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1 Introduction

Identifying deviations from the Standard Model predictions in a vast amount of high-energy
event data generated at a collider like the LHC is an important task in the search of new
physics. One of the most crucial objects in analyzing high-energy collision products is
jets, which are collimated sprays of outgoing particles produced in a high energy collision.
Jet substructure refers to a series of well-defined physical observables that measure the
particle and energy distribution within a jet, reflecting the internal radiation pattern.
Identifying novel jet patterns helps to separate signals of interest and provides a quantitative
understanding of the underlying mechanisms.

Jet substructure basis is a set of systematic and (over-)complete basis for jet observables.
Given that a jet typically consists of hundreds of constituent particles, there is a huge
number of possible observable combinations that can serve as a complete basis for such
a multi-body system. In practice, there are some restrictions on selecting robust and
well-defined observables. To guarantee a good definition in perturbative QCD calculation
as well as the robustness to experimental resolution effects, any jet substructure observable
should be both infrared and collinear safe (IRC-safe) and Lorentz invariant. Previous
studies have proposed a generalized form known as calorimeteric-correlators (C-correlators)
based on energy-weighted summation for direction-related features of all particles [1], which
maintains both IRC-safety and permutation symmetry. Furthermore, any Lorentz invariant
jet observable can be decomposed into a combination of Lorentz invariants of particle pairs.

– 1 –



J
H
E
P
0
9
(
2
0
2
3
)
1
3
5

For highly-boosted and narrow jets, the requirement of Lorentz invariance can be relaxed
to SO(2)-rotational symmetry around the jet axis [2], and then the angular distance Rij

between particles i and j are often used to approximate pair-wise Lorentz invariant features.
Under these conditions, most of the energy-flow based substructure basis variables like
N-subjettiness [3, 4], energy correlation functions (ECFs) [5], generalized energy correlation
functions (ECFGs) [6] and energy-flow polynomials (EFPs) [7] have been proposed. They
focus on magnifying significant difference in radiation patterns inside a jet, especially the
multi-prong structure of a highly-boosted jet [8]. Besides these substructure basis, there are
also several physically defined observables, such as the jet mass, angularities [9] and planar
flow [10]. Due to the large amount of data and the great freedom of features selection,
machine learning is playing an increasingly important role in jet analysis in high energy
collisions (for reviews on machine learning in high energy physics, see, e.g., [11–14]).

Traditional machine learning methods, such as the boost decision trees (BDTs) [15], are
widely employed to analyze high-level jet features like jet mass and N-subjettiness, and linear
regression is also used to find discriminative jet observables by determining the coefficients
of jet substructure bases like EFPs [7]. Over the last decade, there has been a widespread
adoption of deep learning techniques to improve the performance of jet tagging [16, 17].
Recently, there is an increasing emphasis on developing network architectures that prioritize
both infrared and collinear (IRC) safety and physical interpretability for collision objects,
rather than solely optimizing for downstream task performance. More recently, the point
cloud jet representation, which treats the constituent particles within a jet as points in a point
cloud, has gained significant attention and several deep learning architectures are proposed
based on the point cloud representation, including Energy Flow Network [18], Energy-
weighted Messaging Passing (EWMP) Neural Network [19], ParticleNet [20], ABCNet [21]
and LorentzNet [22]. The Energy Flow Network is an energy-weighted deep set network
serving as an IRC-safe backbone model on the point cloud representation of jets [23]. It
parameterizes angular filters with trainable neural networks and has been successfully
tested on many jet tagging tasks [18]. Meanwhile, the Energy-weighted Messaging Passing
(EWMP) Neural Network [19] maps kinematic features of particles to nodes and distances
between particles to edges in a graph, which highlights that defining only the Radius
Neighbor can make the algorithm IRC-safe, and compares the tagging performance at
different aggregation radius settings. Additionally, the ParticleNet [20] architecture has
been proposed to process the local structure of jets permutations invariantly by aggregating
the information of K-Nearest Neighbor (KNN) through a convolution block while the
ABCNet employs the attention mechanism to extract the local structure of jets. The
LorentzNet puts greater emphasis on integrating inductive biases derived from physics
principles into its architectural design, employing a highly efficient Minkowski dot product
attention mechanism. All these architectures exhibit excellent performance when applied to
top tagging and quark/gluon discrimination benchmarks. Nevertheless, it is worth noting
that only the EFN and the EWMP architectures maintain the IRC-safety.

