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Loop-tree duality (LTD) offers a promising avenue to numerically integrate multiloop integrals directly
in momentum space. It is well established at one loop, but there have been only sparse numerical results at
two loops. We provide a formal derivation for a novel multiloop LTD expression and study its threshold
singularity structure. We apply our findings numerically to a diverse set of up to four-loop finite topologies
with kinematics for which no contour deformation is needed. We also lay down the ground work for
constructing such a deformation. Our results serve as an important stepping stone towards a generalized and
efficient numerical implementation of LTD, which is applicable to the computation of virtual corrections.
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Introduction.—Loop integrals are an essential compo-
nent of higher-order corrections to collider cross sections.
Analytic techniques have enjoyed a durable success in this
matter, but it has become increasingly evident that a further
breakthrough necessitates a radical change of perspective.
Numerical approaches are a promising alternative and have
already been extensively explored for Feynman ampli-
tudes using sector decomposition (see e.g., [1–7]). More
recently, direct integration of finite loop integrals in four-
dimensional Minkowskian momentum space have been
considered together with the necessary complex contour
deformation for handling integrable threshold singularities
[8–11]. In this Letter, we study the possibility of rewriting
an n-loop integral as a sum of terms with n additional
on shell conditions by analytically integrating over loop
energies using a residue theorem. The ensuing identity is
called loop-tree duality [12] (LTD). LTD is appealing from
a numerical standpoint for at least four reasons: (1) the
n-loop integral dimensionality is fixed to 3n irrespective of
the topology considered, (2) integrable singularities can be
shown to be confined to a bounded volume [13] and are
absent when considering certain kinematical configura-
tions, (3) momentum-space divergent integrals naturally
lend themselves to be regularized with local UV and IR
counterterms [14–23], or even (4) through a direct combi-
nation with the corresponding real-emission contributions
in the case of physical amplitudes [24–26].
In this Letter we derive a novel multiloop LTD expres-

sion by iteratively applying the residue theorem, carefully
keeping track of the propagation of Feynman’s causal

prescription. In Ref. [27] an alternative multiloop LTD
expression is derived by using distributional identities
between dual and Feynman propagators instead of applying
the residue theorem. The main distinction is that their final
expression has more on shell conditions than loops. In
Ref. [28] an LTD expression was presented where an
averaging procedure over all contour closures was consid-
ered, invoking the multidimensional residue theorem.
However, we found that their expression does not hold
beyond one loop (the mistake has been acknowledged by
the authors of [28], whereupon they revised their proof and
main result, following our method of iteratively applying
the residue theorem).
We proceed to numerically apply our LTD construction

to various scalar loop topologies ranging from one to four
loops. In all cases, we find agreement to better than 1%,
thereby validating our procedure and the expected structure
of integrable as well as cancelling singularities exhibited by
each term of our LTD expression. We also determine the
constraints on a contour deformation and construct defor-
mation vectors satisfying them. A first preliminary result
is given for a two-loop LTD integration using a contour
deformation.
Loop-tree duality formalism.—We consider the follow-

ing general expression for an n-loop integral

I ¼
Z Yn

j¼1

d4kj
ð2πÞ4

NQ
i∈eDi

; Di ¼ q2i −m2
i þ iδ; ð1Þ

where e is the set of indices labeling the edges of a
Feynman diagram and the numeratorN is a regular function
of the loop momenta. The Feynman propagator 1=Di

depends on the four-momentum qi ≡ ðq0i ; q⃗iÞ, the mass
mi, and the positive causal prescription iδ. We consider
nonraised Feynman propagators, each with two first order
poles in q0i located at σEi ≡ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2i þm2

i − iδ
p

, σ ∈ f�1g,
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where þEi lies in lower complex half-plane. Introducing
the signature vector si ¼ ðsi1;…; sinÞ, sij ∈ f�1; 0g, we
write qμi ¼

