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We investigate the instanton dynamics of asymptotically safe and free quantum field theories featuring,
respectively, controllable ultraviolet and infrared fixed points. We start by briefly reviewing the salient
points about the instanton calculus for pure Yang-Mills (YM) and QCD theory. We then move on to
determine the role of instantons within the controllable regime of the QCD conformal window. In this
region we add a fermion-mass operator and determine the density of instantons per unit volume as a
function of the fermion mass. Finally, for the first time, we extend the instanton calculus to asymptotically
safe theories.
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I. INTRODUCTION

The standard model and its four-dimensional extensions
are described by gauge-Yukawa theories; it is therefore
paramount to understand their dynamics.
Of special interest are theories that are fundamental

according to Wilson [1,2], meaning that they are well
defined at arbitrarily short distances. Asymptotically free
[3,4] and safe [5] quantum field theories (QFT) are two
classes of fundamental quantum field theories. For the
former, at extremely short distances, all interactions vanish,
while for the latter the interactions freeze. In theories with
multiple couplings, some can be free and others can be safe.
Although asymptotic freedom has a long and successful
history, the discovery of four-dimensional controllable
asymptotically safe quantum field theories is recent
[5,6]. This result has enabled novel dark and bright
extensions of the standard model [7–13].
The infrared dynamics of fundamental field theories is

extremely rich, and it can entail confinement and/or chiral
symmetry breaking or large distance conformality. This
depends on the field content of the specific quantum field
theory as well as the presence and type of infrared relevant
operators such as scalar and fermion masses. In particular,
asymptotically free theories can develop an interacting
infrared (IR) fixed point that in certain limits is perturba-
tively controllable, known as the Banks-Zaks (BZ) [14]

fixed point. The full region in color-flavor space, for gauged
fermion theories, where an IR fixed point is present, is
known as the conformal window; see [15] for an introduc-
tion and [16] for a summary of recent lattice efforts.
Recently, building on the large Nf results of [17–21], the
concept of the conformal window has been extended to
include the asymptotically safe region at a large number of
flavors for which asymptotic freedom is lost [22].
The first systematic study of exact constraints that a

supersymmetric asymptotically safe quantum field theory
must abide by, including a maximization [23] and collider
bounds [24], appeared in [25] extending the results of [26].
Here it was also established that Seiberg’s SQCD con-
formal window [27] does not admit an asymptotically safe
conformal region. This result is in net contrast with the
nonsupersymmetric case [22]. Building upon the results
of [25] in Ref. [28], the first evidence for supersymmetric
safety was uncovered within the important class of grand
unified theories. The generalization to different types of
supersymmetric quantum field theories passing all known
constraints appeared in [29].
Here we are concerned with generalizing and applying

the instanton calculus to gauge theories in the perturbative
regime of the QCD conformal window as well as of
controllable nonsupersymmetric asymptotically safe quan-
tum field theories [5,6].
To keep the work self-contained, we briefly review the

instanton calculus for pure Yang-Mills (YM) as well as
QCD theory including its large-Nc limit in Sec. II.
Instantons for the QCD conformal window are introduced
and discussed in Sec. III. Here, we consider the 2-loop
corrected instantons that allow us to follow the perturbative
renormalisation group (RG) flow deep in the infrared where
a perturbative interacting IR fixed point occurs. We then
perform our analysis in the fermion-mass deformed theory
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and derive the main instanton features as a function of the
fermion mass operator. For example, we compute the
density of instantons per unit volume as a function of
the fermion mass measured in units of the RG invariant
scale. The latter separates the infrared interacting theory
from the UV free fixed point. Finally, we generalize the
instanton calculus to safe rather than free theories in
Sec. IV. Here, we consider again the fermion mass
dependence that now, however, affects the infrared trivial
fixed point. We offer our conclusions in Sec. V.

II. INSTANTON CALCULUS REVIEW

In QFT one aims at computing the partition function,

Z½J � ¼
Z

DϕeiS½ϕ;λ�þJϕ; ð1Þ

where S½ϕ; λ� is the sum of a classical action, a gauge-fixing
action, and a ghost action, depending on the fields ϕ and the
couplings λ, and J is a source for ϕ. If the action is
nonintegrable, one usually attempts to solve the problem
through perturbation theory, which amounts to expanding
the action in powers of small coupling constants λ.
Solutions of the classical theory corresponding to S½ϕ; λ�
are specific classical field configurations ϕ̄. Since the first
variation of the action vanishes on these configurations,
they represent stationary points, or extrema, of the action.
The integrand on the right-hand side (rhs) of (1) is clearly
an oscillating function, and thus one may attempt to
evaluate the integral by performing an expansion around
the classical solution ϕ̄. Symbolically, we have

Z½J � ¼
Z

Dϕ ei½S½ϕ̄�þ1
2
ϕSð2Þ½ϕ̄�ϕþOðϕ3Þ�þJϕ: ð2Þ

This is the core of the steepest descent method for
addressing the issue of oscillating integrals. One defines
the vacuum solution as the classical configuration that
minimizes the energy functional (the Hamiltonian). In the
case of (comparatively) simple QFTs, there is just one
vacuum state, and thus there is but a single field configu-
ration ϕ̄ around which one should expand the partition
function. This is precisely the situation described by
Eq. (2). For YM theories, often coupled to scalars or
fermions, and occasionally coupled to gravity, the vacuum
structure is more involved, and if one would naively apply
the above prescription, several important phenomena
would be unaccounted for, such as a deeper understanding
of chiral symmetry breaking, the generation of the eta
prime mass in QCD, etc.
Let us therefore reconsider briefly the correct approach

applicable to a generic QFT [30–34]. We begin by
Euclideanizing the QFT by performing the Wick rotation
t → τ ¼ −it. One should treat gauge fields and fermions
with care during this procedure. Euclidean action SE is a

functional of Euclidean fields ϕEðxÞ living on a 4D
Euclidean space described by coordinates x ¼ ðx1; x2;
x3; τÞ. When solving the equations of motion, one has to
set up the boundary conditions for jxj → ∞ such that the
action remains finite. Usually, our conditions require
ϕ → const for jxj → ∞. If the potential has only one
extremum, there is a single vacuum solution (constant
field configuration in all of the space), and therefore the
naive perturbation theory described by (2) is valid. If,
however, the potential has more than one degenerate
vacuum, then there exist classical solutions interpolating
between these Euclidean vacua. These finite-action topo-
logically stable solutions to classical Euclidean equations
of motion are called instantons or pseudoparticles [35,36].
Instantons are topologically stable since going from one
such field configuration to another would require bridging
an infinite action barrier.
It is now clear that the correct application of the steepest

descent method to the Euclideanized version of (2) involves
a summation over all instanton configurations. Even though
one does not find instantons as classical solutions to
Lorentzian equations of motion, it is clear that the
Lorentzian partition function can be obtained by Wick
rotating the Euclidean partition function, and thus instan-
tons have to be incorporated in the Lorentzian computation.
Being interpreted as fields that interpolate between differ-
ent vacua, instantons are crucial for understanding the rich
vacuum structure in YM theories.
When discussing instantons, the SUð2Þ color group

plays a special role since SUðNÞ instantons can be
determined starting from the SUð2Þ case [30,37]. Let us
therefore assume for the moment that we have a Euclidean
YM action,