In this work, we focus on inserting neural networks into jet substructure bases in
an IRC-safe and rotation-invariant way to discover interpretability and discriminative jet
observables from a vast amount of simulation data. The article is organized as follows. In
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section 2, we give a brief introduction for some representative jet substructure observable
bases, and propose to use different order of Legendre polynomials as functions of angular
distance between particle pairs to achieve numerical stability. As an example, we present
the distributions of 4-point Legendre-based path graph energy-flow polynomials for both
top jets and QCD jets, spanning across different parameter settings. We also show how
to determine the specific form of the 2-point energy-flow polynomials by employing linear
regression on the coefficients of Legendre polynomials as an illustrative example. Most
importantly, we point out that rewriting EFPs in a hierarchical manner would greatly reduce
the computation complexity and allow for the insertion of neural network. In section 3,
we introduce the Hierarchical Energy Flow Networks and Local Hierarchical Energy Flow
Networks which follow the path-graph structure, and provide comprehensive details about
the model implementation. In section 4, we present numerical results obtained for top
tagging task and quark/gluon discrimination task, respectively. Finally, our conclusion are
presented in section 5.

2 Hierarchical energy flow for observables

2.1 Jet substructure observable basis

To guarantee a good definition in perturbative QCD calculation, any jet substructure
observable should be both infrared and collinear safe (IRC-safe) and Lorentz invariant.
These properties can be achieved by expressing an observable as a linear combination of
calorimetric correlators (C-correlators) [1] with a general form

CfN
N =

M∑
i1=1

. . .
M∑

iN =1
Ei1 . . . EiN fN ({p̂i1 , . . . , p̂iN }), (2.1)

where Ei and p̂i are respectively energy (or energy fraction) and direction of the i-th
constituent particle within the jet, M is the total number of the constituent particles inside
the jet, N is any positive integer, and fN is any sufficiently smooth permutation invariant
function of its N arguments. The multi-particle energy correlator forms are naturally derived
from quantum field theory. The function fN responsible for maintaining the calorimetric
continuity depends solely on the directions of particles. Numerous efforts have been made
to define various forms of function fN as variants of the energy-flow based observables.
The Deep Set Theorem [24] indicates that the functions operating on point sets should be
permutation invariant to the order of objects in the set. By further enforcing the IRC-safety,
any observable O of a variable-length point set {p1, . . . , pM} can be approximated arbitrarily
well by [18]

O({p1, . . . , pM}) = F

( M∑
i=1

ziΦ(p̂i)
)

, (2.2)

where zi are energy fraction Ei/(
∑

Ei), Φ and F are arbitrary functions. Figure 1 presents
a visualization of point cloud representation of a jet in polar coordinate. To enhance the
flexibility of the representation, the Energy Flow Networks [18] have been introduced,
which directly replace the fixed form of expansion polynomials with parameterized and
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Figure 1. The visualizations of point cloud representation for a QCD jet and a top jet in polar
coordinate. The jet radius is set to 1 and each red point denotes the position of a constituent particle
within the jet.

learnable filters Φ in neural networks. The universal approximation theorem of neural
networks supports this formulation, making it more adaptable and versatile. There are also
some attributes that utilize a systematic and complete basis Φl for angular directions to
decompose complete features of the jet global observables, including Zernike polynomials [2]
and spherical harmonics [25].

For a jet with N-prong substructure, it is also efficient to define the N-subjettiness [3]
to measure the energy radiation alignment with N candidate subjets:

τβ
N =

∑
i

Ei min{∆Rβ
i,1, ∆Rβ

i,2, . . . , ∆Rβ
i,N}, (2.3)

where ∆Ri,j represents the angular separation between i-th and j-th candidate subjets in
the angular plane. The parameter β acts as the angular exponent, enabling the capture of
the 3M − 4 dimensional representation of the M -body phase space [26]. To determine the
axes of the fixed number of candidate subjets, the exclusive-kT algorithm, similar to the
weighted k-mean algorithm, is used to implement the minimization process. Additionally,
several specialized approaches for evaluating N -prong structures of a jet are proposed. One
method is the N -point energy correlation functions (ECFs) [5], which are defined as

ECF(N, β) =
∑

i1<i2<...<iN∈J

( N∏
a=1

Eia

)( N−1∏
b=1

N∏
c=b+1

Ribic

)β

, (2.4)

where Ribic is the angular distance between particles ib and ic. Another method, known
as the generalized energy correlation functions (ECFGs) [6] use minimizing steps in N -
subjettiness and compare its superiority. Moreover, the energy flow polynomials (EFPs) [7]
provide a systematic and organized method for calculating a more (over)complete basis of
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jet substructure, with a topological correspondence to multi-graphs:

EFPG =
M∑

i1=1
. . .

M∑
iN =1

Ei1 . . . EiN

∏
(k,l)∈G

Rikil
. (2.5)

These EFPs have been demonstrated to compose existing physics-inspired observables like jet
mass, planar flow [10] and the above-mentioned ECFs (corresponding with complete graph).
Compared with the moment expansion representation including jet image mentioned above,
those higher-point energy flow bases are more complete and show clearer correspondence to
the physically well-defined observables. Note that the use of the Euclidean distance metric
in the energy flow basis indicates the rotation symmetry of a single jet. However, when we
generalize this to the construction of global event features, like jet pull [27] and other color
flow variables, with higher-point energy flow bases, directional functions fN of rapidity and
azimuth directions should be defined separately.

