCn
e(C(π)−n)A1/4G+(1−C(π))A2/4G tr(ρ⊗nb′ πb′) . (4.13)

Here, we have used the fact that C(π) +C(τ−1 ◦ π) = n+ 1 for non-crossing permutations
to rewrite the formula without C(τ−1 ◦ π).

Define the resolvent Rij of ρB as

Rij(λ) =
( 1
λ1− ρB

)
ij

(4.14)

This contains all the data about the eigenvalues of ρB. For example, the density DB(λ) of
eigenvalues of ρB is

DB(λ) = − 1
π

lim
ε→0+

ImR(λ+ iε) , (4.15)

where R is the trace of the resolvent.
We compute this as follows, heavily using the fact that ρBB is a fixed-area state. First,

Taylor expand (4.14) around ρB = 0 to obtain

R(λ)ij = 1
λ
δij +

∞∑
n=1

1
λn+1 (ρnB)ij . (4.16)

We can visualize this as

(4.17)

13This is a stronger assumption than necessary, but is valid in the examples we’ll care about. More
generally, this method can work as long as either ρb or ρb̄ has a flat Renyi spectrum.
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Each dashed line comes with a factor of 1/λ. Then substitute for ρnB equation (4.9),

(4.18)
Taking the trace of this quantity — visualized as simply connecting the dangling blue
arrows into a closed loop — gives the equation

R = rank(ρB)
λ

+
∞∑
n=1

∑
π∈NCn

1
λn+1 e

(C(π)−n)A1/4G+(1−C(π))A2/4G tr(ρ⊗nb′ πb′) . (4.19)

We can reorganize these sums in a convenient way, to get a Schwinger-Dyson equation:

(4.20)
On the right hand side, the second term sums all non-crossing geometries in which the first
replica of b′ is glued to no other replicas. The third term sums all non-crossing geometries
in which the first replica of b′ is glued to exactly one other replica. And so on.

We now formally explain the diagrammatic expansion (4.20) in terms of equations.
Starting with (4.19), decompose the sums into a sum over the number of elements m in
the cycle of π that includes the first element (the “primary cycle”), as well as the number
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of elements ni between the ith and i+ 1th element of the primary cycle: that is,

∞∑
n=1

∑
π∈NCn

→
∞∑
m=1

∞∑
n1=0

. . .
∞∑

nm=0

∑
π1∈NCn1

. . .
∑

πm∈NCnm

. (4.21)

The primary cycle is always cyclic, but the other permutations πi may not be. We note
that n = m+∑

ni and C(π) = 1 +∑
C(πi) . Also,

tr(ρ⊗nb′ πb′) = tr(ρ⊗mb′ τm)
m∏
i=1

tr(ρ⊗nib′ πni) . (4.22)

Plugging these into the formula (4.19) for the resolvent gives

R= rank(ρB)
λ

+
∞∑
m=1

eA1/4G tr(ρmb′ )
λem(A1+A2)/4G

m∏
i=1

eA2/4G

λ
+
∞∑
ni=1

∑
πi∈NCni

1
λni+1 e

(C(πi)−ni)A1/4G+(1−C(πi))A2/4G tr(ρ⊗nib′ πi)

.
(4.23)

The part in parenthesis is R itself, from (4.19), assuming rank(ρB) = eA2/4G.14 Therefore,

R = eA2/4G

λ
+
∞∑
m=1

eA1/4G tr(ρmb′ )Rm
λem(A1+A2)/4G . (4.24)

We are now ready to work out some specific examples.

4.3 Examples

Example 1: mixed states.

Setup. Consider the setup with a dustball or a black hole, from sections 1 or 2, depicted
in figures 1 and 4 respectively. We will simultaneously compute S(B) in both cases, first
modifying the setups slightly by fixing the areas of γ1 and γ2 to A1 and A2. All parameters
we mention below apply equally well to both: e.g. ρb′ is the state of either the dustball or
the black hole.

The same calculations also give the entropy of the black hole in our third contradiction
from section 2. A particularly concrete example, where the full non-perturbative path
integral can be evaluated and agrees with the answer that we find below, is the JT gravity
plus end-of-the-world (EOW) brane model of [9]. In this case, working with fixed-area
states is equivalent to working in the microcanonical ensemble (note that A2 here is the
horizon area of the black hole, while A1 = 0), and the only bulk degrees of freedom are on
the EOW brane in region b′, which is the assumption that we needed above to make the
resolvent calculation possible.

14Since we can shift R by A/λ for a real constant A, without changing D(λ) away from λ = 0, we are
always free to assume this.
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Consider two bulk states, ρb′,1 = |ψ〉 〈ψ| pure and ρb′,2 an arbitrary orthogonal mixed
state of entropy S. We will assume that the state ρb′,2 has a flat spectrum, and hence is
perfectly compressible. We will compute the entropy S(B) for their mixture,

ρb′ = p |ψ〉 〈ψ|+ (1− p)ρb′,2 . (4.25)

To keep the example as simple as possible, we assume

(1− p)e−S � p . (4.26)

This ensures that the bulk density matrix eigenvalues p and (1− p)e−S are separated by a
large multiplicative factor.15 The von Neumann, min-, and max-entropies of this state are

Hε
min(b′) ≈ − ln(p) ,
S(b′) = (1− p)S − p ln(p)− (1− p) ln(1− p) ,

Hε
max(b′) ≈ S .

(4.27)

The naïve QES prescription says

Snaïve(B) =


A1
4G + S(b′), S(b′)� A2−A1

4G
A2
4G , S(b′)� A2−A1

4G .
(4.28)

We will see that the correct answer, up to O(1) corrections, is

Srefined(B) =


A1
4G + S(b′), Hε

max(b′)� A2−A1
4G

pA1
4G + (1− p)A2

4G , Hε
min(b′)� A2−A1

4G � Hε
max(b′)

A2
4G , Hε

min(b′)� A2−A1
4G .

(4.29)

Calculation. Plug (4.25) into (4.24) and evaluate the two geometric sums to arrive at

λR = eA2/4G + pR

eA2/4G − p
eA1/4G

R
+ (1− p)R
eA2/4G − (1−p)

eA1/4G+SR
. (4.30)

The roots are the function R(λ) that we seek. As a cubic equation, its roots can be written
analytically but are difficult to integrate to compute the entropy. Fortunately, we can find
a simple approximate solution, by using the assumption (4.26).

We expand (4.30) in two different ways, which are valid at large R (and hence small
λ) and small R (large λ) respectively. A full treatment, including proofs of all claims, is in
appendix A. The two expansions are as follows.

• Expansion 1. For sufficiently large R, we have

λR = eA2/4G − eA1/4G + (1− p)R
eA2/4G − (1−p)

eA1/4G+SR
+O

(
eA1/4G e

(A1+A2)/4G

pR

)
. (4.31)

15For simplicity, we also assume p, 1− p = O(1), so that the corrections can be leading order. We remove
this assumption in our more careful treatment in appendix A.

– 23 –



J
H
E
P
0
4
(
2
0
2
1
)
0
6
2

• Expansion 2. For sufficiently small R, we have

λR = eA2/4G + pR

eA2/4G − p
eA1/4G

R
+ (1− p)R

eA2/4G
+O

((1− p)R
eA2/4G

(1− p)R
e(A1+A2)/4G+S

)
.

(4.32)

The condition (4.26) ensures there is overlap in the conditions where the two expansions
are valid, implying that some expansion is valid for all values of R and λ. Each expansion
gives a quadratic equation for the resolvent R(λ), which can be easily solved and has a
single branch cut, where the eigenvalue density DB(λ) is nonzero. Both branch cuts are
within the respective regimes of validity of the corresponding expansion, and so we find
two distinct sets of eigenvalues. The eigenvalues in Expansion 1 come from the ρb′,2, while
the eigenvalues in Expansion 2 come from the |ψ〉 〈ψ| part of the state.

The entropy is given by

S(B) = −
∫
dλ λ ln(λ)DB(λ) = 1

π

∫
dλ λ ln(λ)ImR(λ+ iε) , (4.33)

where we include both sets of eigenvalues in the integral. The answer depends on how
Hε

min(b′) and Hε
max(b′) from (4.27) compare to ∆A ≡ A2 −A1.

Regime 1: Hε
min, H

ε
max � ∆A/4G. In this regime, the naïve QES prescription gives the

right answer. Expansion 1 has a peak of eigenvalues at λ ≈ (1− p)e−A1/4G−S , and Expan-
sion 2 has a peak of eigenvalues at λ ≈ p e−A1/4G. Both are within the regime of validity
of their expansion. See the top plot of figure 5. Combined these peaks give entropy

S(B) =A1
4G + (1− p)S + . . . , (4.34)

where “. . . ” represents terms subleading at large S, A1, and A2. This includes the Shannon
entropy term −p ln (p) − (1 − p) ln (1− p). Recall that equation (4.34) is the naïve QES
answer because S(b′) . Hε

max(b′)� ∆A/4G.

Regime 2: Hε
min � ∆A/4G � Hε

max. Here there are large corrections to the naïve QES
prescription. Expansion 2 describes the same peak it did in Regime 1, giving eigenvalues
at λ ≈ pe−A1/4G. Expansion 1 now describes eigenvalues that have crossed the phase
transition, which are therefore at λ ≈ (1− p)e−A2/4G. Both peaks are still well-separated,
and the expansions continue to be valid at the peaks. See the middle plot of figure 5. The
entropy comes out to

S(B) =pA1
4G + (1− p)A2

4G + . . . , (4.35)

and again we have dropped subleading terms, including the Shannon term.
Note that this entropy is different from the naïve QES answer. While the naïve answer

only cares about the relative sizes of S(b′) and ∆A/4G, this answer is independent of those
relative sizes! Indeed, by dialing S, we can place S(b′) on either side of ∆A/4G, as we
please:

Hε
min, S(b′)� ∆A

4G � Hε
max , or Hε

min �
∆A
4G � S(b′), Hε

max (4.36)
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The entropy S(B) equals (4.35) in both cases, while the naïve QES prescription gives
totally different formulas for the two cases! In both cases, the naïve QES prescription gives
an answer that is larger (at leading order) than the correct answer.

The naïve QES prescription failed because it treated the bulk eigenvalues in an all-or-
nothing way, stubbornly refusing to acknowledge that some of the eigenvalues are much
larger than the phase transition value e−A2/4G, even though many others are small enough
to have crossed the phase transition.

Regime 3: ∆A/4G � Hε
min, H

ε
max. The naïve QES prescription is back to receiving no

corrections. In this regime, Expansion 1 is never valid, while Expansion 2 describes a peak
of eigenvalues that have crossed the phase transition, sitting at λ ≈ e−A2/4G. See the
bottom plot of figure 5. We obtain an entropy

S(B) = A2
4G + . . . , (4.37)

again letting “. . . ” represent subleading terms. There is no Shannon term in this regime.
This agrees with the answer from the naïve QES prescription because S(b′) & Hε

min(b′)�
∆A/4G.

Higher Renyis. So far we have computed the von Neumann entropy in each regime, finding
large corrections to the naïve holographic prescription in Regime 2. What about the higher
Renyi entropies? There is a holographic way to compute them as well [32]; does that also
have large corrections in some regime?

The answer is that their corrections are generally much smaller, even in Regime 2.
This is straightforward to derive with the resolvent approximations we have given. For
integer Renyi entropies with n > 1, this is fairly self-explanatory. These can be computed
directly using n replicas without the need for any analytic continuation, and so can always
be computed in the semiclassical limit using a saddle point approximation.

More interestingly, the corrections are also nonperturbatively small for non-integer
Renyi entropies with n > 1 (and n < 1), so long as (n − 1) is finite in the semiclassical
limit. The large corrections to the von Neumann entropy come from the limit n → 1 not
commuting with the semiclassical limit G → 0, unless we keep track of nonperturbatively
small corrections.

Example 2: entangled states.

Setup. This next example demonstrates the role of conditional min-/max-entropy. It
closely resembles the previous one, but now the dustball or black hole b′ is entangled with
another dustball or black hole that is always in the entanglement wedge. For evaporating
black holes (or their JT + EOW brane cousins), it calculates the entropy of the Hawking
radiation rather than the black hole. The setups are detailed in section 2 and the dustball
version is depicted in figure 3. Again those setups are simplified by fixing the areas of γ1
and γ2 to A1 and A2.

We emphasize again that this setup is, quite literally, the complement of the first one.
In that example, while we imagined a CFT BB in a mixed state, we could have instead
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Figure 5. Eigenvalue density for the three Regimes in section 4.3. In Regime 1, there are two
peaks of eigenvalues, each associated to one of the two states in the mixture, and each much greater
than the critical value 1/eA2/4G. Hence the naïve QES prescription is correct. In Regime 2, one
of the peaks has shifted to the critical value, while the other remained where it was, leading to
large corrections in the naïve QES prescription. In Regime 3, both peaks have moved to the critical
value, and the naïve prescription is valid again. Note the agreement with numerical results for the
analogous random tensor network in appendix C.
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imagined it purified by some reference system R. Introducing R changes nothing about
that calculation. Nonetheless, it is useful because S(BR) = S(B) regardless of the makeup
of R. Here we imagine R to be an identical copy of BB, with the same size dustball or
black hole in its bulk dual r. For notational simplicity, we shall combine R into B, so that
we are just computing S(B). Similarly in the bulk we combine r into b.

We consider the following two states of the dustballs or black holes. One is a pure, fac-
torized state |ψ〉b′⊗|ψ〉b. The other is a pure, maximally entangled state, |Φ〉b′b, with entan-
glement entropy S across the partition. We will compute the entropy of their superposition,

√
p |ψ〉b′ ⊗ |ψ〉b̄ +

√
1− p |Φ〉b′b . (4.38)

Again, we keep this example simple by assuming (4.26). The conditional von Neumann,
min-, and max-entropies of this state are

Hε
min(b′|b) ≈ − S ,
S(b′|b) = − (1− p)S ,

Hε
max(b′|b) ≈ ln(p) .

(4.39)

All of these are negative numbers, because of the entanglement. The entropy S(B) depends
on their comparison to (A1 − A2)/4G, which is itself big and negative. The naïve QES
prescription says

Snaïve(B) =


A2
4G + S(b′b), S(b′|b)� A1−A2

4G
A1
4G , S(b′|b)� A1−A2

4G .
(4.40)

The correct answer up to O(1), we will see, is

Srefined(B) =


A2
4G , Hε

max(b′|b)� A1−A2
4G

pA1
4G + (1− p)A2

4G , Hε
min(b′|b)� A1−A2

4G � Hε
max(b′|b)

A1
4G + S(b′), Hε

min(b′|b)� A1−A2
4G .