P
n
j¼1 sijk

μ
j þ pμ

i , where pμ
i is a shift that

depends on external momenta.
The integration over the momenta kj can be split up in an

integration over a spatial part k⃗j and the energy k0j. We now
derive our LTD formula by performing the energy inte-
grations one after the other, following an arbitrary fixed
order of the energy variables k0 ¼ ðk01;…; k0nÞ. We con-
struct this iterative procedure by considering a contour for
each energy integration variable along the real line, and
closing on an arc in either the upper (with winding number
Γj ¼ þ1) or the lower (Γj ¼ −1) complex half-plane. We
assume the integral along the arc to vanish, such that the
integral along the real line equals the sum of residues at
poles located within the contour. The final expression
obtained after iteratively performing each loop energy
integration reads

I ¼
Z Yn

j¼1

d3k⃗j
ð2πÞ3 Γji

X
i∈I

σ∈fþ1;−1gn

Reskσ
i
½f�

Yn
r¼1

ΘðΓrℑ½kσi;r�Þ; ð2Þ

where we introduce the set of ordered lists of edge indices
I ¼ fði1;…; inÞ∈ enjdet ½ðsijjÞ1≤j≤r�≠ 0; ∀r≤ ng, which
guarantees that for every iteration j, where we integrate
out k0j , the propagator labeled by ij depends on k0j . Note
that this set can contain several permutations of the same
indices. Each element i of the set I therefore corresponds
to the ordered list of propagator indices containing the
poles (with energy signs as given by σ) considered by the
residue Reskσ

i
.

The residue of f ¼ N=
Q

i∈eDi is

Reskσ
i
½f� ¼ 1

det si

1Q
n
r¼1 σr

1Q
i∈i2Ei

NQ
i∈eniDi

����
k0¼kσ

i

; ð3Þ

being evaluated at the pole locations implicitly defined
through the solutions k0 ¼ kσ

i to the following linear
system

0
BB@
σ1Ei1

..

.

σnEin

1
CCA¼

0
BB@
si1

..

.

sin

1
CCA
0
BB@
k01

..

.

k0n

1
CCAþ

0
BB@
p0
i1

..

.

p0
in

1
CCA≡si ·k0þp0

i ; ð4Þ

where the signature matrix si is a totally unimodular matrix.
Each residue contributes to the integral if the pole location
is within all contours of energy integrations already
performed, corresponding to the condition Γrℑ½kσi;r� > 0,
∀ r ≤ n. The imaginary part of the poles in the energy
variable k0r is computed using Cramer’s rule for the last row
of the subsystem of (4) arising after every iteration. Its final
expression is given by the following [Eq. (5) remains

unchanged for the case of complex-valued external kin-
ematics. As pointed out by the authors of Ref. [28], proper
analytic continuation requires that the imaginary part of
external momenta do not contribute in that equation. Our
final expression given in Eq. (6) is therefore also valid for
the case of complex-valued external kinematics]:

ℑ½kσi;r� ¼

det

0
BBB@ ðsij1 j2Þ1≤j1≤r1≤j2<r

σ1ℑ½Ei1 �
..
.

σrℑ½Eir �

1
CCCA

det ½ðsijjÞ1≤j≤r�
; ð5Þ

which explicitly shows how the imaginary parts of poles
selected by previous iterations propagate to the imaginary
part of the pole contributing at iteration r.
Equation (2) contains Heaviside functions Θ with com-

plicated arguments. However, we have checked that for all
topologies from one to six loops the Heaviside functions that
do not identically evaluate to either 0 or 1 cancel pairwise.
In fact, we find that for each loop momentum basis of the
corresponding loop graph, only one combination of energy
signs contributes to I with a definite prefactor ð−iÞn. We call
this combination of signs the cut structure. Therefore, we
conjecture that Eq. (1) can be written as

I ¼ ð−iÞn
Z Yn

j¼1

d3k⃗j
ð2πÞ3

X
b∈B

Resb½f�; ð6Þ

where b is the set of all edge indices labeling a loop
momentum basis (a loop momentum basis is a set fqigi∈b
such that any other propagator momentum is expressed as a
unique linear combination of the fqigi∈b plus a translational
term which only depends on external kinematics) and B is
the set of these sets for all loop momentum bases. The cut
structure of b is denoted with σb. Each loop momentum
basis is assigned a residue, henceforth referred to as a dual
integrand, reading