The systematic comparison studies demonstrate the discrimination performance of the
energy correlation functions for N -prong jets under various angular exponent β [5]. In this
study, we propose a method to modify Rβ

ij in the EFPs to a complete and orthogonal basis,
such as Legendre polynomials, to parameterize and vectorize the angular distance function
relationship. This approach allows us to effectively combine the influence of different angular
exponents. Furthermore, we would like to point out that it may not be necessary to strictly
adhere to the formula where the function fN in the C-correlator is solely dependent on
particle directions to ensure IRC safety. By liberating from this constraint, the possible
formulations of jet observables are greatly expanded to beyond the linear combination
of C-correlators.

2.2 Hierarchical energy flow functions

Now we consider a naive 2-point energy correlation function ECF(2, β)

ECF(2, β) =
M∑
i,j

zizjRβ
ij . (2.6)

We could generalize the function of angular distance between two particles Rij as any
function f(Rij), and then expand it with orthogonal polynomials like Legendre polynomials
Pβ(θij). We set θij = Rij/R0 − 1 to make θij in the domain [−1, +1] to keep numerical
stability. Then the Legendre-based 2-point energy correlation function ECF(2, Pβ) can be
written as

ECF(2, Pβ) =
M∑
i,j

zizjPβ(θij). (2.7)

However, it has been pointed out that the higher-point energy correlation functions pose
challenges due to their power-growth computational complexity [5]. The computational
complexity of N -point Energy Correlation Functions (ECFs) grows significantly, denoted as
O(MN ), where M represents the number of particles inside the jet. And it was shown that
linear relationships between EFPs that hold for quark and gluon jets to a specific order could
be obtained by applying power counting [28]. Fortunately, some special N -point Energy
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Flow Polynomials (EFPs) associated with tree graphs could be computed by utilizing the
Variable Elimination (VE) algorithm [7] with a reduced complexity of O(M2). Here we
select a subset from those special EFPs corresponding to the path graphs, which are the
simplest example of tree graphs. Therefore, the path-graph corresponding EFPs can be
expressed in a hierarchical summation form. For example, the 2-pint, 3-point and 4-point
path-graph Hierarchical Energy Flow Polynomials (HEFPs) are defined as

HEFP(2, β) =
M∑
i

zi

( M∑
j

zjPβ(θij)
)

, (2.8)

HEFP(3, {β1, β2}) =
M∑
i

zi

( M∑
j

zjPβ2(θij)
( M∑

k

zkPβ1(θjk)
))

, (2.9)

HEFP(4, {β1, β2, β3}) =
M∑
i

zi

( M∑
j

zjPβ3(θij)
( M∑

k

zkPβ2(θjk)
( M∑

l

zlPβ1(θkl)
)))

(2.10)

The compact formulas of path-graph (N + 1)-point HEFPs are

HEFP(N + 1, {β1, . . . , βN}) =
M∑

i1,i2,...,iN+1

( N+1∏
a=1

zia

)( N∏
b=1

Pβib
(θibib+1)

)
. (2.11)

They could be seen as an energy-weighted summation of N -point particle features:

HEFP(N + 1, {β1, . . . βN}) =
M∑
i

zip̂
N
i ({β1, . . . βN}), (2.12)

where p̂N
i ({β1, . . . βN}) are obtained through recursive relations as

p̂t+1
i ({β1, . . . βt+1}) =

M∑
j

zj p̂t
j({β1, . . . βt})Pβt+1(θij), (2.13)

with (t + 1)-point particle features p̂t+1
i being an energy-weighted summation of all t-point

particle features p̂t
j multiplied by a pair-wise distance related factor Pβt+1(θij).

The above path-graph HEFPs are linear combinations of multi-graph corresponding
EFPs. Nevertheless, the integration of Legendre polynomials in our approach offers several
crucial advantages. These polynomials serve as a powerful and flexible tool for representing
any complex angular distance functions, f(θij), in a compact and numerically stable manner.
By expanding f(θij) using Legendre polynomials Pβ(θij), we can effectively capture the
essential features of the angular distribution while controlling the model complexity. Notably,
the orthogonality property of Legendre polynomials guarantees that each coefficient in
the expansion corresponds to a distinct feature, enhancing the interpretability of the
model. Additionally, by transforming Rij to the range of θij ∈ [−1, +1], we effectively
restrict the absolute value of Legendre polynomials Pβ(θij) ∈ [0, 1], further improving the
model’s robustness.