S½A� ¼ 1

4

Z
x
Gμν

a ðAÞGaμνðAÞ ð3Þ

where
R
x ≡

R
d4x≡ R

d3xdτ, and Aa
μ is the gauge field. To

find instanton solutions we require the action to be
bounded, but rather than asking that Aa

μðxÞ decays faster
than 1=x for jxj → ∞, we require it to become pure gauge,

Aμ ⟶
jxj→∞

iS∂μS†; ð4Þ

where S are SUð2Þ matrices (not to be confused with the
action) that depend on angles only. Here, SUð2Þ instantons
are related to maps from SUð2Þ to itself. Such maps are
classified by the third homotopy group, and they fall into
topologically distinct classes. In the case of SUð2Þ, these
are labeled by integer numbers, and members from differ-
ent classes cannot be continuously mapped into each other.
Instantons belonging to the same class are related by a
gauge transformation.
The integers labeling distinct topological classes of

instantons can be thought of as topological charges.
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Furthermore, for a given instanton configuration, the
topological charge is given by

n ¼ g2

32π2

Z
x
Gμν

a G̃aμν; n ∈ Z; ð5Þ

where g is the gauge coupling. One can complete the square
in the action as follows (suppressing indices),

S ¼ 1

4

Z
x
GG ¼

Z
x

1

4
GG̃þ 1

8
ðG − G̃Þ2 ð6Þ

¼ n
8π2

g2
þ 1

8

Z
x
ðG − G̃Þ2: ð7Þ

For the instanton with topological charge n, the action
clearly takes the following minimum value:

Sjn-instanton ¼ n
8π2

g2
: ð8Þ

[Strictly speaking, Eq. (8) holds for positive n. Negative
values of n are obtained via a parity transformation since
then GG̃ → −GG̃. Following the same argument as above,
the action reaches its minimum at jnj 8π2g2 for the field

configuration, which is anti-self-dual, G ¼ −G̃. Such a
field configuration is called an anti-instanton.] This is
achieved when the field satisfies the self-duality condition,
G ¼ G̃. Using Bianchi identities, one can show that the
field satisfying the self-duality condition is on shell; i.e., it
automatically satisfies the equations of motion. Computing
the value of the action on an instanton solution constitutes
the first important result of the instanton calculus. Starting
from the asymptotics, Eq. (4), and assuming the same
directional dependence of the solution in all spacetime
points, one can write an ansatz for the instanton. Requiring
the absence of singularities at the origin of space and self-
duality of the solution suffices to uniquely fix the instanton
(up to collective coordinates) [30]. This result is the famous
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instatons
[SUð2Þ instanton with charge n ¼ 1] [35]. Explicitly,

Aa
μ ¼

2

g
ηaμν

ðx − x0Þν
ðx − x0Þ2 þ ρ2

: ð9Þ

The above expression for the BPST instanton is in the so-
called regular gauge. The parameter ρ, the instanton size, is
the aforementioned integration constant, and it is one of the
instanton collective coordinates. The remaining collective
coordinates are the instanton position in spacetime, x0,
and its orientation in color space. Finally, ηaμν are known as
’t Hooft symbols [36].
The generalization to simple Lie algebras is obtained

directly from the SUð2Þ BPST instanton, exploiting the
fact that any SUðNÞ group contains SUð2Þ subgroups.

To deduce the SUðNÞ instantons, one simply embeds the
BPST solution (9) into SUðNÞ. This choice of embedding
is ambiguous, but the most common choice is the so-called
minimal embedding. It consists in taking the SUðNÞ
generators in the fundamental group and taking the first
three generators T1;…; T3 to be block-diagonal, with
SUð2Þ generators embedded in the upper-left corner. The
SUðNÞ BPST instanton is obtained by contracting the first
three generators Ta, a ¼ 1, 2, 3, with the BPST solution
(9). One can analogously obtain SUðNÞ instantons with
charge n ≠ 1 from other SUð2Þ solutions. This simple
prescription works because the third homotopy group of
SUðNÞ is Z for all N, and with the minimal embedding,
each equivalence class of SUðNÞ solutions contains a
representative SUð2Þ instanton.

A. The QCD story

Here, we show that an instanton ensemble plays an
important role in determining the structure of the QCD
vacuum. We start by reviewing the construction of a
partition function for such an ensemble. We begin with
the famous result for the one-instanton partition function,
which was given by ’t Hooft in 1976 [36].
The vacuum-to-vacuum transition amplitude in the

presence of a single instanton is given by the following
1-loop instanton calculus result for an SUðNcÞ pure Yang-
Mills theory [36,38],

Wð1Þ ¼ 4

π2
expð−αð1Þ − 2ðNc − 2Þαð1=2ÞÞ

ðNc − 1Þ!ðNc − 2Þ!

×
Z

d4xdρρ−5
�
4π2

g20

�
2Nc

exp

�
−
8π2

g21L

�
ð10Þ

≡Cc

Z
d4xdρρ−5

�
8π2

g20

�
2Nc

exp

�
−
8π2

g21L

�
: ð11Þ

The integral on the rhs is over the instanton size ρ, and its
integrand is referred to as the instanton density. Note that
the numerical factor Cc depends only on the number of
colors, and it also contains the factor 2−2Nc. The above
integral is IR divergent [ρ → ∞, see (15)] because of the
running coupling in the exponent. Clearly one has to tame
this behavior for the result to be meaningful.
If the Yang-Mills theory is coupled toNf Dirac fermions,

then, at 1 loop, they contribute via the fermion determinant
to the above result. It is both possible and useful to separate
the zero and nonzero fermionic modes. The nonzero modes
contribute to the exponential as [36]

exp

�
−
2Nf

3
logðρ=ρ0Þ þ 2Nfαð1=2Þ

�
; ð12Þ

where the first term is the fermion contribution to the
1-loop running of the gauge coupling and αðxÞ is a function
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defined in [36].1 Taking all the fermions to have the same
mass m, the zero modes contribute a term

ðmρÞNf : ð13Þ

We can now generalize the result in (11) to include
fermions using the 1-loop running of the QCD gauge
coupling,

8π2

g21L
¼ 8π2

g20
− b logðρ=ρ0Þ; b ¼ 11

3
Nc −

2

3
Nf; ð14Þ

and derive

Wð1LÞ ¼ 4

π2
expð−αð1Þþ4αð1=2ÞÞ
ðNc−1Þ!ðNc−2Þ!