(4.41)

Calculation. Rather than write out a resolvent like we did before, we will use a trick to
compute the entropy in each of these three regimes. Notice that these smooth conditional
min- and max-entropies (4.39) equal minus the max- and min-entropies (4.27) respectively,
from Example 1. This was the general rule, from section 3: for a pure state on ABC,

Hmin(A|B) = −Hmax(A|C) . (4.42)

Since the system b that we conditioned on in Example 1 was trivial, we have

Hε
min(b′|b) =−Hε

max(b′) , (4.43)
Hε

max(b′|b) =−Hε
min(b′) . (4.44)

So we can compute the entropy in the three regimes as follows. Consider, for example,
the regime in which both the conditional min- and max-entropy are less than ∆A/4G ≡
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(A1−A2)/4G. This corresponds exactly to the regime in Example 1 where both min- and
max-entropy were greater than (A2−A1)/4G. So, using purity of BB, the entropy S(B) in
this regime equals S(B) from that regime. Thus the entropy S(B) is completely deducible
from the results of Example 1.

The key lesson is this: there is an important role played by bulk entanglement, encap-
sulated by the conditional min- and max-entropy. That’s the only way this setup would
be consistent with the complementary answers from the previous example.

Regime 1: Hε
min(b′|b), Hε

max(b′|b)� ∆A/4G. This is Regime 3 of Example 1. Therefore,

S(B) = A2
4G + . . . , (4.45)

where “. . . ” represents subleading terms. The naïve QES prescription gives the same
answer because S(b′|b) . Hε

max(b′|b)� ∆A/4G.

Regime 2: Hε
min(b′|b) � ∆A/4G � Hε

max(b′|b). This is Regime 2 of Example 1, so again
here there are large corrections to the naïve QES prescription. The entropy comes out to

S(B) =pA1
4G + (1− p)A2

4G + . . . , (4.46)

and again we have dropped subleading terms, including the O(1) Shannon term. This
entropy is different than the naïve QES answer.

Regime 3: ∆A/4G � Hε
min(b′|b), Hε

max(b′|b). This is Regime 1 of Example 1, and hence
the naïve QES prescription is back to receiving no corrections. The entropy is

S(B) =A1
4G + (1− p)S + . . . , (4.47)

where again “. . . ” includes the Shannon term. This matches the naïve QES answer because
S(b′|b) & Hε

min(b′|b)� ∆A/4G.

Example 3: arbitrary entanglement spectra. What about more general bulk states
ρb′ , which aren’t simply the mixture of two states with (approximately) flat entanglement
spectra (again forgetting about entanglement, for now)? For an arbitrary bulk state ρb′
with eigenvalue density Db′(λb′), the resolvent recursion relation (4.24) becomes

λR = eA2/4G +
∫
dλb′

λb′Db′(λb′)R
eA2/4G − λb′ e−A1/4GR

. (4.48)

We will not be able to solve this equation as precisely as we were able to calculate the
resolvents in the preceding examples, but we will still have sufficient control to calculate
the von Neumann entropy up to O(1) corrections.

Calculation. Our strategy will closely mirror the strategy used to calculate corrections to
the von Neumann entropy near the Page transition in [9], and we refer the reader to that
paper (and in particular appendix F) for more detailed justifications. We will perturbatively
approximate the resolvent for λ � e−A2/4G, and argue that there are no eigenvalues with
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λ� e−A2/4G whenever the smooth max-entropy is sufficiently large. Combined these two
results will enable us to calculate the von Neumann entropy up to O(1) corrections.

For λ � e−A2/4G, we treat the second term in (4.48) as a small perturbation. At
leading order, the resolvent is given by R0(λ) = eA2/4G/λ. The leading contribution to the
density of states comes from the first perturbative correction

R1(λ) = eA1/4G
∫
dλb′

λb′Db′(λb′)
λ (eA1/4G λ− λb′)

. (4.49)

To justify this perturbative approximation, we assume λ has a small imaginary part iε,
with λ� ε� e−A2/4G. Hence

|R1(λ)| ≤
∫
dλb′

λb′Db′(λb′)
ελ

= 1
ελ
� R0(λ), (4.50)

as desired.
Suppose we are in Regime 1, where the smooth max-entropy Hε

max(b′)� (A2−A1)/4G.
Then we can approximate our bulk state by a nearby state with Db′(λb′) = 0, except when
λb′ � e−A2/4G.16 For λ . e−A2/4G, we can ignore the first term in the denominator
of (4.48) to get the self-consistent approximation

R ≈ 1
λ

[
eA2/4G −

∫
dλb′ Db′(λb′)

]
. (4.51)

Note that going to higher orders in perturbation theory will not introduce a nonzero eigen-
value density, because there are no poles in (4.48) for these values of λ. We conclude that
in Regime 1 we have D(λ) = eA1/4GDb′(eA1/4Gλ), and hence S(B) = A1

4G + S(b′).
What about when Hε

max(b′) � (A2 − A1)/4G? We want to argue that there are no
eigenvalues with λ � εe−A2/4G, and hence that R(λ) is negative and real. To do so, we
rewrite (4.48) to give λ as a function of R

λ = eA2/4G

R
+
∫
dλb′

λb′Db′(λb′)
eA2/4G − λb′ e−A1/4GR

. (4.52)

For small negative R, λ is large and negative, since the first term dominates. When R is
very large and negative however, the second term dominates (thanks to our assumptions
about the smooth max-entropy), and so λ is positive. There will be some intermediate R
where λ is maximal, which gives the bottom of the entanglement spectrum.

To lower bound this maximum, we choose some R � eA2/2G. Then the second term
in (4.52) dominates and we find

λ & e−A2/4G
∫
λb′�e(A1+A2)/4G/R

dλb′ λb′Db′(λb′) & O(ε e−A2/4G) . (4.53)

The last approximation again follows from our assumption about the size of the smooth
max-entropy. We therefore conclude that there are no eigenvalues with λ � e−A2/4G, as
expected.

16The effect of this O(ε) approximation to the state on the von Neumann entropy is controlled by Fannes
inequality [33]. See (5.14).
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We can now calculate the entropy S(B). Since we know the eigenvalue density for
both λ � e−A2/4G and λ � εe−A2/4G, we know the remaining eigenvalues must all have
ε e−A2/4G . λ . e−A2/4G. Up to O(ln ε) corrections, this means that

S(B) = A1
4G +

∫
dλb′ λb′Db′(λb′) min

(
ln λ′b′ ,

A2 −A1
4G

)
. (4.54)

When Hε
min(b′) � (A2 − A1)/4G, we can ignore the first term in the minimization and

we recover the naïve QES prescription result S(B) = A2/4G. However, when Hε
min(b′) �

(A2 − A1)/4G, we find leading order corrections. Our results agree with the refined QES
prescription in all three regimes.

Summary Let us summarize what we learned in this section. Doing a careful calculation
— without the LM assumption — reveals a refinement of the naïve QES formula, which
can differ from the naïve one at leading order. This refined QES prescription compares
the smooth conditional min- and max-entropies to the difference in areas. We have seen
this in three examples, all of which were fixed-area states, and all of which had particular
simple bulk states. Unfortunately, states where there is a large amount of entropy in all the
bulk regions and an arbitrary entanglement structure, and states where the areas are not
fixed, are beyond the current technology we have for computing the replica trick without
using the LM assumption. However, in the next section, we will derive the QES refinement
more generally, beyond these particular bulk states and beyond fixed-area states, by using
a more indirect approach.

5 Corrections in general holographic states

We start by arguing that the naïve QES prescription is valid, whenever the smooth condi-
tional min- and max-entropy are safely on the same side of (A2−A1)/4G. This generalizes
half the pattern from our examples, now showing that for any state on bb′b̄ the naïve QES
prescription can be trusted when the min- and max-entropy are on the same side of the area
difference, though we emphasize that we still limit ourselves to two competing fixed-area
QES, as in figure 1.

Then in section 5.2 we prove that there are generally large corrections to the naïve
QES prescription in the regime where we did not prove the corrections are small. I.e. there
are large corrections when the min- and max-entropy are on different sides of the area
difference.

Finally, in section 5.3 we remove the fixed-area requirement, demonstrating that more
general geometries follow the same pattern, up to a relatively small difference, O(lnG).

Altogether, our argument shows that there are large corrections in general holographic
states if and only if the bulk min- and max-entropy straddle the difference in areas between
the two competing QES.
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5.1 The regime of validity of naïve QES in fixed-area states

We first argue that the naïve QES prescription is valid, up to o(1) corrections, for general
fixed-area states with two extremal surfaces, so long as either

A2
4G �

A1
4G +Hε

min(b′|b) , (5.1)

in which case the minimal QES is the surface γ2, or

A2
4G �

A1
4G +Hε

max(b′|b) , (5.2)

in which case the minimal QES is the surface γ1. By “much greater than”, �, we mean a
difference that is much larger than O(lnG). Therefore, large corrections can only exist if

A1
4G +Hε

max(b′|b) & A2
4G &

A1
4G +Hε

min(b′|b) . (5.3)

We will later argue in section 5.2 that significant corrections (at least O(1) in size) in fact
always exist when

A1
4G +Hε

max(b′|b)� A2
4G �

A1
4G +Hε

min(b′|b) . (5.4)

Our strategy will be to make use of the correspondence between the nonperturbative
corrections to the replica trick entropy in a) fixed-area states in gravity and b) single-tensor
random tensor networks (RTNs) [34], a nonperturbative equivalence first noted in [9].

Let us start by reviewing that correspondence. We have already evaluated tr(ρn) for
fixed-area states in section 4. We found that for a general normalized bulk state ρbb′b̄, the
dual normalized boundary state ρBB satisfied

tr(ρnB) =
∑
π

tr(τb πb′ρ⊗nbb′b̄) exp
([
C(τ−1 ◦ π)− n

] A2
4G + [C(π)− n] A1

4G

)
, (5.5)

where the fixed permutation τ is cyclic, the sum is over permutations π that maximize
C(τ−1 ◦ π) + C(π), and the operators τb, πb′ permute the n copies of their respective
subsystem.

We want to show that one finds the same formula in RTNs, where

ρBB = VBVBV ρbb′b̄V
†V †
B̄
V †B (5.6)

and V : b′ → B′ ⊗ B′, VB : b ⊗ B′ → B and VB : b̄ ⊗ B′ → B are random isometries.
This is shown graphically in figure 6. Here the subsystems B′ and B

′ have dimensions
dB′ = exp(A2/4G) and d

B
′ = exp(A1/4G) respectively.

We can write [34]

tr(ρnB) = tr(τbτB′(UV0ρbb′V
†

0 U
†)⊗n) . (5.7)

– 31 –



J
H
E
P
0
4
(
2
0
2
1
)
0
6
2

Figure 6. Simple random tensor network analogous to figure 1 with fixed areas. The “bulk legs”
b, b′, b̄ are related by isometries V, VB , VB to “boundary legs” B,B. The (log of the) dimensions of
the legs B′ and B′ play the role of the areas in figure 1.

Here we have written V = UV0 for a fixed isometry V0 and a Haar random unitary U .
Now, we can use the formula [35]∫

dUUi1j1 . . . UinjnU
†
j′1i
′
1
. . . U †j′ni′n = d−n

∑
π

δi1i′π(1)
δj1j′π(1)

. . . δini′π(n)
δjnj′π(n)

+O(d−n−1) ,

(5.8)

where π(i) ∈ {1, . . . , n} represents the arbitrary permutation π acting on the i-th element
of an n-element set. Combine with d = dB′dB′ to obtain

tr(ρnB) = d−n
∑
π

tr(τbπb′ρbb′) tr(τB′πB′) tr(π
B
′) =

∑
π

tr(τbπb′ρbb′)dC(τ−1◦π)−n
B′ d

C(π)−n
B
′ .

(5.9)

This is exactly the result that we found in the gravity calculation.
Since we can (in principle if not in practice) calculate the entropy S(B) simply by

analytically continuing tr(ρnB), the RTN must have the same entanglement entropy as the
gravity calculation. Armed with this knowledge, we can calculate the entanglement entropy
in the RTN, using any techique we want, and thereby find the gravitational answer as well.

The key result that we will use is the one-shot decoupling theorem, Theorem III.1
of [36] (see appendix D for our summary of the proof), which says that for V0ρbb′V

†
0 , then

so long as

ln dB′ < ln d
B
′ +Hmin(b′|b)ρ − 2 ln 1

ε
, (5.10)

we have ∫
dU

∥∥∥∥trB′(UV0ρbb′V
†

0 U
†)− ρb ⊗

1B′

dB′

∥∥∥∥
1
≤ ε . (5.11)

What does this theorem mean? It states that (5.10) is a sufficient condition to ensure

ρB ≈ ρ̃B = VBρb ⊗ 1B′/dB′V
†
B . (5.12)
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Moreover, the condition (5.10) can be weakened, replacing the min-entropy Hmin(b′|b)ρ
by its smooth version Hε

min(b′|b)ρ, with only a small degradation in the quality of the
approximation, as follows from the definition of smoothing.

The state on the right hand side of (5.12) has two essential features. The first is that
it depends only on the reduced state ρb, and is completely independent of b′. The second
is that its entropy

S(ρ̃B) = ln dB′ + S(ρb) (5.13)

corresponds in gravity to the generalized entropy of the surface γ2.
We want to use this to bound the entropy of the state ρB itself. To do so, we need the

Fannes’ inequality [33]

|S(ρ)− S(σ)| ≤ 1
2‖ρ− σ‖1 ln d+ S2

(1
2‖ρ− σ‖1

)
. (5.14)

Here S2(p) = −p ln p−(1−p) ln(1−p) is the Shannon entropy of the probability distribution
(p, 1− p).

Applying this inequality to the states in (5.11), we find that

S(ρB) = S(ρ̃B) +O(ε ln d′B) +O(ε ln ε) = A2
4G + S(ρb) +O

(
ε

4G

)
+O(ε ln ε) . (5.15)

If we take ε (in both (5.11) and the smooth min-entropy) to be polynomially small in G

(say O(G2)), then (5.10) is satisfied whenever

A1
4G +Hε

min(b′|b)− A2
4G � 0 (5.16)

and this difference grows faster than ln(1/G) in the semiclassical limit G → 0. More-
over, (5.15) says S(ρB) is given by the generalized entropy of the quantum extremal surface
γ2, up to a perturbatively small (O(G)) correction.

We also want to show the QES prescription is valid, this time with minimal QES γ1,
so long as

A1
4G +Hε

max(b′|b)� A2
4G . (5.17)

It turns out that this follows by the same arguments used above, applied to the comple-
mentary boundary region.