In figure 2, we present the distributions of 4-point Legendre Hierarchical Energy Flow
polynomials, denoted as HEFP(4, {β1, β2, β3}), for both top jets and QCD jets, spanning
across different parameter settings ({β1, β2, β3}). Remarkably, the distributions of all the
HEFP(4, β1, β2, β3) of top jets and QCD jets exhibit clear discrimination. This distinct
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Figure 2. Distributions of 4-point Legendre Hierarchical Energy Flow polynomials HEFP(4,
{β1, β2, β3}) under various settings of ({β1, β2, β3}) for top jets and QCD jets.

separation underscores the discriminative power of the HEFP approach and highlights
its potential significance in distinguishing top jets from QCD jets in high energy physics
analyses. Moreover, since P0(θij) = 1, HEFP(4, {0, β2, β3}) will degenerate into 3-point
HEFP(3, {β2, β3}), while HEFP(4, {0, 0, β3}) will degenerate into 2-point HEFP(2, {β3}).
Therefore, the (N + 1)-point HEFPs encompass all the HEFPs ranging from 2-point to
N -point. As

∑
i βi increases, the HEFPs gradually move closer to the y-axis, indicating an

increasing fraction of HEFPs that approach zero. This is primarily due to the cancellation
effects observed in the higher order components. Consequently, for a specific truncation
order βmax, any EFP observable with a path graph structure can be accurately expanded
into a linear combination of βN

max HEFPs. For instance, we can easily employ the Linear
Logistic Regression to identify the specific form of the 2-point HEFP(2, f) with the optimal
classification performance. The number of undetermined parameters {αi} is βmax, and we
define the probability of the input jet being tagged as the top jet as

p = σ

( ∑
β

αβ

M∑
i,j

zizjPβ(θij)
)

, (2.14)
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Figure 3. Normalized distributions of the 2-point Legendre Energy Flow Polynomials for top jets
and QCD jets that achieved the best classification performance. The corresponding truncation orders
βmax are 4 and 8, respectively. The specific form of the 2-point Legendre Energy Flow Polynomials
is also indicated on the figure.

where σ(t) = 1/(1+e−t) is the logical function. The objective function of logistic regression is

J(α) = −[ylog(p) + (1 − y)log(1 − p)], (2.15)

where y = 1 corresponds to the top jet and y = 0 corresponds to the QCD jet. In figure 3, we
present the normalized distributions of the 2-point Legendre Energy Flow Polynomials for
top jets and QCD jets that achieved the optimal classification performance. The truncation
orders βmax for top jets and QCD jets are 4 and 8, respectively. Additionally, we illustrate
the specific form of the 2-point Legendre Energy Flow Polynomials in this figure, which
serves as a bridge between physical interpretability and machine learning. As shown in
figure 3, the distinctive form of the 2-point Legendre Energy Flow Polynomials, obtained
through linear regression, proves to be highly effective in discriminating between top jets
and QCD jets.

Furthermore, we find that the above HEFP(N, Pβ) obtained under a fixed energy-
weighted summation order exhibits IRC-safety after each node elimination. This special
characteristic, which we called hierarchical IRC-safety, indicates that inserting arbitrary
functions (including non-linear function) after each energy-weighted summation is allowed,
where the parameterized and trainable neural networks can come into and play an important
role. For example,

O(2) =
M∑
i

ziΦ
( M∑

j

zjPβ(θij)
)

(2.16)

where 2 indicates that the features are 2-point energy flow observable. After performing
variable elimination algorithm, any EFPs can be computed via a hierarchical summation like

M∑
i,j,k,l

zizjzkzlf1(θij)f2(θjk)f3(θjl)f4(θkl)

=
βmax∑

β1,β2,β3,β4

αβ1αβ2αβ3αβ4

( M∑
i

zi

( M∑
j

zjPβ1(θij)
( M∑

k

zkPβ2(θjk)
( M∑

l

zlPβ3(θkl)Pβ4(θjl)
))))

,
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where αβ are linear coefficients of orthogonal bases with different orders. Moreover, an
arbitrary function Φ can be inserted IRC-safely between each energy-weighted summation
and the next layer calculation, which can be effectively parameterized and trained by using
neural networks. In the proceeding section, we will introduce a novel backbone model
that utilizes neural network parameterization to reconstruct the path-graph energy flow
polynomials while simultaneously maintaining interpretability, IRC-safety, and rotational
invariance. In this work, we only consider the path-graph corresponding EFPs. For simplicity,
all the Hierarchical Energy Flow functions specifically refer to path-graph Hierarchical
Energy flow functions in the following sections. However, it is essential to highlight that
this framework actually can be generalized to any other complex graph structures.