×expð2ðNf−NcÞαð1=2ÞÞmNf

�
4π2

g20

�
2Nc

×
Z

d4xdρρ−5þNf

×exp

�
−
8π2

g20
þ
�
11

3
Nc−

2

3
Nf

�
logðρ=ρ0Þ

�
ð15Þ

¼CcfmNf

Z
d4xdρρ−5þNf

�
8π2

g20

�
2Nc

exp

�
−
8π2

g21L

�
:

ð16Þ

Besides suffering from the divergence of the instanton
density for large instantons, the master equation (15) has
another important feature. The zero mode contributions of
(13) imply the vanishing of the whole amplitude as m → 0.
This was noted and thoroughly discussed in [36], see
also [39,40].
A simple strategy to bypass this problem was initially

given by [39]. Their reasoning goes as follows. It is
empirically known that the QCD vacuum is a medium in
which many condensates form, so instead of studying a
single instanton in isolation, one should take into account
the condensation phenomenon on the instanton density. In
particular, the authors focused on the chiral condensate
hq̄qi. At the time, one could not determine the chiral
condensate from first principles, so the authors employed
its phenomenological value. Besides its relevance as an
order parameter for the spontaneous breakdown of chiral
symmetry (SBCS), one considers the chiral condensate as a
dynamical fermion mass that should be used in the
amplitude (15) instead of the bare mass. Following [39],
we compute the effective quark mass in the presence of a
nonvanishing hq̄qi condensate in QCD to be given by

meff ¼ m −
4π2ρ2

Nc
hq̄LqRi ð17Þ

¼ m −
2π2ρ2

Nc
hq̄ð1þ γ5Þqi: ð18Þ

Crucially, in the case m → 0, the effective mass does not
vanish, meaning that the vacuum-to-vacuum transition
amplitude in the presence of a single instanton is nonzero
provided that the chiral condensate forms. In this way, the
authors of [39] successfully pointed towards the physical
mechanism responsible for resolving the issue with the zero
mass limit.
Let us now return to the other issue, the IR divergences

of the instanton density. Conceptually, it is reasonable to
expect that if QCD forms gluon condensates, then they
should be described by a statistical ensemble of the
instantons forming them. The early attempts in this
direction imagined the QCD vacuum to be described by
an instanton gas [34,41]. This was demonstrated to be a
poor description of the physical vacuum since instantons
were much more strongly interacting. An important step
forward in understanding the QCD vacuum came with
Shuryak’s phenomenological instanton liquid model in
1982 [42]. He showed that a simple ad hoc model of
the instanton medium as a liquid with only two free
parameters can describe a number of nuclear physics
observables reasonably well. His model assumes that all
instantons have the same size, ρ̄, and he obtained the
instanton size and the density of the instanton liquid from
the empirical value of the gluon condensate. Thus, the
approach does not explain why the instanton density is a
deltalike peak around some ρ̄, but such an ad-hoc phe-
nomenological description has predictive power and it
seems to explain nuclear physics data well.
The above ideas were developed more systematically

within the mean field approximation by Diakonov and
Petrov in 1983 and 1985, aiming at a description of an
ensemble of instantons from the first principles. The failure
of the instanton gas picture implied that the instanton
interactions should be modeled even if the medium itself
turns out to be rather dilute. This was motivated by the
expectation that the instanton interactions would remove
the IR divergence. Thus, the authors in [43] introduced a
modified variational procedure in an attempt to approxi-
mate the exact multi-instanton partition function. They
applied their method to pure Yang-Mills theory, and besides
curing the IR problem, they also successfully computed a
number of physical observables. In a later work [40], the
method was extended to include gauged fermions. The
central result of that paper is that, in an instanton back-
ground, fermions develop a momentum-dependent effec-
tive mass which is nonvanishing in the zero momentum
limit, confirming the expectations of Ref. [39] as summa-
rized above.1αð1=2Þ ¼ 0.145873 and αð1Þ ¼ 0.443307.

FRANCESCO SANNINO and VEDRAN SKRINJAR PHYS. REV. D 99, 085010 (2019)

085010-4



Before moving on to the large-Nc theory, we comment
on one more issue regarding the master equation (16). It
follows from the 1-loop computation that the coupling in
the exponential term is renormalized, but the one in the
preexponential factor is not. In the literature, this problem is
often addressed by recognizing that at 2 loops the pre-
exponential factor gets renormalized [43], and thus one
replaces the bare coupling by the 1-loop running coupling
and the 1-loop coupling by the 2-loop coupling. For
completeness, we also provide the standard result for the
2-loop running coupling [39,44],

8π2

g22L
¼ 8π2

g20
− b log

ρ

ρ0
þ b0

b
log

�
1 −

g20
8π2

log
ρ

ρ0

�
; ð19Þ

b0 ¼ 51

9
N2

c −
19

3
Nf: ð20Þ

Note that the behavior of the coupling given in (19) is not
the exact 2-loop one. In fact, this is only the leading
UV contribution valid in the deep UV regime for the
asymptotically free phase of QCD.2 We elaborate more on
this point in Sec. III.

B. Large Nc

Pure Yang-Mills theory at large Nc is an important step
towards studying instantons in the conformal window as
well as asymptotically safe instantons. In fact, many of the
formulas derived in this subsection can be adapted to
include the effects of fermions in these theories. Herein, we
briefly outline the variational approach of [43] and present
their main results. We particularly focus on the large-Nc
limit following Ref. [45].
Assuming that the pure YM vacuum is given by a

background gauge field configuration which consists of a
large set of instantons, following [43], in the absence of
exact results in pure YM theory, one approximates such a
background to be a sum of simple, localized 1-instanton
solutions. Starting from such an ansatz, the ground state can
be derived by introducing a modification of the Feynman’s
variational principle. The modified variational principle is
used to approximate a partition function Z,

Z ¼
Z

Dϕe−S½ϕ�: ð21Þ

It consists in taking the action S, modifying it slightly to get
an action S1 so that S1 has the minimum on the ansatz field
configuration, and then using the inequality

Z¼
�
1

Z1

Z
Dϕe−ðS½ϕ�−S1½ϕ�Þe−S1½ϕ�

�
Z1≥Z1e−hS−S1i; ð22Þ

where Z is the partition function that we want to approxi-
mate using the variational principle. Note that Z is given by
(21) and Z1 is defined analogously, with the action S1. The
expectation values h :i are taken with respect to the
measure expð−S1Þ.
Let us take the background field to be given by

Ā ¼ P
IAI þ

P
ĪAĪ , where I runs over the instanton

configurations and Ī over anti-instantons. We may rewrite
the Lagrangian as follows,

−
1

4g2
F2ðĀÞ ¼ −

1

4g2

�X
i¼I;Ī

F2ðAiÞ þ F2ðĀÞ −
X
i¼I;Ī

F2ðAiÞ
�

≡ −
1

4g2

�X
i¼I;Ī

F2ðAiÞ þUint

�
; ð23Þ

where the first term is the Lagrangian of a noninteracting
instanton gas, and the second term describes the interac-
tion in the medium. From here on, we use the notation
1=4g2F2 ¼ 1=4G2. Including the bosonic statistics factors
N� in front of the partition function, normalizing both sides
of (22) to the perturbation theory vacuum, and regularizing
the determinants, at 1-loop order we obtain the following
expression,

Z
Zptb

����
reg;1L

≥
1

Nþ!N−!

Z YNþþN−

i

dγidðρiÞ e−βðρ̄ÞUintðγiÞ

≡ 1

Nþ!N−!