We first consider some arbitrary purification |ψ〉bb′b̄R of the bulk state ρbb′b̄. We now
want to calculate the entanglement entropy S(BR) of the corresponding pure boundary
state. This is, of course, equal to the entropy S(ρB) that we are really interested in.

As can be seen immediately from the tensor network picture, this is exactly the same
situation that we considered before, except that B has been replaced by B⊗R, b has been
replaced by b̄⊗R, and the areas A1 and A2 have been exchanged. It follows that

S(B) = S(BR) ≈ A1
4G + S(b̄R)ψ = A1

4G + S(bb′)ρ , (5.18)
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so long as

A2
4G +Hε

min(b′|b̄R)ψ −
A1
4G � 0 . (5.19)

Since |ψ〉bb′b̄R is pure, Hε
min(b′|b̄R)ψ = −Hε

max(b′|b)ρ and so this is exactly (5.17).
It is worth briefly commenting on whether an equivalent formula to (5.11) could be

directly shown in gravity. The proof of (5.11) is reviewed in appendix D and involves cal-
culating the Hilbert-Schmidt distance between the entangled and product states, and then
using the Hilbert-Schmidt norm to bound the trace-norm. Since the Hilbert-Schmidt norm
can be computed directly using a path integral (without analytic continuation), it should
in principle be possible to evaluate in gravity. Just like for Rényi entropy calculations, for
fixed-area states the gravity answer should agree with the random tensor network answer.
However, in order to derive a gravitational decoupling theorem, one would still need to
use some quantum information tricks (basically a clever application of the Cauchy-Schwarz
inequality) in order to eventually bound the trace-norm. The derivation would therefore
still not be a completely direct gravity calculation.

5.2 The regime where naïve QES fails

So far we have only argued that there aren’t significant correction to the QES prescription,
so long as we don’t have

A1
4G +Hε

max(b′|b) & A2
4G &

A1
4G +Hε

min(b′|b) . (5.20)

In this section, we argue that there do exist significant corrections (at least O(1) in size)
when

A1
4G +Hε

max(b′|b)� A2
4G �

A1
4G +Hε

min(b′|b) . (5.21)

Here, ε can be relatively small, but should be parametrically O(1) in the semiclassical
limit. Note that we do not have a general argument that these corrections need to be
leading order, although we strongly expect that this is the case so long as (5.21) holds at
leading order, as we found in the simple examples in section 4. Finding a proof that this
is true in full generality is an important task for future work.

Our main tool will be the converse one-shot decoupling theorem of [37]. Applied to
the random tensor network in figure 6, this says that, if (5.21) holds, then

‖ρ
B
′
bR
− ρ

B
′ ⊗ ρbR‖1 = O(1) (5.22)

and

‖ρB′b − ρB′ ⊗ ρb‖1 = O(1) . (5.23)

Using Pinsker’s inequality, these lower bound the relative entropies

S(ρB′b||ρB′ ⊗ ρb) = I(B′ : b) (5.24)

– 34 –



J
H
E
P
0
4
(
2
0
2
1
)
0
6
2

and

S(ρ
B
′
bR
||ρ

B
′ ⊗ ρbR) = I(B′ : bR) . (5.25)

There is therefore at least an O(1) amount of mutual information both between B′ and b
and betwen B′ and b⊗R. Since there is no upper bound on the relative entropy from the
trace distance, the mutual information can, of course, be parametrically larger than O(1),
which we expect to happen when the inequalities holds at leading order.

The naïve QES prescription says that

S(B) = S(B′b) = S(BR) = S(B′bR) = min
(

ln dB′ + S(b), ln d
B
′ + S(bb′)

)
. (5.26)

However

ln dB′ + S(b) > S(B′) + S(b) = S(B′b) + I(B′ : b) , (5.27)

and

ln d
B
′ + S(bb′) > S(B′) + S(bR) ≥ S(B′b) + I(B′ : bR) . (5.28)

Since there is O(1) mutual information in each case, we find that the naïve QES prescription
receives at least O(1) corrections. Since the same replica trick calculation gives the entropy
of both the random tensor network and the corresponding fixed-area state, the same is true
for fixed-area states.

5.3 From fixed-area states to general holographic states

Of course, most of the time we are not interested in fixed-area states. Instead the states
of interest (vacuum-AdS, perturbative excitations above the vacuum, thermofield dou-
ble states etc.) generally have small (O(

√
G)) fluctuations in the area of the extremal

surface(s).
In this section, we argue that, up to small O(lnG) corrections, the entropies of such

states can be calculated by expanding the state as a superposition of fixed-area states, and
then taking an expectation of the entropies of the states in the superposition.17

From our point of view, the primary importance of this result is that, at leading order,
the entanglement entropy of a generic holographic state is the same as the entropy of a fixed-
area state with the same classical area. Therefore general holographic states inherit the
leading order corrections we found for fixed-area states. It also shows that the corrections
to the naïve QES prescription are small, for general holographic states, so long as

A2 −A1
4G −Hε

max(b′|b)�
√

lnG
G

, (5.29)

and similarly for Hε
min(b′|b).

17For simplicity, in this section we only consider pure states. If the state of interest is mixed, one can
simply first purify it using a reference system and then replace all references to the complementary region
B in the argument below by B ⊗R.
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That said, our argument also has other technical applications, for example bounding
the error in the assumptions used in [14] to calculate the O(1/

√
G) corrections to the

entanglement entropy near a QES phase transition.
Our starting point is that the general holographic state |ψ〉 can be written as a super-

position over fixed-area states |A1, A2〉 as

|ψ〉 =
∑
A1,A2

√
p(A1, A2) |A1, A2〉 . (5.30)

The fluctuations in the area are Gaussian (in the semiclassical limit) with width O(
√
G)

(see [14] for detailed calculations), so we can approximate the state up to any polynomially
small error (w.r.t. G) by a state with support only on an O(

√
G lnG) range of values.18

As with any continuously valued measurement operator, it is not well defined to mea-
sure the area exactly. Instead, the area operator should be viewed as a projection-valued
measure (PVM), and the states |A1, A2〉 should be viewed as the outcome of measuring
the area to some precision δ. We shall take δ to be polynomially small with respect to G.

It follows from the preceding two paragraphs that the number of distinct fixed-area
states in the superposition scales as O(G lnG/δ2). (Note that we are taking a superpo-
sition over states with both A1 and A2 fixed, which squares the number of terms in the
superposition.) Crucially this means that the number of states is polynomial in 1/G.

We are now almost ready to consider the reduced density matrix ρB = trB |ψ〉 〈ψ|.
However, as an intermediate step we first consider taking a superposition over only states
with different values of A1, for some fixed A2. In other words, we have

ρB(A2) =
∑
A1,A′1

√
p(A1|A2)p(A′1|A2) trB

(
|A1, A2〉 〈A′1, A2|

)
. (5.31)

The first thing to observe is that the bulk operator Â1 is always reconstructable on the
boundary region B. Hence the only terms that survive the partial trace have A1 = A′1.

We therefore find that ρB(A2) can be written as the incoherent mixture

ρB(A2) =
∑
A1

p(A1|A2) trB̄
(
|A1, A2〉 〈A1, A2|

)
. (5.32)

However, as discussed in section 2, we can bound the entropy of such a mixture from above
and below by∑
A1

p(A1|A2)S(B)|A1,A2〉 ≤ S(ρB(A2)) ≤
∑
A1

p(A1|A2)S(B)|A1,A2〉 − p(A1|A2) ln p(A1|A2) .

(5.33)

18The error in neglecting the tail of a Gaussian outside a window ∆x goes like e−O(∆x/σ)2
. So if ∆x

equals k standard deviations, the error goes like e−O(k2). Hence the
√
G is for the standard deviation, and

the
√

lnG ensures we capture a greater number of standard deviations as G→ 0, such that the error tends
to zero polynomially in G.
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The difference between the upper and lower bounds is an O(lnG) entropy of mixing term
(because there were O(

√
G lnG/δ) distinct states in the superposition) and hence can be

ignored at leading order (and for calculating the O(1/
√
G) corrections discussed in [13, 14]).

Now we need to take a superposition over different values of A2. Because all the states
involved are pure, S(ρB) = S(ρB), and, for any A2, S(ρB(A2)) = S(ρB(A2)). We can
therefore compute the entropy of the reduced state on B rather than B.

Since A2 can always be reconstructed on B, this is again an incoherent mixture

ρB =
∑
A2

p(A2)ρB(A2). (5.34)

Hence we have∑
A2

p(A2)S(ρB(A2)) ≤ S(ρB) ≤
∑
A2

p(A2)S(ρB(A2))− p(A2) ln p(A2). (5.35)

Again the difference between the lower and upper bounds is O(lnG) and so can be ignored
in lower order calculations.

Altogether, we therefore find

S(ρB) =
∑
A1,A2

p(A1, A2)S(B)|A1,A2〉 +O(lnG) , (5.36)

which is exactly what we set out to show. In particular, the QES prescription is valid at
leading order for general holographic states, whenever it is valid for the corresponding fixed-
area states. Moreover, the QES prescription receives leading order corrections, whenever
there are leading order corrections to the entropy of corresponding fixed-area states. When
the difference in areas is smaller than the fluctuations in this difference, we also find the
(O(

√
1/G)) corrections from [9, 13, 14].

There’s one remaining remark to make. The fluctuations in the areas A1 and A2 are
formally divergent when we take the radial cut-off to infinity. This leads to a natural
question of whether we were justified in treating the potential entropy of mixing terms as
smaller than O(1/G) but non-divergent corrections.

The short answer is that this subtlety does not matter for our purposes. The IR
fluctuations create a constant (divergent) difference between the entropy in fixed-area states
and entropy in general states, independent of which QES is dominant, independent of the
bulk state. Hence the entropy S(B) in a general bulk state can be computed as the
expectation of the entropies of the fixed-area states in its superposition, as we already
argued, plus a constant shift. This shift is currently underappreciated and deserves more
study, but it does not affect our ability to infer general corrections from fixed-area states.

The longer answer is as follows. First note that the IR pieces of A2 and A1 are the
same, so the fluctuations of A1, in states where the area of A2 is fixed, do not diverge [14].
This implies the difference between the lower and upper bounds in (5.33) is genuinely
finite. Moreover, this implies that A2−A1 is independent of this IR subtlety, implying the
condition for corrections (5.3) remains well-defined.

The important effect of this IR subtlety is in the entropy of mixing term in (5.35), and
is indeed divergent. However, it represents a large constant shift — not a large window —
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because the lower bound can be strengthened to include this divergence as well. This works
as follows. Let there be some fixed radial cutoff ε, such that A2 diverges in the ε→ 0 limit.
Group fixed-area states into blocks corresponding to some O(1) range of areas. There are a
polynomial in 1/G number, O(1/δ), of fixed-area states in each block. This number grows
as G → 0. As the IR cutoff is taken away, the number of such blocks grows as 1/ε to
some power.

We can separate the Shannon term associated to the mixing of these blocks from the
Shannon term associated to the mixing of the O(1/δ) states within each block. The first
Shannon term does not depend on G, only on ε.

This IR Shannon term, crucially, can be included in the above lower bound of (5.35).
The resulting inequality is true because the different blocks are distinguishable on both B
and B. Indeed, A1, a quantity known to B, takes on vastly different values in the different
blocks (because its IR value matches that of A2).

Therefore, the entropy of mixing associated to the IR fluctuations of area can be
understood as a constant shift to the entropy, present even if there is just a single fixed-
area surface. This concludes the argument.

6 Entanglement wedge reconstruction

This refinement of the QES prescription brings with it a refinement of the condition for
entanglement wedge reconstruction (EWR).

We show in section 6.1 the refined conditions are the following. A region B of the
boundary will be able to reconstruct the state of a region b′ of the bulk, as in figure 1,
given a bulk state ρ, if and only if19

A2
4G �

A1
4G +Hε

max(b′|b)ρ . (6.1)

This condition is similar to that from Hayden and Penington20 [8] (see also [4]), but builds
on it in a key way. The similarity is that both depend at some level on the comparison
between ∆A/4G and Hmax(b′)ρ (though [8] did not say it this way).

The key difference is that (6.1) tells you whether B can reconstruct the particular state
ρ. The condition from [8] tells you whether there exists a single reconstruction procedure
that works for any state in a code subspace that contains ρ.

This difference shows up in two places: the smoothing of Hmax, and the conditioning
on b. The smoothing allows us to only care about the approximate dimension of ρb′ ,
formalizing the intuitive notion that we can ignore small pieces of the wavefunction and still
approximately reconstruct the state. The conditioning on b quantifies how entanglement
in ρ helps B reconstruct b′, formalizing the intuition that bulk entanglement between b and
b′ can aid reconstruction.

In section 6.2, we explain that this new, state-specific formulation of EWR (6.1) is
equivalent to a well-known quantum information task, one-shot quantum state merging.

19We discuss setups with more than two candidate QES in section 7.
20See also Dong, Harlow, and Wall [12], which first derived EWR in settings with small code subspaces,

where the minimal QES is determined up to perturbative corrections by the area term.
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Furthermore, we explain that the AdS/CFT dictionary performs this task maximally effi-
ciently. EWR is just very efficient one-shot quantum state merging.21

6.1 State-specific EWR

Let us first carefully define what we mean by EWR for an arbitrary, single bulk state ρ.
Traditionally, EWR has been defined not for a single (mixed) state ρ, but for a code

subspace of states Hcode. There are then two definitions of what it means for EWR to be
possible, depending on whether we work in the Schrödinger or Heisenberg picture. In the
Schrödinger picture, we need to find a quantum channel R : B → b⊗ b′ that recovers the
reduced bulk state on b ⊗ b′ from the reduced boundary state on B, for any state in the
code subspace. In the Heisenberg picture, for any bulk operator acting on b⊗ b′, we need
to find an operator OB, acting only on the boundary region B, whose action is the same
as the action of the bulk operator, when applied to any state in the code subspace.22

We can replace this definition with a definition that considers only a single state,
by utilizing a canonical purification |ψ〉bb′b̄R of the maximal mixed state within the code
subspace. In this language, EWR is possible if and only if, for any bulk operator on
b⊗ b′, there exists an operator reconstruction on B that has the correct action on |ψ〉bb′b̄R.
Similarly, in the Schrödinger picture, EWR is possible — in this single-state language —
if and only if it is possible to recover a canonical purification of the bulk state on b̄ ⊗ R
from the boundary state on region B.