3 Hierarchical higher-point Energy Flow Network

3.1 Hierarchical Energy Flow Network

As mentioned in the preceding section, inserting an arbitrary function after the energy-
weighted summation of Hierarchical Energy Flow Polynomials does not break the IRC
safety. Thus we can parameterize these functions with neural networks. For instance, in
the case of 2-point HEFN, the 1-point features of i-th particle p̂1

i is embedded initially as

p̂1
i = Φ

( M∑
j

zjPβ(θij)
)

, (3.1)

where p̂1
i are invariant under translation, rotation, or reflection of the jet in the angular

direction. Consequently, the jet observables in the latent space are also IRC-safe and can
be expressed as

O(2) = F

( M∑
i

ziΦ
( M∑

j

zjPβ(θij)
))

, (3.2)

which are natural generalizations of EFNs when considering 2-point energy flow functions.
We introduce two MLP modules Φ and F as EFNs do. The first MLP Φ : Rβmax → Rl

maps 1-point particle features with dimension βmax, the truncated order of the Legendre
polynomials, into a latent space with dimension l, while the 2-point jet observables are
energy-weighted summation of all particle features. The second MLP can be viewed as a
discriminant of jet features. We find better tagging performance in some public datasets
compared with EFNs, as discussed in section 4.

In the following steps, we extend the scenario to N -point HEFN. We incorporate neural
networks into Hierarchical Energy Flow Polynomials to obtain Hierarchical Energy Flow
Networks (HEFNs). For t-point particle features at latent space p̂t

i, the next higher-point
particle features are obtained through recursive relations as

p̂t+1
i = Φa

( M∑
j

zjΦb(p̂t
j) ⊗ Pβ(θij)

)
+ p̂t

i. (3.3)

The second MLP Φb : Rl → Rd maps t-point particle features p̂t
j into dimension-d. And we

fix the dimension of hidden space l′ = d × βmax to control model parameter capability for
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different βmax setting. The first MLP Φa : Rl′ → Rl maps the hidden (t + 1)-point particle
features back to latent space. Besides, the residual connection we introduce here makes

p̂t+1
i =

t∑
k=1

Φa,k
( M∑

j

zjΦb,k(p̂k
j ) ⊗ Pβ(θij)

)
, (3.4)

which could let the final jet observables contain a mix of multiple high-point energy flow
functions

O(N+1) = F

( M∑
i

zi

N∑
k=1

Φa,k
( M∑

j

zjΦb,k(p̂k
j ) ⊗ Pβ(θij)

))
. (3.5)

It is worth noting that since the inserted nonlinear functions are not only about angular
information, the learned observables cannot be expanded as a linear combination of C-
correlators nor EFPs. In the generalized scenario of an N -point Hierarchical Energy Flow
Network before the final discriminant F, the architecture consists of total N Φa and (N − 1)
Φb since we only apply Φa to get p̂1

i . Both Φa and Φb are MLPs with BatchNorm-ReLU-
FullyConnected structures. Note that when applying Batch Normalization to particle-level
features, we start by obtaining jet-level observables through energy-weighted summation.
Subsequently, we calculate the mean and variance of jet features in mini-batches. This
ensures that Batch Normalization maintains the statistical robustness of neural network
inputs, even under particle splitting and soft radiation conditions.

In our study, we keep the dimension of particle features at latent space l = 256 and
hidden space l′ = d × βmax = 1024. The first MLP Φa is stacked with two BN-ReLU-FC
blocks with (1024, 256, 256) nodes, while the second MLP Φb is a single BN-ReLU-FC block
with (256, d) nodes. We selected βmax values of 4, 8, 16, and 32 as the truncated orders of the
Legendre polynomial to investigate their impact on the model’s performance. Additionally,
we systematically compared the performance of up to 2, 3, and 4-point HEFN (Hierarchically
Energy Flow Network) on top tagging dataset and quark/gluon discrimination dataset. All
the results will be presented in section 4.

3.2 Local Hierarchical Energy Flow Network

To further reduce the computational complexity of the model while preserving essential
information, we ignore the contribution of distant particles and adopt the neighbour
aggregation approach instead of global summation. In other words, we require f(Rij) = 0
if Rij > rmax. Besides, it is also possible to pixelate the distance between particles to
aggregate particles in different regions [29]. Based on the neighbour aggregation, we propose
the second strategy, the Local Hierarchical Energy Flow Network (LHEFN).

In our case, we choose to use the query ball approach to define neighborhood for
IRC-safety during end-to-end training [19]. To combine features from different scales, we
group multi-scale neighborhoods to construct the graph structure Ak

ij as

Ak
ij =

{
1 if (k − 1)ϵ ≤ Rij < kϵ

0 else
(3.6)
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where ϵ measures the resolution of our implementation. The value of rmax = kmaxϵ represents
the maximum scope radius.