Z YNþþN−

i

dγi e−EðγiÞ: ð24Þ

In this expression γi represents the collective coordinates
of the ith pseudoparticle (see Sec. II). Here, dðρÞ stands for
the 1-instanton density (11), and we use the standard
notation

βðρÞ≡ 8π2=g2ðρÞ: ð25Þ

In the expression (24) βðρÞ is renormalized by 1-loop
determinants at a scale ρ̄ corresponding to the average
instanton size. In the second step of (24), we introduced the
compact notation,

EðγiÞ ¼ βðρ̄ÞUintðγiÞ −
X
i

log dðρiÞ: ð26Þ

If the medium is sufficiently dilute, one can consider only
two-particle interactions in the interaction term, all the
other ones being subdominant.3 This is the key physical
ingredient beyond the simple instanton gas model.
The interaction potential has been determined in [43].

2This is clear since the expression (19) is manifestly ignorant
of the possible existence of a perturbative IR fixed point.

3In fact, first corrections to this computation come not from
considering higher order interactions but from considering 2-loop
beta functions [43].
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Integrating over the relative angle between two instantons
in color space, and integrating over the instanton separa-
tion, one obtains a remarkably simple expression,

U2−body
int ðρ1; ρ2Þ ¼ γ2ρ21ρ

2
2; γ2 ¼ 27π2

4

Nc

N2
c − 1

; ð27Þ

where ρ1;2 are the sizes of the two pseudoparticles, and the
coupling γ2 has the characteristic 1=Nc behavior.
We may now use the variational principle. Assuming that

the effect of the 2-body interactions can be well captured by
a modification of the 1-instanton densities dðρÞ, we write

E1ðγiÞ ¼ −
XNþ

I

log μþðρIÞ −
XN−

Ī

log μ−ðρĪÞ; ð28Þ

where μ� are effective densities to be determined through
maximization of the rhs of (22). To explicitly write the rhs
of (22) as a function of μ�, we first need Z1. This is
obtained by substituting E1 in place of E in (24), which
gives us

Z1 ¼
1

Nþ!N−!
VNþþN−ðμ0þÞNþðμ0−ÞN− ; ð29Þ

where

μ0� ¼
Z

∞

0

dρ μ�ðρÞ: ð30Þ

The second piece we need to evaluate (22) is hE − E1i. We
express it in terms of

ρ2� ¼ 1

μ0�

Z
dρ ρ2μ�ðρÞ: ð31Þ

Now we can substitute Z1 and hE − E1i in the rhs of (22)
and minimize it with respect to (w.r.t.) μ�. The following
computation is not difficult, but it is a bit lengthy so we
refer the reader to [43] for additional steps. There is an
arbitrary constant appearing in the optimal μ�, and if
it is chosen to be equal, then μþ ¼ μ− ≡ μ. Writing
Nþ þ N− ¼ N, we find the optimal μ to be

μðρÞ ¼ dðρÞ exp
�
−
βγ2N
V

ρ2ρ2
�
; ð32Þ

where β≡ βðρ̄Þ ¼ 8π2=g2ðρ̄Þ. This can be reinserted in
(31) to give

ðρ2Þ2 ¼ ν

βγ2N=V
; ν ¼ b − 4

2
: ð33Þ

This expression can be further inserted in the optimal μ,
and μ0 can be easily found using the explicit form of the

optimal μ and of the 1-instanton density. Finally, we can
determine the rhs of (29); see [43] for more details.
Instead of keeping the number of pseudoparticles N

fixed, we can work in the grand canonical ensemble. This
allows us to find the average number of instantons in the
medium by maximizing the rhs of (29) as a function of N.
For the bosonic factors we set N�! ¼ ðN=2Þ! and use the
Stirling approximation. This brings us to the following
important expression for the average instanton number:

hNi ¼ VΛ4
YMðΓðνÞCcfβ̃

2Ncðβγ2νÞ−ν=2Þ 2
νþ2; ð34Þ

where β̃ ¼ 8π2=g20. Note that ρ2 enters this equation

through β ¼ 8π2=g21Lðρ2Þ, so (33) and (34) should be
solved simultaneously (consistently). The importance of
the average number of instantons comes from the fact that it
is related to the gluon condensate, vacuum energy, and
topological susceptibility, and in a theory with fermions, to
the Uð1Þ axial anomaly.
Substituting the optimal effective density μ in the rhs of

(22), in terms of the number of instantons per unit volume,
the partition function takes the following simple form:

Z ¼ exp

�
1

2
ðνþ 1ÞhNi

�
: ð35Þ

We can solve numerically for the expectation values of
the instanton size and of the density of instantons in the
vacuum. To do that we need to perform the aforementioned
RG improvement by promoting β̃ to β and β to
8π2=g2ð2LÞðρ̄Þ. Note that it is useful to introduce a free

parameter a, called the fudge factor, in the log term of the
1-loop running coupling (14). The fudge factor essentially
parametrizes the uncertainty on the actual confining scale
ΛYM. The numerical results are shown in Fig. 1. Even for
modest values of Nc shown in the figure, one already
notices that the density of instantons increases as OðNcÞ,
whereas the average instanton size is quite independent of
Nc and is always of Oð1Þ.

FIG. 1. Instanton size and density of instantons as a function
of Nc.
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We can also study the dependence of the effective
instanton density dðρÞ on the number of colors Nc. The
results are shown in Fig. 2. Already from (10) we know that
the amplitude decreases rapidly with Nc, but what we
consider here is the shape and the spread of the distribution.
(To this end we normalize all the distributions to μ0 ¼ 1.) In
particular, we notice that the distribution has a prominent
peak centered about the average instanton size, and in the
large Nc limit, it becomes essentially deltalike [45].
Recall the relation between the full Lagrangian and the

instanton gas Lagrangian, F2 ¼ P
iF

2
i þ 32π2Uint. Since

we know the value of the action for a BPST instanton [see
Eq. (8)], we know that

�Z
d4x
32π2

F2

�
¼ hNi þ hUinti; ð36Þ

and from (24), it follows that hUinti ¼ −∂ logZ=∂β. From
(35) we thus obtain

hUinti ¼
ν

2β
hNi: ð37Þ

Figure 3 shows the ratio of the interaction energy to
the free energy. Since the free energy is larger than the

interaction energy, we can trust the simplified 2-body
interaction model. Further, because the gluon field VEV
is related to the trace of the stress energy tensor (SET) by
the scale anomaly relation, and since the trace of the SET is
in direct relation to the vacuum energy density, we obtain
the following leading-order expression for the vacuum
energy density,

E ¼ −
b
4

hNi
V

: ð38Þ

Notice that it grows quadratically with Nc, with an addi-
tional factor of Nc with respect to noninteracting instanton
gas [45].
Let us now compute the topological susceptibility. This

is of particular interest because it is an observable. We start
by adding the topological theta term, iθ

32π2

R
d4xFF̃, to the

action. The topological susceptibility is defined by

χtop ¼ −
∂2 logZ
∂θ2

����
θ¼0

¼
��Z

d4x
FF̃
32π2

�
2
�
: ð39Þ

In particular, adding the θ-term to the partition function

does not modify the computation of μðρÞ, or ρ2, and thus
the only modification to (35) is an additional term
þiθðNþ − N−Þ. Self-consistently, by rewriting this as

Z ¼ exp

�
νþ 2

2
hNi

�
1 −

θ2

νþ 2
þOðθ4Þ

��
; ð40Þ

and taking the derivative as in (39), we get [43]

χtop ¼ hNi: ð41Þ

We are now ready to investigate and extend the role of
instantons within the conformal window of QCD and for
asymptotically safe quantum field theories.

