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Abstract The generic hidden local symmetry (HLS) model
has recently given rise to its BHLS2 variant, defined
by introducing symmetry breaking mostly in the vec-
tor meson sector; the central mechanism is a modifica-
tion of the covariant derivative at the root of the HLS
approach. However, the description of the τ dipion spec-
tra, especially the Belle one, is not fully satisfactory,
whereas the simultaneous dealing with its annihilation sec-
tor (e+e− → π+π−/π+π−π0/π0γ /ηγ /K+K−/KLKS)
is optimum. We show that this issue is solved by means of
an additional breaking term which also allows us to consis-
tently include the mixing properties of the [π0, η, η′] sys-
tem within this extended BHLS2 (EBHLS2) scope. This
mechanism, an extension of the usual ’t Hooft determinant
term, only affects the kinetic energy part of the BHLS2

Lagrangian. One thus obtains a fair account for the τ dip-
ion spectra which complements the fair account of the anni-
hilation channels already reached. The Belle dipion spec-
trum is found to provide evidence in favor of a viola-
tion of the conserved vector current (CVC) in the τ lepton
decay; this evidence is enforced by imposing the conditions
< 0|Jqμ |[q ′q ′](p) >= i pμ fqδqq ′, {[qq], q = u, d, s} on
EBHLS2 axial current matrix elements. EBHLS2 is found to
recover the usual (completed) formulae for the [π0, η, η′]
mixing parameters, and the global fits return mixing param-
eter values in agreement with expectations and better uncer-
tainties. Updating the muon hadronic vacuum polarization
(HVP), one also argues that the strong tension between the
KLOE and BaBar pion form factors imposes to provide two
solutions, namely aHV P−LO

μ (KLOE) = 687.48 ± 2.93 and
aHV P−LO
μ (BaBar) = 692.53 ± 2.95, in units of 10−10,

rather than some combination of these. Taking into account
common systematics, their differences from the experimen-
tal BNL-FNAL average value exhibit significance > 5.4σ

(KLOE) and > 4.1σ (BaBar), with fit probabilities favoring
the former.
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1 Introduction

The Standard Model provides the accepted framework which
embodies the strong, electromagnetic and weak interactions;
it accounts accurately for the observable values reported from
low energies up to the highest ones reached at the Large
Hadron Collider (LHC). A very few specific measurements
look borderline enough, however, to raise a hint of a physics
beyond the Standard Model. Among these, the very precisely
measured muon anomalous magnetic moment aμ plays a spe-
cial role; it has generated – and still generates – an important
experimental and theoretical activity related to its measure-
ment by the E821 Experiment at Brookhaven National Lab-
oratory (BN)L [1] aμ(BNL) = [11659209.1±6.3]×10−10,
for its latest update; this value is at variance with expecta-
tions by 3.5σ to 4.5σ , depending on the various predictions,
essentially differing by their estimates of the leading-order
hadronic vacuum polarization (HVP-LO) as reported in [2]
and displayed therein in Fig. 44.

Actually, the significance just quoted refers to using
HVP-LO evaluations derived by means of various disper-

sion relation (DR) methods. In contrast, the Lattice QCD
(LQCD) Budapest-Marseille-Wuppertal (BMW) [3] Collab-
oration recently published an estimate for the HVP-LO [3]
claiming 0.8% precision and very close to what is needed to
match the BNL measurement; accordingly, the BMW HVP-
LO is at variance by more than 2.6σ with any of the reported
DR evaluations of the HVP-LO.

The Muon g−2 experiment running at the Fermi National
Accelerator Laboratory (FNAL) has very recently published
its first results [4] and found them in excellent accord with
the previous BNL measurement [1]; the consistency of these
two measurements allowing for their combination, the exper-
imental reference value becomes:

aμ(Exp) = [11659206.1 ± 4.1] × 10−10.

Compared to the BNL measurement, this weighted average
provides a noticeably improved uncertainty (30% reduction)
and a downward shift by 3 × 10−10. This value still numeri-
cally favors the BMW estimate [3] for the HVP-LO over any
of the DR ones.

Hence, the puzzle “DR versus data” may become1 “DR
versus LQCD,” for which some different kind of physics
beyond the Standard Model would have to be invoked.
Indeed, if the HVP-LO as derived by DR methods provides
a good global electroweak (EW) fit, the change suggested
by the BMW evaluation severely impacts the goodness of
the global EW fit [6], except if the changes can be local-
ized at low enough energy – Reference [6] quotes 1.94 GeV,
assuming the change in the cross sections to be a mere global
rescaling.

As long as the missing piece may spread out across the
whole non-perturbative region of QCD, which as shown by
the KEDR data [7] does not extend much above � 2 GeV, one
has at hand a somewhat large lever arm. However, the recent
KMPS study [8] has shown that the missing contribution
to the HVP-LO should come from the energy region below
� 0.7 GeV to accommodate the global EW fit. This restricts
the requested missing part of the annihilation cross section
σ(e+e− → hadrons) to a very limited energy region widely
explored by several independent groups having collected data
using different detectors and colliders; this missing hadronic
cross section piece is expected to contribute an additional
δaμ � (15 ÷ 20) × 10−10 to the muon HVP-LO, larger than
the light-by-light (LbL) contribution to the HVP.

Thus, the energy region to scrutinize is located well
inside the realm of the effective resonance Lagrangian

1 One should remember that τ -based evaluations of the muon HVP
may not be in contradiction with the BMW estimate, as can be seen
in the recent [5] (see also [2] for previous evaluations). This, however,
supposes that the significant isospin breaking mechanisms involved in
the pion form factor in the τ decay and in e+e− annihilations – which
can well differ – have all been clearly identified. This is one of the issues
addressed in this article.

123



Eur. Phys. J. C (2022) 82 :184 Page 3 of 54 184

approaches (RLA) which have extended the scope of the
chiral perturbation theory (ChPT). The inclusion of res-
onances has given rise to the resonance chiral perturba-
tion theory (RχPT) formulation and to the hidden local
symmetry (HLS) model which have been proved equiv-
alent [9,10]. Alongside other processes, the HLS model
[11] encompasses the non-anomalous annihilation channels
e+e− → π+π−/K+K−/KLKS ; it can be complemented
by its anomalous sector [12] which allows one to also
cover the e+e− → π+π−π0/π0γ /ηγ annihilation chan-
nels. Because it deals with only the lowest-lying resonance
nonet, the validity range of the HLS Lagrangian naturally
extends up to the φ mass region and is thus quite appropriate
to explore the faulty energy region in accordance with QCD
which is at the root of the different RLA.

As the BMW evaluation of the muon HVP-LO questions
the annihilation data in the energy region up to the φ meson
mass, it is worth testing our understanding of its physics by
means of such RLA, in particular the HLS model, which
allows us to explore this region already well covered by a
large number of data samples in all the significant channels,
and thus shrink the window of possibilities to find a non-
negligible missing δaμ.

As the original HLS model2 assumes U(3) symmetry
in both the vector (V) and pseudoscalar (P or PS) sec-
tors, it should obviously be complemented by symmetry
breaking inputs in order to account for the rich amount
of data samples it is supposed to cover. A first release
named BHLS [14,15], essentially based on the Bando-Kugo-
Yamawak (BKY) breaking mechanism [16,17], extended
[18] to account for isospin breaking effects, was proven to
perform satisfactorily; however, it exhibited some difficulty
in managing the threshold and φ regions for the dipion and the
3 pion annihilation channels, respectively. In order to solve
this issue, the breaking procedure was revisited in depth and
gave rise to BHLS2 under two variants [19], namely the Basic
Solution (BS) and the reference solution (RS). Both BHLS2

variants are derived by complementing the BKY breaking
mechanisms at work in the LA and LV sectors of the non-
anomalous HLS Lagrangian by additional breaking schemes
affecting only the vector meson fields.

Regarding the vector sector of the BHLS2 BS variant, the
new breaking input – named covariant derivative (CD) break-
ing – turns out to perform the substitution3 V �⇒ V +δV in
the covariant derivative which is a fundamental ingredient of
the HLS model; the aim of δV is to break theU (3)V symme-
try for the components along the basis matrices T0 = I/

√
6,

2 See [13] for a comprehensive review covering the anomalous and
non-anomalous sectors.
3 To avoid lengthy repetitions, we refer the reader to the companion
paper [19] for details. The present study is essentially an extension of
BHLS2 which endorses its content, particularly its vector sector.

T3 and T8 of the canonical Gell–Mann U (3) algebra. The
V �⇒ V + δV rule naturally propagates to the anomalous
sector – i.e. the VV P and V PPP Lagrangian pieces.4

Regarding the PS sector of the BS variant of BHLS2:
Besides the BKY breaking associated with the LA part
of the non-anomalous Lagrangian, the symmetry has been
reduced by including the so-called ’t Hooft determinant term
[20]; for our purpose, this turns out to add the singlet term
λ/2∂μη0∂

μη0 to the kinetic energy of the PS fields.
However, if this canceled out the difficulties met at the

dipion threshold and in the φ mass region, the account for
the dipion spectra collected in the τ decay was not fully
satisfactory, as can be seen in Table 3 of [19] (see also the
discussion in Sect. 17 herein); a closer look indicated that
it is the description of the high statistics Belle sample [21]
which is faulty. This issue was circumvented by introducing
an additional breaking mechanism (the primordial mixing)
which defines the RS. The original aim of the present study
was to reexamine the issue actually raised by the τ dipion
spectra and to determine which kind of breaking could solve
the τ problem met by the BS variant of BHLS2. In order
to motivate this new breaking scheme – a generalization of
the usual ’t Hooft determinant term – Section 3 proceeds
to a thorough study of the various dipion τ spectra and of
their impact on the other channels involved in the BHLS2

framework, especially on the pion form factor in the timelike
and spacelike regions.

Once motivated, this extended breaking scheme is pre-
cisely defined and analyzed in Sects. 4 and 5. The purpose
of Sect. 6 is to address the modifications generated in the
non-anomalous BHLS2 Lagrangian derived in [19] by this
newly introduced kinetic breaking. Special emphasis is given
to the pion form factor involved in the decay of the τ lepton
Fτ

π (s) compared to its partner in e+e− annihilations Fe
π (s);

it is shown that, while Fe
π (0) = 1 is still fulfilled,5 the CVC

assumption is violated in the τ sector as Fτ
π (0) 	= 1. As the

ALEPH [22] and Cleo [23] spectra easily accommodate a
modeling with either of the Fτ

π (0) 	= 1 and Fτ
π (0) = 1 con-

straints, this result emphasizes the interest in having another
τ dipion spectrum with statistics comparable to those of Belle
[21] or larger.

However, allowing for a violation of CVC within BHLS2

cannot be solely localized in the τ sector of the BHLS2

Lagrangian, and it propagates to the anomalous Lagrangian
pieces as noted in Sect. 7 and developed in the various appen-
dices. Hence, the description of processes as important as
the e+e− → π+π−π0/π0γ /ηγ annihilations is extensively
modified and so should be tested versus data, as well as the

4 As one assumes the FKTUY [12] intrinsic parameters c3 and c4 to be
equal, V AP couplings (A being the electromagnetic field) identically
vanish.
5 Under conditions on δV discussed in Sects. 4 and 7 of [19].
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P → γ γ decay modes and those involving η′V γ couplings.
Prior to this exercise, our set of reference data samples has
to be updated to account for new data samples [24,25] or
updated ones [26,27]. This is done in two steps. First, the
purpose of Sect. 8 is to deal with the newly issued three-pion
data sample collected by the BESIII Collaboration [24]. It is
shown that the BESIII spectrum energies should be appro-
priately recalibrated to match the common energy scale of
the other data samples included in our reference data set,
especially in the ω and φ peak locations.

On the other hand, dealing with the dipion spectra is of
course an important – and controversial – issue because of
the long-standing discrepancy between some of the available
high statistics data samples. Therefore, we take advantage of
the newly published SND dipion spectrum [25] to revisit
in Sect. 9 the consistency analysis of the different dipion
samples to illustrate the full picture and motivate the way we
deal with strong tensions when evaluating physics quantities
of importance, especially the muon HVP-LO.

Having updated our reference set of data samples, in Sect.
10 we report on global fits performed under various condi-
tions, updating the results derived with the BS and RS vari-
ants of the former version of BHLS2 and those obtained using
the extended formulation which is the subject of the present
study; this extension will be named EBHLS2 for clarity. Sec-
tion 11 addresses a key topic of the broken HLS model within
the EBHLS2 context. Indeed, the question of supposedly
uncontrolled uncertainties associated with using fit results
based on an effective Lagrangian may cast some shadow on
this kind of method. To definitively address this issue, the best
is to quantify the effect by comparing the estimates for the
muon HVP derived from EBHLS2 with those derived using
more traditional methods under similar conditions. Section
11.1 illustrates for the dipion contribution to the muon HVP
that specific biases attributable to using EBHLS2 are negli-
gible compared to (i) the way the systematics, especially the
normalization uncertainty of the various spectra, are dealt
with by the various authors, and (ii) the sample content used
to derive one’s estimates. These two major sources of uncer-
tainty are, on the other hand, common to any of the reported
evaluations.

With these conclusions at hand, our evaluations of the
muon HVP-LO are derived. Our favored result which
excludes from the fit the dipion spectra from KLOE08 [28]
and BaBar [29,30] is examined in Sect. 11.2; an alternative
solution where all KLOE data samples are discarded in favor
of the BaBar one is also presented in Sect. 11.5. The full
HVP-LO is constructed (Sect. 11.4) and compared with the
other currently reported evaluations in Sect. 11.6. Equipped
with the kinetic breaking mechanism defined in Sect. 4.2,
EBHLS2 is well suited to address the mixing properties of
the [π0, η, η′] system more precisely than was done with a
similar – but much less sophisticated – modeling in [31]. The

final aim is to rely on the results of the EBHLS2 fit over the
largest set of data samples ever used to derive the correspond-
ing mixing parameter values with optimum accuracy.

The derivation of the axial currents is the subject of Sect.
13. Section 14 addresses the singlet-octet basis parameteri-
zation defined by Kaiser and Leutwyler [32–34]; it is shown
that EBHLS2 allows one to recover the expected extended
ChPT relations. In Sect. 15, a similar exercise is performed
within the quark flavor basis developed by Feldmann, Kroll,
and Stech (FKS) in [35–37] and one also yields the expected
results. This clearly represents a valuable piece of informa-
tion about the dealing of EBHLS2 in its PS sector.

The aim of Sects. 16 and 17 is to push EBHLS2 a step
further: we focus on how isospin symmetry breaking shows
up in the axial currents Jqμ associated with light quark pairs
{[qq], q = u, d, s} when expressed in terms of PS bare fields
– a leading-order approximation. The Kroll conditions [38]:

< 0|Jqμ |[q ′q′](p) >= i pμ fqδqq′

are then examined in detail and shown to exhibit – at O(δ) in
breakings – unexpected constraints among the various com-
ponents of the kinetic breaking term. In particular, satisfying
the Kroll conditions implies that a kinetic breaking with only
a ∂μη0∂

μη0 term is not consistent and should be extended in
order to involve ∂π0, ∂η0 and ∂η8 quadratic contributions.
Whether this property is inherent to only EBHLS2 looks
unlikely.

In Sect. 18, we report on additional EBHLS2 fits suggested
by the Kroll conditions and tabulate the fit parameter values.
The short Sect. 19 reports on side consequences on some
physics parameters, especially the muon HVP-LO. Sections
20 and 21 report on the numerical evaluation of the [π0, η, η′]
mixing parameters and compare this with available results
from other groups.

Finally, Sect. 22 collects the conclusions of this work, an
almost 100% COVID-19 lockdown work.

2 Preamble: on the free parameters of the BHLS2 model

Significant (anti-)correlations between 
V , zV and the spe-
cific HLS parameter a have been reported in our study [19];
this topic was the purpose of its Sect. 20.1. As parameter cor-
relations may easily be of pure numerical origin,6 we did not
go beyond analyzing the issue numerically but emphasized
that the physics conclusions were safe, i.e. not shadowed by
these correlations.

6 For instance, the coefficients of the subtraction polynomial of any
given loop function may undergo significant correlations in minimiza-
tion procedures; they are accounted for in the parameter error covariance
matrix returned by the fits.
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Actually, one can go a step further. Indeed, it can be
remarked that the three parameters 
V , zV and a are
involved only in the LV piece of the non-anomalous BHLS2

LagrangianLHLS = LA+aLV and do not occur in its anoma-
lous FKTUY pieces [12,13]. Let us consider the pieces inher-
ited from aLV named here and in [19] LVMD and Lτ and
perform therein the following parameter redefinition:

a −→ a′ = a(1 + 
V ),

zV −→ z′V = zV /(1 + 
V ) � zV (1 − 
V ), (1)

where 
V and zV are introduced by the XV breaking
matrix affecting LV which actually writes XV = diag(1 +

V /2, 1 − 
V /2,

√
zV ) in the BHLS2 framework.7

One can then check that the dependency upon 
V drops
out everywhere except in the W± mass term shown in the Lτ

Lagrangian piece (see Eq. (40) below). Obviously, this mass
term has no influence on the phenomenology we address and
thus is discarded.

It follows from here that the actual values for a, zV and

V are in fact out of reach and that the single quantities
which can be accessed using the data are their a′, z′V com-
binations. Practically, fitting within the BHLS2 framework –
having fixed 
V = 0 – reduces the parameter freedom and
the parameter correlations without any loss in the physics
insight, being understood that the derived a and zV are noth-
ing but a′ and z′V just defined.

On the other hand, specific parameters are involved in
order to deal with the [π0, η, η′] system. They come from
the transformation leading from the renormalized fields –
those which diagonalize the PS kinetic energy term – to the
physically observable [π0, η, η′] states and can be found8

in Sect. 5. These parameters have been named θP , ε and ε′
in accordance with the usual custom [35,38].

In our previous works on the HLS model, in particular
[14,19], one of the (η, η′) mixing angles [32,33] was con-
strained (θ0 ≡ 0) following an earlier study [31]. This turns
out to impose the condition that the mixing angle θP be alge-
braically related to the BKY parameter zA and the nonet
symmetry breaking parameter λ (see Sect. 4.4 in [14]). The
experimental picture having dramatically changed since [31],
this assumption certainly deserve to be revisited, as will be
done in the present work. Moreover, we also imposed [39]:

εε′ = −ε2
0 sin 2θP , with ε0 =

√
3

4

md − mu

ms − m̂
and

m̂ = 1

2
(mu + md). (2)

7 Note the missing square root symbol in the definition for XV given
in [19].
8 See also Sect. 4.3 in [14].

As a whole, this reduces the number of free parameters by
two units without any degradation of the fit quality or any
change in the HVP values.

However, for the present purpose, it has been found worth-
while to release these constraints and let θP , ε and ε′ vary
freely. When analyzing below the [π0, η, η′] mixing prop-
erties, this assumption will be revisited in a wider context.

3 Revisiting the τ dipion spectra: a puzzle?

Section 17 of [19] reported the properties of our set of –
more than 50 – data samples when submitted to global fits
based on either of the reference solution (RS) and basic solu-
tion (BS) variants of the BHLS2 model. Table 3 therein dis-
plays a detailed account of the information returned by the
fits for the various physics channels. More precisely, this
table shows that the reported χ2/Npoints averages for the
displayed groups of the data samples held are generally of
the order 1 – with the sole exception of the K+K− data
sample from [40].

The τ channel χ2/Npoints overall piece of information dis-
played in this Table 3 covers a data group merging the sam-
ples provided by the Aleph [22], Cleo [23] and Belle [21]
collaborations. One can read9 therein: χ2/Npoints = 92/85
(RS variant) and χ2/Npoints = 98/85 (BS variant). In the
following, one may refer to these data samples as A, C and
B, respectively.

However, this fair behavior of the τ channel data actually
hides contrasted behaviors among the three samples gathered
inside this group. This issue deserves reexamination10 within
the BHLS2 [19] context.

It was noted in Sect. 11 of [19] that the subtraction polyno-
mials Pτ

π (s) and Pe
π (s) of the π±π0 and π+π− pion loops,

respectively, involved in the pion form factors are different,
allowing this way for relative isospin symmetry breaking (IB)
effects; more precisely, they are related by:

Pτ
π (s) = Pe

π (s) + δPτ
π (s), (3)

and the polynomial δPτ
π (s) is also determined by fit.

Within the BHLS2 context, Pe
π (s), as any of the other

loops involved, is a second-degree polynomial with floating
parameters. However, in order to obtain good global fits when
including the τ data – especially the Belle spectrum [21] –
the degree of δPτ

π (s) has been increased to the third degree

9 The corresponding fits have been performed fixing θP through the
condition θ0 ≡ 0 and imposing the condition εε′ = −ε2

0 sin 2θP , as
recalled in Sect. 2; one yields now more favorable χ2 by having released
these constraints, as will be seen shortly.
10 This issue was already addressed in [41] in the context of an over-
simplified version of the broken HLS model.
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in the BS variant11 of BHLS2. Actually, this δPτ
π (s) degree

assumption is not harmless, as it corresponds to introducing a
non-renormalizable counter term in the renormalized BHLS2

Lagrangian. As A and C are well managed within the BHLS
framework with a second-degree δPτ

π (s), the issue raised
by the Belle spectrum is thus worthy of being cautiously
examined; this is the matter of the present section.

For the series of (BHLS2) global fits presented in the
present section, we have chosen to discard the data cover-
ing the e+e− → π+π−π0 annihilation channel to shorten
the fit code execution times. The lowest energy data point of
the Cleo spectrum [23] is discarded as outlier; with this pro-
viso, the three τ spectra [21–23] are fully addressed within
our fits from threshold up to 1 GeV.