If EWR were exact, this single-state definition would be exactly equivalent to the tra-
ditional, code subspace definition. However, because EWR is in practice only approximate,
there is a slight difference. In the traditional definition, the error is commonly defined as
the ‘worst-case’ error, i.e. the largest output error for any input state. The error when act-
ing on a maximally entangled state is more like an ‘average-case’ error: the reconstruction
can do a lot worse on particular input states, as long as it does well for most input states.
(See e.g. the discussion in [38].)

An advantage of this new, single-state definition is that it very naturally generalizes to
mixed bulk states ρ with an entanglement spectrum that isn’t flat. Again, we simply say
that EWR is possible if a boundary operator exists with the correct action on a (canonical)
purification of the bulk state ρ. When the state ρ is unentangled, this just means that we are
taking a ‘weighted-average’ error, where ρb′ tells us how different states should be weighted.
However, when the state ρbb′ is entangled, we can take advantage of that entanglement to
make reconstruction easier. This has no classical analogue.

When is EWR of region b′ — using this more general definition — possible? We start
by considering the tensor network shown in figure 6. In this setup, a necessary and sufficient

21Let us make a helpful distinction. The term “entanglement wedge reconstruction” usually means two
things at the same time: the task of encoding b′ into B (and then decoding), and also the particular protocol
implicit in the AdS/CFT dictionary, the protocol that performs the task. The task, we will explain, is a
special case of quantum state merging. The protocol, we will argue, is a very efficient way to perform
quantum state merging.

22We also require that, when the bulk operator is Hermitian, the boundary reconstruction is also Hermi-
tian, and, when the bulk operator is unitary, the boundary operator is also unitary.
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condition for EWR is approximate decoupling [39, 40]. Namely, that∥∥∥∥∥trB′ (V ρb′bRV †)− ρbR ⊗ 1
B
′

d
B
′

∥∥∥∥∥
1
≤ ε . (6.2)

Roughly speaking, the intuition for this is that all purifications are equivalent up to uni-
taries, and B purifies B′ ⊗ b ⊗ R. It follows that, if (and only if) the reduced state on
B
′ ⊗ b⊗R is (approximately) the product of a state on B′ and a state on b⊗R, then we

can extract a purification of b⊗R from B. As discussed above, this is just the Schrödinger
picture definition of EWR.

As discussed in section 5.1, (6.2) holds if and only if

−Hε
min(b′|b̄⊗R) = Hε

max(b′|b)� ln dB
′

d
B
′

= A2 −A1
4G . (6.3)

In other words, the condition for EWR of region b′ is exactly the condition for the QES
prescription to be valid, with minimal QES γ1 (and hence region b′ is ‘in the entanglement
wedge’).

We would like to show that the same condition holds for EWR in gravity. Given our
discussion in section 5.1 about the close connections between random tensor networks and
fixed-area states, it should be unsurprising that this indeed the case.

The simplest argument for this is to use the Petz map reconstruction [41–43]. This is a
explicit general-purpose construction for reconstructing operators that is known to be close
to optimal. Specifically, using the Petz map (with reference state ρbb′⊗σb for any full-rank
state σb) will give a reconstruction error that is at most twice the optimal error [38, 41].
Hence, for the random tensor network the Petz map reconstruction will work with small
error, if and only if (6.3) holds.

However, Petz map matrix elements can be computed using a replica trick [9]. And, as
for the von Neumann entropy, the replica trick calculation is identical for both fixed-area
states and random tensor networks [9, 44]. We can therefore use the known results for
random tensor networks to do the analytic continuation and conclude that the Petz map
reconstruction succeeds (and hence EWR is possible at all) if and only if (6.3) holds.

What about EWR in states where the extremal surface areas are not fixed? Since the
area operator A2 can always be measured on B, we are free to consider states of fixed A2.
If entanglement wedge reconstruction is possible for all values of the area A2, it must also
be possible for states that involve superpositions over A2, because we can reconstruct an
operator φb′ as

φB =
∑
A2

ΠA2φ
(A2)
B ΠA2 , (6.4)

where the sum is over possible values of the area A2, φ(A2)
B is a reconstruction of φb′ for

states with area A2, and ΠA2 is a projector onto the area being A2.
In general, we can’t do the same thing for the area A1, since it is not always measurable

from B. However, if the region b′ is reconstructable on B for all states in the superposition,
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then A1 can be reconstructed in B for all the states, and we can use exactly the same
argument to contruct operators that work for superpositions of eigenstates of A1. We
therefore conclude that entanglement wedge reconstruction is possible so long as

A2 −A1
4G −Hε

max(b′|b)� O

√ lnG
G

 . (6.5)

The above argument was somewhat sloppy. Our previous argument for EWR of the
region b′, in fixed-area states, involved operators that acted within a single fixed-area code
subspace (as in the tensor networks). The operator A1 instead compares code subspaces
with different areas. How do we know that it has the same reconstruction conditions?

Again, we can turn to the Petz map. To reconstruct the operator A1 using the Petz
map, we need to consider a reference state that involves a mixture of states with different
areas A1. In the replica trick calculation of the Petz map matrix elements, the area A1 in
each replica has to be the same, whenever the different replicas are glued together at the
surface γ1. If this is the case, the parts of the mixed reference state with the ‘wrong’ area
A1 will not contribute to the operator action, and the reconstruction will succeed. If some
of the replicas are instead glued together at the surface γ2, then the areas A1 do not need
to be the same, and the reconstruction will fail.

The same statement is also true for the Petz reconstruction of ordinary bulk operators
in region b′ [9]: the reconstruction succeeds if and only if the contribution from saddles
where replicas are glued together at γ2 is small (and so can be safely ignored while doing the
analytic continuation). We already argued that those reconstructions succeed when (6.3)
holds. Hence, when (6.3) holds, gluing at γ1 must dominate the analytic continuation, and
hence the operator A1 must also be reconstructible.

6.2 EWR as one-shot quantum state merging

This single-state reformulation of EWR is a special case of a ubiquitous information-
theoretic task, known as one-shot quantum state-merging [21, 45, 46].

In quantum state-merging, Alice and Bob share a quantum state. This state is chosen
from some arbitrary ensemble of pure states with density matrix ρAB. Alternatively, we can
consider a single purification |ψ〉ABR of ρAB. The objective of the task is to transfer Alice’s
part of the state to Bob while sending as few qubits from Alice to Bob as possible. In other
words, to produce an output state |ψ′〉A′BR ≈ |ψ〉ABR where the A′ and B subsystems are
both held by Bob. Equivalently, the average error between the initial state (shared between
Alice and Bob) and the final state (held only by Bob), should be small, where the average
is over the pure states in the ensemble with density matrix ρAB.

It should be clear that this task is closely related to state-specific EWR. There too,
the bulk state either is chosen from some ensemble ρbb′b̄, or is purified by a reference system
as |ψ〉bb′b̄R. The part of the state that is held by Bob corresponds to the part of the state
that is encoded in the boundary region B. The bulk region b is always encoded in the
boundary region B; this corresponds to the part of the state that is initially held by Bob.

In the one-shot setting (where Alice and Bob are trying to merge a single copy of
the state), it is known that the minimum number of qubits required for state merging is
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Hmax(A|B)/ ln(2). Remarkably, this is exactly how many qubits gravity seems to require!
The number of qubits from region b′ that can be decoded in region B is ∆A/4ln(2)G, as
stated in (6.3). Hence it seems that EWR can be explained not just as a special case of
quantum state merging, but as an optimal implementation of it!

However, there is an important caveat that we have ignored until now. In quantum
state merging as traditionally defined, it is crucial that unlimited classical information can
be sent from Alice to Bob [21]. Without this classical communication, significantly more
quantum communication would be required.

Holography does not transfer large amounts of classical information from b′ to B. In-
deed, the amount of transferred classical information is bounded by the Holevo information,
which is also equal to ∆A/4G [47]. That is, the total number of transferred qubits plus
bits is bounded by ∆A/4G. There is no additional classical communication that can make
state merging achievable.

So if EWR is accomplishing state merging, why did our results from section 6.1 suggest
that we only need

∆A
4G > Hε

max(A|B) (6.6)

for EWR to be possible? It turns out that the full power of classical communication
is unnecessary for quantum state merging. Instead, a weaker communication primitive,
known as zero-bit communication, is sufficient [48]. The number of zero-bits communicated
from region b′ encoded in region B is not constrained by ∆A, and it is this additional
information that allows the state merging protocol to succeed when (6.6) holds.

To understand this, we start with the resource inequality governing a highly efficient,
rather general quantum protocol, the “one-shot mother protocol,” also known as (one-shot)
quantum state transfer or fully quantum Slepian-Wolf [49, 50]. The inequality states that

〈ψABR〉+ [Hε
0(A)ψ +Hε

max(A|B)ψ]
2 ln(2) qubits ≥ [Hε

0(A)ψ −Hε
max(A|B)ψ]

2 ln(2) ebits + 〈ψA′BR〉 .

(6.7)

At first glance, this inequality is somewhat terrifying. Let’s take some time to unpack it.
The whole statement relates the relative usefulness of different quantum communication
resources. On the left, we start with the state |ψ〉, which is shared between Alice, Bob, and
the reference R. Alice also has the ability to send [Hε

0(A)ψ +Hε
max(A|B)ψ] /2 ln(2) qubits

to Bob.
The claim is that this is more useful to Alice and Bob than the resources on the

right hand side, because the resources on the left can be used to create the resources on
the right (up to some small error). What are the resources on the right? We still have
the state |ψ〉, but it has now been successfully ‘merged,’ so that everything except the
reference is now in system A′B, held entirely by Bob. Alice and Bob have also gained
[Hε

0(A)ψ +Hε
max(A|B)ψ] /2 ln(2) Bell pairs or ‘ebits’.

For clarity of presentation, we dropped additional terms in (6.7) of size O(ln ε), terms
correcting the number of qubits required and ebits produced. These corrections are sub-
leading for appropriate choices of ε in the limit where the entropies are large. We note that
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the inequality is optimal in the following sense: in any protocol for one-shot quantum state
transfer, the number of qubits communicated, minus the ebits of entanglement gained, will
be at least

Hε′
max(A|B)ψ +O(ln(ε′)),

for a particular ε′ that is controlled by the protocol error.
How does this relate to quantum state merging? In the language of resource inequali-

ties, quantum teleportation states that

1 ebit + 2 cbits ≥ 1 qubit , (6.8)

where a cbit is a classical bit. Substituting this inequality into (6.7), and recalling that
classical communication is free in traditional quantum state merging, we find that the num-
ber of qubits that need to be sent is Hε

max(A|B). Hence unlimited classical communication
does allow Alice to give her state to Bob, just by using the mother protocol and transferring
Hε

max(A|B) qubits.
As an aside: note that quantum conditional entropies can be negative. What does it

mean if only a negative number of qubits need to be sent from Alice to Bob? The answer
is that the communication cost in state merging is defined catalytically. If the protocol
produces Bell pairs, these can be stored, ready to use, together with the free classical
communication, to produce quantum communication in the future. We can end up with
more ability to communicate than we started with!

Returning to the main point, we emphasize that classical bits are not actually required
to do teleportation. Zero-bits are sufficient. We have

1 ebit + 2 zero-bits (a)= 1 qubit , (6.9)

where the (a) means that (6.9) only holds at leading order in the limit where we have
a large number of each type of bit. Note that, unlike (6.8), (6.9) is an equality, not an
inequality. Zero-bits are the minimal resource required for teleportation.

Therefore, with enough zero-bits communicated from Alice to Bob, Alice can give
Bob her state with just Hε

max(A|B)/ ln(2) qubits, using the mother protocol. To see this,
substitute (6.9) into (6.7), finding that

〈ψABR〉+ Hε
max(A|B)ψ

ln(2) qubits + [Hε
0(A)ψ −Hε

max(A|B)ψ]
ln(2) zero-bits ≥ 〈ψA′BR〉 . (6.10)

State merging is just as easy with free zero-bit communication as with free classical com-
munication.

How many zero-bits are communicated from b′ to B? More broadly, what is the total
amount of information about b′ encoded in region B? These questions were answered
in [8].23 For ∆A > 0, region B encodes the ‘α-bits’ of region b′ for

α = ∆A
4GS0

. (6.11)

23The total information was correctly computed in [8], even though they used the naïve prescription,
because the relevant state for computing the transferred information is the maximally-mixed state, which
is perfectly compressible.
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Here S0 = ln(db′) is the thermodynamic entropy in region b′. So, for example, when the
code space states in region b′ are the possible microstates of a black hole with horizon area
Ahor, we have α = ∆A/Ahor.

We can convert α-bits into a mixture of qubits and zero-bits using another resource
equality from [48], namely

1 α-bit = α qubits + (1− α) zero-bits . (6.12)

We therefore find that region B can receive

1
ln(2)S0 α-bits = ∆A

4 ln(2)G qubits + 1
ln(2)

[
S0 −

∆A
4G

]
zero-bits (6.13)

from region b′. This is worth emphasizing: the AdS/CFT dictionary transfers more than
∆A/4 ln(2)G qubits of information from b′ to B. It also transfers many zero-bits, precisely[
S0 − ∆A

4G

]
/ ln(2).

That was for ∆A > 0; what about ∆A < 0? In this case, region B encodes no physical
information about region b′ (if b′ is not heavily entangled with b). Nonetheless, the right
hand side of (6.13) still formally defines the amount of information from b′ accessible in B.
This is important, for example, if we start adding bulk entanglement, as in the following
scenario. Imagine that more than |∆A|/4 ln(2)G Bell pairs are shared between regions b′
and b. Then the zero-bits of the remaining degrees of freedom in b′ will be encoded in
B. This follows from the associated phase transition in the minimal QES. This phase
transition is reflected in (6.13) in the following way. Converting qubits into ebits and
zero-bits using (6.9), the right hand side of (6.13) says that |∆A|/4 ln(2)G ebits allow
S0 − |∆A|/4 ln(2)G zero-bits to be transferred from b′ to B, which is exactly what we just
found. (Any additional ebits will continue to combine with those zero-bits to form qubits
of communication, reflecting the fact that adding more and more entanglement between b′
and b allows B to recover larger and larger subspaces of b′.)

As an aside, we emphasize that (6.13) allowing additional zero-bits (on top of
∆A/4 ln(2)G qubits) from region b′ to be encoded in region B is not some strange phe-
nomenon that only happens in quantum gravity. Instead, it happens very generically
whenever you have a noisy quantum channel. Consider the well-known properties of the
quantum capacity of a channel, i.e. the number of qubits that can be communicated through
that channel. The quantum capacity of a noisy channel is given by the so-called maximal
regularized coherent information. However, the entanglement-assisted quantum capacity is
given by half the maximal mutual information, and is generically strictly larger. The dif-
ference comes from the channel having an additional zero-bit capacity. Free entanglement
allows the zero-bits to be ‘upgraded’ to qubits, giving additional qubit capacity.