III. CONFORMAL WINDOW INSTANTONS

In this section we determine the instanton dynamics in
the QCD IR conformal window. We are prevalenty con-
cerned with the calculable part of the conformal window,
the one in which an IR fixed point is reached perturbatively,
and it is often referred to as Banks-Zaks [14].
The perturbative IR fixed point occurs for the number of

fermions Nf tuned to be slightly below 11=2Nc in the
large-Nc, large-Nf limit. In this limit one introduces an
expansion in the physical parameter ϵ, defined in (44), that
measures the distance, in flavor space, from the loss of
asymptotic freedom. This parameter can be made arbitrarily
small. The fixed point value, being an expansion in ϵ, can
be made arbitrarily weakly interacting, rendering the
expansion controllable. In Fig. 4 we compare the running

FIG. 2. Effective instanton density profile as a function of Nc
(normalized to unity).

FIG. 3. Ratio of interaction energy to free energy as a function
of Nc. We fixed a ¼ 1=10.
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coupling in the Banks-Zaks theory for ϵ ¼ −1=10 at 1 loop
(diverging) and at 2 loops (converging to a fixed point).
It is immediately clear from the running of the coupling

that the infrared dynamics, being conformal, is quite
distinct from the chiral symmetry breaking QCD scenario.
In particular, instead of becoming nonperturbative in the
IR, it remains within the perturbative regime until it finally
reaches a conformal theory in the deep infrared. We
consider the epsilon regime in which the 2-loop analysis
remains trustworthy. It would be interesting to extend the
present work to higher loops [20,46,47]. Due to the
perturbative control, we can fully include the fermion
effects at 1-loop order by including their contribution to
the beta function of the gauge coupling.
It is particularly interesting to investigate the mass-

deformed perturbative conformal field theory as argued
first in [48]. Starting with fermions, all of the same mass
m ≪ Λc, the running is given in the top panel of Fig. 5. In
the deep UV, at energies higher than the fermion mass m,
the running is dominated by the free fixed point. At
energies below the fermion mass, fermions can be inte-
grated out. In the perturbative regime of the conformal
window, we can follow the perturbative flow down tom. At
energies lower than the common fermion mass, one enters
the YM regime. In a mass-independent scheme (although
our results for physical quantities are scheme independent)
one matches the pure YM coupling with the one with
massless fermions at the scalem, and the YM running takes
over as shown in the bottom panel of Fig. 5.
In QCD one needs to take particular care of the low-

energy fermion modes when the hard common fermion
mass is sufficiently small. This is the case since these
modes are delocalized and feel the presence of the instanton

medium. In the perturbative regime of the conformal
window, one can continue lowering the fermion mass all
the way to zero because the coupling is guaranteed to stay
perturbative down to the fermion mass scale. Above the
common fermion mass energy, no condensate can form
because the theory can be made arbitrarily weakly inter-
acting [40]. As the fermions become massless, we expect
the instantons to melt away and the vacuum-to-vacuum
transition amplitude due to instantons to vanish.
To take into account the full perturbative running, we

consider the RG-improved master equation. The often-used
naive 2-loop running approach (19) is valid only in the deep
UV since it does not account for the Banks-Zaks IR fixed
point. Let us thus look into the exact 2-loop RG running
more closely.
We begin by defining the ’t Hooft coupling,

α ¼ g2Nc

ð4πÞ2 : ð42Þ

The 2-loop beta function of the gauge coupling in the
presence of fermions can be written as

μ∂μα≡ βα ¼ −Bα2 þ Cα3: ð43Þ

Here, B ¼ −4=3ϵ and C ¼ 25þ 26=3ϵ, and the physical
control parameter is given by

ϵ ¼ Nf

Nc
−
11

2
< 0: ð44Þ

The exact 2-loop running is given by [6]

αðμÞ ¼ α�
1þWðzðμÞÞ ; ð45Þ

FIG. 4. Banks-Zaks running, shown as a continuous blue line
for ϵ ¼ −1=10, interpolates between an interacting fixed point in
the IR and a noninteracting fixed point in the UV. This result is
obtained starting at 2 loops, whereas the analogous 1-loop
running is given by the dashed blue line. The only scale in
the BZ theory is the RG-invariant scale Λc corresponding to the
dashed red line. We choose the matching conditions such that the
1-loop and the 2-loop couplings match at the scale Λc; this fixes
the 1-loop IR divergence scale shown by the dashed black line.

FIG. 5. The blue line shows the Banks-Zaks running for
ϵ ¼ −1=10, and the green line corresponds to the pure YM
running. The purple dot shows the matching couplings at the
fermion mass scale, which is given by the dashed purple line. The
dashed black line is the scale ΛYM, and the scale μ ¼ Λc ¼ 1
cannot be shown due to the use of log scale on the horizontal axis.
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where

α� ¼ B=C ð46Þ
is the IR Banks-Zaks fixed point, and W stands for the
Lambert (or product log) function. Note that zðμÞ will be
defined shortly. Expansion around μ → ∞ yields Eq. (19).
The RG running given by (45) is manifestly bounded,
and it interpolates between the Gaussian fixed point
αðμ → ∞Þ ¼ 0 for infinite energies (a.k.a. asymptotic
freedom) and an interacting fixed point αðμ → 0Þ ¼ α�
in the IR (a.k.a. conformal field theory), as can be seen
from Fig. 4.
Just as confining QCD has a natural mass scale ΛQCD,

there is an equivalent natural mass scale in the conformal
window of QCD. The natural mass scale, referred to as Λc,
is the 2-loop RG-invariant scale (just as ΛQCD is the 1-loop
RG-invariant scale). This means that μ∂μðΛcÞ vanishes to
linear order. One can arrive at the expression for Λc as
follows. The gradient of the beta function ∂αβαðαÞ vanishes
for α ¼ 2=3α� ≡ αc. The scale at which one reaches this
value of the coupling is critical in the sense that, at this
scale, the gauge coupling changes scaling from a canonical
one to a non-Gaussian one. Solving for this energy scale,
we get

μðαcÞ≡ Λc ¼ ð2e−1
2Þ−1=θ�

	
1 −

α

α�



−1=θ�μ; ð47Þ

which is precisely the 2-loop RG-invariant scale Λc. In the
definition, θ� is the eigenvalue of the RG flow at the non-
Gaussian fixed point,