We initialize 1-point particle features similar with HEFN:

p̂1
i = Φ

( M∑
j

zjAk
ij

)
. (3.7)

Currently, we continue to iteratively update the particle features following eq. (3.3). However,
instead of relying on pair-wise features computed using Legendre polynomials, we now
adopt Ak

ij to replace them. Note that Ak
ij are symmetric edge interaction tensors resulting

in a radial single square wave form. Since the edge embeddings are binary functions, the
nodes can be updated using a simple weighted summation operator, significantly reducing
computational complexity. The update step of t-point particle features can be expressed as

p̂t+1
i = Φ([p̂t

i,1, p̂t
i,2, . . . , p̂t

i,kmax ]), (3.8)

where p̂t
i,k =

∑Ak
ij=1

j zj p̂t
j is the energy-weighted sum of all particle features between distances

kϵ and (k+1)ϵ away from particle i. This computation efficiently aggregates relevant
information from neighboring particles, taking into account their energy contributions. The
neural network parameterized function Φ plays a crucial role in adaptively selecting the
aggregation radius, and combines features of particles on different neighbor regions. Note
that this approach may exhibit limited flexibility in expressing edge information, resulting in
potentially worse performance compared to the Legendre polynomial encoding. However, the
aforementioned formula significantly reduces the computational complexity of O(d · M2 · β)
compared with eq. (3.4) by eliminating the need for the direct product of edge features and
particle features. The model gains a remarkable boost in speed, making it more practical
for real applications. To ensure fair evaluations, we reset rmax = 0.5R0, R0, 1.5R0 and 2R0
and selected kmax of 4, 8, 16, and 32 for testing purposes. Additionally, we maintained
consistency in the remaining trainable parameter capacity and hyperparameter settings
throughout the experiments.

3.3 Model implementation

The model architecture is implemented in the PYTORCH deep learning framework with
the CUDA platform. We adopt the binary cross-entropy as the loss function. To optimize
the model parameters, we employ the Adam optimizer [30] with an initial learning rate of
0.001 and momentum set to 0.8, which is determined based on the gradients calculated on
a mini-batch of 128 training examples. The network is trained up to 50 epochs, with a
cosine decay learning rate scheduler. In addition, we employ the early-stopping technique
to prevent over-fitting.

4 Results of jet classification

4.1 Top tagging

We perform the top tagging analysis utilizing a benchmark dataset [31], containing hadronic
tops as the signal and QCD di-jets as the background. The event generation is performed
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by Pythia8 [32], while the detector effect is simulated by Delphes [33]. The particle-flow
constituents are clustered into jets using the anti-kT algorithm [34] with R0 = 0.8 as the
radius parameter. Our analysis focuses on jets with transverse momentum pT ∈ [550, 650]
GeV and rapidity |y| < 2. The dataset consists of 1.2M training events, 400k validation
events, and 400k test events. Only the energy-momentum 4-vectors for each particle inside
the jets are contained. Both the HEFN architecture and the LHEFN architecture utilize
only pT , η, and ϕ of all constituent particles inside each jet. To ensure dataset quality,
jets with a particle count of less than 5 were removed to prevent the influence of extreme
examples on the datasets (0.01% for the top tagging dataset).

Figure 4 shows the area under the ROC curve (AUC) for the top tagging task of 2-point,
3-point, and 4-point HEFN as a function of βmax, along with the AUC for the top tagging
task of 2-point, 3-point, and 4-point LHEFN with varying r values (r = 0.4, 0.8, 1.2, 1.6) as
a function of kmax. The results displayed in figure 4 exhibit a notable trend where the Area
Under the Curve (AUC) of HEFN consistently increases with N . This observation indicates
that increasing the complexity of the network by adding more points (2-point, 3-point, and
4-point configurations) can enhance the performance of HEFN. Additionally, the AUC
remains almost unchanged during the transition from 3-point to 4-point configurations, which
indicates that the 4-point HEFN achieves the optimal performance. For all the considered
2-point, 3-point, and 4-point HEFN architectures, we notice a consistent improvement
in AUC as we increase the truncated orders of the Legendre Polynomials βmax. Similar
behavior is observed in the case of 2-point, 3-point, and 4-point LHEFN models with varying
r values (0.4, 0.8, 1.2, and 1.6). As the parameter kmax increases, the AUC of LHEFN also
demonstrates a notable enhancement, signifying that refining the neighbor division leads to
a higher AUC. Another noteworthy discovery is that setting the value of r empirically to
half the radius of the candidate jets yields optimal performance for LHEFN. Although it is
worth noting that HEFN outperforms LHEFN slightly across almost all parameter settings,
the LHEFN is notably faster compared to HEFN. The choice between the two models may
depend on specific application requirements, with HEFN offering higher AUC and LHEFN
presenting a notable speed advantage.