Let’s see how the same phenomenon manifests itself in gravity. Suppose we have S0 >

∆A/4G. In this case, without using entanglement, we can learn, at most, ∆A/4 ln(2)G
qubits in b′ from B. Not all the information is encoded there. However, let’s imagine
we entangle (S0 −∆A/4G)/2 ln 2 Bell pairs between region b and b′. If we do this, all the
information about the remaining (S0+∆A/4G)/2 ln 2 qubits in region b′ will be successfully
encoded in region B (the entanglement wedge will have expanded to include b′). By using
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entanglement between b and b′, we have increased the amount of information about region
b′ that is accessible in region B. This increase in information capacity from entanglement
assistance comes from the extra zero-bits in (6.13).

Having understood the information transferred from bulk to boundary, we are now
ready to interpret the conditions for EWR that we found in section 6.1. We first note that
for any state |ψ〉, we have

Hε
0(b′)ψ ≤ H0(b′)ψ = lnRank(ψb′) ≤ ln db′ = S0. (6.14)

It therefore follows from (6.10) and (6.13) that there are sufficient qubits and zero-bits
for state merging, and hence the encoding (and reconstruction) of region b′ from region B
using any protocol, if and only if

Hε
max(b′|b)ψ <

∆A
4G . (6.15)

This is exactly what we found in section 6.1.
To summarize, we noted that the task of encoding b′ in B is the same as the task in

quantum state merging. This simply followed from definitions. We were then led to ask
how efficiently AdS/CFT performs this task, requiring us to carefully account for exactly
how much information is transferred from b′ to B by the AdS/CFT dictionary. The total
information, we noted, is ∆A/4 ln(2)G qubits plus additional zero-bits (6.13). This is just
enough transferred information for the most efficient state-merging protocol (the mother
protocol) to work. I.e. one could not transfer the bulk information in b′ to B using any
fewer resources. It’s remarkable that AdS/CFT encodes b′ in B exactly when just enough
information is transferred from b′ to B for any protocol to do it. EWR is a maximally
efficient state merging protocol.

In contrast, the naïve QES prescription suggests that AdS/CFT exceeds the max-
imal efficiency bound, performing state merging as though every state were perfectly
compressible.24

We emphasize that the arguments in this section should not be interpreted as an
independent proof of the results from section 5. A channel having sufficient capacity to
carry out some task does not automatically mean that any (possibly inefficient) protocol
using that channel will actually perform the task. Conversely, one could worry that region
B might encode some other form of information about region b′, distinct from both qubits
and zero-bits, which could help make state merging possible even when the zero-bits and
qubits alone would be insufficient.

Instead, our point was to make precise the relationship between entanglement wedge
reconstruction (and other questions in AdS/CFT) and standard protocols in quantum
information, such as state merging, which may not have been clear to members of either
community.

24This was the realization that led to this work. From [8] we knew the amount of information being
transferred from bulk to boundary. Seemingly in contradiction was the fact that the naïve QES prescription
implies EWR for any state with small enough von Neumann entropy [11, 12, 17]. (Taking into account
reconstruction errors means that this is only true using the state-specific definition from section 6.1.) The
resolution is that the naïve prescription needs to be refined.
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In particular, we want to emphasize that the relevant quantum information protocols
are always one-shot protocols. After all, in AdS/CFT, one only typically considers a single
copy of a holographic state, rather than a large number of identical copies. The only reason
that the von Neumann entropy has proven relevant is that until now people have generally
only considered states where the von Neumann entropy is equal to the one-shot entropies,
at least at leading order. Once you consider states where this is not the case, it should not
be surprising that it is one-shot entropies which play the crucial role.

7 Beyond two extremal surfaces

So far we have presented refined conditions for the QES prescription when there are exactly
two competing surfaces, (1.12). In this section, we discuss the natural generalization of
this rule which considers all bulk surfaces homologous to B.

The upshot is that the condition for large corrections is no longer two simple in-
equalities; it becomes a family of inequalities. Together these inequalities determine what
information is actually transmitted to B.

All the claims about reconstruction in this section can be shown in random tensor
networks using a careful application of the one-shot decoupling theorem. We expect based
on our arguments from section 5 that they should also be true in AdS/CFT.

7.1 Applying the refined prescription

The refined way to find the entanglement wedge (EW) is as follows.25

Step 1: find the max-entanglement wedge (max-EW). The max-EW is intuitively
the bulk region that B can definitely reconstruct with small error. In this sense, it most
closely resembles the traditional operational definition of the entanglement wedge.

We define the max-EW as the largest region b that satisfies all of the following
inequalities:

∀b′ ⊂ b, Hε
max(b− b′|b′) < A(b′)−A(b)

4G , (7.1)

where b− b′ is the complement of b′ in b.
This definition implicitly assumes that there exists some ‘largest’ region satisfying (7.1)

that contains all other regions satisfying (7.1). We shall prove in the next subsection that
this is indeed the case. The essential intuition is that, if we can reconstruct region b1,
and we can reconstruct region b2, then we should also be able to reconstruct their union.
Having access to additional degrees of freedom can only make reconstruction easier.

In principle, (7.1) requires checking infinitely many subregions b′. However, in prac-
tice, except in situations where the bulk entropy gradients can become very large (such as
evaporating black holes) it should be sufficient to only check regions where ∂b′ is pertur-
batively close to a classical extremal surface. This is because the classical area gradient

25These are the refined conditions for moments of time symmetry. We expect there exists a covari-
ant generalization, in the way HRT [51] generalized RT [52]. This may well require use of the maximin
formalism [53, 54].
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must be O(G) at minima of (A(b′)−A(b))/4G−Hε
max(b− b′|b′). This justifies the simple

conditions given in (1.12) when only two extremal surfaces exist.

Step 2: find the min-entanglement wedge (min-EW). The min-EW is the com-
plement of region B definitely knows no information about. In other words, it is the
region that region B may know at least some information about. For pure states, it is the
complement of the max-EW of B. For mixed states, it can be smaller.

We define the min-EW as the smallest region b that satisfies all of the following in-
equalities, for b̄ the complement of b:

∀b̄′ ⊂ b̄, Hε
min(b̄′|b) > A(b)−A(bb̄′)

4G , (7.2)

where bb̄′ is the union of b and b̄′. Again, the existence of a smallest such region is nontrivial,
and is equivalent to the existence of a max-EW for the purification of B, namely BR.

Step 3: define EW as min-EW = max-EW. In general, the max-EW is contained
in the min-EW, as we will prove in the next subsection. In the special case in which they
are the same, we can define the EW to be equal to both of them, and the entropy S(B)
equals the generalized entropy of this EW.

However, if the min-EW contains a region that the max-EW doesn’t, then B may have
partial information about that region. In general in such cases, the entanglement entropy
S(B) will not be equal to the generalized entropy of any single surface.

7.2 Properties of the min-EW and max-EW

In this subsection, we prove several important properties of the min-EW and max-EW. To
do so, we will need certain inequalities that are satisfied by smooth min- and max-entropies.
The first is that both the min- and max-entropies satisfy strong subadditivity

Hε
min/max(A|B) ≥ Hε

min/max(A|BC) . (7.3)

Secondly, the smooth min- and max-entropies satisfy a number of approximate chain rule
inequalities [55]. Most importantly for our purposes, we have

Hε
max(AB|C) ≤ Hε

max(A|BC) +Hε
max(B|C) +O(ln ε) . (7.4)

Property 1: existence of the min/max-EW. We will show that, given any two
regions satifying (7.1), their union will also satisfy (7.1). This immediately implies the
existence of the max-EW, and implies the existence of the min-EW by the equivalence
with the min-EW of BR. To prove this, we need to consider three overlapping regions: the
two original regions, and an arbitrary subregion b′ of their union. These three overlapping
regions can be decomposed into six disjoint regions, which we label b0, b′0, b1, b′1, b2, b′2, as
shown in figure 7. The original two regions are given by b0b′0b1b′1 and b0b′0b2b′2. Their union
is then b = b0b

′
0b1b

′
1b2b

′
2. We need to show that

Hε
max(b− b′|b′) < A(b′)−A(b)

4G (7.5)

for the arbitrary region b′ = b′0b
′
1b
′
2 in b.
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Figure 7. Setup in the proof of Property 1. Both the region bounded by the blue surface and
that bounded by the red surface are assumed to satisfy (7.1). We prove that therefore the union of
those regions satisfies (7.1), by showing it to hold for an arbitrary choice b′ = b′0b

′
1b
′
2, depicted here

bounded by the dashed black line.

Because the original two regions satisfied (7.1), we know that

Hε
max(b0bi|b′0b′i) <

A(b′0b′i)−A(b0b′0bib′i)
4G , (7.6)

for i = 1 or 2, as well as

Hε
max(bi|b0b′0b′i) <

A(b0b′0b′i)−A(b0b′0bib′i)
4G . (7.7)

Adding together these four inequalities (two for each of the two regions) and comparing
the area terms, we find

Hε
max(b0b1|b′0b′1) +Hε

max(b1|b0b′0b′1) +Hε
max(b0b2|b′0b′2) +Hε

max(b2|b0b′0b′2) ≤ 2A(b′)−A(b)
4G .

(7.8)

We can then simplify the left hand side, using

Hε
max(b0b1|b′0b′1) +Hε

max(b2|b0b′0b′2) ≥ Hε
max(b0b1|b′0b′1b′2) +Hε

max(b2|b0b′0b1b′1b′2) (7.9)
≥ Hε

max(b0b1b2|b′0b′1b′2) +O(ln ε) . (7.10)

The first inequality uses SSA and the second uses the chain rule (7.4). Together with a
similar set of inequalities with 1 and 2 exchanged, this gives

2Hε
max(b0b1b2|b′0b′1b′2) +O(ln ε) ≤ 2A(b′)−A(b)

4G . (7.11)
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The max- and min-EW are therefore well-defined, up to O(ln ε) corrections (which is the
same entropy difference that was required for EWR and the QES prescription to hold
safely, anyway).

Property 2: min-/max-EW nesting. Almost the exact same argument shows that
the max-EW and min-EW satisfy nesting. That is, a boundary region B1 ⊆ B2 must have
a max-EW (min-EW) that is entirely contained in the max-EW (min-EW) of B2.

To prove this for the max-EW, once again let the regions b0, b′0, b1, b′1, b2, b′2 be disjoint,
with the max-EW of B1 given by b0b′0b1b′1 and the max-EW of B2 given by b0b′0b2b′2. Their
union is b = b0b

′
0b1b

′
1b2b

′
2. We need to show that

Hε
max(b− b′|b′) < A(b′)−A(b)

4G (7.12)

for an arbitrary region b′ = b′0 ∪ b′1 ∪ b′2 in b. This will imply that the max-EW of B2
should have included b1b′1 since the beginning. The proof, given this setup, is identical to
the previous one.

The proof for the min-EW follows from nesting of the max-EW of the complement
plus a puryifying reference system.

Property 3: max-EW ⊆ min-EW. The max-EW is always contained in the min-EW.
Intuitively this must be true if, as we claim, the max-EW characterizes the region that
B has (approximately) all information about, while the min-EW characterizes the region
that B has any information about.

To prove this, we assume for contradiction that there is some region b′ that is contained
in the max-EW, but not in the min-EW. Let b be the intersection of the max- and min-
EWs, let b′ be the region contained in the min-EW, but not the max-EW and let b be the
complement of the union of the two wedges.

Then it must both be true that

Hε
max(b′|b) < A(b)−A(b′b)

4G , (7.13)

and that

Hε
min(b′|bb′) > A(bb′)−A(bb′b′)

4G . (7.14)

However,

A(b)−A(b′b)
4G ≤ A(bb′)−A(bb′b′)

4G , (7.15)

while

Hε
max(b′|b) ≥ Hε

max(b′|bb′) ≥ Hε
min(b′|bb′). (7.16)

We therefore have our desired contradiction.
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Property 4: max-EW = min-EW only at minimal generalized entropy surfaces.
In the special case that the min-EW and max-EW equal the same region b, they must be
bounded by a surface that minimizes A(b)/4G+ S(b).

Consider a general deformation b′ = b0b2 of b = b0b1. We want to show

A(b0b2)
4G + S(b0b2) > A(b0b1)

4G + S(b0b1) . (7.17)

From (7.1) we know
A(b0)−A(b0b1)

4G ≥ Hε
max(b1|b0) . (7.18)

This implies

A(b0b2)−A(b0b1b2)
4G > Hε

max(b1|b0b2) (7.19)

≥ S(b0b1b2)− S(b0b2) , (7.20)

where in the first line we used SSA of both area and max-entropy, and in the second line
we used Hε

max(A|B) ≥ S(A|B). Meanwhile, (7.2) tells us

A(b0b1)−A(b0b1b2)
4G < Hε

min(b2|b0b1) (7.21)

≤ S(b0b1b2)− S(b0b1) , (7.22)

where in the second line we used Hε
min(A|B) ≤ S(A|B). Combining these two inequal-

ities gives (7.17), where the inequality must be strict for non-trivial b1b2 because (7.18)
and (7.21) are strict for non-trivial b1 and b2 respectively. This is what we set out to show.

The converse is not true. A minimal generalized entropy surface will not in general
satisfy all of (7.1) and (7.2). However, if all states were perfectly compressible, then this
converse would be true, and therefore the naïve QES prescription would hold. Indeed, (con-
ditional) perfect compressibility implies Hε

min = S = Hε
max, and equations (7.1) and (7.2)

would both be satisfied only by the minimal generalized entropy surface.
This is one way to understand the refined conditions for the QES prescription.

7.3 Full reconstruction outside the max-EW

Everything in the max-EW can be fully reconstructed from B. Similarly no information
reaches B from degrees of freedom outside the min-EW. However, the converses of these
statements are not necessarily true. There can be regions outside the max-EW which can
be fully reconstructed; and regions inside the min-EW that cannot. Nonetheless, when the
min-EW and max-EW are not equal, there is always some nonempty intermediate region
that is partially, but not fully, reconstructible.