θ� ¼
∂βα
∂α

����
α�

¼ α�B: ð48Þ

It is worth emphasizing that what vanishes at the scaleΛc
is only the gradient of the beta function, and not the beta
function itself. This is crucial because zeros of the beta
function are zeros of the flow of the couplings; thus they
represent the fixed points of the flow. However, the zeros of
the gradient of the beta function are points where the
second derivative of the coupling with respect to the
renormalization scale μ vanishes; i.e., the scale Λc can
be seen as an inflection point on the plots of the running
coupling. See Figs. 4 and 5 for examples.
Inserting the RG improvements in the 1-loop master

equation (16), we have

d2LðρÞ ¼ CcfmNfρNf−5ðb logMρÞ2Nce
−8π2

g2
2L ð49Þ

¼ Ccf expð1=2 − log 2Þ−
8π2

g2� mNfρNf−5

× ðρΛcÞ12BNcðb logMρÞ2NcWðzðρÞÞ
8π2

g2� : ð50Þ

In the above expression we useCcf as defined in (15),Λc
as defined in (47),

zðρÞ ¼ e1=2−log 2ðρΛcÞ−α�B; ð51Þ

the 1-loop beta coefficient b given in (14), and the 1-loop
RG-invariant scale M,

M ¼ 1

ρc
exp

�
−
1

b
8π2

gðρcÞ2
�

¼ Λc exp

�
−
3

2

C
B2

�
: ð52Þ

Setting ρ2 → ρ2 in the second line of (50), the expression
for the instanton density takes a form which is similar to
what we had in the pure YM case. In fact, defining

fðρ̄Þ ¼ Ccf exp

�
1

2
− log 2

�
−8π2

g2�
�
b
2
logM2ρ2

�
2Nc

Wðρ2Þ
8π2

g2� ;

ð53Þ

we can write the 2-loop instanton density as

d2LðρÞ ¼ fðρ̄ÞmNfρNf−5ðρΛcÞ12BNc : ð54Þ

From here we find ρ2 analogously to the derivation of (33).
The result can be put in the same form, with

ν ¼ 1

2

�
1

2
BNc þ Nf − 4

�
: ð55Þ

The minimization of the partition function can now be
performed in complete analogy to the derivation of the
average instanton number in the pure YM theory, and we
obtain

hNi ¼ VΛ4
c

�
ΓðνÞ

�
m
Λc

�
Nf

fðρ̄Þðβγ2νÞ−ν
2

� 2
2þν

: ð56Þ

Comparing to (34), the most notable difference is the
appearance of the RG-invariant scale Λc instead of the
IR-divergence scale Λ ≃ ΛYM. Another important point is
that β̃2Nc is replaced by ðmΛc

ÞNffðρ̄Þ, which renormalizes the
1-loop result (34). The partition function still has the same
form (35) as in the pure YM case, but with new values for ν
and hNi.
Solving the equations for ρ̄ and N=V analogously to the

pure YM case leads us to the results shown in Fig. 6.
The results can be interpreted as follows. We solve for the
instantons in the full Banks-Zaks theory, including both
gauge fields and fermions, but it turns out that there are no
instanton solutions above the fermion mass scale. Another
logical possibility remains—that the instantons are truly
infrared objects whose energy scale is below the fermion
mass scale. In order to check this hypothesis, we have to
solve the equations that are valid below the fermion mass
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scale—namely, large-Nc equations that we solved in the
previous section. The above discussion leads us to look for
the solution below the energy scalem, where running of the
couplings is given by pure YM beta functions.4 This leads
us to consider Eqs. (33) and (34) again.
We know from Sec. II B that the solutions for instantons

in the pure YM theory are internally consistent, meaning
that ρ̄−1 ≫ ΛYM. When solving the equations for the BZ
theory, since we did not find any solutions for ρ̄−1 > m, we
additionally have to make sure that the consistency con-
dition ρ̄−1 < m is met when using the pure YM running
coupling. By ensuring that instantons live between the
energy scales ΛYM and m, we can guarantee that the full
mass-deformed CFT is internally consistent.
Our results are shown in the top panel of Fig. 7, which

shows the ratio of m to ρ̄−1 as a function of m measured in
units of Λc. Results for ρ̄ are well within the required
consistency range, demonstrating that the theory possesses
what could be described as large-Nc pure-YM instantons.
The bottom panel shows the inverse instanton length as a
function of mass, and we can clearly see the power law
decrease of the instanton scale as m is taken to zero.
As an additional consistency check, one may study the

behavior of ΛYM. In fact, here it is not an arbitrary number,
but it is specified by the following 1-loop matching
conditions:

8π2

g2YMðmÞ≡−
11

3
Nc log

�
a
ΛYM

m

�
¼ 8π2

g2BZðmÞ¼
Nc

2αðmÞ ; ð57Þ

which yields

ΛYM ¼ m
a
exp

�
−

3

22

1

αðmÞ
�
: ð58Þ

For small enough ϵ the exponential term is flat as a
function of m, so the dependence on mass here is
essentially linear. Finally, we can measure ρ̄ in units of
ΛYM, and what we find is that it is flat as a function of m,
taking the value ρ̄ ¼ 0.390Λ−1

YM for a ¼ 1=10, Nc ¼ 1000,
and ϵ ¼ −1=10. See Fig. 8. Since the instantons in this
theory are effectively large-Nc pure-YM instantons, Fig. 8
effectively shows the same information as Fig. 1, with a
minor numerical difference coming from using full 2-loop
beta functions in the former case and the asymptotic
expansion of the beta functions in the latter case.
Let us now discuss the instanton energy and the

topological susceptibility. Since the couplings are renor-
malized at the energy scale corresponding to the inverse of
the average instanton size, and since the instanton size turns
out to be such that they sit well within the pure YM regime,
the analysis closely follows the pure YM case. In particular,
the partition function again takes the simple form (35), with
hNi and ν given by (34) and (33), respectively. The total

FIG. 6. The figure shows the inverse of ρ̄ measured in units of
Λc for various choices of ϵ and Nc (green, blue, and purple). For
fixed ϵ ¼ −0.1, changing Nc from 100 to 1000 changes ρ̄ by less
than 2%. For ϵ ¼ −0.1 andNc ¼ 1000, changing the parameter a
from 1 to 0.1 has less than a 0.1% effect. The dashed red line
shows the fermion mass m in units of Λc.

FIG. 7. We take a ¼ 1=10, Nc ¼ 1000, and ϵ ¼ −1=10. The
top panel shows the instanton scale in the deep IR w.r.t. the
fermion mass. The bottom panel shows ρ̄−1 as a function of m.
Numerical values are predominantly determined by ϵ, with a very
mild dependence on a and Nc.

4Equivalently, we may look for solutions using the running
coupling defined as a piecewise function, equal to the BZ running
coupling beyond energy m and equal to matching pure YM
running coupling below m.
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energy is given by a sum of the free energy term, hNi, and
the interaction term. The interaction term comes from the
derivative of the partition function w.r.t. β ¼ 8π2=g22Lðρ̄Þ.
This dependency is hidden in hNi where it appears
in the same form as it did in the pure YM case, which
means the interaction energy can again be written as
hUinti ¼ νhNi=ð2βÞ. The ratio of the interaction energy
to the free energy thus follows the curve shown in Fig. 3. In
fact, the shape of that curve changes significantly if 2-loop
running is used instead of the 1-loop running, and the
overall method is more stable when compared to the QCD
case. If one fixes m, Nc, and a (e.g., m ¼ 1=10Λc,
Nc ¼ 1000, a ¼ 1=10), one can study ρ̄, in units of
ΛYM, as a function of ϵ and find that it is constant (and
in our example) equal to ρ̄ ¼ 0.390Λ−1

YM. The reason why
ρ̄ðϵÞ is constant in units of ΛYM is related to the fact that
ΛYM decreases rapidly with decreasing jϵj, thus compen-
sating for the rapidly growing ρ̄ in units of Λc.
The determination of the topological susceptibility

proceeds as described in the previous section [see
Eq. (41)]. As we discussed above, ΛYMρ̄ is essentially m
and ϵ independent (see Fig. 8). In this sense N=V depends
only on the explicit factor ρ̄−4. It is then clear that N=V will
rapidly decrease with decreasing m=Λc when measured in
units of Λ−4

c , but it will be constant if measured in units of
Λ−4
YM. This is confirmed in Fig. 9.