Formally, the differences between the dipion spectra in the
τ decay and in the e+e− annihilation should solely follow
from isospin symmetry breaking (IB) effects. Therefore, a
real understanding of these supposes a minima a simultane-
ous dealing with the e+e− → π+π− annihilation channel
and with the dipion spectra collected in the τ± → π±π0ντ

decay. The annihilation data addressed in our fitting codes
– CMD-2 [42–44], SND [45] KLOE [46,47], BESIII [26],
Cleo-c [48] – have been presented12 in detail in Sect. 13 of
[19].

Actually, the BESIII Collaboration has recently published
an erratum [27] to their [26] which essentially confirms the
original spectrum but drastically reduces the statistical uncer-
tainties. This will not be discussed at length and we only
quote the χ2/Npoints evolution: running our standard BHLS2

code with the uncorrected BESIII dipion spectrum [26], the
various fits return χ2/Npoints � 35/60, whereas running it
with the corrected data [27] yields χ2/Npoints � 50/60; this
more realistic goodness of fit clearly indicates that the errors
are indeed better understood, allowing the BESIII spectrum
to really influence the physics results derived from fits.

We should also note that the two dipion spectra from
KLOE08 [28] and BaBar [29,30], exhibiting a poor con-
sistency with all the (> 50) others, are discarded since
the very beginning of the HLS modeling program [14,15].
Finally, the SND dipion spectrum [25] measured over the
0.525 <

√
s < 0.883 GeV energy interval will be analyzed

separately below.

11 In the present paper, we focus solely on the BS variant – which
carries three fewer floating parameters than the RS variant – as RS and
BS return similar pictures with the collection of existing samples and,
especially, in the τ sector.
12 See also Sect. 9 below.

3.1 Fitting the τ dipion spectra

The τ spectra submitted to global fits are defined by:

1

�τ

d�ππ

ds
= Bππ

1

N

dN (s)

ds
(4)

using the event distributions and branching fractions Bππ

provided by each of the Aleph [22], Belle [21] and Cleo [23]
collaborations. The full τ width is derived from its lifetime
taken from [49]. The relation with the pion form factor is:

d�ππ

ds
= G2

F

m3
τ

[SEWGEM(s)]|Fτ
π (s)|2 (5)

where Fτ
π (s) is derived from the BHLS2 Lagrangian [19] and

SEW collects the short-range radiative corrections [50]; the
long-range radiative corrections are collected in GEM(s) and
evaluated on the basis of [51–53]. The normalization of the
full form factor at the origin is, thus, given by the product
[SEWGEM(s)] in the standard BHLS2, which automatically
fulfills13 Fτ

π (0) = 1 + O(δ2).
Anticipating the following sections, let us state that we will

define an extension of standard BHLS2 [19] to allow for a vio-
lation of CVC in the τ sector; it will be named EBHLS2. The
main difference – not the only one – between EBHLS2 and
the standard BHLS2 [19] is that it fulfills Fτ

π (0) = 1 − λ2
3/2

where λ3 is a floating parameter of order O(
√

δ) reflect-
ing a symmetry breaking. Moreover, setting λ3 = 0 therein
allows us to recover exactly the standard BHLS2 [19]. When
λ3 	= 0, the rescaling generated by EBHLS2 is numerically
modulated by accompanying changes in the internal struc-
ture of the ρ term in Fτ

π (s). On the other hand, as the rest
of the non-anomalous Lagrangian pieces are unchanged, the
properties of Fe

π (s) remain unchanged; in particular, the con-
dition Fe

π (0) = 1 +O(δ2) is still valid as in BHLS2 because
the term of O(δ) vanishes by having stated [19] ξ0 = ξ8.

As the τ data analysis is the main motivation for the forth-
coming EBHLS2 extension, it was found worthwhile to dis-
play, besides the standard BHLS2 fit results, the correspond-
ing EBHLS2 information, prior to dealing with its deriva-
tion.14

3.2 BHLS2 global fits excluding the spacelike data

Table 1 reports on a series of fits aimed at coping with the τ

topic; the global fits reported in this subsection discard the
spacelike data [54,55], and the discussion emphasizes solely

13 All breaking parameters occurring in BHLS2, in particular those
associated with the breaking of the isospin symmetry or of the nonet
symmetry, are considered as being of order δ, a generic perturbation
parameter. All expressions derived from our Lagrangian are understood
to be truncated at this order and, therefore, terms of order O(δ2) or
higher are always discarded.
14 The derivation of EBHLS2 is mainly addressed in Sects. 4 and 6.

123



Eur. Phys. J. C (2022) 82 :184 Page 7 of 54 184

Table 1 Global fit properties (spacelike data excluded): χ2 values
for the various sample groups; the numbers of data points are given
between parentheses. The subtraction polynomial δPτ (s) is always sec-
ond degree except when explicitly stated (second data column). The tag
“spectra” stands for fitting with the reported A, B and C dipion spectra;

the tag “lineshapes” stands for the case when these spectra are normal-
ized to their integral over the fitted energy range; the tag “rescaled”
covers the case when a common rescaling factor is applied to the three
dipion τ spectra. The last data column displays the results obtained
fitting within EBHLS2

BHLS2 fit (excl. spacelike) BHLS2 ≡ (λ3 = 0) λ3 free spectra

Spectra Spectra (3rd deg.) Lineshapes Rescaled

NSK π+π− (127) 138 136 135 138 138

KLOE π+π− (135) 146 143 145 144 140

BESIII π+π− (60) 47 47 48 48 50

τ (ABC) (84) 122 92 79 79 78

τ (ALEPH) (37) 41 22 23 23 21

τ (CLEO) (28) 33 34 30 31 32

τ (Belle) (19) 48 36 26 25 25

Fit Prob. 66% 93% 95% 94% 96%

the behavior of the dipion data from the annihilation channel
and from the τ decay.

As stated just above, the reference therein to the parameter
λ3 anticipates the EBHLS2 extension proposed below, and
states that the condition λ3 = 0 is strictly identical to having
BHLS2 running, in particular its BS variant [19] solely used
all along the present work, except as otherwise stated (Fig. 1).

• The first data column displays the global fit performed
using the published A, B and C spectra imposing the
polynomial δPτ

π (s) (see Eq. (3)) to be second degree.
Obviously, the χ2/Npoints averages are reasonable for all
the displayed data samples or groups shown (as well as
those not shown) except for Belle, which yields the unac-
ceptable average χ2/Npoints = 2.52.

• The simplest (ad hoc) choice to better accommodate
the Belle spectrum turns out to allow δPτ

π (s) to be
third degree. Doing this, the second data column shows
that the fit returns a fair probability, as already known
since [19]. Indeed, besides a quite marginal improve-
ment of the e+e− → π+π− account, one observes a
sensible improvement in the description of the Aleph
(χ2 : 41 → 22) and Belle (χ2 : 48 → 36) spec-
tra, whereas the Cleo spectrum χ2 remains unchanged
and satisfactory. The improvement for the Belle spectrum
is significant (χ2/Npoints : 2.52 → 1.90) but not fully
satisfactory. Nevertheless, the top panel in Fig. 2 shows
that the normalized residuals for the τ spectra exhibit a
reasonably flat behavior, thanks to having a third-degree
δPτ

π (s).
So, once the degree for δPτ

π (s) is appropriate, BHLS2

gets a fair account for the A and C data and an acceptable
one for the Belle spectrum.

Fig. 1 |Fπ (s)|2 derived from the fits with λ3 = 0 (red curve) and
with λ3 	= 0 (blue curve). The LQCD data points from [56], not fitted,
are superimposed. The values for average χ2 distances χ2/Npoints are
shown for λ3 	= 0 and λ3 = 0)

However, inspired by the fit summary Table VII in the
Belle paper [21], we have addressed two other similar strate-
gies:

• Instead of fitting the A, B and C spectra as such, we
choose to use each of them normalized to its integral
over the fitting energy range (< 1. GeV); i.e we rather fit
the A, B, C lineshapes within the global BHLS2 frame-
work. In this case, a second-degree δPτ

π (s) is already
sufficient and yields a fair global fit (95% probability).
The corresponding results are displayed in the third data
column; they are clearly satisfactory in both the anni-
hilation channel and the τ sector. In this configuration,
the Belle spectrum undergoes an individual χ2 improve-
ment by 10 units and comes out with a more reasonable
χ2/Npoints = 1.37.
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Fig. 2 Normalized residuals
derived in the global fits
excluding the spacelike data.
Top panel displays the case
when A, B and C as such are
simultaneously fitted; the
middle panel displays the case
where a common rescaling
factor is applied to A, B and C.
The bottom panel reports the
corresponding results derived by
fitting A, B and C as such within
the EBHLS2 framework

(a)

(b)

(c)

Stated otherwise, once the τ spectra are normalized,
BHLS2 provides a fairly good simultaneous account of the A,
B and C spectra and proves that the A, B and C lineshapes are
quite consistent with each other without any need for some
ad hoc trick. Moreover, there is no point in going beyond the
second degree for δPτ

π (s).
An obviously similar approach to the lineshape method

just emphasized is to let the pion form factor |Fτ
π (s)|2 be

such that15 |Fτ
π (s = 0)|2 	= 1. This is inspired by the stand-

alone fit performed by Belle and reported in Table VII of
their [21].

In this study, a first fit has been performed across the full
energy range of the Belle dipion spectrum using a Gounaris–
Sakurai (GS) pion form factor |Fτ

π (s)|2 – which fulfills
|Fτ

π (s = 0)|2 = 1; this fit is the matter of the leftmost data
column of their Table VII and reports χ2/Npoints = 80/62.
Belle also reports therein a second fit, having allowed for a

15 One should remember that, in contrast to the neutral vector current,
the charged vector current is conserved only in the isospin symmetry
limit.

mere rescaling

|Fτ
π (s)|2 → (1 + λτ )|Fτ

π (s)|2

of their GS parameterization; the corresponding results are
reported in the rightmost data column of their Table VII with
χ2/Npoints = 65/62. The noticeable 15-unit gain for the χ2

value (a 4 σ effect), resulting from a single additional floating
parameter, stresses the relevance of what was just named λτ .
Let us perform likewise within the global BHLS2 context.

• As the standard BHLS2 [19] provides |Fτ
π (s = 0)|2 = 1,

one performs as Belle using rescaling factors of the form
1 +λτ . We have first performed global fits using a single
τ spectrum (A, B, C in turn) and derived the following
results:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Aleph : λτ = (−7.63 ± 0.66)%,

χ2/Npoints = 15/37, Prob = 98%
Cleo : λτ = (−3.12 ± 0.66)%,

χ2/Npoints = 27/28, Prob = 95%
Belle : λτ = (−5.96 ± 0.52)%,

χ2/Npoints = 23/19, Prob = 92%

(6)
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which, unexpectedly, indicate that B, as well as A and C,
nicely accommodate a rescaling factor without degrad-
ing the description of the annihilation data. We also per-
formed a global fit merging the three τ spectra each renor-
malized by a common (single) scale factor. We get:

A + B + C : λτ = (−6.95 ± 0.37)%,

χ2/Npoints = 79/84, Prob = 94%; (7)

more details can be found in the fourth data column of
Table 1; the normalized residuals derived from this fit
are displayed in the middle panel of Fig. 2. Comparing
the fit results reported here, one observes a 13-unit gain
compared to using a third-degree δPτ (s), in line with
the Belle fits – with exactly the same model parameter
freedom as λτ comes replacing the coefficient dropped
by reducing the degree of δPτ (s) by one unit.

Such a common rescaling is certainly beyond experimental
biases as, moreover, A, B and C have been collected with
different detectors by independent teams. This is also much
beyond the reported uncertainties on their respective τ− →
π−π0ν branching fractions which govern the absolute scale
of the fitted τ spectra.

So, one reaches an outstanding fit quality by rescaling
the three spectra by the same amount; this improvement of
the τ sector is not obtained at the expense of degrading, even
marginally, the account of the e+e− annihilation data. Within
the BHLS2 context – and discarding the spacelike spectra – it
is found that λτ = (−6.95±0.37)%, a non-negligible value.
This amount is certainly related to intrinsic details of the
Lagrangian model, noticeably the mass and width differences
of the neutral and charged ρ mesons which also contribute
to the absolute scale.

Finally, the last data column in Table 1 shows that the
forthcoming EBHLS2 succeeds in producing a nice fit, very
close to BHLS2 ones corresponding to the information dis-
played by Eq. (7) and reported in the fourth data column of
Table 1. The normalized residuals are displayed in the bottom
panel of Fig. 2.

One can observe that the three sets of normalized residu-
als shown in Fig. 2 are almost identical and each is quite
acceptable. Finally, we should stress that in all configu-
rations, Table 1 exhibits a fair account of the A and C
spectra; it is therefore noticeable, and even amazing, that
a remarkable simultaneous fit of A, C and B can also be
derived. Moreover, in both kinds of configurations (rescaling
or not), the same, fair account of all the annihilation data is
obtained.

3.3 BHLS2 global fits including the spacelike data

The fit properties and parameter values reported just above
have been derived using the dipion spectra only in the time-
like region for both the π+π− and π±π0 pairs. Moreover, it
has been shown [19] that, within the BHLS2 framework, the
same analytic function describes fairly well the pion form
factor in the spacelike and timelike energy regions. It is,
therefore, desirable to enforce the impact of the analytic-
ity requirement within the BHLS framework by requiring a
simultaneous account of both energy regions.

Therefore, including the spacelike data [54,55] in the set
of samples submitted to the global fit appears a natural step. A
priori, this should mostly affect Fe

π (s); however, as Fe
π (s) and

Fτ
π (s) are deeply interconnected within the BHLS2 frame-

work, extending the fit to the spacelike region can be of con-
sequence for both form factors. This subsection reports on the
global fit results derived when also including the spacelike
data.

The first data column of Table 2 displays the fit informa-
tion when fitting with BHLS2 using a second-degree δPτ (s)
polynomial, having discarded the Belle spectrum. As evi-
denced by its reported probability (93%), the fit exhibits a
nice account of each group of data samples as we always
observe χ2/Npoints � 1. This proves that the need for a third-
degree δPτ (s) is caused solely by the Belle (B) spectrum.

The second data column in this table reports the same
fit also including the Belle spectrum but with a third-degree
δPτ (s); it exactly corresponds to those already reported in
the second data column of Table 1. The average χ2 of the var-
ious sample groups are observed to be quite similar, including
for the Belle data sample (χ2/Npoints = 1.95); for the space-
like data, it yields a favorable χ2/Npoints = 1.10. This case
corresponds to the fit configurations previously used in [19];
with 89% probability, it is clearly a satisfactory solution, and
one does not observe any degradation of the goodness of fit
by having included the spacelike data.

The fit reported in the third data column of Table 2 is the
exact analog of the one displayed in the fourth data column
of Table 1, also taking into account the spacelike data. Here,
also, δPτ (s) carries the second degree. The best fit returns a
global rescaling factor 1 + λτ with:

A + B + C : λτ = (−4.42 ± 0.40)%,

χ2/Npoints = 88/84, Prob = 79%. (8)

Comparing with Eq. (7), one observes a drop in proba-
bility produced by the inclusion of the spacelike data within
the global fit procedure (94% → 79%). Compared to hav-
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Table 2 Global fit properties (including the spacelike data): χ2 of
the various sample groups; their numbers of data points are shown
between parentheses. The subtraction polynomial δPτ (s) is always sec-
ond degree except when explicitly stated (second data column). The tag

“spectra” stands for fitting the A, B and C τ dipion spectra as such;
the tag “rescaled” covers the case when a common rescaling factor is
applied to the three dipion τ spectra

Fitting framework (incl. spacelike) BHLS2 ≡ (λ3 = 0) EBHLS2 ≡ (λ3 free)

Spectra Spectra (3rd deg.) Rescaled (2nd deg.) Spectra Rescaled

NSK π+π− (127) 138 134 137 138 136

KLOE π+π− (135) 139 146 154 140 141

BESIII π+π− (60) 48 47 47 48 48

Spacelike π+π− (59) 62 65 77 62 61

τ (ABC) (84) × 92 88 81 77

τ (ALEPH) (37) 24 23 28 25 21

τ (CLEO) (28) 30 33 30 31 32

τ (Belle) (19) × 37 30 25 24

Fit Prob. 93% 89% 79% 91% 94%

ing excluded the spacelike data, the effect is noticeable on
the KLOE data (χ2/Npoints : 1.07 → 1.14) and for the τ

data (χ2/Npoints : 0.94 → 1.05). On the other hand, having
reduced the δPτ (s) degree, one observes a clear degradation
of the spacelike data account as χ2/Npoints : 1.10 → 1.31.
Nevertheless, even if not the best reachable fit, as will be
seen shortly, this configuration provides a quite reasonable
picture.

The last two data columns in Table 2 refer to the extended
BHLS2 model fit results. In this case, we have examined the
EBHLS2 solution (fourth data column) and, for complete-
ness, also performed the analysis with an additional rescaling
of the τ spectra (fifth data column).

One clearly observes that the original spectra exhibit uni-
formly good properties in all channels, and the fit yields
a 91% probability, as displayed in the fourth data column.
Complemented with an additional common rescaling of the
τ spectra, some marginal improvement is observed in the
description of these as shown in the last data column of Table
2.

In contrast to the preceding subsection (no dealing with
the spacelike data), using a second-degree δPτ (s) and rescal-
ing the τ spectra, while improving the τ sector, leads to a
degraded account of the spacelike data (χ2/Npoints : 1.10 →
1.31) and a loss of the remarkable prediction of the LQCD
pion form factor data [56] reported in [19]; this is illustrated
by Fig. 1. Comparing this Figure with Fig. 8 of [19], derived
by excluding the τ data from the fit, one observes good agree-
ment with the EBHLS2(λ3 	= 0) solution.16 Finally, the last
two data columns in Table 2 show that EBHLS2 perfectly

16 In the broken HLS frameworks, the pion form factor fulfills Fe
π (0) =

1 + O(δ2); when λ3 is left free, the fit returns a departure from 1 by 2
permil, whereas it becomes 1.3% when λ3 is fixed to zero. This is the
origin of the “shift” exhibited by the two curves shown in Fig. 1.

succeeds in recovering uniformly good χ2’s with fit proba-
bilities exceeding 90% and a fair account of all channels.

3.4 Summary

Therefore, after including the τ data within the BHLS2 min-
imization procedure, a fit using a third-degree δPτ (s) suc-
ceeds, recalling the conclusions already reached in [19]; how-
ever, one has to accept an average χ2 of 1.95 for Belle,
whereas those for Aleph and Cleo are 0.62 and 1.18, respec-
tively.

The fact that A, B and C carry a common lineshape may
look hardly accidental. However, in contrast to Table 1, where
evidence for solely a rescaling looks reasonable, Table 2 indi-
cates that a mere rescaling is insufficient – not to mention
that the EBHLS2 prediction for the LQCD pion form factor
data [56] is severely degraded compared to [19]. In this case,
EBHLS2 – complemented or not with a common rescaling
of the τ spectra – performs nicely and fulfills all desirable
analyticity requirements using a second-degree δPτ (s) only,
as should be preferred. The fits reported in Sects. 3.2 and 3.3
convincingly illustrate that the third degree looks somewhat
ad hoc and can be avoided.

Therefore, we are led to complement the covariant deriva-
tive (CD) breaking introduced in [19] by an additional term
(see Sect. 4) which breaks the kinetic sector of the HLS
Lagrangian. This points toward a violation of CVC in the
τ sector (at a � −2.5% level for |Fτ

π (s)|). For completeness,
we also examine the effect of a possible rescaling comple-
menting the CVC breaking (generated by a nonzero λ3); this
is reported in the last data column of Table 2. This rescaling
may correspond to a (higher order?) correction to the prod-
uct SEWGEM(s) (at a � −2% level). However, this additional
freedom does not produce a significant effect and is discarded
from now on.
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To conclude, the present analysis highlights the impor-
tance of having at one’s disposal a new high statistics τ dipion
spectrum; it is, indeed, of importance to reach conclusions
about the specific behavior exhibited by the Belle spectrum
within global fits. The challenging properties exhibited by
fitting the τ dipion spectra or, alternatively, their lineshapes
may look amazing enough to call for a confirmation of the
Belle spectrum properties. Indeed, it is not unlikely that the
much higher statistics of the Belle spectrum (50 times those
of Cleo [21]) allow a finer structure to show up, calling for a
more refined description.

4 Extending the BHLS2 breaking scheme

The hidden local symmetry model [13] has been supplied
with specific symmetry breaking mechanisms to provide the
BHLS2 framework [19] within which almost all e+e− anni-
hilation channels occurring up to the φ mass are encom-
passed. This allowed for a simultaneous fit of almost all
collected data samples covering the non-anomalous decay
channels (π+π−, K+K−, KLKS) and anomalous ones [12]
(π+π−π0, π0γ , ηγ ). As clear from [19], one gets a fair
description with superb goodness of fit.

As just emphasized in Sect. 3, the decay mode τ− →
π−π0ντ is also a natural part of the successive HLS frame-
works [14,19,41,57,58]. However, as illustrated by Table 2,
the issue is whether one must consider, besides the ALEPH
[22] and Cleo [23] spectra, those from Belle [21]. Our present
goal is to define an extension of BHLS2 which can naturally
simultaneously encompass the A, C and B spectra and contin-
uously recover the BHLS2 framework in some smooth limit.
Anticipatively, this extension has been named EBHLS2.

BHLS2 has been constructed by considering, besides the
BKY mechanism [16,17], the covariant derivative breaking
and the primordial mixing procedures – see Sects. 4 and 8 of
[19]. These essentially address the vector sector of the HLS
model and rotations allow us to render the BHLS2 Lagrangian
canonical. This also lets the vector meson kinetic energy sup-
plied by the Yang–Mills Lagrangian be canonical.