Resb½f� ¼
1Q

i∈b2Ei

NQ
i∈enbDi

����
fq0j¼σbj Ejgj∈b

; ð7Þ

where solving fq0j ¼ σbj Ejgj∈b yields k0 ¼ kσb
b . Note that

the dual integrand is invariant under permutations of the
elements in b, unlike Eq. (3) that depends on the ordering
within i. Furthermore, the complement t ¼ enb is the
spanning tree of the graph. There is a one-to-one corre-
spondence between a spanning tree t and a loop momentum
basis b, hence the name loop-tree duality.
As an example, we consider the two-loop vacuum

bubble with its three propagators with momenta q1 ¼ k1,
q2 ¼ k1 þ k2, and q3 ¼ k2. Then, when choosing to
integrate first k01 and then k02 (both times opting to close
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our integration contour in the lower-half complex plane),
we obtain one cut structure for each of the three possible
momentum bases: σf1;2g ¼ f−1;þ1g, σf1;3g ¼ fþ1;þ1g,
and σf2;3g ¼ fþ1;þ1g. We provide a more detailed three-
loop example in the Supplemental Material [29].
We expect the sum of residues obtained from analytic

integration of loop energies to be independent of the
specific loop momentum routing as well as choice of
contour closure for each loop energy integration. We
verified that these expectations are met by explicitly
applying Eq. (6) for various choices of routing and contour
closures, each time retrieving the same numerical result for
the sum of residues

P
b∈B Resb½f� for given numerical

inputs k⃗j. In performing these checks, it was convenient to
have the cut structure construction algorithm automated
and we provide the corresponding PYTHON implementation
as Supplemental Material [29].
We stress that our procedure described in Eqs. (2)–(5) for

obtaining the cut structure of an arbitrary topology has a
negligible computational load. The interesting question of
whether this cut structure can be obtained in a more direct
fashion is therefore of theoretical interest only and beyond
the scope of this Letter. Indeed, for all practical purposes
one can consider using Eq. (6) directly as an alternative
representation of the original integral.
Singular surfaces: Performing the energy integrations

introduces additional dependencies on the regulator δ in the
integrand

P
b∈B Resb½f�. For vanishing δ, the dual propa-

gator associated with the loop momentum basis b reads

1

Dijfq0j¼σbj Ejgj∈b
¼ 1

ðq0i jfq0j¼σbj Ejgj∈bÞ2 − ðEiÞ2
ð8Þ

and still features singularities if it can go on shell. The
inverse dual propagator vanishes on two singular surfaces,

Sb;σi ∶ Δσ;b
i ≡ p0;b

i þ σEi þ
X
j∈b

sbijσ
b
j Ej ¼ 0; ð9Þ

where σ ∈ f�1g, and where sbij and p0;b
i are defined

implicitly through the change of basis q0i ¼P
j∈b s

b
ijq

0
j þ p0;b

i .
The singular surfaces can be separated into two classes,

which we call E and H surfaces. To distinguish them,
we define the surface signs for the surface Sb;σi as the list
Sb;σ
i ¼ fsbijσbj ; ∀ j ∈ bjsbij ≠ 0g ∪ fσg. A singular surface

where all surface signs are equal is called an E surface,
since its defining equation is the one of an ellipsoid when
n − 1 loop momenta are kept fixed. Otherwise, it is called
an H surface, since its equation is the one of a hyperboloid
when viewed as a function of at least one loop momentum.
We now provide the multiloop existence conditions

for H surfaces. In the one-loop case, and in general
when jSb;σ

i j ¼ 2, we have fjg≡ fk ∈ bjsbik ≠ 0g and the

H surface exists for real masses and loop momenta if and
only if

ðp0;b
i Þ2 − p⃗2

i < ðmj −miÞ2; ð10Þ

as already found in Ref. [30]. In the case of jSb;σ
i j > 2 and

if exactly one H surface sign differs from the others, whose
index in b ∪ fig we label ẽ, we define the following
quantity:

ΔMi ¼
X
j∈b

jsbijjð−1Þδẽjmj þ ð−1Þδẽimi; ð11Þ

and the corresponding H surface exists if and only if

σẽp
0;b
i < 0 and ΔMi < 0 and ðp0;b

i Þ2 − p⃗2
i < ðΔMiÞ2;

σẽp
0;b
i > 0 and ΔMi > 0 and ðp0;b

i Þ2 − p⃗2
i > ðΔMiÞ2;

σẽp
0;b
i > 0 and ΔMi < 0; ð12Þ

or when the surface signs contain at least two positive and
at least two negative members.
The singularities of dual integrands onH surfaces cancel

pairwise in their sum
P

b∈B Resb½f�, due to a mechanism
referred to as dual cancellations [13,30,31], independently
of the regulator δ. We checked both numerically and
analytically that Eq. (6) maintains the dual cancellation
pattern of H surfaces also beyond two loops.
E surfaces satisfy the following existence conditions for

real masses and loop momenta:

ðp0;b
i Þ2− p⃗2

i ≥
�X

j∈b
jsbijjmjþmi

�
2

and σp0;b
i <0: ð13Þ

We note that, when the bound above is saturated, the E
surface is said to be pinched and it corresponds to the
location of physical soft and collinear singularities of the
loop integral which would require dedicated local counter-
terms for its regularization.
The singularities on existing E surfaces must be regu-

larized through a contour deformation satisfying its corre-
sponding δ prescription. We derive this prescription by
writing the leading term of the Taylor expansion in δ of the
imaginary part of Δσ;b

i :

ℑ½Δσ;b
i � ¼ −

δ

2

�
σ

Ei
þ
X
j∈b

sbijσ
b
j

Ej

�
þOðδ2Þ: ð14Þ

We note that for E surfaces we have the definite sign
sgnℑ½Δσ;b

i � ¼ −σ independent of loop kinematics. If no E
surface existence condition is satisfied, the integrandP

b∈B Resb½f� has no singularities, and it is therefore
independent of the regulator δ. In this case, the numerical
integration can be performed without a contour deformation,
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a feature that has already been shown at one loop in Ref. [30]
and two loops in Ref. [32]. A first preliminary result for a
two-loop LTD integration using a contour deformation will
be given in the next section.
Numerical application.—LTD has shown to yield prom-

ising results at one loop [30] and has the advantage of not
necessitating any computationally demanding symbolic
treatment of the integrand and/or its numerator. This is
different from sector decomposition techniques, which
require building the Feynman representation of loop inte-
grals together with the identification of sectors. Moreover,
integration in momentum space is particularly appealing for
its optimal scaling with the number of contributing scales.
Compared to the 4D momentum space integration method
described in Ref. [9], LTD has at least five advantages:
(1) the dimension of the integration is reduced to three per
loop, (2) a complex contour deformation only needs to be
applied on bounded E surfaces, (3) masses do not compli-
cate the contour deformation much, (4) specific kinematical
configurations can be integrated without any deformation,
and (5) its singularity structure can directly be related to
real-emission contributions [33].
In this Letter, we are mostly interested in demonstrating

LTD viability for numerical multiloop computations and in
assessing the validity of Eq. (6). Therefore, we apply LTD
to loop integrals with external kinematics that do not yield
singular E surfaces, such that no complex contour defor-
mation is required. This scenario offers a reliable numerical
check of our LTD cut structures and of the numerical
stability of the dual cancellations. Our implementation is a
first important step towards handling loop integrals in the
physical regime, which we briefly discuss in this section.
We selected eight very different loop topologies, dis-

played in Table II, to showcase the generality of the
method. We report our results in Table I and Fig. 1, with
additional information (such as the exact input kinematics)
given as Supplemental Material [29] to ensure the repro-
ducibility of our work. The reference results are taken from
the analytic expression for the four-point integrals [34],
from FORCER [35] for two-point integrals, from MADLOOP