A tensor network example will make this clearer. Consider m tripartite random tensors
arranged in a line, each with bulk leg bi for i ∈ {1, . . . ,m}, each connected to the tensors
to its left and right by maximally entangled “in-plane” legs B′i, of dimension eAi/4G, except
for the first and last tensor, which have one dangling in-plane leg each (the “boundary”
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Figure 8. Random tensor network used to demonstrate reconstruction outside the max-EW. Each
box is a tripartite random tensor with “bulk” leg bi, connected to the two tensors on either side
of it with maximally entangled “in-plane” legs B′i−1 and B′i. The tensors on the ends each have a
single “boundary” leg, B or B. Which bulk legs are reconstructable on B depends on two things:
the dimensions of the in-plane legs and the state on the bulk legs. A lower bound on the size of
this reconstructable region is the max-EW, but it could be larger, depending on how much helpful
information there is from the legs in the min-EW.

legs). Let B be the name of the left boundary leg and B be the right one, with dimensions
much larger than any eAi/4G. See figure 8.

Consider a bulk state that is a mixture of a) a pure state with a large amount of
entanglement (with entanglement entropy S) between b2 and b3 and b) a pure state on b2
and a highly mixed state (with entropy S) on b3. If the extremal surface areas satisfy,

A3
4G − S �

A2
4G �

A3
4G �

A1
4G �

A2
4G + S, (7.23)

then we find that the max-EW is b = b1, while the min-EW is b̂ = b1b2b3.
However, the two states in the mixture are perfectly compressible, with EWs that

consist of b1b2b3 and b1b2 respectively. Hence b2 is reconstructible in both. And it is easy
to check that the two states must be close to orthogonal on B (e.g. their entropies differ
at O(1/G) and both have approximately flat spectra). So b2 must be reconstructible for a
mixture of the two states.

How is this possible? The answer is that the max-EW is the largest region that can
be reconstructed without knowing anything about the state outside that region. However,
because (and only because) the min-EW is larger than the max-EW, some partial infor-
mation from outside the max-EW makes it through the tensor network legs. In particular,
some information from b3 makes it through the in-plane leg B′2 (namely the part of the
state which is entangled with b2). And this additional information makes it possible for all
the information in b2 to reach B.

More formally, even though

Hε
max(b2|b1)� (A1 −A2)/4G , (7.24)

we have

Hε
max(b2B′2|b1)� A1

4G, (7.25)
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where the state on B′2 is the state produced by the entire network to its right (and then
tracing over B). If the min-EW did not contain anything outside b1b2, this state would
be maximally mixed and (7.25) would reduce to (7.24). When this is not the case, the
in-plane legs can expand the fully reconstructable region.

While sensible in a tensor network, it is not clear how we should define a quantity
analogous to Hε

max(b2B′2|b1) in AdS/CFT, except by explicitly converting the calculation
into one involving tensor networks. Hence if the min-EW and max-EW are not equal, it
may be hard to identify with certainty the full region of the bulk where everything can be
reconstructed in B. It will be at least as big as the max-EW, defined by (7.1), but could be
larger (because of additional information from outside the max-EW). Likewise (by looking
at the complementary region in a purification, as usual), if the min-EW and max-EW are
not equal, the full region of the bulk that B has any information about may be smaller
(but not larger) than the min-EW, defined by (7.2).

8 Discussion

Refining the QES prescription. In this paper, we have introduced a refinement of the
usual QES prescription. This refinement is both necessary for the boundary entanglement
entropies to be self-consistent, and follows from careful application of the replica trick.
Without our refinements, the QES prescription would only be valid for the limited subclass
of states that are perfectly compressible.

Specifically, we have strengthened the conditions required for the entropy S(B) to be
given by the generalized entropy of the minimal QES. In the language of section 7, this is
only true when the max- and min-entanglement wedges coincide (perhaps up to perturba-
tive corrections). When the two wedges do not coincide, the entropy S(B) is much more
complicated. This is closely related to the breakdown of complementary reconstruction,
with a large region that cannot be fully reconstructed from either region B or from its
complement.

Fundamental lesson: EWR as one-shot state merging. In many ways, this second
point about entanglement wedge reconstruction (EWR) is the more fundamental one. For
pedagogical reasons, our presentation was, in a certain sense, inverted. We led by demon-
strating the large corrections to the QES prescription, in sections 2 through 5. Only then
in section 6 did we explain that EWR should be understood through the lens of one-shot
quantum state merging, necessitating the refined conditions for reconstruction.

The QES prescription is just a rule for computing one particular boundary quantity
(the von Neumann entropy of a reduced state). This is just one measure of the boundary
entanglement structure (albeit a very simple and useful one). EWR is stronger, telling
us a deep fact about how information in the bulk is distributed on the boundary that is
independent of the particular measure (Petz map operators, relative entropies, modular
flows etc.) that one might use to probe it.

As we argued in section 6, the information theoretic task of encoding the bulk into
the boundary is manifestly a form of one-shot state merging, albeit one that uses zero-bits
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rather than the traditional classical bits. Just from this, one can see that the naïve QES
prescription implied EWR conditions that were too powerful. There simply is not enough
information transferred from the bulk to the boundary via the AdS/CFT dictionary. No
quantum information protocol could encode the bulk in the boundary in the way implied
by the naïve QES prescription; it is incompatible with quantum Shannon theory.

This reinterpretation of EWR in terms of one-shot quantum state merging seems likely
to have important future consequences. For one thing, it opens the door to connecting QES
and quantum error-correction [56], providing an understanding of the QES prescription that
doesn’t come from the Euclidean path integral. This might shed light on how to modify
Hawking’s calculation of non-unitary black hole evaporation. Indeed — the new arguments
from the QES prescription [2, 3, 9, 26] give a unitary answer, but — unlike Hawking —
make vital use the Euclidean path integral. A Hilbert space understanding of the QES
prescription may connect the calculations.

Generalized min-/max-entropy. That we know of, these refinements are the first ex-
ample of a generalization of the generalized entropy that replaces the von Neumann entropy
by a new entropy measure (in this case the smooth min-/max-entropy). The generalized
entropy of a codimension-2 surface, defined as the area plus matter von Neumann entropy,26

is believed to be a well-defined continuum quantity, having passed many non-trivial checks.
It is UV finite, is scheme independent, and seems to correctly generalize the classical area
in many classical general relativity theorems [1, 59–61]. It therefore made perfect sense to
promote extremal area surfaces to extremal generalized entropy surfaces, in the naïve QES
prescription.

In contrast, the refined QES prescription asks us to do something new: to add the
smooth min-entropy or max-entropy of the bulk fields to the area. The arguments from
this paper suggest that this must be equally well-defined. In particular, there should be
an appropriate renormalization procedure that makes these differences UV-finite.

The leading UV-divergence in the smooth min- and max-entropy of a subregion in
quantum field theory is proportional to the area (just like for the von Neumann entropy).
This is essentially because the UV-divergent parts of the subregion states are thermal
Rindler modes, and hence are perfectly compressible.

However, the difference between the von Neumann entropy and the smooth min-/max-
entropy will still be O(

√
S) and hence UV-divergent [29, 62]. This means that the smooth

min-/max-entropies cannot be renormalized by the same quantity as the von Neumann
entropy.

This is OK. As discussed in section 5.3, the relevant area difference is not the expec-
tation of the difference in area, but a lower confidence bound on the difference in areas.
This differs from the expectation of the difference by O(

√
G), which is the correct scaling

to renormalize the difference between von Neumann entropies and min/max-entropies.
It is therefore natural to hope that the generalized smooth min- and max-entropies,

defined as

Hε
min/max(b) +

Aεmin/max(b)
4G (8.1)

26Or more generally, the gravitational entropy [57, 58] plus matter von Neumann entropy.
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with Aεmin/max respectively lower and upper-confidence bounds on the area, should be a
UV-finite quantity.

If this is indeed the case, we should also expect that the conditional generalized smooth
max-entropy

Hε
max(b′|b) + [A(bb′)−A(b)]εmax

4G (8.2)

should also be UV-finite (note [(A(bb′)−A(b)]εmax is again an upper confidence bound on
A(bb′)−A(b)). There are two sets of modes that give divergent contributions to Hε

max(b′|b):
modes near the boundary of bb′, and modes near the boundary between b and b′. The
contribution to the divergence of Hε

max(b′|b) from UV-modes near ∂(bb′) will be the same
as for the smooth max-entropy Hε

max(b′b) (because these modes are unentangled with b).
Meanwhile the divergence from UV-modes near ∂b will be the same as for the smooth
min-entropy Hε

min(b′b), except with the opposite sign, because Hε
max(b′|b) = −Hε

min(b′|b).
Hence we should expect the total divergence to be renormalized by [A(bb′)−A(b)]ε.

As usual, the UV-finiteness of the smooth conditional generalized min-entropy also
follows by considering complementary subsystems.

Note that the conditional generalized smooth min- and max- entropies should also
be IR finite (just like the conditional generalized entropy (A(bb′) − A(b))/4G + S(b′|b)).
This follows from [A(bb′)−A(b)]ε and Hε

max(b′|b) being separately IR-finite. The refined
conditions for the QES prescription (1.12) can therefore be written in terms of the sign of
the (finite) conditional generalized smooth min- and max-entropies. So instead of (1.12),
we should really write

S(B)refined =


〈A1〉/4G+S(bb′), Hε

max(b′|b)+ [A1−A2]εmax
4G ≤ 0

(depends on details), Hε
min(b′|b)+ [A1−A2]εmin

4G ≤ 0≤Hε
max(b′|b)+ [A1−A2]εmax

4G

〈A2〉/4G+S(b), Hε
min(b′|b)+ [A1−A2]εmin

4G ≥ 0 .
(8.3)

This formulation naturally unifies the corrections discussed in this paper with the cor-
rections from [13, 14], which considered situations in which Hε

max = Hε
min = 0, while

[A1 −A2]εmin < 0 < [A1 −A2]εmax.

Bit threads. The bit threads paradigm [63], to the extent that it continues to be useful
with large bulk entropies, should have a matching refinement. A good first step towards
finding it is to incorporate bulk entropy, possibly by allowing threads to end on a “reference
system” understood to purify the bulk matter.

A more sophisticated modification that is sometimes mentioned is to allow threads to
‘pass through’ entanglement, effectively using the bulk Bell pairs as ‘Planckian wormholes.’
For this to be consistent with our refinement of the QES prescription, the number of bit
threads that can pass through these Planckian wormholes should be controlled by the
conditional min- and max-entropy, not the von Neumann entropy.

It would also be interesting to incorporate zero-bits into this framework, allowing bit
threads to more precisely depict the total flow of information in AdS/CFT.
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Other future work. We have not given a direct path integral argument for these QES
refinements for general bulk states. Our argument was more indirect: we proved it for
RTN using linear algebra. Because the RTN entropy can be computed using the replica
trick, the replica trick must enforce these refinements. The RTN replica trick is identical to
the fixed area state replica trick, and so the same results must be true in fixed-area states.
More typical (non fixed-area) states have the same entropy as the average of fixed area
states that comprise them, plus subleading corrections. Although we think this argument
is compelling, it is very indirect. There should be some way to relate bulk min- and max-
entropy to the holographic calculation, allowing a direct replica trick proof of our result.
In particular, we should be able to directly see why they are the quantities that determine
whether the LM assumption is valid.

These results should also be generalized to von Neumann algebras. We have discussed
subregions (b, b′, etc.) instead of subalgebras, only for simplicity. The smooth conditional
min- and max-entropy admit algebraic definitions, which is a better language for bulk
reconstruction.

We also didn’t give any description as convenient as the naïve QES prescription when
Hε

min < ∆A/4G < Hε
max. We did provide useful bounds, for example that the entropy of a

state in that regime is less than the average of the entropies of any mixture comprising that
state, plus O(ln d), where d is the number of states in the mixture. But getting something
stronger, such as an explicit formula, may be too much to hope for. Any formula would
need to encode the details of the entanglement structure of the mixed state ρbb′ . This is
known to be very hard to characterize.
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A Detailed evaluation of the mixture resolvent

Here we elaborate on the calculations in section 4.3, detailing how to go from the cubic
resolvent

λR = eA2/4G + pR

eA2/4G − pλ1
eA1/4G

R
+ (1− p)R
eA2/4G − (1−p)λ2

eA1/4G
R
, (A.1)

to the eigenvalues in each regime. Note the differences between this resolvent and (4.30).
Here, the bulk state is

ρb′ =

pλ11 1
λ1

0
0 (1− p)λ21 1

λ2

 . (A.2)
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This is a slight generalization of the state from section 4.3, in that we don’t require one
state to be pure. However, we still require both to have flat spectra. We recover the state
from section 4.3 by setting λ1 = 1 and λ2 = e−S .

Recall that we assumed, for simplicity,

(1− p)λ2 � pλ1 , A1 � A2 . (A.3)

This condition ensures that our small and large R expansions have overlapping regimes of
validity. Unlike in section 4.3, we will not assume that p, 1 − p = O(1). This will require
us to introduce a third expansion that is valid for sufficiently small R and very small p.

Here are the three expansions we use, plus details about their associated spectra, along
with information that will be useful in evaluating their regime of validity. These details
are computed with the help of appendix B.

The expansions.

Expansion 1. Consider the large R expansion

λR = eA2/4G − eA1/4G

λ1
+ (1− p)R
eA2/4G − (1−p)λ2

eA1/4G
R

+O
(
eA1/4G

λ1

e(A1+A2)/4G

pλ1R

)
. (A.4)

Using the results of appendix B, this leads to

Number of eigenvalues =

eA2/4G − eA1/4G

λ1
, 1

λ2
� e(A2−A1)/4G � 1

λ1
eA1/4G

λ2
, 1

λ2
� e(A2−A1)/4G � 1

λ1

(A.5)

of average size

λavg =

(1− p)e−A2/4G, 1
λ2
� e(A2−A1)/4G

(1− p)λ2e
−A1/4G

(
1− e−(A2−A1)/4G

λ1

)
, 1

λ2
� e(A2−A1)/4G .

(A.6)

To analyze when this expansion is valid, it is useful to know the value of the resolvent. At
λavg, the resolvent is

R(λavg) =


−i e(A1+A2)/4G

(1−p)λ2

√
λ2e(A2−A1)/4G− λ2

λ1
+ e2A2/4G−e(A1+A2)/4G/λ1

2(1−p) +. . . , 1
λ2
� e(A2−A1)/4G

e(A1+A2)/4G

(1−p)λ2

(
1−i

(
λ2e

(A2−A1)/4G− λ2
λ1

)−1/2
+. . .

)
, 1

λ2
� e(A2−A1)/4G .

(A.7)

Expansion 2. Consider the small R expansion

λR = eA2/4G + pR

eA2/4G − pλ1
eA1/4G

R
+ (1− p)R

eA2/4G
+O

((1− p)R
eA2/4G

(1− p)λ2R

e(A1+A2)/4G

)
. (A.8)

This results in

Number of eigenvalues =

eA2/4G, 1
λ1
� e(A2−A1)/4G

eA1/4G

λ1
, 1

λ1
� e(A2−A1)/4G

(A.9)
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of average size

λavg =

e−A2/4G, 1
λ1
� e(A2−A1)/4G

pλ1e
−A1/4G + (1− p)e−A2/4G, 1

λ1
� e(A2−A1)/4G .