Regarding the pseudoscalar (PS) sector, the BKY mech-
anism [14,16,17] also contributes to break the symmetries
of the HLS model. We should also emphasize that the mass
breaking in the kaon sector is at the origin of the dynamical
mixing of the vector mesons [57], which is the central piece
of the various broken versions of the HLS model. Indeed,
thanks to having different charged and neutral kaon loops,
the (ρ0, ω, φ) mass matrix at one loop becomes non-diagonal
and, thus, imposes another step in the vector field redefini-
tion [14,19]. This back-and-forth play between vector field
redefinition and isospin symmetry breaking in the PS sector
should be noted.

Besides the two mechanisms just listed, in order to account
for the physics of the anomalous processes, the ’t Hooft deter-
minant terms [20], more precisely its kinetic part, provide the
needed nonet symmetry breaking in the PS sector. Moreover,
higher-order and loop terms in chiral perturbation theory and
QED corrections are expected to extend the breaking of the
PS kinetic energy term beyond the singlet component. It is
the purpose of the present section to extend the kinetic break-
ing17 to the full (π0 − η − η′) system; one already knows
from the preceding section that it provides a consistent pic-
ture of the τ sector as it renders consistent the account of the
A, C and B spectra.

Once these symmetries have been broken, the PS kinetic
energy term of the HLS Lagrangian is no longer diagonal,
and a field redefinition is mandatory to restore its canonical
form.18 This is performed in the two steps addressed right
now.

4.1 Diagonalization of the LA PS kinetic energy piece

In the BHLS/BHLS2 model, the pseudoscalar (PS) kinetic
energy term is written as [14,19]:

LA,kin = Tr [∂PbareXA∂PbareXA] , (9)

where XA is the so-called BKY breaking matrix at work
in the LA sector of the BHLS2 non-anomalous Lagrangian
[19] (L = LA + aLV ); combining the new breaking scheme
defined in [17] and the extension proposed in [18], we write
[14]:
⎧
⎨

⎩

XA = Diag[qA, yA, zA]
qA = 1 + 
A + �A

2
, yA = 1 + 
A − �A

2
.

(10)

The departure from unity of the (u, u) and (d, d) entries
(qA and yA) of XA, numerically small [14], are treated as
O(δ) perturbations19 in amplitude calculations whereas zA
occurring as the XA (s, s) entry is expected and treated as
O(1); this entry can be also referred to as flavor breaking
[35–37]. Assuming the pion decay constant fπ occurring in
the HLS-based Lagrangian models is the observed one, its
renormalization is unnecessary and has been shown to imply

17 The recent [59] develops such a kinetic breaking focusing on a treat-
ment of the η − η′ system. Previous studies, like [60,61] for instance,
already considered such a breaking mechanism.
18 Regarding the vector meson sector, the layout of the full renormal-
ization procedure has already been defined and thoroughly described
in [19]; it applies here without any modification and will not be redis-
cussed.
19 We have already heuristically defined the first non-leading order
in perturbative expansions by some generic (perturbation) δ parameter;
this notation is preferred to the previous naming ε used in our [19] to
avoid confusion with breaking parameters to be introduced below.
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[14] 
A = 0. Therefore, phenomenologically, one is left
with only two free parameters, �A and zA.

To restore the PS kinetic energy of the LA piece of the
BKY broken HLS Lagrangians to canonical form, a first field
transform [31] is performed:

PR1 = X1/2
A PbareX

1/2
A ; (11)

PR1 is the (first step) renormalized PS field matrix which
brings LA,kin back into canonical form. One has:

⎛

⎝
π3

bare
η0

bare
η8

bare

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −�A√
6

− �A

2
√

3

−�A√
6

B A

− �A

2
√

3
A C

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝
π3
R1

η0
R1

η8
R1

⎞

⎠

= W

⎛

⎝
π3
R1

η0
R1

η8
R1

⎞

⎠ (12)

which defines the matrix W . We use the notation π3 to recall
the specific Gell–Mann matrix to which the neutral pion is
associated, and devote the notation π0 to the corresponding
mass eigenstate. The (η0, η8) entries of W in Eq. (12) are
given by:

A = √
2
zA − 1

3zA
, B = 2zA + 1

3zA
,

C = zA + 2

3zA
,

(

BC − A2 = 1

zA

)

(13)

which are used all along this study. For further use, Eq. (12)
is re-expressed:

Vbare = WVR1, with V t
any

= (π3
any, η0

any, η8
any) (any = bare, R1). (14)

In terms of the R1 renormalized fields, LA,kin is thus canon-
ical:

LA,kin = 1

2

{[
∂μπ3

R1

]2 +
[
∂μη0

R1

]2 +
[
∂μη8

R1

]2
}

. (15)

The following expression of XA in the U (3) algebra
canonical basis clearly exhibits the precise structure of the
BKY breaking procedure:

XA = I +
{

�AT3 +
√

2

3
[zA − 1]

[
T0 − √

2 T8

]
}

, (16)

where I is the unit matrix. T0 = I/
√

6 complements the usual
Gell–Mann matrices normalized by Tr[TaTb] = δab/2.

Displayed in this way, the departure from unity of the XA

breaking matrix exhibits its three expected contributions.�A,
a purely isospin symmetry breaking (ISB) parameter, is asso-
ciated with T3 = Diag(1,−1, 0)/2, as it should be. In con-
trast, the effect of the flavor breaking amount zA − 1 will be

met several times below. Its origin is naturally shared between
T0 = Diag(1, 1, 1)/

√
6 and T8 = Diag(1, 1,−2)/2

√
3; both

simultaneously vanish in the “no-BKY breaking” limit zA =
1. So, as expected, the BKY matrix (s, s) entry, combines cor-
relatedly SU(3) and nonet symmetry (NSB) breakings in the
PS sector. Let us also note that [19] zA = [ fK / fπ ]2 +O(δ),
as will be noted below in the EBHLS2 modified context –
see Eq. (71).

4.2 The kinetic breaking: a generalization of the ’t Hooft
term

A more direct breaking of theU (3) symmetric PS field matrix
to SU(3) × U (1) has also been found phenomenologically
requested to successfully deal with the whole BHLS realm of
experimental data [14,19]. These are the so-called ’t Hooft
determinant terms [20,31–33]; limiting ourselves here to the
kinetic energy term, we have been led to supplement the HLS
kinetic energy piece by:

L′tHooft = λ
f 2
π

12
Tr ln ∂μU × Tr ln ∂μU †,

U = ξ
†
LξR = exp [2i P/ fπ ], (17)

where P is the usualU (3) symmetric pseudoscalar bare field
matrix [14,19], and fπ the (measured) charged pion decay
constant. This relation is connected with det ∂U by the iden-
tity:

ln det∂μU = Tr ln ∂μU .

Expanding ln ∂μU in Eq. (17), the leading order term is20:

L′tHooft = λ

2
∂μη0

bare∂
μη0

bare (18)

only involving the singlet PS bare field η0
bare.

The ’t Hooft term tool, already used in the previous broken
HLS versions, can be fruitfully generalized. Indeed, Eq. (17)
can be interpreted as:

L′tHooft = f 2
π

2
Tr ln XH∂μU × Tr ln XH∂μU † (19)

where21 XH = √
λT0.

Equation (19) gives a hint that other well-chosen forms
of the XH matrix may exhibit interesting properties. Indeed,
it clearly permits us to define mechanisms not limited to
only nonet symmetry breaking. This leads us to propose the
following choice for XH :

XH = λ0T0 + λ3T3 + λ8T8 (20)

20 In the literature, λ is named �1 [32,33,37]. Removing the derivative
symbols in Eq. (17) generates a singlet mass term – the topological
susceptibility – to account for the η′ mass.
21 Assuming λ to be positive, which is supported by our former fit
results [14,19].
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as it manifestly allows for a breaking of isospin symmetry and
enriches the ability of the HLS model to cover the (π0, η, η′)
mixing properties. As will be seen shortly, it also leads to
differentiate the pion pair couplings to γ and W±. With this
choice, Eq. (19) becomes at leading order:

L′tHooft = 1

2

[
λ3∂μπ3 + λ0∂μη0 + λ8∂μη8

]

×
[
λ3∂

μπ3 + λ0∂
μη0 + λ8∂

μη8
]
. (21)

This form for XH is certainly not the only way to generalize
the usual ’t Hooft term. For instance, among other possible
choices, one could quote:

L′tHooft = f 2
π

2

∑

a=0,3,8

Tr ln XHa∂μU × Tr ln XHa∂
μU †,

XHa = λaTa, (22)

which turns out to drop the crossed terms in Eq. (21) – and
in all expressions reported below. On the other hand, as will
be seen in Sect. 16, it happens that a generalization such
as Eq. (20) is necessary to allow BHLS2 to fulfill expected
properties of the axial currents in a nontrivial way.

In order to deal with kaons or charged pions, one could
also define appropriate projectors XH ; however, this does not
appear necessary, as the BKY breaking already produces the
needed breaking effects [14,19].

In the broken HLS frameworks previously defined, the
(single) ’t Hooft breaking parameter λ (= λ2

0) was counted
as O(δ) when truncating the Lagrangian to its leading order
terms in all the previously defined BHLS2 breaking param-
eters [19]. Consistency, thus, implies counting all the λi just
introduced as O(δ1/2).

4.3 The PS kinetic energy of the extended BHLS2

Lagrangian

The full PS kinetic energy term of the broken HLS
Lagrangians is provided by their L′

A ≡ LA + L′t Hooft

Lagrangian piece:

L′
kin = Tr [∂PbareXA∂PbareXA] + 2 {Tr [XH∂Pbare]}2. (23)

Performing the change of fields of Eq. (12) which diagonal-
izes LA,kin and using XH as given in Eq. (20), the full kinetic
energy term L′

kin can be written:

L′
kin = 1

2

[
(1 + λ2

3)∂μπ3
R1∂

μπ3
R1 + (1 + λ̃2

0)∂μη0
R1∂

μη0
R1

+(1 + λ̃2
8)∂μη8

R1∂
μη8

R1 + 2̃λ0̃λ8 η0
R1η

8
R1

+2λ3̃λ0 π3
R1η

0
R1 + 2λ3̃λ8 π3

R1η
8
R1

]
, (24)

omitting the kaon and (charged) pion terms which are stan-
dard and displayed elsewhere [14,19]. We have defined:

λ̃0 = λ0B + λ8A, λ̃8 = λ0A + λ8C (25)

where A, B, C are given by Eq. (13). One should note the
intricate combination of the ’t Hooft breaking parameters
with the BKY parameter zA.

Defining the (co-)vector V t
R1 = (π3

R1, η0
R1, η8

R1), L′
kin

can be written:

L′
kin = 1

2
V t
R1 ·M ·VR1, (26)

M being the sum of the unit matrix and of a rank 1 we write:

M = 1 + a · at , where at = (λ3, λ̃0, λ̃8). (27)

The second step renormalized fields V t
R = (π3

R, η0
R, η8

R) are
defined by:

VR =
[

1 + 1

2
a · at

]

· VR1 (28)

which brings the kinetic energy into canonical form:

L′
kin = 1

2
V t
R · VR + O(δ2). (29)

At the same order, one has:

VR1 =
[

1 − 1

2
a · at

]

· VR + O(δ2) (30)

and, finally, using Eqs. (13) and (14):

Vbare = W ·
[

1 − 1

2
a · at

]

· VR + O(δ2), (31)

where W is defined in Eq. (12).

5 PS meson mass eigenstates: the physical PS field basis

The PS field R basis renders the kinetic energy term canon-
ical; nevertheless, this R basis is not expected to diagonal-
ize the PS mass term into its mass eigenstates (π0, η, η′).
Indeed, for instance, up to small perturbations, the η0

R and η8
R

are almost pure singlet and octet field combinations, while the
physically observed η and η′ mass eigenstate fields are mix-
tures of these. In order to preserve the canonical structure of
the PS kinetic energy one should consider the transformation
from R fields to the physically observed mass eigenstates; as
the PS mass term (not shown) is certainly a positive definite
quadratic form, this transformation should be a pure rotation.

In the traditional approach, the physical η and η′ fields are
related to the singlet-octet states by the so-called one-angle
transform:
(

η

η′
)

=
(

cos θP − sin θP
sin θP cos θP

)(
η8
R

η0
R

)

. (32)

However, extending to the mass eigenstate (π0, η, η′)
triplet, one expects a three-dimensional rotation and thus
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three angles. Adopting the Leutwyler parameterization [39],
one has:
⎛

⎝
π3
R

η8
R

η0
R

⎞

⎠ =
⎛

⎝
1 −ε −ε′

ε cos θP + ε′ sin θP cos θP sin θP
−ε sin θP + ε′ cos θP − sin θP cos θP

⎞

⎠

×
⎛

⎝
π0

η

η′

⎞

⎠ (33)

to relate the R fields which diagonalize the kinetic energy
to the physical (i.e. mass eigenstates) neutral PS fields. The
three angles occurring there (ε, ε′ and even θP ) are assumed
O(δ) perturbations; nevertheless, it looks better to stick close
to the one-angle picture by keeping the trigonometric func-
tions of θP , the so-called third mixing angle [31]; for clarity
and for the sake of comparison with other works, θP is not
treated as manifestly small. The Leutwyler rotation matrix
can be factored out into a product of two rotation matrices:
⎛

⎝
1 −ε −ε′

ε cos θP + ε′ sin θP cos θP sin θP
−ε sin θP + ε′ cos θP − sin θP cos θP

⎞

⎠

=
⎛

⎝
1 0 0
0 cos θP sin θP
0 − sin θP cos θP

⎞

⎠

⎛

⎝
1 −ε −ε′
ε 1 0
ε′ 0 1

⎞

⎠ . (34)

Substantially, the second matrix in the right-hand side of Eq.
(34) reflects isospin breaking effects. In the following, we
name M(θP ) and M(ε) the two matrices showing up there;
they fulfill:

[M(θP ) · M(ε)]−1 = M̃(ε)M̃(θP ) (35)

up to terms of degree higher than 1 in δ. This implies [39]:

⎛

⎝
π0

η

η′

⎞

⎠ =
⎛

⎝
1 ε cos θP + ε′ sin θP −ε sin θP + ε′ cos θP

−ε cos θP − sin θP
−ε′ sin θP cos θP

⎞

⎠

×
⎛

⎜
⎝

π3
R

η8
R

η0
R

⎞

⎟
⎠ . (36)

As for their perturbative order, ε and ε′ are treated as
O(δ). Equations (36) and (31) allow us to define the (linear)
relationship between the physical π0, η and η′ states and their
bare partners occurring in the original HLS Lagrangians.

6 Extended BHLS2: the non-anomalous Lagrangian

The non-anomalous EBHLS2 Lagrangian in the present
approach can also be written:

LHLS = LA + aLV + Lp4 , (37)

as in [19]. As in this Reference, one splits up the first two
terms in a more appropriate way:

LA + aLV = LVMD + Lτ . (38)

LVMD essentially addresses the physics of the e+e− annihila-
tions to charged pions and to kaons pairs; within the present
breaking scheme, it remains strictly identical to those dis-
played in Appendix A.1 of [19]. The Lp4 is also unchanged,
as it does not address PS meson interactions; it is identical to
those displayed in Appendix A.3 of [19]. Both pieces have
not to be discussed any further, and their expressions will not
be reproduced here to avoid lengthy repetition.

All modifications induced by the generalized ’t Hooft
kinetic breaking mechanism are concentrated in the Lτ piece
and are displayed right now. Using22 (m2 = ag2 f 2

π ):

m2
ρ± = m2 [1 + 
V

]
, fρW = ag f 2

π

[
1 + 
V

]
, (39)

the expression of Lτ in terms of bare PS fields is given, at lowest
order in the breaking parameters, by:

Lτ = − iVud g2

2
W+ ·

[

(1 − a(1 + 
V )

2
)π− ↔

∂ π3
b

+ 1√
2
[1 − a

2zA
(1 + 
V )]K 0 ↔

∂ K−
]

+m2
ρ±ρ+ · ρ− − g2Vud

2
fρWW+ · ρ−

+ iag

2
(1 + 
V )ρ− ·

[

π+ ↔
∂ π3

b + 1

zA
√

2
K

0 ↔
∂ K+

]

+ f 2
π g

2
2

4

{[

[(1 + �A

2
)zA + azV (1 + 
V

2
)]|Vus |2

+[1 + a(1 + 
V )]|Vud |2
]}

W+ · W−

+1

9
ae2 f 2

π (5 + 5
V + zV ) A2, (40)

where we have limited ourselves to displaying only the terms
relevant for our purpose. The (classical) photon and W mass
terms [13,17] are not considered and are given only for com-
pleteness. However, it is worth recalling that the photon mass
term does not prevent the photon pole from residing at s = 0
as required [62], at leading order. The interaction part of Lτ

can be split into several pieces. Discarding couplings of the
form WKη8, we can write:

Lτ = Lτ,K + L†
τ,K + Lτ,π + L†

τ,π + m2
ρ±ρ+ · ρ− (41)

with:

Lτ,K = − i

2
√

2

{

g2Vud

[

1 − a

2zA
(1 + 
V )

]

W+

+ag

zA
(1 + 
V )ρ+

}

· K 0 ↔
∂ K− (42)

22 As stated in Sect. 2, the breaking parameter 
V is phenomenologi-
cally out of reach, and we impose 
V ≡ 0 within our fits; it is, never-
theless, kept in the model expressions for information.
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and:

Lτ,π = − i

2

{
g2Vud

[
1 − a

2
(1 + 
V )

]
W+ + ag(1 + 
V )ρ+}

·π− ↔
∂ π3

b − g2Vud
2

fρWW+·ρ− (43)

where the subscript b indicates that the π0 field is bare. Equa-
tion (31) provides the relationship between bare and renor-
malized states, in particular:

π3
b =

{

1 − λ2
3

2

}

π3
R −

{
1√
6
�A + λ3̃λ0

2

}

η0
R

−
{

1

2
√

3
�A + λ3̃λ8

2

}

η8
R . (44)

The occurrence of the λ3 parameter generates a decoupling of
the Wπ±π0 and Aπ+π− interaction intensities. Also using
Eq. (36), Eqs. (43) and (44) give at first non-leading order:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lπ0π± = − i

2

{
g2Vud

[
1 − a

2
(1 + 
V )

]
W+

+ag(1 + 
V )ρ+}
{

1 − λ2
3

2

}

·π− ↔
∂ π0,

Lηπ± = + i

2

{
g2Vud

[
1 − a

2
(1 + 
V )

]
W+

+ag(1 + 
V )ρ+}

×
[{

1√
6
�A + λ3̃λ0

2

}

cos θP

−
{

1

2
√

3
�A + λ3̃λ8

2

}

sin θP + ε

]

·π− ↔
∂ η,

Lη′π± = + i

2

{
g2Vud

[
1 − a

2
(1 + 
V )

]
W+

+ag(1 + 
V )ρ+}

×
[{

1

2
√

3
�A + λ3̃λ8

2

}

cos θP +
{

1√
6
�A

+λ3̃λ0

2

}

sin θP + ε′
]

·π− ↔
∂ η′,

(45)

in terms of physical neutral PS fields, and then:

Lτ,π = Lπ0π± + Lηπ± + Lη′π± − g2Vud
2

fρWW+·ρ−

+h.c. + m2
ρ±ρ+ · ρ−. (46)

Once more, the rest of the LA + aLV is unchanged com-
pared to their BHLS2 expressions [19].

Regarding the pion form factor in the τ decay, the changes
versus Sect. 11.1 in [19] and the present EBHLS2 are very
limited:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W∓π±π0 coupling :
[
1 − a

2
(1 + 
V )

]

�⇒
[
1 − a

2
(1 + 
V )

]
{

1 − λ2
3

2

}

,

ρ∓π±π0 coupling : ag(1 + 
V )

�⇒ ag(1 + 
V )

{

1 − λ2
3

2

}

.

(47)

This implies a global rescaling of the BHLS2 pion form fac-
tor Fτ

π (s) by 1 − λ2
3/2; it also implies that the π0π± loop

acquires a factor of [1 − λ2
3]. The BHLS2 W± − ρ∓ tran-

sition amplitude Fτ
ρ (s) and the ρ± propagator [Dρ(s)]−1

are changed correspondingly (see Sect. 11.1 in [19]). On the
other hand, Fe

π (s) remains identical to its BHLS2 expression,
as well as both kaon form factors.

7 Extended BHLS2: the anomalous Lagrangian pieces

If only the Lτ part of the non-anomalous BHLS2 Lagrangian
is affected by the kinetic breaking presented above, all the
anomalous FKTUY pieces [12,13] are concerned.

The Lagrangian pieces of relevance for the phenomenol-
ogy we address are, on the one hand:

⎧
⎪⎪⎨

⎪⎪⎩

LAAP = −3αem

π fπ
(1 − c4) εμναβ∂μAν∂α AβTr

[
Q2P

]
,

LVV P = − 3g2

4π2 fπ
c3 εμναβTr

[
∂μVν∂αVβ P

]
,

(48)

where Q is the usual quark charge matrix and A, V and P
respectively denote the electromagnetic field, the vector field
matrix and the U(3) symmetric bare pseudoscalar field matrix
as defined in [14] regarding their normalization. As we did
not find any important improvement by assuming c3 	= c4,
the difference of these has been set to zero; consequently, the
LAV P Lagrangian piece [13] drops out.

On the other hand, the following pieces should also be
considered:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

LAPPP = −i
3e

3π2 f 3
π

[
1 − 3

4 (c1 − c2 + c4)
]

εμναβ AμTr
[
Q ∂ν P∂αP∂β P

]
,

LV PPP = −i
3g

4π2 f 3
π

[c1 − c2 − c3] εμναβTr
[
Vμ∂ν P∂αP∂β P

]
.