[36,37] for the decagon and triacontagon and PYSECDEC [7]
for the six- and eight-point integrals (in which case the
numerical error is also reported). We find perfect agreement
in all cases, but note that scalar integrals whose superficial
degree of UV divergence is -2 [Tables II(f) and II(h)]
are numerically more challenging. This is made manifest
for example when comparing LTD results obtained for
the loops in Tables II(f) and II(g). We find no notable
sensitivity of the numerical convergence to the external
momenta multiplicity, internal masses, or nonplanarity of
the loop graph.
For all eight benchmark loop integrals, we have explic-

itly verified that dual cancellations hold by sampling points
on the H surfaces for which we found that the sum of dual
integrands is regular. It is important to monitor numerical

stability when probing points close to such surfaces, as dual
cancellations occur by cancelling large summands. We
monitor this stability by testing the invariance of dual
integrands under rotation of the spatial parts of the loop
momenta integrated over. The more challenging loop
integrals required a custom numerical stability rescue
system that promotes the floating point arithmetic accuracy
to quadruple precision when needed (which is about a
factor of 30 slower). We note however that the introduction
of a complex contour deformation mitigates the numerical
severity of dual cancellations.
Since we are mostly interested in verifying our method

at this stage, we stress that no effort was made to finetune
the integrator, sample statistics or loop momenta para-
metrizations. Sizeable improvements can be expected from
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FIG. 1. Numerical LTD results obtained for the scalar massless
one-, two-, and three-loop ladder box diagram with external
kinematics satisfying (in GeV2) p2

1 ¼ −5, p2
i¼2;3;4 ¼ s ¼ −1

and values of the Mandelstam invariant t ranging from t ¼ −7
(loop threshold) to t ¼ 100. The analytic results are taken from
Ref. [34].

TABLE I. Comparison of our numerical LTD results for the
topologies listed in Table II against either the analytic result
[34,35] or an alternative numerical evaluation [7,36]. A star
indicates that internal lines are set massive. The columns labeled
N and [μs] denote the Monte Carlo statistics and timing per
sample respectively. See details (including kinematic configura-
tions) in the Supplemental Material [29].

G Reference Numerical LTD N [106] [μs]

a)* [36] i4.31638 × 10−7 i4.31637ð19Þ × 10−7 110 1.1
b) [36] i0.358640 i0.358646ð29Þ 210 5.9
c) [7] 1.1339ð5Þ × 10−4 1.133719ð58Þ × 10−4 5500 2.5
c)* [7] 4.398ð1Þ × 10−8 4.39825ð17Þ × 10−8 5500 2.5
d)* [7] 2.409ð1Þ × 10−8 2.40869ð27Þ × 10−8 5500 3.5
e) [34] −1.433521 × 10−6 −1.4338ð18Þ × 10−6 1500 27.4
f) [35] i5.26647 × 10−6 i5.236ð38Þ × 10−6 7000 3.3
g)* [7] i1.7790ð6Þ × 10−10 i1.77648ð48Þ × 10−10 22 000 11
h) [35] −8.36515 × 10−8 −8.309ð31Þ × 10−8 7000 15.8
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considering techniques similar to the ones described in
Ref. [16]. Similarly to what was found in Ref. [30], we
observe that the CUHRE integrator offers significantly better
convergence at one loop. However, we find that it performs
much worse than VEGAS at higher loops. For uniformity,
we restricted ourselves to using the VEGAS integrator for
producing the results of Table I. Our implementation is
written in the RUST language, with PYTHON bindings, and
interfaces to the CUBA [38] library and VEGAS3.4 [39] for
performing the adaptive Monte Carlo integration.
General kinematics.—The LTD expression of Eq. (6),

evaluated at external kinematics relevant for computing
physical scattering amplitudes, typically features singular E
surfaces. The corresponding singularities then require a
complex contour deformation of the spatial part of the loop
variables, constructed so as to satisfy the LTD prescription
associated to the surface, presented expanded at the first
order in δ in (14). In the first section, we found that the sign
of the imaginary part of the defining equation of E surfaces
given in Eq. (9) reads:

sgnℑ½Δb;σ
i � ¼ −σ: ð15Þ

We now aim at constructing a contour deformation that
satisfies the causality constraints implied by the iδ pre-
scription. Given its parametrization k⃗ C