In table 1 we provide detailed results of accuracy, AUC, and background rejection for
the optimal parameter settings (N = 4, βmax = 16) and (N = 4, kmax = 16) of both HEFN
and LHEFN. Additionally, we present the performance achieved by various classification
algorithms on the top tagging dataset, facilitating a comprehensive comparison. From
table 1, it is evident that by solely utilizing the pT , η, and ϕ information of all constituent
particles, both HEFN and LHEFN deliver comparable performance to existing model
architectures. Moreover, both HEFN and LHEFN enable the reconstruction of energy
correlation-based observables while maintaining interpretability, IRC-safety, and rotational
invariance, which other models can not preserve.

4.2 Quark/gluon discrimination

The Quark-Gluon benchmark dataset [18], generated using Pythia8 without detector
simulation, consists of quark-initiated samples qq → Z → νν + (u, d, s) as the signal and
gluon-initiated data qq → Z → νν + g as the background. For jet clustering, we use the
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Figure 4. Area under the ROC curve (AUC) for top tagging task of 2-point, 3-point, and 4-point
HEFN as a function of βmax, and AUC for top tagging task of 2-point, 3-point, and 4-point LHEFN
with varying r values (r = 0.4, 0.8, 1.2, 1.6) as a function of kmax, where r represents the maximum
scope radius for LHEFN. The x-axis is shared for both βmax and kmax.

anti-kT algorithm with R0 = 0.4. Our analysis focuses on selecting jets with transverse
momentum pT ∈ [500, 550] GeV and rapidity |y| < 1.7. Each particle in the dataset is
characterized by its four-momentum and particle identification (PID) information. However,
in this study, both the HEFN and LHEFN architectures utilize only pT , η, and ϕ of all the
constituent particles inside each jet. The official dataset comprises of a total of 2 million
events. Among these, 1.6 million events are used for training, while 200k events each are
allocated for validation and testing. Besides, to ensure dataset quality, jets with a particle
count of less than 5 are removed to avoid any adverse influence of extreme examples on the
datasets. The proportion of these filtered samples relative to the entire dataset is minimal,
representing only 0.01% of the Quark/Gluon Discrimination dataset.
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Accuracy AUC 1/ϵB (ϵS = 0.5) 1/ϵB (ϵS = 0.3)
ResNeXt-50 [20] 0.936 0.9837 302±5 1147±58
P-CNN [20] 0.930 0.9803 201±4 759±24
PFN [18] - 0.9819 247±3 888±17
ParticleNet-Lite [20] 0.937 0.9844 325±5 1262±49
ParticleNet [20] 0.940 0.9858 397±7 1615±93
JEDI-net [35] 0.9263 0.9786 - 590.4
JEDI-net with

∑
O [35] 0.9300 0.9807 - 774.6

SPCT [36] 0.928 0.9799 201±9 725±54
PCT [36] 0.940 0.9855 392±7 1533±101
LorentzNet [22] 0.942 0.9868 498±18 2195±173
ParT [37] 0.940 0.9858 413±16 1602±81
HEFN 0.9375 0.9846 343±6 1262±51
LHEFN 0.9337 0.9833 271±5 935±21

Table 1. Performance comparison of HEFN and LHEFN with Existing Classification Algorithms
on the Top Tagging Dataset. The uncertainty is calculated by taking the standard deviation of 5
training runs with different random weight initialization.

Figure 5 shows the area under the ROC curve (AUC) for the quark/gluon discrimination
task of 2-point, 3-point, and 4-point HEFN as a function of βmax, along with the AUC
for the quark/gluon discrimination task of 2-point, 3-point, and 4-point LHEFN with
r = 0.2, 0.4, 0.6, 0.8 as a function of kmax, where r is the maximum scope radius of LHEFN.
The results presented in figure 5 show a clear pattern: the Area Under the Curve (AUC) of
HEFN consistently increases with N , which suggests that the performance of HEFN benefits
from the increased complexity brought by adding more points. Moreover, during the shift
from 3-point to 4-point configurations, the AUC remains relatively stable, implying that the
4-point HEFN reaches its optimal performance at this stage. Regarding the 2-point HEFN
architecture, we observe that increasing the truncated orders of the Legendre Polynomials
βmax leads to a consistent improvement in the Area Under the Curve (AUC). However, for
the 3-point and 4-point HEFN architectures, the AUC remains unchanged as βmax increases.
Different from HEFN, in the case of 2-point, 3-point, and 4-point LHEFN models with
r = 0.2, 0.4, 0.6, 0.8, as the parameter kmax increases, there is a notable enhancement in
the AUC of LHEFN, indicating that refining the neighbor division can result in higher
AUC. Another noteworthy finding is that setting the value of rmax to half the radius of the
candidate jets results in optimal performance for LHEFN. Although it is worth noting that
HEFN performs slightly better than LHEFN across all parameter settings, LHEFN stands
out for its significantly faster performance compared to HEFN. As a result, the selection
between the two models may depend on the specific needs of the application, where HEFN
is preferred for achieving higher AUC, while LHEFN is a more suitable choice when speed
is a critical factor.