(49)

These involve, besides c3 and c4, a third parameter c1 −
c2 which is also not fixed within the HLS framework [13]
and should be derived from the minimization procedure. For
easier reading of the text, we have found it worth pushing
them into Appendices A and B.
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Regarding the pseudoscalar fields, the Lagrangian pieces
listed in Appendices A and B are expressed in terms of the
physically observed π0, η, η′ whereas, for simplicity, the
vector mesons are expressed in terms of their ideal combina-
tions: ρ0

I , ωI and φI . The procedures to derive the couplings
to the physically observed ρ0, ω and φ and to construct
the cross sections for the e+e− → (π0/η)γ annihilations
are given in full detail in Sect. 12 of [19]. Nevertheless, we
have found it worthwhile to construct the amplitude and the
cross section for the e+e− → π0π+π− annihilations in the
extended BHLS2 framework; this information23 is provided
in Appendix C.

8 Update of the 3π annihilation channel

The BESIII Collaboration has recently published the Born
cross section spectrum [24] for the e+e− → π+π−π0 anni-
hilation over the 0.7÷3.0 GeV energy range collected in the
ISR mode. This new data sample complements the spectra
collected at the VEPP-2M Collider by CMD2 [43,63–65] and
SND [66,67] covering the ω and φ peak regions. Besides, the
only data on the 3π cross section stretching over the interme-
diate region were collected much earlier [68] by the former
neutral detector (ND). As the measurement by BaBar [69]
only covers the

√
s > 1.05 GeV region, it is of no concern

for physics studies up to the φ signal. On the other hand, pre-
vious independent analyses [19,70] indicate that the CMD2
spectrum [65] returns an average χ2 per point, much above
2 units, which led to discard it from global approaches.

The BESIII sample [24] is the first three-pion sample to
encompass the whole range of validity of the HLS model,
providing a doubling of the number of candidate data points
and, additionally, the first cross-check of the cross section
behavior in the energy region between the narrow ω and φ

signals.
We first examine how it fits within the global HLS frame-

work in isolation (i.e. as a single representative of the 3π

annihilation channel) and determine its consistency with the
already analyzed data samples covering the other annihila-
tion channels, namely ππ , (π0/η)γ and both KK modes.
A second step is devoted to consistency studies between the
BESIII spectrum and those previously collected in the same
3π channel by the ND [68], CMD2 [43,63,64] and SND
[66,67] detectors.

8.1 The BESIII 3π data sample in isolation within EBHLS2

The fit procedure already developed within the previous
BHLS frameworks [14,19] – and closely followed here –

23 One may note that F2(s) in Eq. (144) corrects for an error in [19]
missed in the Erratum (3ξ3/2 → 2ξ3).

relies on a global χ2 minimization. In order to include the
BESIII sample within the EBHLS2 framework,24 one should
first define its contribution to the global χ2. This requires us
to define the error covariance matrix appropriately merging
the statistical and systematic uncertainties provided by the
BESIII Collaboration together with its spectrum, and pay-
ing special care to the normalization uncertainty treatment.
This should be done by closely following the information
provided together with its spectrum by the Collaboration.25

For definiteness, the data point of the BESIII sample [24]
at the energy squared si is:

mi ± σstat,i ± σsyst,i ,

using obvious notations; it is useful to define σ(si ) =
σstat,i/mi , the i th experimental fractional systematic error.
Then, the elements of the full covariance matrix W associ-
ated with the BESIII spectrum are written as:

Wi j = Vi j + σ(si )σ (s j )Ai A j , (50)

where the indices run over the number of data points (i, j =
1, · · · N ). V is the (diagonal) matrix of the squared statistical
errors (σ 2

stat,i ), and σ(si ) is the reported fractional system-
atic error at the data point of energy (squared) si , defined
as just above. The systematic errors are considered point-
to-point correlated and reflecting a (global) normalization
uncertainty.

At the start of the fit iterative procedure, the natural choice
for A is the vector of measurements itself (Ai = mi ); in the
iterations afterwards, it is highly recommended [73–75] to
replace the measurements by the fitting model function M
(Ai = M(si ) ≡ Mi ) derived at the previous iteration step in
order to avoid the occurrence of biases. Then, the experiment
contribution to the global χ2 is written as:

χ2 = (m − M)iW
−1
i j (m − M) j . (51)

Moreover, a normalization correction naturally follows
from the global scale uncertainty. It is a derived quan-
tity of the minimization procedure. Defining the vector B
(Bi = σ(si )Mi ), this correction is given by [19,75]:

μ = BiV
−1
i j (m − M) j

1 + BiV
−1
i j B j

. (52)

For the purpose of graphical representation, one could either
perform the replacement mi → mi − μσ(si )Mi , or apply
the correction to the model function Mi → [1 +μσ(si )]Mi .

24 Actually, the 3π channel is marginally sensitive to the differences
between BHLS2 and its extension to EBHLS2.
25 In the process of sample combination frameworks, additional issues
may arise; for instance, the consistency of the absolute energy calibra-
tion of the various experiments with each other should be addressed as
done in [19] with the dikaon data samples collected by CMD3 [71,72]
and BaBar [40].
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When graphically comparing several spectra, the former
option should clearly be preferred, as indeed, even if not sub-
mitted to the fit, other parent data samples can be fruitfully
represented in the same plot by performing the change26:

m′
i → m′

i − μσ ′
i (s

′
i )M(s′

i ),

using the BESIII fit function M(s). Such a plot is obviously
a relevant visual piece of information.

A global fit involving all data covering the ππ , (π0/η)γ

and both KK channels and only the BESIII spectrum to
cover the 3π annihilation final state has been performed and
returns, for the BESIII sample,27 χ2/N = 170/128.

The top panels in Fig. 3 display the distribution of the
BESIII normalized residuals δσ (s)/σ (s) corrected as noted
just above. In the ω region, at least, the normalized resid-
ual distribution is clearly energy-dependent. The normalized
(pseudo-)residuals of the unfitted data samples displayed,28

namely those from [42,66] in the ω region and from [63,67]
in the φ region, likewise corrected for the normalization
uncertainty, are, instead, satisfactory,29 despite being unfit-
ted. The fit process allows us to compute the (global) χ2

distance of the NSK samples to the (BESIII) fit function and
returns χ2/N = 180/158, a reasonable value for unfitted
data.

However, the behavior of the BESIII residuals may indi-
cate a mismatch between the ω and φ pole positions in the
BESIII sample compared to the other (� 50) data samples
involved in the (global) fit; indeed, the narrow ω and φ sig-
nals are already present in the (π0/η)γ and KK channels,
and therefore, as when dealing with the CMD3 and BaBar
dikaon samples in [19], a mass recalibration (shift) could be
necessary to avoid mismatches with the pole positions for ω

and φ in the other data samples. We thus have refitted the
BESIII data, by allowing for such a mass shift to recalibrate
the BESIII energies and match our reference energy scale.30

So, we define:

EBESIII = ENSK + δEBESIII

and let δEBESIII vary within the fit procedure. The fit returns
δEBESIII = (−286.09 ± 44.19) keV with χ2/NBESIII =

26 Numerically, μ is derived using the function values M(s) at the
central values of the fit parameters.
27 We have preferred skipping the first few data points more subject
to non-negligible background; the spectrum is thus fitted in the energy
range

√
s ∈ [0.73 ÷ 1.05] GeV.

28 For short, these will be referred to below as NSK.
29 Thus, the normalization correction applied to each of the NSK 3π

data samples is determined by the fit of solely the BESIII data [24]
within the global framework.
30 Our reference energy is actually defined consistently by more than
50 data samples. As an important part of these have been collected at
the VEPP-2M Collider in Novosibirsk, we denote, when needed, our
reference energy by ENSK.

141/128, and thus the (noticeable) gain of 29 units should
be attributed to only allowing for a nonzero δEBESIII. The
corresponding normalized residuals, displayed in the middle
row of Fig. 3, are clearly much improved, whereas the χ2 dis-
tance of the NSK 3π data sample to the BESIII fit function
stays the same.

Owing to the sharp improvement produced by this mass
shift, it was tempting to check whether the energy (re-
)calibration could be somewhat different at the ω and the
φ masses. For this purpose, it is appropriate to redefine the
fitting algorithm by stating:

EBESIII = ENSK +
{

δEω
BESIII, EBESIII < Emid

δEφ
BESIII, EBESIII > Emid

(53)

where Emid should be chosen appropriately, i.e. significantly
outside the ω and φ peak energy intervals. As obvious from
the bottom panel of Fig. 5, the 3π cross section in the inter-
mediate energy region is almost flat and indicates that the
choice for Emid is far from critical; we chose Emid = 0.93
GeV.

The corresponding global fit has been performed and
returns χ2/NBESIII = 123/128, with an additional gain of
18 χ2 units, to be added to the previous 29-unit gain. The
recalibration constants versus ENSK are:
{
δEω

BESIII = (−518.92 ± 72.04) keV,

δEφ
BESIII = (−118.58 ± 58.72) keV

}
.

After this recalibration has been applied, the BESIII normal-
ized residuals, shown in the panels of the bottom row in Fig.
3, are observed to be flat, as well as their NSK partners also
displayed.

We should note that δEω
BESIII is in striking correspondence

with the central value for the energy shift reported by BESIII
[24] compared to their Monte Carlo (−0.53 ± 0.25 MeV)
and is found highly significant (about 7.5σ ). δEφ

BESIII is also
consistent with this number but quite significantly different
from δEω

BESIII. Actually, comparing the three rightmost pan-
els in Fig. 3, one observes that the main gain of decorrelating
the energy calibration at the ω and φ peaks widely improves
the former energy region; the latter looks almost insensitive,
as reflected by the fact that the nonzero δEφ

BESIII is only a 2σ

effect.
So, once two energy recalibrations have been performed,

the description of the BESIII sample is quite satisfactory and,
fitted with the other annihilation channels, the χ2 probability
is comfortable (91.6%).

At first sight, the differing energy shifts just reported may
look surprising as, for ISR spectra, the energy calibration is
very precisely fixed by the energy at which the accelerator
is running at meson factories. However, such energy shifts
could be related to unaccounted effects of the secondary pho-
ton emission expected to affect the resonances showing up
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(a)

(b)

(c)

Fig. 3 Normalized residuals of EBHLS2 fits to the BESIII 3π data
in isolation under three different configurations: no energy shift (top
panels), one global energy shift (middle panels) and two energy shifts
(bottom panels). The normalized residuals are defined as δσ (s)/σ (s),

where δσ (si ) = m′
i − M(si ) – see the text for the definitions. The par-

tial χ2/N ’s are displayed. Also shown, the NSK χ2/N ’s distance of
the CMD2 and SND data to the best fit solutions derived from fitting
BESIII data in isolation in each configuration

at lower energies. In the case of the BESIII spectrum, this
concerns the φ and ω regions, where photon radiation effects
are enhanced by the resonances, causing shifts between the
physical resonance parameters and their observed partners.31

This topic is specifically addressed in Appendix D, where it is
shown – and illustrated by Table 14 therein – that the expected
shifts produced by secondary ISR photons are in striking cor-
respondence with the fitted δEω

BESIII and δEφ
BESIII.

31 Note that, for the NSK scan experiments, photon emission on reso-
nances is corrected locally resonance by resonance.

8.2 Exploratory EBHLS2 global fits including the BESIII
3π sample

Having proved that the BESIII 3π data sample suitably fits
the global EBHLS2 framework, we perform the analysis by
merging the BESIII and the parent CMD2 and SND data sam-
ples within a common fit procedure. For completeness, we
have first performed a global fit allowing for a single energy
calibration constant. The fit returns χ2/N = 1284/1365 and
84.7 % probability. The χ2/N values for BESIII (154/128)
and NSK (145/158) are also reasonable; however, the nor-
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malized residuals for BESIII shown in the top panels of Fig.
4 – especially the leftmost panel – still exhibit a structured
behavior.

Therefore, we have allowed for two independent energy
shifts δEω

BESIII and δEφ
BESIII within the iterative fit proce-

dure. Convergence is reached with χ2/N = 1267/1365 and
91.2% probability. The χ2/N value for BESIII (137/128)
is improved by 17 units, whereas it is unchanged for NSK
(147/158); thus the improvement of the total χ2 only pro-
ceeds from the 17-unit reduction of the BESIII partial χ2.
The bottom panels in Fig. 4 are indeed observed flat in the ω

and φ regions (this last distribution is still less sensitive to the
fit quality improvement). The energy recalibration constants
of the BESIII data with regard to the NSK energy scale are:

{δEω
BESIII = (−486.11 ± 71.51) keV,

δEφ
BESIII = (−135.31 ± 59.16) keV},

in fair accord with those derived in the global fit performed
discarding the NSK 3π data. Compared to its fit in isola-
tion, the BESIII data χ2 is degraded by 137 − 123 = 14
units, while (see Table 4 third data column) the NSK data
χ2 is degraded by 147 − 135 = 12 units compared to the
fit performed discarding the BESIII data sample, the rest
being unchanged. Regarding the average per data point, the
degradation is of the order 0.1 χ2-unit for both the NSK and
BESIII samples, a quite insignificant change. So, one can
conclude that the full set of consistent data samples can wel-
come the BESIII sample [24], once the energy shifts δEω

BESIII

and δEφ
BESIII are applied.

Figure 5 displays the fit function and data in the 3π

channel. All data are normalization-corrected as emphasized
above, and additionally, the energy shifts induced by hav-
ing different δEω

BESIII and δEφ
BESIII calibration constants are

applied to the BESIII data sample; one should also note the
nice matching of the ND and BESIII data in the intermediate
region. Additional fit details of this new global fit are given
in the third data column of Table 4.

9 Revisiting the 2π annihilation channel

A fair understanding of the dipion annihilation channel,
which provides by far the largest contribution (� 75%)
to the muon HVP, is an important issue. Fortunately, the
e+e− → π+π− cross section is also the most important
channel encompassed within the BHLS [14,75] and BHLS2

[19] frameworks developed previously. All the existing dip-
ion data samples were examined within the context of these
two variants of the HLS model. As some of them exhibit
strong tensions [14] with significant effects on the derived
physics quantities, it looks worthwhile to revisit this issue
when a new measurement arises, at least to check whether

the consistency pattern previously favored deserves reexam-
ination.

Besides the data samples formerly collected and gathered
in [76], an important place should be devoted to the data
from CMD-2 [43,44,77] and SND [45] collected in scan
mode on the VEPP-2M collider at Novosibirsk; these CMD2
and SND samples are collectively referred to below as NSK.
These were followed by higher statistics samples, namely the
KLOE08 spectrum [28] collected at Da�ne and those col-
lected by BaBar [78] at PEP-II, both using the initial-state
radiation (ISR) method [79]. Slightly later, the KLOE Col-
laboration produced two more ISR data samples, KLOE10
[46] and KLOE12 [47], the latter being tightly related to
KLOE08 (see Fig. 1 in [80]). In this reference, the KLOE-2
Collaboration has also published a dipion spectrum derived
by combining the KLOE08, KLOE10 and KLOE12 spectra;
this combined spectrum is referred to below as KLOE85,
thus named according to its number of data points.

Two more data samples, also collected in the ISR mode,
were appended to this list by BESIII [26] – with recently
improved statistical errors [27] – and a CLEO-c group [48].
Finally, the SND collaboration has just published a data sam-
ple [25] collected in scan mode on the new VEPP-2000 facil-
ity at Novosibirsk; this spectrum, seemingly still preliminary,
is referred to below as SND20. Another high statistics data
sample, also collected in scan mode, is expected from the
CMD3 Collaboration [81].

Important tension between some of these samples –
namely KLOE08 and BaBar – and all others have already
been identified [2,75]; the occurrence of the new data sam-
ple from SND (and its comparison with NSK, KLOE and
BaBar [25]) allows us to reexamine this consistency issue
and provides the opportunity to remind the reader how it is
dealt with within global frameworks.

9.1 The sample analysis method: a brief reminder

The broken HLS modelings previously developed, especially
BHLS2 as well as its present extension, aim at providing
frameworks which encompass a large part of the low-energy
physics, the realm of the non-perturbative regime of QCD,
and extend up to the φ mass region; they have rendered
possible fair simultaneous accounts of the six major e+e−
annihilation channels (π+π−, π+π−π0, K+K−, KLKS ,
(π0/η)γ ) up to 1.05 GeV/c; slightly modified (EBHLS2),
this framework also now provides a satisfactory understand-
ing of the A, B and C dipion spectra from the decay of the τ

lepton.
As already noted several times, the Lagrangians which

substantiate the various broken HLS models emphasize a
property expected from QCD: the different annihilation chan-
nels should be correlated via their common underlying QCD
background; this is reflected within our effective Lagrangians
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Fig. 4 Normalized residuals of EBHLS2 fits to the BESIII, CMD2 and
SND 3π data under two different configurations: top panels correspond
to a (global) fit with only one energy shift for the BESIII spectrum; the

bottom ones are derived allowing different δEω
BESIII and δEφ

BESIII. The
partial χ2/N are displayed for the BESIII sample on the one hand, and
for the CMD2 and SND ones (NSK) on the other hand

by the fact that all their model parameters are simultaneously
involved in the amplitudes for any of the accessible physics
processes they encompass. A straightforward example is rep-
resented by g, the universal vector coupling, and this property
is, more generally, exhibited by the expressions for the vari-
ous amplitudes derived from within the various broken HLS
Lagrangians.

Most of the Lagrangian parameters are not known ab ini-
tio and are derived from the data via a global fit involving all
channels and, possibly, all available data samples. For this
purpose, the provided data samples and associated informa-
tion (data points, statistical errors, systematics, correlated or

not) are supposed reasonably32 well estimated. With this at
hand, one can construct a motivated global χ2 and derive
the Lagrangian parameters through a minimization proce-
dure like minuit.

Among the various kinds of uncertainties reported by the
different experiments, special care should be devoted to the
global normalization uncertainties – which can be energy-
dependent, as already dealt with in Sect. 8.1. Actually, as
for energy scale recalibrations (see also Sect. 8.1), it looks

32 Of course, it is unrealistic to expect that the spectrum and uncer-
tainties defining any data sample have been perfectly determined – see
below.
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Fig. 5 The global EBHSL2 fit with the π+π−π0 spectra, corrected
for their normalization uncertainty; only statistical errors are shown.
The top panels display the data and fit in the ω and φ mass intervals;

the bottom panel focuses on the intermediate energy region. The energy
recalibration has been applied to the BESIII data

obvious that the most appropriate normalization of a given
sample can only be determined by comparing with several
other independent spectra covering the same physics channel.
Even more, a global treatment of these provides the best
normalization of each sample versus all the others by a kind
of bootstrap mechanism.

Actually, a global fit, when possible, appears to be the best
tool to determine the most appropriate normalization of each
spectrum in accord with its reported uncertainties, includ-
ing its normalization uncertainties; this is noted in detail in
[19,75] and above in Sect. 8. The goodness of the corre-
sponding fit indicates the confidence one can devote to the
normalization corrections.

The probability of the best fit reflects the quality of the
experimental information and the relative consistency of the

various data samples involved in the procedure within the
model framework; we now have three significantly different
HLS frameworks at hand which have been shown in [19] and
just above to lead to a consistent picture.

9.2 Samples covering the π+π− channel: a few properties

Let us first consider the data samples already identified as not
exhibiting significant tension among them within the BHLS2

frameworks, the previous one [19] or the present one; this
defines a reference set of data samples, named HR . This
covers the 3π data samples already considered in Sect. 8
and all the existing data samples covering the π0γ and ηγ

decay channels. Regarding the dikaon spectra, we refer the
reader to our analysis in [19], where the tensions between
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the CMD3 spectra [71,72] and the others from SND, BaBar
and (corrected [19]) CMD2 led us to discard them from the
analysis.33 As for τ dipion spectra, it was shown in Sect. 4
that the residual tension observed in the account for Belle
compared to Aleph and Cleo can be absorbed. The reference
set HR also includes the spacelike pion [54,55] and kaon
form factor spectra [82,83] which are satisfactorily under-
stood within the BHLS2 frameworks [19].

For the purpose of reexamining sample tensions, it seems
appropriate to also include inHR , the pion form factor spectra
collected by BESIII [26,27] and Cleo-c [48]. Indeed, antic-
ipating somewhat our fit results, it has been observed that,
alone or together with either of the NSK, KLOE, BaBar sam-
ples, or with any combination of these, they get the same
individual sample χ2’s, with fluctuations not exceeding 1.5
units for each of them. Fitting theHR sample set thus defined
within the present framework returns χ2/N = 926/1021 and
a 94% probability; in this fit, the BESIII and Cleo-c samples
yield

[χ2/N ]BESIII = 49/60, [χ2/N ]Cleo−c = 27/35.

One can consider the probability of the global fit (here
94%) as a faithful tag of mutual consistency of the (more
than 50) samples included in HR which fairly fit the broken
HLS framework.

We have made two kinds of global fits:

• (i) Fits involving HR and each of NSK, KLOE34 and
BaBar in turn; the diagonal in Table 3 reports the main
results, namely the value returned forχ2/N of resp. NSK,
KLOE, BaBar and the probability of the global fit at the
corresponding table entry.

• (ii) Fits involving HR and the pairwise combinations
(NSK, KLOE), (NSK, BaBar) and (KLOE, BaBar) in
turn; the main fit results are reported in the non-diagonal
entries of Table 3. In order to simplify the comparison
of each of the NSK, KLOE, BaBar accounts provided by
these “pairwise” fits, we have organized the non-diagonal
entries in a specific manner: the entry (NSK, KLOE) pro-
vides [χ2/N ]NSK and the global fit probability, whereas
the entry (KLOE, NSK) provides [χ2/N ]KLOE and the
(same) fit probability. The same rule applies mutatis
mutandis to the other pairwise fits: (NSK, BaBar) and
(KLOE, BaBar) together with HR .