l ¼ k⃗l þ iK⃗l, l ∈
f1;…; ng, one has that q⃗j → q⃗j þ iκ⃗j, ∀ j ∈ b, and the
imaginary part of every other propagator momentum can
be expressed as a linear combination of fκ⃗jgj∈b. This

results in Δb;σ
i acquiring an imaginary part,

ℑ½Δb;σ
i � ¼

X
j∈b

sbijκ⃗j ·

�
σjq⃗j
2Ej

þ σq⃗i
2Ei

�
; ð16Þ

in the first order truncation of the expansion inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j jsbijjκ⃗2j

q
. For E surfaces, this simplifies to

ℑ½Δb;σ
i � ¼ σ

2

X
j∈b

jsbijjκ⃗j · v⃗bi;j; v⃗bi;j ¼
q⃗j
Ej

þ sbijq⃗i
Ei

; ð17Þ

which can be matched with (15) on individual E surfaces
by just setting κ⃗j ∝ −v⃗bi;j, ∀ j ∈ b such that sbij ≠ 0. Now
let HðwÞ ¼ fv ∈ R3jw · v > 0g. One can observe that for
every value of the loop variables

q⃗j ∈ ⋂
l∈Ebj

Hðv⃗bl;jÞ; ∀ j ∈ b; ð18Þ

where Eb
j ¼fl∈enbjjsbljjv⃗bl;j≠ 0⃗g. Thus, κ⃗j ∝ −q⃗j, ∀ j ∈ b

satisfies the prescription on arbitrarily many E surfaces
associated to the same loop momentum basis b, including
on their intersection. Indeed, q⃗j has positive projection on all
nonzero jsijjv⃗bi;j which might appear as summands in (17).

This fails only if there exists an E surface Sb;σl such that

jsljjv⃗bl;j ¼ 0⃗, ∀ j ∈ b, which would correspond to a pinched
surface necessitating a soft and/or collinear regulator or
subtraction. Finally, the intersections of two surfaces Sb;σa

and Sb̃;σ̃b with b ≠ b̃ and Sb;σa ⊈Sb̃;σ̃b , Sb̃;σ̃b ⊈Sb;σa lie on dual
cancelling surfaces. We stress that the above does not
provide a complete recipe for building an overall continuous
deformation direction K⃗l satisfying all causal constraints and
common to all dual integrands so as to preserve dual
cancellations. This requires a (numerically efficient) strategy
for interpolating between the deformation directions iden-
tified in Eq. (18) for each group of E surfaces. Additionally,
special care must be taken when setting the normalization of
the resulting deformation vector K⃗l.
We conclude this section by presenting a first two-loop

numerical result from applying LTD to a double-box
topology that requires a deformation around its 13 distinct
E surfaces. We set the external kinematics identical to
those of the benchmark point chosen in Ref. [9] and also
report them in the Supplemental Material [29]. Using
VEGAS3.4 with 105M Monte Carlo samples, we obtained
−5.877ð55Þ × 10−14, which stands within 1% of the ana-
lytical result −5.8973 × 10−14. We will provide a general
and numerically efficient contour deformation for multi-
loop LTD in an upcoming publication.
Conclusion.—We derived a novel expression for multi-

loop LTD that involves taking as many on shell conditions
as there are loops. We demonstrated its potential for
numerical integration by applying it to eight finite scalar
multiloop topologies. Additionally, we gave a first result of
a contour deformation at two loops, showing that LTD can
be used for computing integrals with physical kinematics
as well.
Our future work concerns extending the application of

LTD to diagrams and loop amplitudes featuring (1) compli-
cated overlaps of E surfaces requiring a general contour
deformation, and (2) UV and IR divergences, by designing
local subtraction counterterms that leverage known factori-
zation properties, such as the ones introduced in Ref. [22].

TABLE II. Scalar loop diagrams considered in our numerical
validation. A small line attached to a dotted vertex denotes an
insertion of an external momentum. Graph (b) has 30 legs.

(a) (b) (c) (d)

(e) (f) (g) (h)
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