In table 2, we present the results of accuracy, area under the curve (AUC), and
background rejection for the parameter settings (N = 4, βmax =16) and (N = 4, kmax =16)
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Figure 5. Area under the ROC curve (AUC) for quark/gluon discrimination task of 2-point, 3-point,
and 4-point HEFN as a function of βmax, and AUC for top tagging task of 2-point, 3-point, and
4-point LHEFN with varying r values (r = 0.2, 0.4, 0.6, 0.8) as a function of kmax, where r represents
the maximum scope radius for LHEFN. The x-axis is shared for both βmax and kmax.

of HEFN and LHEFN which correspond to the optimal performance. Additionally, we
present the performance attained by several classification algorithms on the quark and
gluon dataset, enabling a comprehensive comparison. From table 1, we can see clearly that
both HEFN and LHEFN can achieve competitive performance compared with the existing
architectures even with only the pT , η, and ϕ information of all constituent particles. More
importantly, both HEFN and LHEFN can reconstruct energy correlation-based observables,
setting them apart from other models that fail to preserve crucial features including
interpretability, IRC-safety, and rotational invariance.
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Accuracy AUC 1/ϵB (ϵS = 0.5) 1/ϵB (ϵS = 0.3)
ResNeXt-50 [20] 0.821 0.9060 30.9 80.8
P-CNN [20] 0.827 0.9002 34.7 91.0
PFN [18] - 0.9005 34.7±0.4 -
ParticleNet-Lite [20] 0.835 0.9079 37.1 94.5
ParticleNet [20] 0.840 0.9116 39.8±0.2 98.6±1.3
ABCNet [21] 0.840 0.9126 42.6±0.4 118.4±1.5
SPCT [36] 0.815 0.8910 31.6±0.3 93.0±1.2
PCT [36] 0.841 0.9140 43.2±0.7 118.0±2.2
LorentzNet [22] 0.844 0.9156 42.4±0.4 110.2±1.3
ParT [37] 0.849 0.9203 47.9±0.5 129.5±0.9
HEFN 0.8264 0.9002 33.5±0.3 86.2±0.8
LHEFN 0.8213 0.8969 31.3±0.2 82.5±0.7

Table 2. Performance comparison of HEFN and LHEFN with Existing Classification Algorithms
on the Quark/Gluon Discrimination Dataset. The uncertainty is calculated by taking the standard
deviation of 5 training runs with different random weight initialization. Note that in the HEFN and
LHEFN networks, we did not utilize any PID information.

5 Conclusions

In this work, we introduced a novel IRC-safe deep learning framework for analyzing
high-point energy flow observables in Jet Substructure analysis. We utilized a class of
high-point energy flow functions from Energy Flow Polynomials as a comprehensive basis for
observables, enabling hierarchical energy-weighted summation. By incorporating orthogonal
polynomials to quantify the correlation between particles based on angular distance and
employing neural networks as parametrized functions, we achieved enhanced flexibility in
representation without compromising IRC safety.

Our approach demonstrated both interpretability and remarkable discrimination per-
formance in top tagging dataset and quark-gluon dataset. To strike a balance between
computational complexity and model performance, we efficiently reduced global summation
to local aggregation and encoded multi-scale neighborhoods with one-hot encoding. This
enabled the creation of Local Hierarchical Energy Flow Networks (LHEFN) based on local
energy flow, showing comparable performance to the HEFN.

Overall, our IRC-safe deep learning framework can provide a simple yet powerful tool
for analyzing high-point energy flow observables in Jet Substructure analysis, with potential
applications in various high-energy collision scenarios. The combination of comprehensive
observables, orthogonal polynomials, and neural networks allows us to achieve excellent
performance while maintaining IRC safety, rotation invariance and interpretability, making
it a valuable addition to the field of jet substructure analysis.

Furthermore, there are several potential improvements that could be explored in future
research. Firstly, in this study we relaxed the Lorentz invariance to SO(2)-rotational
symmetry around the jet axis. To ensure strict preservation of Lorentz symmetry, we
could consider replacing the angular distance θij with a Lorentz invariant quantity, such as
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invariant mass, within the Hierarchical Energy Flow Polynomials parametrization. Secondly,
for the quark/gluon discrimination task, we did not utilize the Particle Identification
(PID) information. Incorporating the PID information into the model architecture could
potentially lead to performance improvements, as it provides valuable additional information
for distinguishing gluon jet from light quark jet. Thirdly, in our approach, we solely
reconstructed the Energy Flow Polynomials observables with path graph structures. It would
be interesting to explore more complex graph structures and investigate the reconstruction of
EFP observables corresponding to different graph configurations, as this could offer further
insights into the energy distribution within the jets. These possible improvements merit
further investigation in future studies. By addressing these aspects, we can enhance the
capabilities of our model and potentially uncover new insights into jet substructure analysis.
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