IV. SAFE INSTANTONS

Here, we extend the instanton calculus to asymptotically
safe quantum field theories starting with the first discovered
controllable asymptotically safe four-dimensional gauge
theory, here dubbed LISA [5].

A. Controllable instantons in UV-safe
gauge-Yukawa theories

LISA consists of an SUðNcÞ gauge field coupled
to Nf vectorlike fermions and a scalar field. Besides the
gauge coupling, there are Yukawa couplings and two scalar

self-couplings. At 2-loop order the beta function of the
gauge coupling has the LO term exactly as in (43), but the
cubic term becomes

��
25þ 26

3
ϵ

�
α − 2

�
11

2
þ ϵ

�
2

αy

�
α2; ð59Þ

where αy ¼ y2Nc=ð4πÞ2 and y is the Yukawa coupling. In
the Veneziano limit, the theory admits a perturbative
interacting UV fixed point. At the fixed point, the value
of the gauge coupling, the Yukawa coupling, and scalar
self-couplings all have values of order ϵ, where ϵ is again
given by (44), but this time it is positive because asymptotic
freedom is lost. To simplify the discussion, we treat the
Yukawa interaction in an effective manner according to
which we substitute the fixed point value of the Yukawa
coupling, α�y, in the above expression.5 for the cubic term,

FIG. 9. The top panel shows the density of the instantons per
unit volume measured in units of Λ−1

c . The bottom panel shows
the same quantity measured in units of Λ−1

YM. The exact value of
N=V depends on the fudge factor a. The bottom panel shows
N=ðVΛ4

YMÞ ¼ 99.268 obtained for a ¼ 1=10. Decreasing a by
1=2 increases N=V by 30%, and decreasing a further by a factor
of 1=2 decreases N=V by an additional 23%.

FIG. 8. The figure shows ρ̄ in units of ΛYM as a function of m.
We fix a ¼ 1=10, Nc ¼ 1000, and ϵ ¼ −1=10.

5This procedure, justifiable in perturbation theory, preserves,
as it should, the safe behavior of the running gauge coupling
interpolating between a Gaussian FP in the IR and a perturbative,
non-Gaussain FP in the UV.
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leading exactly to the beta function (43), with B ¼ −4ϵ=3
and

C ¼ −
2

3

57 − 46ϵ − 8ϵ2

13þ ϵ
: ð60Þ

Both B and C being negative, the fixed point appears at the
physical value α� ¼ B=C > 0. Note that this would not be
possible without the inclusion of scalars in the theory since
the contribution of the Yukawa coupling was necessary for
flipping the sign of the cubic term.
From here on, it is clear that running of the gauge

coupling in LISA (in this slightly simplified form) is
analogous to that in the Banks-Zaks theory, with UV
and IR reversed, although the dynamics is profoundly
different in nature.
In particular, the 2-loop running gauge coupling is again

given by (45). The difference, of course, is in the fact that
the argument of the Lambert function zðρÞ that is given in
(51) now runs inversely proportional to ρ because B ¼
−4ϵ=3 changes sign with respect to the IR interacting
fixed point.
We include the fermion effects following the previous

section. The running coupling behaves according to
Fig. 10. Because the theory is noninteracting in the IR,
there are no condensates of any kind forming at the fermion
mass scale, and thus zero modes are managed in the same
straightforward manner as in the previous section (see
[36]). One major difference of LISA with respect to the
Banks-Zaks theory, discussed in the previous section, is the
presence of the Yukawa interactions. Let us therefore
reiterate that, since the theory is in the controllable,
perturbative regime at all energy scales above the fermion
mass scale, no condensate forms, be it scalar, fermion, or
gauge. Additionally, we keep the information about the
Yukawa interactions, as discussed above, by considering its

effects on the running of the gauge beta function. For these
reasons, we can reasonably expect that there are no addi-
tional zero modes to consider, and that in our treatment the
full effect of the Yukawa interactions has been captured by
the modified gauge RG flow.
Computation of the average instanton size and the

density of instantons per unit volume proceeds analogously
to the perturbative interacting IR fixed point theory
presented in the previous section. In particular, the 2-loop
instanton density is given by (50). The main difference is
that the argument of the Lambert function, given in (51),
now grows with ρ due to B ¼ −4=3ϵ < 0. In the remaining
terms of (50) with explicit power-law dependence on ρ, Nf

dominates over 1=2BNc, so the fact that B changes sign
here is irrelevant.
From this 2-loop density, one can obtain the effective

2-loop density μðρÞ in a similar way as done in the IR
interacting case. It will therefore again lead to the expres-
sion (32). Note that β is just shorthand for 8π2=g2, so it does
not change sign w.r.t. the IR interacting theory; in fact, we
still have a Gaussian suppression of the IR instantons. The
expectation value of ρ that we obtain is given in (33), with ν
given by (55). Here, β is still positive, so ν has to be positive
too if ρ̄ is to be positive. In fact, 1=2BNc ¼ −4=6ϵNc,
whereas Nf ¼ ð11=2þ ϵÞNc ≃ 11=2Nc; thus, ν is clearly
positive in both the BZ and LISA theories.
Finally, hNi takes the same form (56) as in the BZ case,

with ν, β, and fðρÞ appropriately modified. Solving the
equations for hNi and ρ̄ numerically, we find results similar
to the BZ instantons. In particular, using the LISA beta
functions, we find solutions for ρ̄, with the instanton scale
still smaller than the fermion mass, which means that the
results are not consistent (see Fig. 11). We then solve the
equations using the pure YM beta functions and find
solutions with the instanton scale in the window between
the IR ΛYM scale (which is expected from Sec. II B) and the
fermion decoupling scale (which is a nontrivial consistency
check). For the results in LISA, see Fig. 12.

FIG. 10. The blue line shows the LISA running for ϵ ¼ 1=10,
and the green line corresponds to the pure YM running. The
purple dot shows the matching couplings at the fermion mass
scale, which is given by the dashed purple line. The black dashed
line is the scale ΛYM.