Relying on Table 3, one clearly observes that the single-
mode fits for NSK and KLOE are fairly good and in nice
accord with the results returned by the corresponding pair-

33 The CMD3 data have, nevertheless, been dealt with to estimate sys-
tematics in the muon HVP evaluation [19].
34 KLOE indicates the simultaneous use of KLOE10 and KLOE12

wise fit. The pattern is somewhat different when BaBar is
involved.

In order to be complete, let us briefly summarize the fit
results obtained within the present framework concerning
KLOE08 and the KLOE85 sample derived by the KLOE2
Collaboration from their combination of the KLOE08,
KLOE10 and KLOE12 spectra [80].

• Regarding KLOE08: The global fit for HR + KLOE08
returns χ2/NKLOE08 = 95/60 and a 74.7% global fit
probability. With an average < χ2 >� 1.5, one does
not confidently consider the results derived from the fit
to this combination compared to KLOE10 + KLOE12.

• Regarding KLOE85: The fit for HR + KLOE85 returns
χ2/NKLOE85 = 83/85 (global fit probability 94.7%)
which clearly indicates that the KLOE08 issue is reason-
ably well dealt with in the KLOE85 combination [80].
We have also performed the pairwise fit HR + KLOE85
+ NSK. In this case, we get:

[χ2/N ]NSK = 160/127, [χ2/N ]KLOE85 = 93/85,

with an 80.7% probability. This fit is obviously reason-
able35 but less satisfactory than HR + NSK + KLOE, as
the tension between KLOE85 and NSK is large, much
larger than when using HR +NSK + KLOE as displayed
in Table 3.

9.3 The case for the 2020 SND dipion sample: fits in
isolation

In order to analyze the new data sample recently provided
by the SND Collaboration [25], the treatment of the reported
systematic errors has been performed as emphasized above
for the 3π data from BESIII (see Sect. 8.1), as the systematics
are expected to be fully point-to-point correlated.36 For the
present analysis, we have first performed global fits37 where
the single representative for the e+e− → π+π− annihilation
channel is SND20, the new SND data sample [25]; the space-
like pion form factor data [54,55] have also been discarded
from the fits in isolation. Figure 6 summarizes our results.

The top panel in Fig. 6 indicates that, in single mode,
the best fit returns a reasonable probability. However, this
comes with a large average < χ2 >SND20= 54/36 = 1.5

35 One should note that the estimates for aμ(π+π−,
√
s ≤ 1.05) GeV

differ marginally: 493.18±0.90 (HR + NSK + KLOE) and 493.75±0.79
(HR + NSK + KLOE85) in units of 10−10.
36 There is no explicit statement in [25] about how the systematics
should be understood; however, this assumption corresponds to what is
usually understood with the data collected at the Novosibirsk facilities.
This topic is further discussed just below.
37 For convenience, here, the 3π annihilation channel and data are dis-
carded from the fit procedure.
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Table 3 Properties of the global fits performed with the present
upgraded BHLS2 model using the HR sample collection with one
among the NSK, KLOE and BaBar samples and with pairs of these.
The table is organized such that the first line displays the value for
χ2/NNSK returned by fitting the three configurations (HR + NSK),

(HR + NSK + KLOE), (HR + NSK + BaBar); the corresponding fit
probabilities are shown within square brackets. The second and third
lines display the similar information for KLOE and BaBar. The number
of data points in each of NSK, KLOE and BaBar is shown in the first
column for convenience

χ2/Npts [Prob] + NSK + KLOE + BaBar

NSK π+π− (127) 129/127 [95.3%] 142/127 [91.2%] 138/127 [51.7%]

KLOE π+π− (135) 136/135 [91.2%] 132/135 [95.2%] 148/135 [31.9%]

BaBar π+π− (270) 328/270 [51.7%] 354/270 [31.9%] 326/270 [62.9%]

(to be compared with the diagonal in Table 3). Nevertheless,
amazingly, the SND20 form factor derived from this global
fit provides a fairly good account of the NSK (CMD2 and
SND) data not submitted to the fit as one yields < χ2 >NSK=
130/127 = 1.02, much better than SND20 itself. The NSK
(pseudo-)residual spectrum is consistent with flatness, and
additionally, the ratio 130/127 indicates that there is no sig-
nificant energy calibration mismatch between the NSK sam-
ples and SND20 – this may have shown up in the ρ0 − ω

drop-off region.
The bottom panel in Fig. 6 displays results derived by

assuming the SND20 systematics fully uncorrelated (i.e.
the non-diagonal elements of the error covariance matrix
are dropped out). The global fit is successful and returns
a 92% probability. The gain for SND20 is noticeable as
< χ2 >SND20= 35/36 = 0.97, and clearly, the (alterna-
tive) pion form factor derived by fitting only the SND20
data (in this manner) within the global framework is almost
unchanged; this is the way the χ2 distance of the NSK sam-
ples to this alternative fit form factor can be understood:
< χ2 >NSK= 132/127 = 1.04. Moreover, once again, the
NSK (pseudo)residual distributions are as flat as (and almost
identical to) those displayed in the top panel of Fig. 6.

We got substantially the same results and conclusions by
enlarging the SND20 pion form factor statistical errors38 by
0.04 and keeping unchanged the systematics – i.e. treated as
point-to-point correlated; this also points towards the inter-
est in having, besides information on correlations, informa-
tion on the accuracy of the uncertainties [2]. So, the way the
SND20 uncertainties should be understood deserves clarifi-
cation.

9.4 The case for the 2020 SND dipion sample: pairwise fits

An interesting topic addressed in [25] is the consistency of
SND20 with NSK (e.g. CMD2 [43,44,77] and SND-98 [45]),
KLOE ( KLOE10 [46] and KLOE12 [47]) and BaBar [78].
For this purpose, it looks worthwhile to perform global fits by

38 The pion form factor squared table in [25] gives numbers with only
one decimal digit, so adding 0.04 to the statistical uncertainty rounds
down to 0.

including pairwise combination to cover the π+π− annihila-
tion channel.39 This allows us to observe the tension between
the partners in the pair and to get a probability which empha-
sizes their global consistency. Our main fit results are col-
lected in Fig. 7.

The middle panel in Fig. 7 shows the case for the global fit
with the (SND20 + NSK) combination. As could be expected,
this confirms the fit of SND20 in isolation reported in the
top panel of Fig. 6: < χNSK > is negligibly improved
whereas < χSND20 > is unchanged; the large value for
< χSND20 >= 1.5 is responsible for the global fit probability
reduction compared to fits with NSK alone (or combined with
KLOE), as can be seen in Table 3. With this proviso, BHLS2

confirms the statement that SND20 and NSK are consistent
[25] with a 73% probability.

In order to address the consistency topic about SND20
and BaBar already studied in [25], we have run our global fit
procedure with the (SND20 + BaBar) combination. To stay
as close as possible to the study reported in [25], we have
found it worthwhile to exclude from the fit the part of the
BaBar spectrum with

√
s ∈ [0.60, 0.71]. The results are

displayed in the top panel of Fig. 7 and show some resem-
blance between SND20 and BaBar (normalized) residuals
outside the BaBar excluded region (delimited by the green
rectangle). Nevertheless, the fit probability is poor, and its
< χSND20 >= 82/36 = 2.3 indicates a significant tension
compared to the fit in isolation (< χSND20 >= 1.5)

Finally, the bottom panel in Fig. 7, reports the main fit
results obtained by fitting the (SND20 + KLOE) combina-
tion. One can note the results compared to the fits in isola-
tion: < χSND20 >= 2.1 (versus < χSND20 >= 1.5) while
< χKLOE >= 144/135 = 1.1 (versus < χKLOE >= 0.98)
and a 37% probability. Here also, one can observe that the
residual distributions for SND20 are not really at variance
with those for KLOE along the whole energy range.

So, on the whole, the SND20 spectrum [25] does not help
in clarifying the consistency issue raised by the existing dip-

39 It has been found appropriate to reintroduce the spacelike data from
[54,55] within the minimization procedure. As the pion form factor in
the spacelike and timelike regions is the same analytic function, this is
a constraint.
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Fig. 6 Fit of the SND20 data
[25] in isolation within the
BHLS2 framework. The top
panel displays the results
corresponding to a fit where
SND20 systematics are fully
point-to-point correlated,
whereas the bottom panel is
obtained by treating the SND20
systematics as fully
uncorrelated. The NSK spectra
are displayed but not fitted. See
text for further explanation

(a)

(b)

ion spectra, and presently, SND20 does not bring in more
support, or less support, to the choice performed following
our previous analyses (see Tables 3 and 4) and illustrated by
Fig. 8.

10 Overview of the EBHLS2 fits

Some of the general properties of the global fits performed
in the EBHLS2 framework have already been emphasized in
Sects. 3, 8 and 9, with special emphasis on the τ decay dipion
spectra, the e+e− → π+π−π0 annihilation channel and
the crucial e+e− → π+π− one, respectively. The general
features of our fitting algorithm concept are detailed in Sect.
15 of our [19], for instance. Let us, for convenience, recall
the gross features of our global fit method:

• The contribution of each data sample to the global χ2 to
be minimized is constructed using solely the uncertainties
exactly as they are provided by each experiment without
any external input. Additionally, this kind of input may
influence the numerical outcome of the fits in an uncon-
trolled way. On the other hand, if not already performed
by the relevant experiments, the reported uncorrelated
systematics are merged appropriately with the statistical
error covariance matrix.

• The correlated systematic errors – possibly s-dependent
– are treated with special care [75] as emphasized in Sect.

8.1 in order to avoid the so-called Peelle pertinent puz-
zle [84] which generally results in biasing the evaluation
of physics quantities based on χ2 minimization proce-
dures [85,86]. Moreover, an iterative procedure is used
which has been proved to avoid biases [75]. In the case of
a global χ2 minimization, it should be stressed that the
absolute scale of each experiment is derived in full con-
sistency with those of all the other experiments (or data
samples), especially – but not only – with those collected
by other groups in the same physics channel.40 Several
examples can be found in [19], where it is shown that
the derived scale corrections compare quite well with the
corresponding experimental expectations.

• When merging the different data samples which cover
the same energy range, their different energy calibrations
may exhibit some mismatch; this issue was previously
encountered in our [19] with the energy calibration of
the dikaon spectra from CMD-3 [71,72] and BaBar [40]
versus those of the corresponding samples from CMD2
and SND; this issue happened again herein when dealing
with the BESIII 3π sample [24] and is solved accordingly
(see Sect. 8 above). It should be noted that, for signals
as narrow as the ω and φ mesons, global fit techniques
are certainly the best suited to match the energy scales of
various spectra that are otherwise poorly consistent.

40 Actually, this appears to be the natural way, if not the only one, to
reliably and consistently derive the correction to the normalization of
the various spectra.
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Fig. 7 Fits of the SND20
dipion data [25] together with
the spacelike data [54,55]. The
top panel shows the fit residuals
when the timelike dipion
channel is covered by the
SND20 and BaBar [78]
samples; similarly, the middle
panel displays the fit residuals
when covering the timelike
dipion channel by the SND20
[25] and NSK [43–45,77]
spectra; the bottom panel reports
likewise the case when the
timelike dipion channel is
covered by the SND20 and
KLOE [46,47] samples. All
reported systematics are treated
as point-to-point correlated

(c)

(b)

(a)

Fig. 8 BHLS2 fit to the ππ data, the upgraded BS solution: the left-hand panel shows the pion form factor squared in the e+e− annihilation, and
the right-hand one displays the same spectrum in the τ decay. The fitted regions extend up to s = 1.0 GeV2
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Table 4 Global fit properties of
the EBHLS2 fits ; second line in
the table title indicates the
running conditions regarding the
data samples submitted to fit or
the running of the BS or RS
variants when λ3 	= 0. The
number of data points involved
is given between parentheses in
the first column. The last lines
display the global χ2/Npts and
probability of each fit

EBHLS2 BS (λ3 = 0) (λ3 	= 0)

Excl. τ Incl. τ BS RS

NSK π+π− (127) 136 134 138 136

KLOE π+π− (135) 141 146 139 139

BESIII π+π− (60) 48 47 49 48

Spacelike π+π− (59) 62 67 62 60

τ (ABC) (84) × 93 82 80

π0γ (112) 89 88 88 87

ηγ (182) 120 120 124 124

NSK π+π−π0 (158) 142 146 147 147

BESIII π+π−π0 (128) 138 138 137 137

NSK KLKS (92) 103 104 103 104

NSK K+K− (49) 41 42 39 39

BaBar K+K− (27) 41 42 41 41

Spacelike K+K− (25) 18 19 17 18

Decays (8) 5 4 9 9

χ2/Npts 1179/1280 1285/1365 1269/1365 1262/1365

Probability 93.3% 83.1 % 90.0 % 91.5 %

• In order to confidently rely on global fit outputs to eval-
uate physics quantities, one should discard data samples
which exhibit noticeable inconsistencies with the rest of
the benchmark samples. Our requirement to identify such
samples has generally been to get an average χ2 per point
smaller than � 1.5.

Compared to the fits reported in [19] and as already noted
in Sect. 2, we have here released the constraint (Eq. (2)) on
the product εε′ and also let the mixing angle θP float freely.
Moreover, as several preliminary fits typically return:

�A = [0.55 ± 4.59] × 10−2, and
λ8 = [2.18 ± 4.18] × 10−2,

(54)

imposing �A = λ8 = 0 looks worthwhile; indeed, Eq. (54)
clearly shows that the physics presently addressed in the
EBHLS2 framework does not exhibit a significant sensitivity
to these parameters when left free. These constraints will be
reexamined41 in the context where the [π0, η, η′] mixing is
also addressed.

Table 4 reports the fit results under four configurations; the
energy scale corrections for the BaBar dikaons [40] and the
BESIII samples [24] are floating parameters. The first two
data columns, actually, update the BHLS2 fit results derived
for the BS variant given in [19]; for the fit performed includ-
ing the τ spectra, the polynomial δPτ (s) here is third degree.

41 See below the sections devoted to the [π0, η, η′] mixing.

For the EBHLS2 fits reported in the last two data columns,
δPτ (s) is second degree.42 The third data column displays
the χ2 contributions of various groups of data samples to
the global χ2 using the BS configuration. For completeness,
the last data column reports the EBHLS2 fit results obtained
under its RS configuration [19].

One should note that, substantially, these pure EBHLS2

fits and the BHLS2 fit excluding the τ spectra (first data
column) exhibit similar and favorable χ2 averages per point
for all groups of data samples with the sole exception of the
individual decay modes, which is doubled. In the EBHLS2

BS or RS configurations, the single mode which significantly
departs from χ2 ≤ (1.0 ÷ 1.2), is η → γ γ , which returns
4, e.g. a 2σ difference with the review of particle properties
[49]. On the other hand, one may consider, in view of Table 4,
that the BS variant of EBHLS2 does not need to be improved
by the primordial mixing mechanism introduced in [19] to
construct the RS variant of BHLS2.

The numerical values of the model parameters of the
EBHLS2/BHLS2 framework will be examined and discussed
in a wider context involving the treatment of the [π0, η, η′]
mixing properties as well in Sect. 18.

11 Evaluation of aμ, the muon HVP

As the previous BHLS releases [14,19], EBHLS2 encom-
passes the bulk of the low-energy e+e− → hadrons annihi-

42 This means that BHLS2 and EBHLS2 actually carry an identical
parameter freedom.
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lations up to, and including, the φ mass region. Therefore,
suitably taking into account the various kinds of uncertainties
reported by the different experiments affecting the spectra
they collected, a fully global fit is expected to lead to pre-
cise evaluations of the contributions to aHV P−LO

μ from the
energy region

√
s ≤ 1.05 GeV. Within this approach, the

specific contribution of the hadronic channel Hi is obtained
by means of the cross section σ(Hi , s) ≡ σ(e+e− → Hi , s)
with parameter values derived from the global fit performed
within the EBHLS2 framework:

aμ(Hi ) = 1

4π3

∫ scut

sHi

ds K (s) σ (Hi , s),

Hi =
{
π+π−, π0γ, ηγ, π+π−π0, K+K−, KLKS

}
. (55)

K (s) [87,88] is the usual kernel which enhances the weight of
the threshold regions compared to the higher-energy regions
of the Hi spectrum; sHi is the threshold of the Hi hadronic
channel and

√
scut = 1.05 GeV is the validity limit, common

to the different HLS frameworks.

11.1 Remarks on the
√
s ≤ 1.05 GeV contribution to

aμ(ππ)

We find it of special concern to substantiate what supports the
choices performed in our global fit approach in connection
with the muon HVP outcome. For this purpose, the analy-
sis of the π+π− channel properties within the (E)BHLS2

framework is of special relevance. Global fits have been per-
formed involving the data samples collected for all the HLS
final states except for ππ and complemented in turn by each
of the various KLOE samples already discussed in [19] to
feed solely the π+π− channel.

Table 5 – reprinted from Table 3 in [2] – clearly shows that
the (E)BHLS2 central values obviously correspond closely
with those derived by directly integrating the data [80], except
for KLOE08, which correlatedly exhibits a poor global fit
probability; this substantiates the reason that one may prefer
discarding poorly fitted data samples to avoid biases, possibly
large. However, one should also note that its effect within
the KLOE85 combination is much softer, as the KLOE85 fit
probability (65%) remains comparable to those for KLOE10
and KLOE12, which are both higher and almost identical
(78% and 80 %).

Table 5 also shows the important reduction of the uncer-
tainties induced by the non-π+π− channels involved in the
reported global fits; this reduction is, of course, amplified
when including the other accepted π+π− samples in the fit
procedure, as will be seen shortly. On the other hand, when
the fit probability is poor, the values returned by the fits for
the uncertainty and the central value should be handled with
care.

Table 6 shows a breakdown of the contributions to aμ(ππ)

from different energy intervals. The top lines display the
results derived by other groups, namely CHS [89], DHMZ
[90] and KNT [91], while the bottom lines show the EBHLS2

outcome from fits performed under the various indicated con-
figurations. The favored configuration, which corresponds to
a good account of all the channels encompassed within the
EBHLS2 framework, is tagged “KLOE+X.” Nevertheless,
in order to really compare the global fit method with [89–
91], it is worth relying on the same set of experimental data.
To this end, we have also run our code including the BaBar
data sample within the set of π+π− fitted spectra so that the
sample contents are similar in all the approaches discussed;
nevertheless, in order to avoid the effects of energy calibra-
tion mismatch between the BaBar and KLOE spectra within
the fit procedure, we have removed the BaBar ρ0 − ω drop-
off region from the fit. The corresponding results are given
in Table 6 under the tag “KLOE+BaBar+X.”

Regarding the reported central values for aμ[ππ ], it is
clear that CHS18, DHMZ19, KNT19 and the evaluation
derived from the KLOE+BaBar+X fit are similar; neverthe-
less, we should point out the higher similarity of the KNT19
and EBHLS2 (KLOE + BaBar + X) evaluations. Indeed, the
difference between their central values are 0.1, 0.7 and 0.2
for the

√
s ≤ 0.6 GeV, 0.6 GeV ≤ √

s ≤ 0.9 GeV and
0.9 GeV ≤ √

s ≤ 1.0 GeV energy intervals, respectively.
One may infer that this fair agreement is mostly due to the
similar treatments of the correlated systematics in the BHLS
approaches [75] and in the KNT dealings [91].

Because in global approaches the data collected in the non-
π+π− channels are equivalent to having at our disposal an
additional statistic in the π+π− channel, one expects smaller
errors for the (E)BHLS2 evaluations of aμ[ππ ]; this is indeed
what is observed for the

√
s ≤ 0.6 GeV and 0.6 GeV ≤√

s ≤ 0.9 GeV contributions to aμ[ππ ] but, surprisingly,
not for the 0.9 GeV ≤ √

s ≤ 1.0 GeV interval. Nevertheless,
integrated up to 1.0 GeV, the contribution to aμ[ππ ] exhibits
an uncertainty improved by a factor of � 2.5 compared to
the other approaches reported in Table 6.

This comparison proves that the observed central value
differences between BHLS2 and the others – especially KNT
– are mostly due to having discarded BaBar (and KLOE08)
and only marginally to the global fit method. Finally, the
last two lines of Table 6 show the effect of including the
τ data. The use of these generates an additional (modest)
improvement of the uncertainties, as could be expected, and
a marginal shift. The comfortable probabilities reached by the
EBHLS2(KLOE+X) fits should also be noted. As discussed
in Sect. 10, they are reached without resorting to error infor-
mation beyond what is provided by the various experiments
such as error inflation factors, for instance.

As noted several times, the validity range of the HLS
approaches to e+e− annihilations extends up to � 1.05 GeV,
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Table 5 The π+π−
contribution to the HVP-LO in
the range [0.35, 0.85] GeV2 in
units of 10−10. The direct
integration evaluations are taken
from Fig. 6 in [80]. The
(E)BHLS2 evaluations are
derived by fits as sketched in the
text; the last data column
displays relevant pieces of the fit
information

π+π− Data sample Direct integration [80] BHLS2 χ2
π+π−/Nπ+π− (Prob.)