(A.10)

At λavg, the resolvent is

R(λavg) =


−i e(A1+A2)/4G

pλ1

√
λ1e(A2−A1)/4G + e2A2/4G

2p + . . . , 1
λ1
� e(A2−A1)/4G

e(A1+A2)/4G

pλ1

(
1− i

(
λ1e

(A2−A1)/4G
)−1/2

+ . . .

)
, 1

λ1
� e(A2−A1)/4G .

(A.11)

For very small p, the second term on the right hand side of (A.8) can become smaller
than the terms that were dropped. It is therefore helpful to use a slightly adapted version
of Expansion 2, namely

λR= eA2/4G+ pR

eA2/4G− pλ1
eA1/4G

R
+ e−A2/4G(1−p)R

1− (1−p)λ2
pλ1

+O

(1−p)2λ2R
(
R− e(A1+A2)/4G

pλ1

)
e(A1+2A2)/4G

 .

(A.12)

The only effect of this change is that now

λavg = pλ1e
−A1/4G + (1− p)e−A2/4G

1− (1−p)λ2
pλ1

. (A.13)

Finally, we note that for 1/λ1 � e(A2−A1)/4G, and for values of λ where D(λ) 6= 0, we have

R− e(A1+A2)/4G

pλ1
≤ O

(
e(A1+A2)/8G

λ
1/2
1

)
. (A.14)

This will again be important when considering small values of p.

Expansion 3. Finally, we can use an alternative small R expansion, where we expand both
the λ1 and λ2 terms up to O(R2),

λR = eA2/4G + R

eA2/4G
+ p2λ1 + (1− p)2λ2

e(A1+2A2)/4G R2 +O
(

(p3λ2
1 + (1− p)3λ2

2)R3

e(2A1+3A2)/4G

)
. (A.15)

This results in

D(λ) = e(A1+2A2)/4G

2π(p2λ1 + (1− p)2λ2)

√
p2λ1 + (1− p)2λ2

e(A1+A2)/4G − (λ− eA2/4G)2, (A.16)

which gives eA2/4G eigenvalues with average eigenvalue λavg = e−A2/4G. Finally,

R(λavg) = ieA2/4G

√
e(A1+A2)/4G

p2λ1 + (1− p)2λ2
. (A.17)

This expansion is important because when p is very small, the O(R2) correction from the
λ2 term may be larger than the corresponding correction from the λ1 term, even though
pλ1 � (1− p)λ2.
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The regimes. Here are the three regimes, each defined by the relative size of ∆A/4G ≡
(A2 −A1)/4G and

Hε
min(b′) = ln

( 1
pλ1

)
,

Hε
max(b′) ≈ ln

( 1
λ2

)
.

(A.18)

There are corrections to the naïve QES prescription only in Regime 2, when Hε
min(b′) and

Hε
max(b′) are on different sides of ∆A/4G.

Regime 1: Hε
min, H

ε
max � ∆A/4G. In this regime, Expansion 1 is always valid at is

eigenvalue peak, which is at λavg = pλ2e
−A1/4G. Expansion 2 is valid at its eigenvalue

peak, with λavg = (1 − p)λ1e
−A1/4G, unless p is very small, in which case we need to use

the adapted version of Expansion 2. This only has a small effect on the eigenvalue peak.
Thus for all parameter values, assuming (A.3), the entropy is given by

S(B) =A1
4G + p ln

( 1
p ln(λ1)

)
+ (1− p) ln

( 1
(1− p) ln(λ2)

)
+ . . . , (A.19)

where we have suppressed terms that vanish in the limits we’ve taken. The naïve quantum
extremal surface prescription gives the correct answer.

Proof. Consider Expansion 1. The resolvent evaluated at O(λavg) is approximately

O(R(λavg)) = O
(
e(A1+A2)/4G

(1− p)λ2

)
.

Therefore the dropped terms at λ = O(λavg) are O((1 − p)λ2e
A1/4G/pλ2

1). The smallest
kept term is O(eA1/4G/λ1). Therefore the ratio dropped/kept is O((1 − p)λ2/pλ1), which
is small given our choice (A.3).

Now consider Expansion 2. The resolvent at λ = O(λavg) is

O(R(λavg)) = O
(
e(A1+A2)/4G

pλ1

)
.

The largest dropped term, at O(λavg), is given by plugging this into the dropped term
in (A.4). The smallest kept term is either the second term, with size O(eA1/4G/λ1), or
the third term with size O((1− p)eA1/4G/pλ1). In the latter case, the ratio dropped/kept
equals O((1 − p)λ2/pλ1). This is small given (A.3). In the former case, the ratio equals
O((1− p)2λ2/p

2λ1). This is small, unless p itself is very small.
For small p, we need to be a bit more careful, recognizing that the second term in

Expansion 2 only becomes important near the eigenvalue peak where its denominator is
small, and also to make use of the adapted version (A.12) of Expansion 2. Using this
adapted version, we find that the ratio of the dropped term to the second term is

O

(1− p)2λ2λ1(R− e(A1+A2)/4G

pλ1
)2

e(2A1+2A2)/4G

 = O
(

(1− p)2λ2e
(A1−A2)/4G

p2λ2
1

)
. (A.20)
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Going from the left hand side to the right hand side, we used the fact that (A.14) holds near
the eigenvalue peak. This ratio is small so long as (1−p)λ2 � pλ1 and pλ1 � e(A1−A2)/4G.

It is now a simple matter to compute the entropy using the eigenvalues from Expansion
1 and (the adapted) Expansion 2 to get (A.19).

Regime 2: Hε
min � ∆A/4G � Hε

max. This is the regime in which there are large correc-
tions to the naïve QES prescription. Again, Expansions 1 and 2 are valid at their eigenvalue
peak, unless p is small where we need to use the adapted version of Expansion 2. However,
Expansion 1 now gives an eigenvalue peak at λavg = (1− p)e−A2/4G

Thus, assuming (A.3):

S(B) =pA1
4G + p ln

( 1
p ln(λ1)

)
+ (1− p)A2

4G + (1− p) ln
( 1

1− p

)
+ . . . , (A.21)

and again we have dropped terms that vanish in the limits we’ve taken.

Proof. Expansion 2 works identically to Regime 1, so we only consider Expansion 1. The
largest dropped term for λ = O(λavg) is O((1 − p)λ2e

A1/4G/pλ2
1
√
λ2e(A2−A1)/4G). The

smallest kept term is eA1/4G/λ1. The ratio dropped/kept is

O
(

(1− p)
√
λ2

pλ1e(A2−A1)/4G

)
.

This is small so long as (1− p)λ2 � pλ1 and pλ1 � e(A1−A2)/4G.

Regime 3: ∆A/4G�Hε
min,H

ε
max. In this regime, the naïve QES prescription does not

receive large corrections. This regime is interesting because it requires pλ1e
(A2−A1)/4G� 1,

which can be achieved whether or not λ1e
(A2−A1)/4G is greater or less than 1. If

λ1e
(A2−A1)/4G� 1, then Expansions 1 and 2 are valid, so long as p2λ2

1e
(A2−A1)/4G�

(1−p)2λ2. However the entropy calculation gives a different answer:

S(B) ≈A2
4G + . . . , (A.22)

where “. . . ” represents terms that vanish in the limits we’ve taken. We get the same
answer in a different way if λ1e

(A2−A1)/4G � 1. In this parameter range, Expansion 1 is
never valid. Expansion 2 is valid at its eigenvalue peak, and gives (A.22), so long as p
is large enough such that (1 − p)2λ2 < p2λ1. When p is smaller than that, Expansion 2
cannot be used.

The alternative small R expansion, Expansion 3, is valid for all values of p in this
regime and gives (A.22).

Proof. Consider Expansion 1. If λ1e
(A2−A1)/4G� 1, the resolvent is always real and so does

not contribute any eigenvalues.27 If λ1e
(A2−A1)/4G� 1, then Expansion 1 works exactly as

27In fact, the solution given by Expansion 1 for large values of R does not actually appear as the resolvent
for any value of λ. It gives a different sheet of the solution to the one given by the resolvent.
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it did in Regime 2. The smallest kept term is eA1/4G/λ1. The largest dropped term is O((1−
p)
√
λ2e

A1/4G/pλ2
1
√
e(A2−A1)/4G). The ratio dropped/kept isO((1−p)

√
λ2/pλ1

√
e(A2−A1)/4G),

which is small so long as p2λ2
1e

(A2−A1)/4G� (1−p)2λ2.
Consider Expansion 2. If λ1e

(A2−A1)/4G � 1, Expansion 2 works exactly as it did
in Regimes 1 and 2. It is therefore valid (when using the adapted version) so long as
p2λ2

1e
(A2−A1)/4G � (1− p)2λ2.

If λ1e
(A2−A1)/4G� 1, the largest dropped term in Expansion 2 is O((1−p)2λ2e

A2/4G/

p2λ1), while the smallest kept term is either eA2/4G or (1−p)R/eA2/4G=(1−p)
√
e(A2+A1)/4G/

p
√
λ1. In the former case, the dropped/kept ratio is O((1−p)2λ2/p

2λ1), which is small
unless p2λ1 . (1−p)2λ2. In the latter case, we find that the dropped/kept ratio is O((1−
p)λ2

√
λ1e(A2−A1)/4G/p

√
λ1). This is always small.

What about Expansion 3? The smallest term that we keep is O(eA2/4G), while the
largest term that we drop is O(

√
e(3A2−A1)/4G(p3λ2

1 + (1− p)3λ2
2)2/(p2λ1 + (1− p)2λ2)3).

The ratio is small so long as λ1 � e(A1−A2)/4G or p2λ1 � (1 − p)2λ2. Between the
expansions, we can therefore cover all the possible regimes.

Note that for p2λ1 � (1 − p)2λ2 � p2λ2
1e

(A2−A1)/4G, both Expansions 1 and 2, and
Expansion 3 are valid. However, Expansion 3 misses the existence of the second eigenvalue
peak that appears in Expansion 2, even though it is a small R expansion and this occurs
at smaller R than the main eigenvalue peak. This is because, for these intermediate values
of p, the Taylor expansion of the λ1 term in Expansion 3 was not under control, since
pλ1R � e(A1+A2)/4G. We were only able to get away with the expansion anyway because
both the true λ1 term and our approximation of it were only small correction anyway
(because p was so small). Near the second eigenvalue peak itself, this isn’t true because
the true λ1 term breaks down, and Expansion 3 breaks down. So we do need to use
Expansion 2 here.

We compute the entropy as follows. If λ1e
(A2−A1)/4G � 1, then for p2λ2

1e
(A2−A1)/4G �

(1− p)2λ2 we can use Expansions 1 and 2 to compute the entropy. For small p, we instead
use Expansion 3. If λ1e

(A2−A1)/4G � 1, then we can always just use Expansion 3, although
we can also use Expansion 2 if p is not too small. In all cases, the entropy is given by (A.22).

B Solving the quadratic resolvent

This appendix studies the quadratic resolvent equation,

(λ−W )R = X + R

Y − ZR
, (B.1)

where W,X, Y, Z are some fixed real numbers. This equation has the solutions

R(λ) =XZ + Y (λ−W )− 1
2Z(λ−W ) − Y

2Z(λ−W )

√
λ− λ+

√
λ− λ− , (B.2)

where

λ± = (1±
√
XZ)2

Y
+W . (B.3)

The minus in front of the square root in (B.2) is required by R(λ→∞) = 0.
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Eigenvalues. The density of eigenvalues D(λ) is related by the formula

D(λ) = − 1
π

lim
ε→0+

ImR(x+ iε) . (B.4)

So, we need the imaginary part of the resolvent. We can ignore everything not under the
square root, because it will not contribute to D(λ). Use the handy fact that the square root
(with positive real part) of a complex number a+ib can be written as

√
a+ ib = p+iq with

p = 1√
2

√√
a2 + b2 + a , q = sign(b)√

2

√√
a2 + b2 − a . (B.5)

The relevant piece of the imaginary part of R gives

D(λ) = Y

2πZ(λ−W )

√
λ+ − λ

√
λ− λ− , (B.6)

for λ ∈ [λ−, λ+], and D(λ) = 0 otherwise. To find the number of eigenvalues, we can
integrate this using ∫ b

a
dx

√
(x− a)(b− x)

2πx = 1
4
(
−2
√
ab+ a+ b

)
. (B.7)

This gives a total number of eigenvalues

Number =
∫ λ+

λ−
dλD(λ) =

X, XZ < 1
1
Z , XZ > 1 .

(B.8)

The average value of λ is

λavg = 1
Number

∫ λ+

λ−
dλ D(λ)λ =


1
Y +W, XZ < 1
XZ
Y +W, XZ > 1 .

(B.9)

Entropy. In principle we can compute the von Neumann entropy given a density of
eigenvalues D(λ) with

S = −
∫ 1

0
λ ln(λ)D(λ)dλ . (B.10)

The ln makes this difficult to evaluate in practice. Fortunately, we can obtain a rather good
approximation by expanding λ around the average of the eigenvalue distribution. Use

∫ λ+

λ−
dλD(λ) =

X, XZ < 1
1
Z , XZ > 1 ,

(B.11)

∫ λ+

λ−
dλD(λ)(λ− λavg) = 0 , (B.12)

∫ λ+

λ−
dλD(λ)(λ− λavg)2 =


X2Z
Y 2 , XZ < 1
X
Y 2 , XZ > 1 .

(B.13)
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The entropy is

S≈
∫ λ+

λ−
dλD(λ)

(
λavg ln

(
1
λavg

)
+(λ−λavg)

(
ln
(

1
λavg

)
−1
)
− 1

2λavg
(λ−λavg)2+. . .

)

=


−X

(
1
Y +W

)
ln
(

1
Y +W

)
− 1

2

(
1

1
Y

+W

)(
X2Z
Y 2

)
, XZ < 1

−
(
X
Y +W

Z

)
ln
(
XZ
Y +W

)
− 1

2

(
1

XZ
Y

+W

)(
X
Y 2

)
, XZ > 1 .

(B.14)

Resolvent values. We are sometimes interested in evaluating the resolvent at the loca-
tion of the average eigenvalue. This is important in determining that the expansions used
in section 4 and appendix A provide accurate estimates of the eigenvalues associated to
the cubic resolvent (4.30).