FIG. 11. The figure shows solutions for ρ̄, obtained using LISA
beta functions, for various choices of ϵ and Nc (green, blue, and
purple). The dashed red line shows the fermion mass.
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It is of some interest to compare Figs. 12 and 7. One
interesting feature is that, for the chosen parameters, the
instanton scale is about 1 order of magnitude smaller than
the fermion mass in the case of LISA, but it is more than 16
orders of magnitude smaller than the fermion mass in the
BZ theory. Here, the difference arises because in the
infrared LISA is free rather than interacting. Further, in
both cases the instanton scale ρ̄−1 always has to lie below
the mass scale m, which explains the fact that the lines in
the bottom panels have the same tendency to grow with m.
Finally, from the top panels we see that the ratio m=ρ̄−1

grows with m in BZ theory but decreases in LISA. In fact,
the BZ theory is noninteracting in the UV, and the higher
the energies at which we decouple fermions, the higher the
IR instanton scale seems to be. This pattern is found in
the LISA case as well. This behavior is related to how
β ¼ 8π2=g2 enters Eqs. (34) and (33).
We can study ρ̄ in units of ΛYM as a function of m, but it

is clear that the results are described by Fig. 8; i.e., in units
of ΛYM the solution reproduces the BZ result. The same
holds for hNi=V in units of Λ−4

YM, which is shown in the
bottom panel of Fig. 9. For the instanton density in units of
Λ−4
c , see Fig. 13.
Because of the perturbative nature of the UV interacting

fixed point, we have been able to extend the instanton

calculus to controllable, asymptotically safe, quantum field
theories.

B. Safe QCD instantons: The large-Nf story

In LISA theory [5] elementary scalars and their induced
Yukawa interactions crucially help tame the ultraviolet
behavior of the overall gauge-Yukawa theory. Scalars,
however, are not needed at a finite number of colors and
a very large number of flavors for non-Abelian gauge-
fermion theories, as reviewed and further analyzed
in [22].
Consider an SUðNcÞ gauge theory with Nf fermions

transforming according to a given representation of the
gauge group. We consider the theory for a number of
flavors above which asymptotic freedom is lost, i.e.,
NAF

f > 11CG=ð4TRÞ, where the first coefficient of the beta
function changes sign. Although we do not need to specify
the fermion representation, we consider here the funda-
mental representation for which the relevant group theory
coefficients are CG ¼ Nc, CR ¼ ðN2

c − 1Þ=2Nc and
TR ¼ 1=2. At 1-loop order the theory is simultaneously
free in the infrared (non-Abelian QED) and trivial, meaning
that the only way to take the continuum limit (i.e., sending
the Landau pole induced cutoff to infinity) is for the theory
to become noninteracting. At 2 loops Caswell [49] dem-
onstrated that an UV interacting fixed point (asymptotic
safety) cannot arise near the loss of asymptotic freedom,
implying that safety can only occur above a certain critical
number of flavors. This possibility has been (re)investi-
gated in [22] at large Nf and a fixed number of colors, for
which the beta function is given by [17–20]

βðAÞ ¼ 2A
3

�
1þ

X∞
i¼1

HiðAÞ
Ni

f

�
; ð61Þ

where we define the following large-Nf normalized
coupling:

FIG. 12. The top panel shows the ratio m=ρ̄−1, and the bottom
panel shows ρ̄−1 as functions of m. In both figures, a ¼ 1=10,
Nc ¼ 1000, and ϵ ¼ 1=10.

FIG. 13. The figure shows the density of the instantons per unit
volume measured in units of Λ−4

c .
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A ¼ Nf

8π2
g2: ð62Þ

The functions HiðAÞ result by resumming an infinite set of
Feynman diagrams at fixed order i in the large-Nf

expansion [17,18]. Most importantly, to first order in large
Nf, there is already a fixed point,

A� ¼ 3 − e

	
−8

Nf
Nc

þ18.49−5.26
N2
c−1

2N2
c



: ð63Þ

We now attempt to approximate the overall behavior of
the beta function in order to estimate the instanton proper-
ties for this theory. Let us therefore write the 1-loop
running as

β1L ≡ 8π2

g2
¼ −b logðaLPΛLPρÞ; ð64Þ

and the 2-loop running as

β2L ¼ β1L þ b0

b
log β1L; ð65Þ

where the 1-loop and 2-loop coefficients are given in (14)
and (19). We fix the fudge factor aLP by requiring that
the 2-loop running g2 matches the UV FP value of g2 at the
1-loop divergent scale ΛLP.
Let us consider the specific examples Nf ¼ 100, Nc ¼ 3

for which aLP ¼ 1.189. The running couplings are given in
Fig. 14. There are three energy windows: The lowest one is
below the fermion mass scale, the intermediate one runs up
to the 1-loop divergent scale ΛLP (Landau pole), and the
highest one is above the scale ΛLP. In the highest energy
window, we do not consider the RG running, but instead

keep the coupling constant since it reaches the fixed point
value at ΛLP.
We only consider fermion masses m < ΛLP, and in

Fig. 15, we plot the results for the inverse instanton size (in
units of ΛLP) in the lower two energy windows. We see that
using the naive running couplings, the instanton scale turns
out to be very small, similarly to what we found in BZ and
LISA. This is perhaps not surprising given the fact that we
adopt a naive setup that makes use of a rough 2-loop
approximation.

V. CONCLUSIONS

We investigated the instanton dynamics for fundamental
field theories featuring either an asymptotically safe or free
dynamics. In order to make the work self-contained, we
provided a brief review of the role of instantons for YM and
QCD dynamics, including the limitations of the instanton
calculus. Within the asymptotically free scenario, we
ventured into the perturbative regime of the QCD con-
formal window. Here, we determined, by extending the
calculus to 2 loops, the number of instantons per unit
volume as a function of a common fermion mass.
We then extended the instanton calculus to the case of

controllable asymptotically safe theories. Here, the non-
trivial UV dynamics demands the immediate use of higher
order results. As for the conformal window case, we
determined the fermion mass dependence of the instanton
density. We further discussed the finite number of colors
and large number of flavors limit.
It is interesting to observe that in all considered cases, the

instantons appear as a fully IR phenomenon. In fact, in each
theory we find instantons only below the fermion
(common) mass scale. To the loop order that we are
working, below the fermion mass scale there are only

FIG. 14. Flow of the coupling in the mass-deformed large-Nf
UV conformal window. Pure Yang-Mills 1-loop running is shown
in green. Matching to 2-loop QCD running, shown in blue, is at
the fermion mass scale, given by the dashed purple line. We
match 2-loop QCD running to the UV FP value, shown in red,
at the 1-loop UV divergence scale ΛLP, shown by the dashed
red line.

FIG. 15. The dashed red line shows the fermion mass scale.
Solving for the 1=ρ̄ using 2-loop QCD beta functions, we find the
solutions shown in blue. This puts instantons below the fermion
decoupling scale, which makes the solutions inconsistent. Next,
we solve for the 1=ρ̄ using 2-loop pure YM beta functions, and
we find the solutions shown in green. We see that the instanton
scale is still below the fermion mass scale and is thus consistent.
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gauge fields present, so the instantons that we find are
effectively large-Nc pure Yang-Mills instantons. These are
well known to be internally consistent, so we additionally
verify that these solutions are consistent in the context of
the UV complete theories that they belong to.
In the future one will extend the instanton calculus in

order to cover a wider range of number of flavors within the
calculable regime of UV and IR conformal windows. The
ambitious goal is to determine to which extent the instanton

dynamics is responsible for the loss of conformality once
the number of flavors drops below a certain critical value
for which either UV or IR conformality is lost in the
respective safe or free conformal windows.
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