KLOE10 376.0 ± 3.4 375.04 ± 2.35 69/75 (78%)

KLOE12 377.4 ± 2.6 376.74 ± 1.59 59/60 (80%)

KLOE85 377.5 ± 2.2 377.17 ± 0.89 95/85 (65%)

KLOE08 378.9 ± 3.2 373.78 ± 1.84 130/60 (14%)

Table 6 Breakdown of 1010 × aμ[ππ ] by energy intervals. The dis-
played data for CHS18, DHMZ19 and KNT19 are extracted from Table
6 in [2]. The EBHLS2 fits are reported using BaBar and KLOE10/12,

and the latter only together with the NSK, BESIII and Cleo-c dipion
spectra, globally referred to as X. The data collected in the 1980s [76]
are also part of X

√
s Interval (GeV)

√
s ≤ 0.6 0.6 ≤ √

s ≤ 0.9 0.9 ≤ √
s ≤ 1.0

√
s ≤ 1.0

CHS18 [89] 110.1 ± 0.9 369.6 ± 1.7 15.3 ± 0.1 495.0 ± 2.6

DHMZ19 [90] 110.4 ± 0.4 ± 0.5 371.5 ± 1.5 ± 2.3 15.5 ± 0.1 ± 0.2 497.4 ± 1.8 ± 3.1

KNT19 [91] 108.7 ± 0.9 369.8 ± 1.3 15.3 ± 0.1 493.8 ± 1.9

KLOE + BaBar + X χ2/Npts : BaBar = 1.45, KLOE = 1.15, NSK = 1.10

Prob = 11.4% 108.83 ± 0.09 369.06 ± 0.62 15.36 ± 0.38 493.19 ± 0.73

KLOE +X χ2/Npts : KLOE = 1.03, NSK = 1.09

Prob = 90.0% (incl. τ ) 107.79 ± 0.12 366.76 ± 0.73 15.16 ± 0.42 489.70 ± 0.84

Prob = 93.3% (excl. τ ) 107.67 ± 0.13 367.21 ± 0.84 15.17 ± 0.48 490.05 ± 0.98

thus including the φ mass region. However, the [1.0, 1.05]
GeV energy interval of the dipion spectrum is poorly known;
indeed, apart from the BaBar spectrum43 [29], the most recent
information about this spectrum piece follows from the old
SND results [92] which underlie the RPP [49] entries for the
φ → ππ decay.

As clear from Fig. 8, in this mass region the spectrum
is widely dominated by the tail of the ρ resonance with, in
addition, a tiny effect due to the narrow φ signal. A direct
numerical estimate derived from the scarce data collected
around the φ mass gives aμ(ππ, [1.0, 1.05] GeV) = [3.35±
0.04] × 10−10. On the other hand, relying on the RPP [49]
information, EBHLS2 returns:

aμ(ππ, [1.0, 1.05] GeV) = [3.07 ± 0.11] × 10−10;

replacing within the data set fitted via EBHLS2 the RPP
φ → ππ datum by the BaBar [1.0,1.05] GeV spectrum piece
returns aμ(ππ, [1.0, 1.05] GeV) = [3.10 ± 0.10] × 10−10.
Therefore, some (mild) systematics affect this mass region,
as the cross section lineshape is not really well defined (see
Fig. 1 in [15]).

43 Our [15] provided a study of φ mass region in the BaBar spectrum.

11.2 Contribution to the muon HVP of the energy region
≤ 1.05 GeV

The sum aμ(HLS) = ∑
i aμ(Hi ) of the quantities defined

by Eq. (55) represents about 83% of the total muon HVP;
it can be computed with fair precision using the EBHLS2 fit
information to construct the relevant cross sections; these are
derived by sampling the model parameters using the parame-
ter central values and the error covariance matrix returned by
the minuit minimization procedure. Sampling out the model
parameters allows us to compute a large number of estimates
for the different aμ(Hi ) and for aμ(HLS), with their average
values defining our reconstructed central values and their
r.m.s. giving their standard deviations.

The fitted cross sections are also used to estimate the
FSR contributions for the π+π−, π+π−π0 and K+K− final
states and the Coulomb interaction effect, which is signifi-
cant for the K+K− final state, as the kaons are slow in the φ

energy region.
The HLS model functions describe VP amputated data;

accordingly, all the data submitted to our global fits are ampu-
tated from their photon VP factor. Uncertainties related to VP
amputation and FSR estimates are included below as separate
systematics.

Regarding the FSR correction of the π+π−π0 channel,
we assume that the FSR correction of the 2π channel applies
to the 2π subsystem of the 3π final state as well. Thus we take
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Table 7 EBHLS2 contributions to 1010 × aHVP−LO
μ integrated up to

1.05 GeV, including FSR and Coulomb interaction among the (slow)
kaons involved in the K+K− final state. The running conditions are
indicated at the top of the Table; BS and RS stand for the so-called

basic and reference variants, respectively, defined in [19]. The last col-
umn displays the evaluation through a direct integration of the data

EBHLS2 BS (λ3 = 0) (λ3 	= 0) Data direct integration

Excl. τ Incl. τ BS RS

π+π− 493.12 ± 0.98 492.77 ± 0.85 492.77 ± 0.86 493.00 ± 0.90 496.26 ± 3.46

π0γ 4.41 ± 0.02 4.40 ± 0.02 4.41 ± 0.02 4.41 ± 0.02 4.58 ± 0.08

ηγ 0.64 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.55 ± 0.06

π+π−π0 44.40 ± 0.32 44.41 ± 0.32 44.45 ± 0.32 44.41 ± 0.30 44.80 ± 1.72

K+K− 18.20 ± 0.10 18.17 ± 0.09 18.20 ± 0.09 18.29 ± 0.11 18.98 ± 0.28

KLKS 11.67 ± 0.06 11.67 ± 0.06 11.66 ± 0.06 11.60 ± 0.06 12.61 ± 0.27

HLS Sum 572.44 ± 1.08 572.06 ± 0.95 572.14 ± 0.95 573.07 ± 1.00 577.77 ± 3.89

χ2/Npts 1179/1280 1285/1365 1269/1365 1262/1365 ×
Probability 93.3% 83.1 % 90.0 % 91.5 % ×

σ3πγ (s) ≈ σ3π (s)[ α
π

η(s′)] as an estimate, assuming that the
invariant mass square s′ of the charged π+π− subsystem
may be approximately identified as s′ ≈ s. This is justified
because the main contribution comes from the ρ0 enhanced
intermediate state (γρ0π0), i.e. the resonance enhancement
happens at about the same s ∼ M2

ρ in both the 2π and the
3π channels (see also [93]). One then obtains a FSR contri-
bution 0.17 × 10−10 to which a 5% error is assigned. The
same approximation is accepted by the BESIII Collabora-
tion, and their recent 3π spectrum [24] already includes the
FSR correction computed this way.

Table 7 collects the results derived from EBHLS2 fits
performed under various conditions. The largest difference
between the central values for the HLS sums does not exceed
0.4 × 10−10 and reflects the effect of using or not the τ dip-
ion spectra – together with slightly improved uncertainties
(� 10%) in the former option. The second data column col-
lects the results derived by assuming λ3 ≡ 0 and δPτ (s) third
degree (i.e. the previous BHLS2 framework); the third data
column information is derived by letting λ3 be free and fixing
the δPτ (s) degree to 2. Despite their different probabilities,
their HVPs differ by only 6 × 10−12 and their uncertainties
as well. Comparing the third and fourth data columns also
shows that the gain achieved by using the primordial mixing
mechanism [19] is, by now, negligible.

Therefore, it looks consistent to choose as final evaluation
of the BHLS channel contribution to aHVP−LO

μ up to 1.05
GeV:

aHVP−LO
μ (HLS) = [572.14 ± 0.95] × 10−10

up to additional systematics considered just below.
On the other hand, the last data column in Table 7 dis-

plays the results derived by a direct integration of the annihi-
lation data; in this approach, the normalization of each of the
combined spectra is the nominal one, and all uncertainties

(correlated or not) are combined to provide its weight in the
combined spectrum. This brings us back to the discussion
presented in the previous subsection: It is not surprising to
observe the data shifting compared to expectations and their
uncertainties enlarged by the correlated contributions. This
effect is the largest for the ππ contribution but represents
only a � 1σexp effect. The difference for the dikaon contri-
butions is rather due to taking the CMD3 data into account
in the direct integration, whereas they are absent from the
set of data samples submitted to the EBHLS2 fit procedure
(see [19]); their effect is, nevertheless, taken into account as
systematics.

11.3 Systematics in the HLS contribution of the muon HVP

Section 11.1 has illustrated, specifically on the ππ channel,
that a possible hint for a significant bias induced by the global
fit method itself is tiny. Indeed, Table 5 shows that, as long as
the fit probabilities are good, the values for aμ(ππ) derived
from the fit are very close to the KLOE Collaboration’s own
evaluations [80]. More precisely, the EBHLS2 fit estimates
are distant by only 0.28σexp.,0.25σexp. and 0.15σexp. from the
KLOE direct integration evaluations for the KLOE10 (78%
prob.), KLOE12 (80% prob.) and the KLOE85 combined data
sets (65% prob.), respectively. The example of KLOE08 is,
however, also interesting: Indeed, even if the fit probability is
poor (14%) – and for this reason excluded from our reference
set of data samples – the fit differs from the KLOE direct
integration of this spectrum by only 1.6σexp..

On the other hand, the set of accepted data samples being
similar, Table 6 also indicates that the way the normalization
uncertainty is dealt with accounts for the bulk of the differ-
ences between the various approaches. The (similar) choices
made by KNT [91] and us [75] appear to be the best-grounded
ones and lead to consistent central values. The better preci-
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sion reached within the broken HLS frameworks mostly pro-
ceeds from the global fit tool they allow, which numerically
correlates the various annihilation channels as if the statis-
tics in each channel were larger than nominal. We should
also note the marvelous agreement (still valid) between the
BHLS2 prediction and the Lattice QCD form factor spectra
[56] emphasized in [19] (see Fig. 8 therein) and in Fig. 1
above.

Therefore, once a canonical treatment of the various kinds
of systematic uncertainties reported by the various groups,
together with their spectra, is applied, one may consider that
these are already absorbed in the uncertainties derived from
the minuit minimization procedure.

However, additional sources of uncertainty can be invoked.
Until EBHLS2 is experimentally strengthened by new high
statistics dipion spectra to be collected in the τ decay, one
may consider that the difference between using or not using τ

data contributes a systematic uncertainty which can increase
aHVP−LO
μ by at most 0.32 × 10−10 (see Table 7). On the

other hand, it is worthwhile to anticipate the treatment of the
[π0, η, η′] mixing properties addressed in this paper from
Sect. 12 onwards. This will emphasize the relevance of the
kinetic breaking mechanism defined in Sect. 4 and lead us to
consider a possible shift of aHVP−LO

μ by ±0.3 × 10−10 (see
Sect. 19).

The poor knowledge of the dipion spectrum in the φ

mass region has been emphasized. Here also, considering the
numbers given in Sect. 11.1, the central value for aHVP−LO

μ

might undergo a shift of +0.28 × 10−10. In [19], assuming
their systematics are uncorrelated, fits related to the CMD3
dikaon data [71,72] are reasonably good; therefore, leaving
them outside our reference sample set may result in missing
+0.54 × 10−10 when evaluating aμ(KK ).

The still preliminary SND dipion data [25] examined
above have been submitted to our standard global fit by inclu-
sion in the set of accepted dipion spectra. The fit returns, with
a probability of 66.2%,

aμ(ππ) = 493.26 ± 0.81 and aHVP−LO
μ = 572.60 ± 0.89,

in units of 10−10. As the average χ2/Npoints for this SND
sample is large (� 2), we gave up including it inside the fitted
sample set and preferred affecting the difference +0.48 ×
10−10 to the systematics.

Other well-identified sources of systematics deserve to
be addressed: (i) The uncertainty44 on the total photon VP
(γ V P) has been estimated to ±0.29×10−10, and (ii) the FSR
effect in the HLS energy range covers its contributions to the
π+π−, π+π−π0 and K+K− annihilation channels; its value
amounts to 4.81 × 10−10 over the whole non-perturbative

44 A part of this effect might already be accounted for in the experi-
mental uncertainties.

region and may be conservatively attributed a 2% uncer-
tainty.45 In the non-HLS range above 1.05 GeV, the contribu-
tions listed in Table 8 include FSR effects estimated via the
quark parton model. The n f = 3-, 4- and 5-flavor range LO
contributions are to be multiplied by the radiative correction
factors 3α

4π
Nc

∑n f
i=1 Q

2
i , which yields 0.42×10−10 as a total

FSR effect, and one may assign a 10% uncertainty here. The
uncertainty values just given actually affect the HVP over the
whole energy range.

These possible additional sources of systematics rather
play as shifts and, thus, should not be combined with the
uncertainty returned by the fit. Summing up all these esti-
mates, our final result can be completed with the most pes-
simistic systematic uncertainty46:

aHVP−LO
μ (HLS,

√
s ≤ 1.05 GeV) = 572.14 ± [0.95]fit

+[+2.31
−0.69]syst. (56)

in units of 10−10.
Finally, the tiny contribution generated by the “non-HLS”

channels47 should be considered to fully complement the
[s0 = m2

π0 , scut] energy interval contribution to the muon
HVP; it has been re-estimated by direct integration of the
(sparse) existing data to = [1.21 ± 0.17] × 10−10.

11.4 The muon HVP and anomalous magnetic moment

To finalize our HLS-based estimate of the muon HVP, our
resulting Eq. (56), complemented for the non-HLS channel
contribution below

√
scut = 1.05 GeV already given, should

be supplied by the contributions from above this energy limit.
This is displayed in the left-hand part of Table 8; the differ-
ent contributions up to

√
scut = 5.20 GeV are derived by a

numerical integration of the experimental data (annihilation
spectra and R(s) ratio measurements) as for the ϒ energy
interval. This part carries a significant uncertainty. The rest,
evaluated using perturbative QCD, is reported under the tag
“pQCD” and exhibits high precision.

Summing up the various components, our evaluation of
the muon HVP integrated over the full energy range is:

aHVP−LO
μ =

{
687.48 ± [2.93]fit + [+2.31

−0.69]syst.

}
× 10−10. (57)

In order to derive the anomalous magnetic moment of the
muon, its HVP should be complemented with the contribu-

45 In the HLS region (
√
s < 1.05 GeV), we have the FSR contributions

4.26×10−10 from π+π−γ , 0.17×10−10 from π+π−π0γ and 0.38×
10−10 from K+K−γ . Altogether this amounts to 4.81×10−10, to which
a 2% uncertainty is attributed, i.e. 0.10 × 10−10.
46 A model uncertainty, estimated to ±0.3 × 10−10 in Sect. 19, has
been added linearly to the systematics.
47 It is provided by the low-energy tails of channels like e+e− → 4π ,
2πη or η′γ · · · , the thresholds of which are smaller than the φ meson
mass.
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Table 8 The left-hand side displays the updated contributions to
aHVP−LO
μ from the various energy regions and includes the contribu-

tion of the non-HLS channels in the
√
s < 1.05 GeV region; only

total errors are shown. The right-hand side provides the various con-
tributions to aμ in accord with Table 1 in [2] together with our own

datum for aHV P−LO
μ . The result for �aμ =aμ(exp)−aμ(th), based on

the EBHLS2 fit and the average of the BNL and FNAL measurement
[1,4], is also given; the effect of the systematic is discussed in the body
of the text

Contribution from Energy range 1010 × aHVP−LO
μ Contribution from 1010 × aμ

Missing channels
√
s ≤ 1.05 1.21 ± 0.17 LO-HVP 687.48 ± 2.93 +

[+2.31
−0.69

]

syst

J/ψ 8.94 ± 0.59 NLO HVP [91] −9.83 ± 0.07

ϒ 0.11 ± 0.01 NNLO HVP [94] 1.24 ± 0.01

Hadronic (1.05, 2.00) 62.95 ± 2.53 LBL [2,95] 9.2 ± 1.9

Hadronic (2.00, 3.20) 21.63 ± 0.93 NLO-LBL [96] 0.3 ± 0.2

Hadronic (3.20, 3.60) 3.81 ± 0.07 QED [97,98] 11658471.8931 ± 0.0104

Hadronic (3.60, 5.20) 7.59 ± 0.07 EW [99,100] 15.36 ± 0.11

pQCD (5.20, 9.46) 6.27 ± 0.01 Total theor. 11 659 175.33 ± 3.49 +
[+1.62
−0.0

]

syst

Hadronic (9.46, 11.50) 0.87 ± 0.05 Exper. aver. [4] 11659206.1 ± 4.1

pQCD (11.50,∞) 1.96 ± 0.00 1010 × �aμ 30.77 ± 5.38 −
[+2.31
−0.69

]

syst

Total 1.05 → ∞ + missing chann. 115.34 ± 2.77 Significance (nσ ) 5.72σ

tions other than the LO–VP: higher-order HVP effects, light-
by-light, QED and electroweak inputs. For consistency with
others, we have used for these the values given in Table 1 of
[2]. This sums up to:

aHLS
μ = 11, 659, 175.33 ± 3.49 +

[+2.31
−0.69

]

syst
(58)

in units of 10−10, which exhibits a 5.72σ difference with the
experimental average [4]. If taking into account the possible
shift of the aμ central value following from our systematics
upper bound, the significance for �aμ = aBNL

μ − aHLS
μ can

decrease to 5.31σ .
A final remark should be asserted: one may find amazing

the jump in significance of �aμ compared to [19]; a mere
comparison of the EBHLS2 numerical outcome with those of
our previous work clearly shows that it is almost unchanged.
The changes reported here are solely due to the 30% reduction
of the uncertainty produced by averaging48 the FNAL [4] and
BNL [1]measurements.

11.5 A challenging value for aHV P−LO
μ

In Sect. 9.2 , we have revisited the consistency topic of the
various available dipion spectra. The most relevant fit prop-
erties of these are collected in Table 3. Comparing the χ2/N
averages for NSK, KLOE and BaBar in global fits where
each of them is used as single representative for the ππ chan-
nel and fits using their pairwise combinations permits sev-

48 Using only the BNL datum leads to a significance for the �aμ central
value of 4.7σ .

eral conclusions reflected by the fit probabilities displayed
therein.49 Namely:

• The tension exhibited by the pairwise fit involving KLOE
and NSK is marginal compared to the fits using each of
them in isolation: the fit probabilities are quite similar.

• In the pairwise fit involving KLOE and BaBar, one
observes a strong tension reflected by the drop in proba-
bility between the pairwise fit and those with KLOE and
BaBar in isolation.

• The pairwise fit of the NSK and BaBar spectra also
exhibits some tension between them, but at a softer
level: if the drop in probability versus the NSK fit in
isolation is large (a factor of � 2), the corresponding
drop in probability versus BaBar in isolation is small
(62.9% → 51.7%).

This motivates us to examine a global fit involving the
NSK,50 BESIII [26,27], Cleo-c [48] and BaBar spectra, the
KLOE data samples being excluded. In contrast to the fits
reported in Table 3, this special fit includes the three-pion
spectra and involves 1500 data points; it converges at χ2

total =
1484, yielding a 39.5 % probability. This fit is not as good
as the standard one (see the subsection just above), which
results in a � 90% probability, but is reported in some detail
here for completeness.

49 The three-pion data are discarded from the fits reported in this Table.
50 Including the former data collected in [76].
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Fig. 9 Recent evaluations of
1010 × aHVP−LO

μ : on top, the
result derived by a direct
integration of the data combined
with perturbative QCD; the
dotted vertical lines indicate the
±1σ interval. The LQCD data
are followed by the results
derived using dispersive
methods from [90,91,101]. The
two HVP-LO evaluations
derived using EBHLS2 fitting
codes are given at the bottom
(see text). The ±1σ interval
corresponding to the
BNL+FNAL average [4] is
shown by the shaded area

For the region up to 1.05 GeV, one gets

aμ(ππ) = 497.83 ± 0.90 and

aμ(HLS) = 577.19 ± 1.00 (59)

in units of 10−10. The corresponding standard results can
be found in Table 7, more precisely its third data col-
umn; the increases produced by BaBar (excluding KLOE)
for these quantities are equal: δaμ(ππ) = δaμ(HLS) =
5.07 × 10−10. So the difference is fully carried by the ππ

channel. The information displayed in the left-hand Table 8
allows us to derive the full HVP-LO:

aHVP−LO
μ (BaBar) = [692.53 ± 2.95] × 10−10 (60)

and can be affected by the same additional systematic
uncertainty proposed above. Finally, the difference between
aHVP−LO
μ (BaBar) and the experimental average [4] drops

to �aμ = aavrg
μ − aHVP−LO

μ (BaBar) = 23.65 ± 5.38 and
exhibits a statistical significance of 4.78σ not counting the
systematic uncertainty effect. Taking it into account, the sig-
nificance may drop to 4.35σ .

11.6 The different muon HVP-LO evaluations

Figure 9 collects recent evaluations of the leading order muon
HVP. A numerical integration of the annihilation and R(s)
data, appropriately completed by perturbative QCD calcula-
tions (see Table 8), yields the entry displayed at the top of the
figure. It is followed by some reference evaluations derived
by LQCD collaborations, namely [3,102–106]; the second of
the RBC/UKQCD evaluations [104] relies on mixing LQCD
and dispersive information. This datum is just followed by the
HVP-LO dispersive evaluations from [90,91,101]. The bot-
tom pair of data points are the EBHLS2-based evaluations
of the full HVP-LO derived in this study. It can be noted
that the preferred EBHLS2 evaluation (90% prob.), tagged
by KLOE, is 5.30 × 10−10 smaller than KNT19 [91] and
6.54 × 10−10 smaller than DHMZ19 [90]. In contrast, the
challenging evaluation (40% prob.), tagged by BaBar, dif-
fers only by 0.25 × 10−10 and 1.47 × 10−10 from KNT19
and DHMZ19, respectively.