Plug (B.9) into (B.2) to get

R(λ = λavg) =


Y
2Z

(
XZ −

√
XZ(XZ − 4)

)
, XZ < 1

− Y
2XZ2

(
1− 2XZ +

√
1− 4XZ

)
, XZ > 1

≈

−i
Y
Z

√
XZ + XY

2 + . . . XZ � 1
Y
Z − i

Y
Z

1√
XZ

+ . . . XZ � 1 .

(B.15)

This implies

R(λavg)
Y − ZR(λavg) ≈− i

√
X

Z
, (B.16)

when either XZ � 1 or XZ � 1. Also note

λavgR(λavg) =

−i
√

X
Z (1 +WY ) + . . . XZ � 1

X + WY
Z + . . . XZ � 1 .

(B.17)

These are useful when comparing dropped terms to kept ones.

Example: bipartite tensor. Apply this to a simple example. Consider a bipartite
random tensor, with legs A and B. The resolvent associated to ρA satisfies

λR = DA + R

DA − R
DB

. (B.18)

So, W = 0, X = DA, Y = DA, and Z = 1/DB. There are min(DA, DB) eigenvalues
with average value λavg = max( 1

DA
, 1
DB

). The ratio of the width of the peak to λavg is
approximately min(DA, DB)/

√
DADB, and so the peak is very narrow when the dimensions

are quite different (width relative to mean like 1/
√
Dlarger) and widest when the dimensions

are equal. The entropy is

Sbip =

ln (DA)− 1
2
DA
DB

, DA
DB

< 1
ln (DB)− 1

2
DB
DA

, DA
DB

> 1 .
(B.19)

This is all just as expected.
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C Numerics

Here we present numerical evidence supporting the results of section 4. These numerics are
of a single tripartite random tensor, with legs B, B, b′. As pointed out in [9], computing
the entropy of e.g. B is equivalent non-perturbatively to the computation of S(B) in a
fixed-area state, like figure 4 with γ1 fixed to area lnDB and γ2 fixed to area lnDB. DB

and DB are the dimensions of legs B and B respectively. The leg b′ is the “bulk” leg,
analogous to the state of the bulk fields between γ1 and γ2, and is projected into the state

ρb′ =

pλ11 1
λ1

0
0 (1− p)λ21 1

λ2

 . (C.1)

Figure 9 displays the resulting eigenvalue density D(λ) of density matrix ρB, in Regimes
1, 2, and 3 from section 4 and also appendix A.

D One-shot decoupling

A great many facts in quantum information theory follow from the same basic principle:
the decoupling theorem.

While this powerful theorem was originally proven and used in the independent iden-
tically distributed (i.i.d.) setting [39], in which a large number of independent copies of
the state are available, more recently a one-shot version has been proven [36], effectively
generalizing many key results to the one-shot setting. The chief difference between the two
decoupling theorems is the replacement of the von Neumann entropy with the one-shot
entropies, the min- and max-entropy.

The setup is as follows. Consider a system A = A1A2 (with dimensions |A1| and
|A2|) entangled with a system R. The one-shot decoupling theorem provides a sufficient
condition for the average unitary U acting on A to “decouple” A1 and R. This is often used
to provide a sufficient condition for something weaker, the existence of a unitary operator
U that decouples A1 and R.

For our purposes, the theorem says if

ln |A1| ≤ ln |A2|+Hmin(A|R)− 2 ln 1
ε
, (D.1)

then ∫
dU

∥∥∥∥trA2(UρARU †)−
1A1

|A1|
⊗ ρR

∥∥∥∥
1
≤ ε , (D.2)

where dU is the Haar measure on the group of unitaries acting on HA, normalized to∫
dU = 1.

We present the proof as Theorem 7 below, after some useful definitions and lemmas.

Definition 1. Let X be an operator on Hilbert space H. The L2 norm, or Hilbert-Schmidt
norm, is defined as

‖X‖2 =
√

tr(X†X) . (D.3)
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Figure 9. Log-log histogram of the eigenvalue density D(λ) of ρB , for a random tensor with two
“boundary” legs B,B and a “bulk” leg b′, for 80 trials. All plots are made with boundary leg
dimensions DB = 30, DB = 1 and bulk leg state (C.1), with p = 1/2. Regime 1 plot made with
λ1 = 1, λ2 = 1/3; Regime 2 plot λ1 = 1, λ2 = 1/45; Regime 3 plot λ1 = 1/20, λ2 = 1/45. Note
the agreement with figure 5.
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This upperbounds the L1 norm (‖X‖1 = tr
√
X†X), as ‖X‖1 ≤

√
d ‖X‖2, where d is the

dimension of H. This bound is involved in the i.i.d. proof of decoupling [39], but the
one-shot version we are interested in requires a stronger bound.

Lemma 2 (Lemma 5.1.3 of [7]). Let S be a Hermitian operator on Hilbert space H, and
σ be a nonnegative operator on H. Then

‖S‖1 ≤
√

trσ
∥∥∥σ−1/4Sσ−1/4

∥∥∥
2
. (D.4)

Proof. We first note that (D.4) can be rewritten as

tr
∣∣∣√σ′S′√σ′∣∣∣ ≤ √tr(S′2) tr(σ′2) , (D.5)

where σ′ =
√
σ and S′ = σ−1/4Sσ−1/4 . Let |v〉 denote an orthonormal eigenbasis of

S = σ′1/2S′σ′1/2, and let S′ = ∑
y αy |y〉 〈y| be a spectral decomposition of S′. Then

tr
∣∣∣√σ′S′√σ′∣∣∣ =

∑
v

∣∣∣〈v| √σ′S′√σ′ |v〉∣∣∣ (D.6)

=
∑
v

∣∣∣∣∣∑
y

αy 〈v|
√
σ′ |y〉 〈y|

√
σ′ |v〉

∣∣∣∣∣ (D.7)

≤
∑
v

∑
y

|αy| 〈v|
√
σ′ |y〉 〈y|

√
σ′ |v〉 (D.8)

=
∑
v

〈v|
√
σ′
∣∣S′∣∣√σ′ |v〉 (D.9)

= tr(
√
σ′
∣∣S′∣∣√σ′) = tr(

∣∣S′∣∣σ′) (D.10)

≤
√

tr(|S′|2) tr(σ′2) =
√

tr(S′2) tr(σ′2) . (D.11)

The second inequality is the Cauchy-Schwarz inequality, applied to the Hilbert space
End(H) of operators on H, with the inner product 〈A|B〉 = tr(A†B).

Having bounded the L1 norm by this particular L2 norm, we will later bound the
relevant L2 norm by something else. First, we need to define the conditional collision
entropy HC(A|B), which, as we’ll prove, bounds the conditional min-entropy Hmin(A|B).

Definition 3. The quantum conditional collision entropy for density matrix ρAB on Hilbert
space HAB = HA ⊗HB is defined as

HC(A|B) = − inf
σB

ln tr
[(

(1A ⊗ σ−1/4
B )ρAB(1A ⊗ σ−1/4

B )
)2
]

(D.12)

where the infimum is taken over all density matrices σB on Hilbert space HB. Note that
σ−1
B is the ‘generalized inverse’ of σB, defined as the inverse on its support. That is,
σBσ

−1
B = σ−1

B σB = σ0
B = (σ−1

B )0.

Lemma 4 (Lemma B.3 of [36]). Let ρAB be a nonnegative Hermitian matrix on Hilbert
space HAB, with trace less than or equal to 1. Then

Hmin(A|B) ≤ HC(A|B) . (D.13)
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Proof. By the definition of Hmin(A|B) there exists some σB such that Hmin(A|B) =
−D∞(ρAB||ρA ⊗ σB). By the definition of D∞(ρAB||ρA ⊗ σB), we have

eλ 1A ⊗ σB ≥ ρAB . (D.14)

if and only if λ≥−Hmin(A|B). Hence the largest eigenvalue of σ−1/2
B ρABσ

−1/2
B is e−Hmin(A|B).

We can rewrite this as

Hmin(A|B) = − ln max
ωAB

tr
[
ωAB(1A ⊗ σ−1/2

B )ρAB(1A ⊗ σ−1/2
B )

]
, (D.15)

where the maximization is over density matrices ωAB and is achieved when ωAB is a
projector onto the largest eigenvalue of σ−1/2

B ρABσ
−1/2
B . For κB and ωAB arbitrary density

matrices on HB and HAB respectively,

HC(A|B) = − ln min
κB

tr
[
ρAB(1A ⊗ κ−1/2

B )ρAB(1A ⊗ κ−1/2
B )

]
≥ − ln tr

[
ρAB(1A ⊗ σ−1/2

B )ρAB(1A ⊗ σ−1/2
B )

]
≥ − ln max

ωAB
tr
[
ωAB(1A ⊗ σ−1/2

B )ρAB(1A ⊗ σ−1/2
B )

]
= Hmin(A|B) .

(D.16)

Lemma 5 (Lemma C.1 of [36]). Let FAB denote the swap operator of HA ⊗ HB. Let
A = A1A2. Then∫

dU(U ⊗ U)†(1A2A′2
⊗ FA1A′1

)(U ⊗ U) ≤ 1
|A1|

1AA′ + 1
|A2|

FAA′ , (D.17)

where dU is the Haar measure on the space of unitaries acting on HA, normalized to∫
dU = 1.

Proof. For any Hermitian X, it follows from Schur’s lemma (see e.g. [35]) that∫
dU(U ⊗ U)†X(U ⊗ U) = a+(X)Π+

A + a−(X)Π−A , (D.18)

where we have defined

Π±A ≡
1
2(1AA′ ± FAA′) ,

a±(X) ≡ 1
rank(Π±A)

tr(XΠ±A) .
(D.19)

Plug in X = (1A2A′2
⊗ FA1A′1

) and find

tr
(
Π±A(1A2A′2

⊗ FA1A′1
)
)

= 1
2 |A1| · |A2|2 ± |A1|2 · |A2| . (D.20)

Using rank(Π±A) = 1
2 |A|(|A| ± 1), we get

a±
(
1A2A′2

⊗ FA1A′1

)
= |A2| ± |A1|
|A1| · |A2| ± 1 . (D.21)
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Plugging all of this into (D.18) gives∫
dU(U ⊗ U)†(1A2A′2

⊗ FA1A′1
)(U ⊗ U) = a+ + a−

2 1AA′ + a+ − a−
2 FAA′

≤ 1
|A1|

1AA′ + 1
|A2|

FAA′ ,
(D.22)

which is what we wanted to show.

Lemma 6 (Lemma C.2 of [36]). Let ρAR be a density matrix on HAR, A = A1A2, and
σA1R(U) = trA2

(
(U ⊗ 1R)ρAR(U ⊗ 1R)†

)
. Then∫

dU tr
(
σA1R(U)2) ≤ 1

|A1|
tr(ρ2

R) + 1
|A2|

tr(ρ2
AR) , (D.23)

where dU is the Haar measure on the space of unitaries acting on HA, normalized to∫
dU = 1.

Proof. Use Lemma 5 to get∫
dU tr

(
σA1R(U)2)

=
∫
dU tr

(
(UA⊗UA′⊗1RR′)ρA1A2R⊗ρA′1A′2R′(U

†
A⊗U

†
A′⊗1RR′)(FA1A′1

⊗1A2A′2
⊗FRR′)

)
= tr

(
(ρA1A2R⊗ρA′1A′2R′)

∫
dU(U⊗U)†(1A2A′2

⊗FA1A′1
)(U⊗U)⊗FRR′

)
≤ tr

(
(ρA1A2R⊗ρA′1A′2R′)

( 1
|A1|

1AA′+
1
|A2|

FAA′

)
⊗FRR′

)
= 1
|A1|

tr(ρ2
R)+ 1

|A2|
tr(ρ2

AR) , (D.24)

which is what we wanted to show.

We can finally combine these to prove the one-shot decoupling theorem.

Theorem 7 (Theorem III.1 of [36]). Consider a state ρAR on Hilbert space HA =HA1⊗
HA2 , with factors of dimensions |A1| and |A2| respectively, and Hilbert space HR. Then

ln |A1| ≤ ln |A2|+Hmin(A|R)− 2 ln 1
ε

(D.25)

implies ∫
dU

∥∥∥∥trA2(UρARU)− 1A1

|A1|
⊗ ρR

∥∥∥∥
1
≤ ε , (D.26)

where dU is the Haar measure on the group of unitaries acting on HA, normalized to∫
dU = 1.

Proof. Let σA1R(U) = trA2

(
(U ⊗ 1R)ρAR(U ⊗ 1R)†

)
. Because HC(A|R) ≥ Hmin(A|R) by

Lemma 4, and ‖S‖1 ≤
√

trσ
∥∥∥σ−1/4Sσ−1/4

∥∥∥
2
by Lemma 2, it suffices to show that

ln |A1| ≤ ln |A2|+HC(A|R)− 2 ln 1
ε

(D.27)
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implies∫
dU

∥∥∥∥(1A1 ⊗ ω
−1/4
R )

(
σA1R(U)− 1A1

|A1|
⊗ ρR

)
(1A1 ⊗ ω

−1/4
R )

∥∥∥∥2

2
≤ ε2

|A1|
, (D.28)

where ωR is some density matrix on HR. Define

ρ̃AR ≡
(
1A ⊗ ω−1/4

R

)
ρAR

(
1A ⊗ ω−1/4

R

)
,

σ̃A1R(U) ≡ trA2

(
(U ⊗ 1R)ρ̃AR(U ⊗ 1R)†

)
.

(D.29)

The left hand side of (D.28) then equals
∫
dU

∥∥∥∥σ̃A1R(U)− 1A1

|A1|
⊗ ρ̃R

∥∥∥∥2

2
=
∫
dU tr

((
σ̃A1R(U)− 1A1

|A1|
⊗ ρ̃R

)2
)

=
∫
dU

[
tr
(
σ̃2
A1R(U)

)
− 2 tr

(
σ̃A1R(U) 1A1

|A1|
⊗ ρ̃R

)
+ tr

(
1A1

|A1|2
⊗ ρ̃2

R

)]
=
∫
dU

[
tr
(
σ̃2
A1R(U)

)
− tr

(
1A1

|A1|2
⊗ ρ̃2

R

)]
=
∫
dU tr

(
σ̃2
A1R(U)

)
− 1
|A1|

tr
(
ρ̃2
R

)
≤ 1
|A2|

tr
(
ρ̃2
AR

)
≤ ε2

|A1|
,

(D.30)

where in the third line we have used 1A1
|A1| ⊗ ρ̃R =

∫
dUσ̃A1R(U), in the first inequality we

have used Lemma 6, and in the final inequality we have used (D.27).
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