The difference in our two evaluations (5.05×10−10) com-
pared to their respective accuracies (2.9 × 10−10), makes
us reluctant to propose a mixture of these or a common
KLOE+BaBar fit evaluation. Nevertheless, it shows that
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model dependence is not the main source of disagreement
between the various dispersive evaluations.

The difference between the most recent BMW evaluation
[3] and those based on the various dispersion relation (DR)
approaches ranges between 13 × 10−10 and 20 × 10−10; it
appears difficult to fill such a gap with only e+e− annihilation
data below � 1 GeV, an experimentally well-explored energy
region.

12 The EBHLS2 approach to the [π0, η, η′] system

The mixing properties of the [π0, η, η′] system underlie the
physics of the light meson radiative decays as well as the
amplitudes for the e+e− → Pγ annihilations which are
obviously tightly related. The other important data involved
in this issue, namely the Pγ γ decays and the V γ η′ cou-
plings, are also part of the EBHLS2 scope.51

Phenomenological descriptions of the [π0, η, η′] system
were first based on using U (3) symmetric V Pγ coupling
expressions enriched by parameterizations of nonet symme-
try breaking in both the pseudoscalar and vector sectors as
done in [107], for instance. A first HLS-based model includ-
ing its anomalous sectors [12] provided a unified framework
which encompasses the P → γ γ decays and the radiative
decays of the form V Pγ [108]. The effective Lagrangian
approach, started long ago (see [60], for instance), has been
pursued up to very recently (a comprehensive list of previous
references can be found in [109]).

On the other hand, chiral perturbation theory and its
extension (EChPT), originally formulated by Kaiser and
Leutwyler [33,34], allowed us to fully address the [π0, η, η′]
mixing and gave rise to the singlet-octet basis description in
terms of two angles and two decay constants. It was shown
in [31] that this approach is naturally accommodated within
a HLS framework with only one mixing angle provided that
SU(3) and nonet symmetry breakings are also accounted
for within its effective Lagrangian. Besides the singlet-octet
basis formulation, another convenient formulation, known as
quark flavor basis, has been proposed in [35,36]; its proper-
ties and its relation with the singlet-octet formulation have
been thoroughly reported in [37].

Finally, isospin symmetry breaking in the [π0, η, η′] sys-
tem has also been considered and parameterized as η and η′
admixtures inside the physically observed π0 meson [37,39].
Additional isospin breaking effects have also been studied,
generated by having different uu and dd decay constants
[38].

It happens that the parameters which substantiate the
singlet-octet [33,34] and quark flavor basis parameteriza-

51 Actually, among the data traditionally used to address this topic,
only the J/ψ decay information remains outside the EBHLS2 scope.

tions [35–37] can be accessed within the EBHLS2 frame-
work as reported above – and in [19]. Its Lagrangian leads
to quite similar expressions and also includes isospin break-
ing contributions. Moreover, the global fits performed and
already referred to in the previous sections allow for precise
numerical determinations of the mixing parameters of the
[π0, η, η′] system in both the singlet-octet and quark flavor
bases.

In the following, we report on works performed in paral-
lel with both the BHLS2 framework previously defined [19]
and its EBHLS2 extension analyzed in the preceding sec-
tions. However, the detailed analysis of the [π0, η, η′] system
exhibits properties which make relevant a further analysis
related to the kinetic breaking introduced above to account
for the τ dipion spectra, especially the Belle one, by far the
most precise spectrum.

If the fate of EBHLS2 versus BHLS2 is tightly related
to a forthcoming high statistics measurement of the dipion
spectrum in the τ decay, the analysis of the [π0, η, η′] system
nevertheless reveals constraints among the three terms of the
kinetic breaking matrix XH which should be addressed and
which, certainly, influence this picture.

13 The axial currents from the EBHLS2 effective
Lagrangian

The main tool to address the [π0, η, η′] mixing topic is
the axial currents which are derived from the pseudoscalar
kinetic energy term Eq. (23) – restated here for convenience:

K = Tr [∂PbareXA∂PbareXA] + 2 {Tr [XH∂Pbare]}2 (61)

by the derivatives:

Jaμ = fπ
∂K

∂(∂μPa
bare)

,
[
Pbare = ∑

a=0,···8 Ta Pa
bare

]
, (62)

with respect to the entries associated with each of the U (3)

basis matrices normalized such that Tr[TaTb] = δab/2; the
breaking matrix XA is given in Eq. (10) and XH can be found
in Eq. (20). They are given by (summation over repeated
indices is understood):

Jaμ = 2 fπ Tr [Ta XATbXA] ∂Pb
bare + 4 Tr [XH∂Pbare]

×Tr [XHTa] (δa,0 + δa,3 + δa,8). (63)
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The axial currents relevant for our purpose are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J 3/ fπ = ∂π3
b + �A√

3

[√
2∂η0

b + ∂η8
b

]

+λ3
[
λ3∂π3

b + λ0∂η0
b + λ8∂η8

b

]
,

J 0/ fπ = D∂η0
b + G∂η8

b +
√

2

3
�A ∂π3

b

+λ0
[
λ3∂π3

b + λ0∂η0
b + λ8∂η8

b

]
,

J 8/ fπ = G∂η0
b + F∂η8

b + �A√
3

∂π3
b

+λ8
[
λ3∂π3

b + λ0∂η0
b + λ8∂η8

b

]
,

(64)

where the subscript b stands for bare and:

D = z2
A + 2

3
, F = 2z2

A + 1

3
, G =

√
2

3
(1 − z2

A), (65)

in terms of zA, the (s, s) entry of the XA breaking matrix.
Equation (31) and the definitions given in Sect. 4 allow us to
express the axial currents at first order in breakings in terms
of the renormalized R-fields – those which render canonical
the PS kinetic energy term – by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J3
μ/ fπ=

(

1 + λ2
3

2

)

∂μπ3
R +

(
λ3λ̃0

2 + �A√
6

)
∂μη0

R

+
(

λ3λ̃8
2 + �A

2
√

3

)
∂μη8

R,

J0
μ/ fπ =

(
�A√

6
+ λ0λ3

2

)
∂μπ3

R +
(
zAC + λ0λ̃0

2

)
∂μη0

R

+
(
−zA A + λ0λ̃8

2

)
∂μη8

R,

J8
μ/ fπ =

(
�A

2
√

3
+ λ3λ8

2

)
∂μπ3

R +
(
−zA A + λ8λ̃0

2

)
∂μη0

R

+
(
zAB + λ8λ̃8

2

)
∂μη8

R,

(66)

λ̃0 and λ̃8 having been given in Eqs. (25) in terms of A, B, C ,
λ0 and λ8. The following matrix elements are of purpose for
the η − η′ mixing topic (∂μ → iqμ, outgoing momentum):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0|J 0
μ|η0

R >= fπ
{
zAC + λ0λ̃0

2

}
iqμ(η0

R)

≡ i f0 qμ(η0
R),

< 0|J 0
μ|η8

R >= fπ
{
−zA A + λ0λ̃8

2

}
iqμ(η8

R)

≡ ib0 qμ(η8
R),

< 0|J 8
μ|η8

R >= fπ
{
zAB + λ8λ̃8

2

}
iqμ(η8

R)

≡ i f8 qμ(η8
R),

< 0|J 8
μ|η0

R >= fπ
{
−zA A + λ8λ̃0

2

}
iqμ(η0

R)

≡ ib8 qμ(η0
R),

(67)

which define the decay constants f0, f8, b0 and b8. One
observes that the kinetic breaking affects all these matrix
elements; in order to connect with [31], one should identify
the usual kinetic (’t Hooft) breaking term with λ2

0.

Regarding the other fields, EBHLS2 does not go beyond
the BKY breaking [16,17] as their R renormalized and phys-
ical states coincide. They relate to their bare partners by [14]:

π±
b = π±

R , K±
b = 1√

zA

[

1 − �A

4

]

K±
R ,

K 0
b = 1√

zA

[

1 + �A

4

]

K 0
R . (68)

This transformation to R fields brings the corresponding part
of the kinetic energy term into canonical form [14]. The cor-
responding axial currents are written as:

Jπ±
μ = fπ∂μπ∓

R , J K±
μ = √

zA

[

1 + �A

4

]

fπ∂μK
∓
R ,

J K 0

μ = √
zA

[

1 − �A

4

]

fπ∂μK
0
R . (69)

Using also the expression for J 3
μ given just above, one can

use the expectation values:

< 0|J Pμ |P(q) >= i fP qμ, (P = π±, π0, K±, KL/KS) (70)

to derive:

fπ0 =
[

1 + λ2
3

2

]

fπ , fK± ≡ fK = √
zA

[

1 + �A

4

]

fπ ,

fK 0 = √
zA

[

1 − �A

4

]

fπ (71)

and then one gets zA = [ fK / fπ ]2 up to isospin breaking
corrections. Moreover, it should also be noted that, once λ3

is floating, fπ0 may differ from fπ (≡ fπ+) by as much as �
2.5 %, in line with the remarks in [110]. This comes out of our
fits which successfully involve, besides the τ dipion spectra,
the e+e− → (π0/η)γ annihilation data and the widths of
the anomalous decays {P → γ γ, P ∈ (π0, η, η′)}.

14 The η − η′ mixing: the octet-singlet basis
parameterization

The axial current matrix elements in the two-angle scheme
are written as:

< 0|J 0,8
μ |η/η′ >= i F0,8

η/η′qμ (72)

in terms of the physical η/η′ fields carrying a momentum qμ.
As usual, one defines the F0,8 couplings and the θ0,8 mixing
angles by [32–34]:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F8
η = F8 cos θ8 = f8 cos θP − b8 sin θP ,

F8
η′ = F8 sin θ8 = f8 sin θP + b8 cos θP ,

F0
η = −F0 sin θ0 = b0 cos θP − f0 sin θP ,

F0
η′ = F0 cos θ0 = b0 sin θP + f0 cos θP ,

(73)
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the f ’s and b’s being those given by Eq. (67). The π3
R compo-

nents of the physical η and η′ fields, providing contributions
of order O(δ2) in the matrix elements < 0|J 0,8

μ |η/η′ >, are
discarded. Using Eqs. (67) and (73) and the definitions for
A, B and C given in Sect. 4.1, one derives:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[F0]2 = [F0
η ]2 + [F0

η′ ]2 = f 2
0 + b2

0 =
[
z2
A + 2

3
+ λ2

0

]

f 2
π ,

[F8]2 = [F8
η ]2 + [F8

η′ ]2 = f 2
8 + b2

8 =
[

2z2
A + 1

3
+ λ2

8

]

f 2
π .

(74)

The no-BKY breaking limit is obtained by letting zA �
[ fK / fπ ]2 → 1. The correspondence with others [33,36,37]
becomes manifest, when using the following identities:

⎧
⎪⎪⎨

⎪⎪⎩

z2
A + 2

3
= 2zA + 1

3
+ (zA − 1)2

3
2z2

A + 1

3
= 4zA − 1

3
+ 2

3
(zA − 1)2

(75)

which provide:

⎧
⎪⎪⎨

⎪⎪⎩

[F0]2 =
{

2zA + 1

3
+
[

λ2
0 + (zA − 1)2

3

]}

f 2
π ,

[F8]2 =
{

4zA − 1

3
+
[

λ2
8 + 2

3
(zA − 1)2

]}

f 2
π .

(76)

If one assumes λ8 = 0, these expressions coincide at
leading order in breakings with their usual EChPT analogs
[33,37]; one should note the (zA − 1)2-dependent terms,
which, even if non-leading, are not negligible compared to
the contributions provided by the kinetic (’t Hooft) break-
ing. Regarding the non-leading terms in the [F0/8]2, we
can anticipate our fit result analysis by mentioning that
λ2

0 � 8 × 10−2 while the flavor breaking correction is gov-
erned by (zA − 1)2 � 9%.

At leading order in breakings, one also finds:

F0F8 sin (θ0 − θ8) =
[√

2

3
(z2

A − 1) − λ0λ8

]

f 2
π , (77)

which vanishes when no breaking, leading to θ8 = θ0 = θP .
This expression can be rewritten:

F0F8 sin (θ0 − θ8) = 2
√

2

3
(zA − 1) f 2

π

+
[√

2

3
(zA − 1)2 − λ0λ8

]

f 2
π , (78)

which also coincides at leading in breaking with its EChPT
analog [33,37], as soon as λ8 – which is not involved within
EChPT – is dropped out.

The usual axial current matrix elements in the two-angle
mixing scheme yield the following expressions in terms of

the singlet-octet mixing angle θP and the BKY and kinetic
breaking parameters:

⎧
⎪⎪⎨

⎪⎪⎩

tan θ8 = tan [θP + �8], tan �8 = b8

f8
= − 2zA A − λ8̃λ0

2zAB + λ8̃λ8
,

tan θ0 = tan [θP − �0], tan �0 = b0

f0
= − 2zA A − λ0λ̃8

2zAC + λ0λ̃0
.

(79)

Compared with [31], the expression for tan θ8 is recovered
in the limit λ8 → 0. Regarding tan θ0, in the same limiting
case, the leading order terms yield:

tan �0 = A

C

[

1 − λ2
0

3(zA + 1)

2zA(zA + 2)

]

= A

C
[1 − 0.80λ2

0],

which exhibits a behavior similar to the nonet symmetry
breaking coefficient x defined in [31].

Equation (79) allows us to derive interesting expres-
sions for the Kaiser–Leutwyler angles θ0 and θ8 in terms
of the BHLS model parameters. Discarding terms of orders
O[(zA − 1)3] and O[(zA − 1)2δ] or higher52, one gets:
⎧
⎪⎨

⎪⎩

θ8 + θ0 = 2θP +
√

2
3 (zA − 1)

[
(zA−1)

3 − λ2
0 + λ2

8

]
,

θ8 − θ0 = − 2
√

2
3 (zA − 1) + λ0λ8

zA
+

√
2

3 (zA − 1)
[
(zA − 1) + λ2

0 + λ2
8

]
.

(80)

The expressions one can derive for θ0 and θ8 coincide with
those in Eq. (84) in [37] at leading order. Let us anticipate the
numerical information provided by our fits to indicate that
zA − 1 � 0.3, while the different squared λ combinations
stand at the few percent level at most; therefore, the break-
ing corrections affect both the sum and the difference in a
significant way.

Equation (80) can be written:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ8 = θP −
√

2

3
(zA − 1)[1 − λ2

8] + λ0λ8

2zA
+ 2

√
2

9
(zA − 1)2,

θ0 = θP +
√

2

3
(zA − 1)[1 − λ2

0] − λ0λ8

2zA
−

√
2

9
(zA − 1)2.

(81)

One may note the symmetry between the expressions, sym-
metry only spoiled by the term of order O[(zA − 1)2]. This
shows that the departure from the one mixing angle scheme
only reflects the breaking of the SU (3) and nonet (or kinetic)
symmetries.

15 The η − η′ mixing: the quark flavor basis
parameterization

Besides the octet-singlet parameterization of the η − η′ sys-
tem developed by [32–34] and referred to just above, another

52 Let us remember that the λ parameters introduced via the generalized
’t Hooft term are treated as O(δ1/2)
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parameterization has been advocated by [35–37]; this chal-
lenging parameterization will be referred to as either quark
flavor basis or FKS scheme. It seems to be worth analyzing
how it shows up within the broken HLS framework. The axial
currents relevant to determining how the FKS parameteriza-
tion arises within EBHLS2 are

⎧
⎪⎪⎨

⎪⎪⎩

Jqμ =
√

2

3
J 0
μ +

√
1

3
J 8
μ,

J sμ =
√

1

3
J 0
μ −

√
2

3
J 8
μ,

(82)

in terms of the usual singlet and octet axial currents previ-
ously encountered. Using the results collected in Eq. (66),
one can derive:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jqμ/ fπ =
[

�A
2 + λqλ3

2

]
∂μπ3

R +
[√

2
3 + λq λ̃0

2

]

∂μη0
R

+
[√

1
3 + λq λ̃8

2

]

∂μη8
R,

J sμ/ fπ = λsλ3

2
∂μπ3

R +
[

zA

√
1

3
+ λs λ̃0

2

]

∂μη0
R

−
[

zA
√

2
3 − λs λ̃8

2

]

∂μη8
R,

(83)

where λ̃0 and λ̃8 have been given in Eq. (25) and where one
has defined:

λq =
√

2

3
λ0 +

√
1

3
λ8, λs =

√
1

3
λ0 −

√
2

3
λ8, (84)

in tight connection with the definitions (82). The decay con-
stants relevant in the FKS formulation are:

{
< 0|Jqμ |η/η′ >= iqμF

q
η/η′ ,

< 0|J sμ|η/η′ >= iqμF
s
η/η′ ,

(85)

and the mixing angles are defined by [37]:

{
Fq

η = Fq cos φq , Fq
η′ = Fq sin φq ,

Fs
η = −Fs sin φs, Fs

η′ = Fs cos φs .
(86)

Using Eq. (84) and the definition of the renormalized PS
fields in terms of their physical partners (see Eq. (33)), one

can derive:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fq
η / fπ = −

[√
2
3 + λq λ̃0

2

]

sin θP

+
[√

1
3 + λq λ̃8

2

]

cos θP ,

Fq
η′/ fπ =

[√
2
3 + λq λ̃0

2

]

cos θP

+
[√

1
3 + λq λ̃8

2

]

sin θP ,

Fs
η / fπ = −

[

zA
√

1
3 + λs λ̃0

2

]

sin θP

−
[

zA
√

2
3 − λs λ̃8

2

]

cos θP ,

Fs
η′/ fπ =

[

zA
√

1
3 + λs λ̃0

2

]

cos θP

−
[

zA
√

2
3 − λs λ̃8

2

]

sin θP .

(87)

From Eqs. (86) and (87), one derives:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan φq = tan
[
θP +Uq

]
, tanUq =

√
2
3 + λq λ̃0

2
√

1
3 + λq λ̃8

2

� √
2 + 3

2zA
λqλs,

tan φs = tan [θP +Us], tanUs =
zA
√

2
3 − λs λ̃8

2

zA
√

1
3 + λs λ̃0

2

� √
2 − 3

2zA
λqλs,

(88)

up to terms of order O(δ2). Using the definition of the FKS
ideal mixing angle53 [37], θFK S = − arctan

√
2 = −54.7◦.

Equation (88) implies the following relationships:

[φq − φs] = λqλs
zA

+ O(δ2),

[φq + φs] = 2[θP − θFK S] + O(δ2)
(89)

which emphasizes the numerical closeness of the φq and φs

FKS mixing angles. It is worthwhile to go on by deriving
additional expressions which can be compared to their part-
ners in [35–37]. We have:

⎧
⎪⎪⎨

⎪⎪⎩

[Fq ]2 = [Fq
η ]2 + [Fq

η′ ]2 = f 2
π [1 + λ2

q ] + O(δ2),

[Fs ]2 = [Fs
η ]2 + [Fs

η′ ]2 = f 2
π [z2

A + λ2
s ] + O(δ2),

Fq
η Fs

η + Fq
η′ Fs

η′ = Fq Fs sin [φq − φs ] = f 2
πλqλs + O(δ2),

(90)

where Fs and Fq and the FKS mixing angles are given by
Eq. (86) above. It is worth remarking that the second Eq. (90)
can be rewritten:

[Fs]2 = f 2
π [z2

A + λ2
s ] = f 2

π [2zA − 1 + λ2
s + (zA − 1)2],

53 In our previous papers as well as below – see Eq. (112) – we preferred
defining the ideal mixing angle by θI = arctan 1/

√
2 � 35◦ in more

natural correspondence with the ρ0 − ω ideal mixing angle.
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where the last term is second order in SU(3) breaking but
not numerically small compared to the λ0 or λs parameter
squared values.

Then, using the definitions for our parameters (and cancel-
ing out λ8), it is obvious that the quantities given by Eq. (90)
coincide up to the O(δ2) and (zA − 1)2 terms expected with
the corresponding FKS expressions.54 Moreover, it should be
noted that Eqs. (88) and (89) exhibit the properties of the FKS
mixing angles φq and φs emphasized in [37] for instance. In
particular, the single-angle φ occurring in the FKS parame-
terization is φ = [φq + φs]/2, which only depends on θP ,
whereas the difference φq − φs is a pure effect of the kinetic
breaking mechanism defined in Sect. 4.2.

It should thus be noted that the nonvanishing character
of [φq − φs] is not an isospin breaking effect and that φq =
φs+O(δ2) rather implies either λ8 = −√

2λ0 or λ0 = √
2λ8.

16 Further constraining EBHLS2

It may be of interest to identify additional constraints which
could apply to EBHLS2 and highlight symmetry breaking
effects not explicitly emphasized. In the FKS approach, an
important ingredient is some properties of axial currents still
not imposed to EBHLS2, namely the diagonal character (at
leading order) of the following matrix elements [38]:

< 0|Jaμ|ηa(p) > = i pμ faδab, |ηa(p) >= |aa(p) >,

Jaμ = aγμγ5a, {a = u, d, s}. (91)

which may appear to be natural constraints to be plugged
into our model where one also works at orderO(δ). The axial
currents relevant for this purpose can be readily derived from
those displayed in Eqs. (64) and (82):

⎧
⎪⎨

⎪⎩

Juμ = 1√
2

[
Jqμ + J 3

μ

]
, Jdμ = 1√

2

[
Jqμ − J 3

μ

]
,

J sμ =
√

1
3 J

0
μ −

√
2
3 J

8
μ,

⎫
⎪⎬

⎪⎭
. (92)

As one can identify the leading order term in the Fock expan-
sion of the various |ηa > states with the following bare PS
field combinations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|ηu >= |uu >= 1√
2
|π0

bare > + 1√
3
|η0

bare >

+ 1√
6
|η8

bare >,

|ηd >= |dd >= − 1√
2
|π0

bare > + 1√
3
|η0

bare >

+ 1√
6
|η8

bare >,

|ηs >= |ss >= 1√
3
|η0

bare > −
√

2
3 |η8

bare >,

(93)

54 See Eqs. (28–30) in [37].

the conditions imposed by Eq. (91) can be accessed within
EBHLS2. One thus gets55:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
[ fu + fd ] =

[

1 + λ2
3+λ2

q
2

]

fπ ,

1

2
[ fu − fd ] = [

λ3λq + �A
]
fπ ,

fs = [
z2
A + λ2

s

]
fπ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (94)

One should note that ( fu + fd)/2 	= fπ0 if λq does not
identically vanish,56 whatever λ3 is; it should be emphasized
that λ0 is related to the so-called �1(≡ λ2

0) of EChPT (see
[32–34,37]). Moreover, the z parameter defined by Kroll [38]
is:

zKroll = fu − fd
fu + fd

= �A + λ3λq + O(δ2), (95)

which exhibits the expected dependence upon the isospin
breaking parameters of EBHLS2 coming via the XA and XH

matrices.
On the other hand, the a 	= b matrix elements are (a factor

i fπ pμ being understood):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0|Juμ |ηd(p) > = 1

2

[
λ2
q − λ2

3

]
,

< 0|Jdμ |ηu(p) >

= 1

2

[
λ2
q − λ2

3

]
,

< 0|Juμ |ηs(p) > = λs√
2

[
λq + λ3

]
,

< 0|Jdμ |ηs(p) >

= λs√
2

[
λq − λ3

]
,

< 0|J sμ|ηu(p) >= λs√
2

[
λq + λ3

]
,

< 0|J sμ|ηd(p) >

= λs√
2

[
λq − λ3

]
,

(96)

55 It happens that this fs differs from the Fs defined in the preceding
section; they are related by fs fπ = F2

s .
56 The condition λq = 0 implies that λ0 and λ8 are either simultane-
ously nonvanishing or simultaneously vanishing; we show just below
that λq = 0 �⇒ λ3 = 0.

123



184 Page 38 of 54 Eur. Phys. J. C (2022) 82 :184

Three solutions57 allow us to exhaust the simultaneous van-
ishing of expressions (96); they are:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Solutions A± : λs = 0, λq = ±λ3

�⇒ λ0 = ±
√

3

2
λ3 = √

2λ8,

Solution B : λs 	= 0, λq = λ3 = 0
�⇒ λ8 = −√

2λ0, λ3 = 0,

(97)

not counting the trivial solution T ≡ {[λ0 = λ8 = λ3 = 0]},
already known to be unable to satisfactorily accommodate
our set of reference data – this statement is also valid for
solution B as shown in the first data column of Table 1 in
connection with the account of the Belle dipion spectrum
[21]. In contrast, both solutions A± are found to work well
within our minimization procedure. For these solutions, the
three parameters of the kinetic breaking mechanism are no
longer free – as assumed in the preceding sections in line
with the common belief – but become algebraically related
to each other.

So, it follows from the developments just stated that
imposing the Kroll conditions (91) is far from anecdotal;
indeed, any of the solutions (97) which cancel out the matrix
elements in Eq. (96) shows that a nonvanishing λ0 (the usual
kinetic ’t Hooft determinant term) is possible if and only if
λ8 is nonzero. This statement – valid if defining XH by Eq.
(20) – also applies if one prefers58 defining XH by Eq. (22). It
should also be stressed that only one of the previously defined
solutions can be valid; it could, hopefully, be identified by
confronting each solution with the data.

17 The π0 − η − η′ mixing: breaking of isospin
symmetry

Another topic relevant for the π0 − η − η′ mixing is the
content of isospin zero mesons inside the physically observed
π0 wave-function; accounts of this can be found in [37,38]
for instance. In standard ChPT approaches, the physical π0

is expressed in terms of the bare π0
bare field with admixtures

of the physical η and η′ mesons:

|π0 >= |π0
bare > +κ|η > +κ ′|η′ > +O(δ2), (98)

the O(δ) parameters κ and κ ′ depending on the light quark
mass difference take respectively the values κ0 and κ ′

0 defined

57 Actually, each of the solutions below is twofold degenerated; indeed,
as each physical quantity exhibits a dependence only upon squares of
the λi , any solution {λi = λ0

i , i = 0, 3, 8} carries the same physics as
its twin {λi = −λ0

i , i = 0, 3, 8}.
58 This comes down in dropping out the products λiλ j for i 	= j ∈
(0, 3, 8) in all the expressions given in the sections above and in the
appendices.

by [37]:

κ0 = 1

2
cos φ

m2
dd − m2

uu

M2
η − M2

π

, κ ′
0 = 1

2
sin φ

m2
dd − m2

uu

M2
η′ − M2

π

, (99)

up to higher-order contributions.59 The quark mass term can
be estimated by60 m2

dd − m2
uu = 2[M2

K 0 − M2
K± − M2

π0 +
M2

π±] � 1.03 × 10−2 GeV2, and φ is some approximate
value derived from the φs and φq angles defined in Sect. 15.
However, because φq − φs � λqλs + O(δ2), any solution
providing the vanishing of Eq. (96) automatically provides
φs = φq + O(δ2).

On the other hand, Kroll has extended this formulation
[38] in order to account for isospin breaking effects not gen-
erated by the light quark mass difference:

κ = cos φ

[
m2
dd−m2

uu
2(M2

η−M2
π )

+ zKroll

]

,

κ ′ = sin φ

[
m2
dd−m2

uu

2(M2
η′−M2

π )
+ zKroll

]

,

(100)

where zKroll is expressed in terms of the fu and fd decay
constants defined by Eq. (91) and expressed in the EBHLS2

framework by Eq. (95).
In order to connect EBHLS2 with the η/η′ fractions inside

the physically observed π0 [38,39], one needs the relation
involving these and π0

bare. After some algebra, Eqs. (31) and
(33) allow us to derive an expression similar to Eq. (98):

|π0 >=
[

1 + λ2
3

2

]

|π0
bare > +ε|η > +ε′|η′ >, (101)

where the rescaling of the π0
bare term is specific to the kinetic

breaking XH introduced in the EBHLS2 Lagrangian, and ε

and ε′ are given by:

⎧
⎪⎪⎨

⎪⎪⎩

ε=ε + λ3λq + �A

2
cos

(
φq + φs

2

)

− λ3λs

2zA
sin

(
φq + φs

2

)

,

ε′ =ε′ + λ3λq+�A

2
sin

(
φq + φs

2

)

+ λ3λs

2zA
cos

(
φq + φs

2

)

,

(102)

up to terms of order O(δ2), having used Eq. (89) and defined
θFK S = − arctan

√
2.

As (φq + φs)/2 is certainly a quite motivated expression
for the FKS parameter φ [37,38], the similarity of Eqs. (100)
and (102) is striking, and even more if imposing λs = 0
– as requested by any of the A± solutions (see Eq. (97)) –

59 Another formulation [39] in terms of the quark mass difference and
of the mixing angle named here θP is noted below; it has been used in our
previous studies [14,15,19,75] and its fit properties will be discussed
below.
60 In this expression, the subtracted electromagnetic contribution to
kaon mass difference is estimated as �MK = �π = M2

π0 − M2
π± =

−1.24×10−3 GeV2. However, as discussed in [38], its exact magnitude
is rather controversial; for instance, Moussallam [111] rather yields
�MK = k�π with k = 2 ÷ 3).
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which drops the last term in each of Eq. (102). The condition
λs = 0, indeed, implies:

{

ε = ε + λ3λq + �A

2
cos φ,

ε′ = ε′ + λ3λq + �A

2
sin φ

}

. (103)

with φ = φq = φs up to O(δ2) terms. Switching off the
BKY (�A) and kinetic breaking mechanisms turns out to set
fu = fd , and then one expects to recover the results usual in
this limit [37,38]. Thus, the following identifications

{

ε = 1

2
cos φ

m2
dd − m2

uu

M2
η − M2

π

(= κ0),

ε′ = 1

2
sin φ

m2
dd − m2

uu

M2
η′ − M2

π

(= κ ′
0)

}

(104)

appear motivated. However, because additional singlets – like
a gluonium – may contribute to the η−η′ mixing, likely more
inside the η′ meson than inside η, it is of concern to allow
for a departure from the mere identification (104), especially
for the η′ amplitude term ε′. So, letting ε and ε′ float inde-
pendently provides a relevant piece of information.

κ0 and κ ′
0 are a common way to express isospin breaking

effects due to quark masses in the FKS picture; another way to
proceed is proposed in [39], which was used in our previous
works. This turns out to rely on quark masses, defined as:

{

�0 = −√
2ε0 cos θP tan δP , � ′

0 = √
2ε0 sin θP cot δP ,

ε0 =
√

3

4

md − mu

ms − m̂

}

(105)

and replace Eq. (104) by:

{ε = �0, ε′ = � ′
0}. (106)

The angle δP occurring in these expressions, defined in Eq.
(112), is given by δP = θP −θI , where θI = π/2−θFK S ; in
this approach, the floating parameter is no longerm2

dd −m2
uu ,

but ε0. Using the light quark masses from FLAG 2016 [112],
ε0 is expected to be around � 1.22×10−2. One can anticipate
fit results and state that fitting with Eqs. (104) or (105) yields
similar fit properties.

Finally, we should mention that the zKroll dependence
in Eqs. (102) and (103) exhibits an unexpected difference
compared to Eq. (100): EBHLS2 finds a weight for zKroll

smaller by a factor of 2. Whether it is a specific feature of
EBHLS2 is an open question.

18 The π0 − η − η′ mixing: the EBHLS2 analysis

In order to deal with the τ dipion spectra and the update of the
muon HVP, it was found appropriate to release at most the
constraints on the model parameters within the fit procedure;
this also applies to the model parameters named ε and ε′
which were left free to vary independently.

In order to compare with expectations, it is also worth-
while to consider the case when ε = κ0 and ε′ = κ ′

0 are
imposed; this turns out to let the parameter m2

dd −m2
uu float

and derive ε and ε′ by means of Eq. (104), which constrains
ε and ε′ to be like-sign. Instead, if ε and ε′ are floating inde-
pendently, Eq. (104) allows for separate determinations of
m2

dd − m2
uu from the fitted η and η′ admixtures.

Furthermore, in the fits reported from now on, the polyno-
mial δPτ (s) is always second degree and, for completeness,
we allow the �A isospin breaking parameter to float, even if
it is not really significant – never more than 2σ .

The PDG value for the ratio fK / fπ is included in the set of
experimental data submitted to fit. The Belle dipion spectrum
is included, and we refer the reader to Sect. 3 for the specific
consequences this implies for the dipion spectra collected in
the τ lepton decay.

To be as comprehensive as possible, several cases for the
[λ0, λ8, λ3] triplet have been considered, namely the A± and
B solutions defined in Eq. (97), as well as the so-called triv-
ial solution {T ≡ [λ0 = λ8 = λ3 = 0]}; it has been found
worthwhile to also consider the case when the three λ param-
eters are left floating independently – referred to hereafter as
solution F. Solution F is, actually, very similar to the fit con-
ditions of the previous sections. The main fit properties are
gathered in Table 9 and lead to the following:

• Regarding solution B, the best fit returns λ0 = (−0.01±
36.26) × 10−2, which clearly exhibits convergence
towards the trivial solution {T ≡ [λ0 = λ8 = λ3 = 0]};
therefore, there is no point in distinguishing solution B
from the trivial solution T , which is the one actually
reported.

• With a minimum total χ2 larger by 60–95 units than the
other solutions, solution T/B can be safely discarded.

• When assuming condition

C ≡ {ε = κ0, ε
′ = κ ′

0}

both solutions A± return good probabilities. Solution A−
is, however, clearly favored even if A+ exhibits a reason-
able goodness of fit. Nevertheless, relaxing condition C ,
solutions A± exhibit practically the same fit probability.
This indicates that condition C is not a real constraint
for solution A−, whose total χ2 is almost unchanged
(�χ2 = 3). In contrast, conditionC exhibits a strong ten-
sion with solution A+ and provides a strongly degraded
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Table 9 Selected individual χ2/Npts values in EBHLS2 fits versus the
Kroll conditions (cf Eq. (91)). The first data column reports on the fit
where the three λ’s vary independently; the others refer to the solutions
defined in Eq. (97). The leftmost four data columns assume conditionC

(see text), whereas condition C has been relaxed in the last two column
fits. The last lines display the global χ2/Npts and probability for each
fit

EBHLS2 (BS) Sol. F Sol. T/B Sol. A+ Sol. A− Sol. A+ Sol. A−
ε = κ0 and ε′ = κ ′

0 ε and ε′ free

NSK π+π− (127) 139 134 132 136 136 138

KLOE π+π− (135) 137 153 143 139 141 138

BESIII π+π− (60) 49 48 47 49 48 49

Spacelike π+π− (59) 61 64 61 59 60 59

τ (A+C) (66) 61 75 60 59 65 61

τ (B) (19) 28 53 32 27 35 28

π0γ (112) 86 98 86 94 86 92

ηγ (182) 123 132 131 120 125 120

NSK π+π−π0 (158) 149 158 154 150 150 149

BESIII π+π−π0 (128) 138 138 138 138 138 138

Pγ γ & η′V γ (5) 5 8 8 9 4 7

χ2/Npts 1280/1366 1375/1366 1309/1366 1289/1366 1292/1366 1286/1366

Probability 85.9% 23.3 % 70.6 % 82.5% 80.1 % 83.5%

fit as �χ2 = 17 for only one fewer parameter; however,
ε and ε′ become unlike signs when relaxing condition C ,
which is certainly inconsistent with Eq. (104) – or Eq.
(105) – and with common expectations.
One observes, nevertheless, that the decay information (at
the bottom of Table 9) are better described61 by solution
A+ than solution A−. It should be noted that most studies
of the [π0, η, η′] mixing properties simply rely on the
two-body decays with Pγ γ and PV γ couplings.

• Replacing condition C by

C ′ ≡ {ε = �0, ε
′ = � ′

0}

does not lead to substantial differences. Indeed, one gets
χ2/Npts = 1303/1366 and 74.0% probability (A+) or
χ2/Npts = 1286/1366 and 83.8% probability (A−), i.e.,
solution A− remains preferred to A+ by the data.
It should be noted that relaxing condition C (or C ′) leads
to like-sign ε and ε′ for solution A−, but to unlike signs
for solution A+. As just noted, this could motivate the
discarding of solution A+.

• As could be expected, solution F is also good, benefiting
from larger parameter freedom than A± whether submit-
ted to condition C or not.

The model parameter values returned by the various fits
are displayed in Table 10. One can observe that the specific

61 The π0V P and ηV P are hidden inside the π0γ and ηγ annihilation
cross sections and are of comparable quality in both solution A± fits.

HLS model parameters do not vary much depending on the
solution examined; this is indeed so for g, a(≡ aHLS), z3,
c1 − c2 and for62 (c3 + c4)/2. This is also observed for the
BKY breaking parameters zA and zV , whereas �A is clearly
not significant. In contrast, ξ0 undergoes a surprisingly large
change when going from A+ to A−. The value for ξ3 strongly
depends on whether condition C is required, but is similar
for solutions A+ and A− in the former case.

The parameter equivalent to the so-called �1 [32,33,37]
(�1 = λ2

0) is found in the range from 6.5% (A+) to 8.5%
(A−). However, it should be stressed that, once assuming the
Kroll conditions (91), it cannot come alone as reflected by
Eq. (97) and determined by our fits. Their numerical values
are marginally affected by condition C or by choosing A+
or A− – up to the sign for λ3.

Therefore, an important piece of information should be
stressed: Because of the strict relation between λ3 and λ0 –
and hence �1 – the Kroll conditions (91) imply that the pion
form factor in the τ decay fulfills Fτ

π (0) = 1 − λ2
3/2 and,

then, is no longer unity, as inferred at the beginning of the
present study.

19 Side results from fits

Table 11 collects our main results, mostly related to the
π0 − η − η′ mixing parameter evaluations. However, it is
worthwhile to include some topical pieces of information
which deserve special emphasis.

62 In our fits, c3 = c4 is imposed [14,19].
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Table 11 Singlet-octet and quark flavor bases mixing parameter values
derived from fits performed within EBHLS2 under the F and A± config-
urations defined in the text. For the configuration F , φ = (φq + φs)/2
whereas φ = φq (= φs) for the A± solutions. Correspondingly, the

contributions of the HLS channels for
√
s ≤ 1.05 GeV to the HVP are

also given in each case; they can be compared to Table 7. The main fit
properties are noted at the bottom end of the Table

EBHLS2 (BS) Sol. F Sol. A+ Sol. A− Sol. A+ Sol. A−
ε = κ0 and ε′ = κ ′

0 εand ε′ free

θP (deg.) −15.89 ± 0.34 −16.63 ± 0.30 −15.78 ± 0.28 −16.63 ± 0.30 −15.59 ± 0.28

θ0 (deg.) −6.35 ± 0.47 −8.04 ± 0.39 −8.05 ± 0.33 −7.95 ± 0.39 −7.71 ± 0.34

θ8 (deg.) −24.55 ± 0.30 −24.44 ± 0.25 −22.83 ± 0.27 −24.50 ± 0.25 −22.77 ± 0.28

θ0 − θ8 (deg.) 18.21 ± 0.24 16.45 ± 0.23 14.85 ± 0.24 16.59 ± 0.23 15.13 ± 0.24

F0/ fπ 1.166 ± 0.006 1.190 ± 0.003 1.190 ± 0.003 1.184 ± 0.003 1.187 ± 0.003

F8/ fπ 1.293 ± 0.003 1.315 ± 0.003 1.302 ± 0.003 1.309 ± 0.003 1.302 ± 0.003

FKS φ (deg.) 38.85 ± 0.35 38.96 ± 0.27 38.08 ± 0.29 38.09 ± 0.30 39.15 ± 0.27

φq − φs (deg.) 0.39 ± 0.18 ≡ 0 ≡ 0 ≡ 0 ≡ 0

Fq/ fπ 1.008 ± 0.007 1.050 ± 0.003 1.066 ± 0.004 1.044 ± 0.003 1.061 ± 0.004

Fs/ fπ 1.418 ± 0.005 1.428 ± 0.004 1.405 ± 0.004 1.423 ± 0.004 1.406 ± 0.004

Fs/ fK 1.192 ± 0.003 1.198 ± 0.003 1.181 ± 0.002 1.195 ± 0.002 1.182 ± 0.002

fK / fπ 1.190 ± 0.002 1.193 ± 0.002 1.189 ± 0.002 1.191 ± 0.002 1.190 ± 0.002

1010 × aμ(HLS) 572.52 ± 1.02 571.84 ± 0.98 572.44 ± 0.98 575.00 ± 0.95 572.59 ± 0.99

χ2/Npts 1280/1366 1309/1366 1289/1366 1292/1366 1286/1366

Probability 85.9% 70.6% 82.5% 80.1% 83.5%

• The various estimates for fK / fπ displayed in Table 11
nicely compare to LQCD determinations, namely [112]
1.195 ± 0.005 and [113] 1.1995 ± 0.0044.

• The pion and kaon charge radii given in Table 5 of [19]
remain unchanged within the EBHLS2 framework; they
were observed in fair accord with expectations.

• The values derived for the muon HVP contribution
aμ(HLS) of the (6) annihilation channels embodied
inside the EBHLS2 framework and integrated up to√
s = 1.05 GeV are also shown and can be compared

with the corresponding information in Table 7. The ref-
erence evaluation reported there from a fit using a least
constrained EBHLS2 variant was:

aμ(HLS,
√
s = 1.05 GeV) = [571.97 ± 0.95] × 10−10,

which – accidentally – coincides with the average value
derived using A+ and A− under conditionC . In this case,
the EBHLS2 variants fulfilling the Kroll conditions (91)
and condition C do not depart from the average estimate
by more than � ±0.3×10−10; this can be conservatively
taken as the model uncertainty affecting our evaluation of
aμ(HLS) as, moreover, taking into account the mixing
properties of the π0 − η − η′ discussed in Sect. 17, it
looks natural to impose condition C to EBHLS2.
Finally, as noted in the preceding Sect. 18, the closeness
observed between solutions F and A− leads us to con-

clude that condition C is an intrinsic feature of solution
A−, a nice property not shared by A+; this leads us to
favor solution A− over solution A+.

Releasing, for completeness, condition C exhibits inter-
esting results concerning ε and ε′. In this case, solution A−
returns like-sign ε and ε′ – as expected from Eq. (104)–
whereas solution A+ returns unlike sign values and a signif-
icant shift63 upward of �aμ(HLS) = 574.83 − 571.97 =
2.86 in units of 10−10. The unlike sign character of ε and
ε′, contradicting the expected properties of the π0 − η − η′
mixing, also disfavors solution A+ over solution A−.

20 Evaluations of the π0 − η − η′ mixing parameters

Table 11 displays the parameter values derived by fitting our
set of data within EBHLS2 under the various solutions to Eq.
(91). We have found it interesting to also produce the results
derived assuming the λi unconstrained (the so-called solu-
tion F). One can observe a fair stability of the usual mixing
parameters, as the spread of values is very limited for each
of them.

63 A closer look at the various channel contributions indicates that this
excess comes entirely from the anomalous channels, in particular from
the 3π annihilation, which then contributes [46.30 ± 0.36] × 10−10,
whereas the solution reported in Table 7 only yields [44.22 ± 0.32] ×
10−10.
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Table 12 Mixing parameters in the singlet-octet and quark flavor bases
from various sources. The EBHLS2 evaluations displayed are the aver-
age values derived for solutions A+ and A− assuming condition C ,
whereas the second uncertainty is half their difference; the original A+

and A− are given in Table 11. The data derived by other groups are
FKS 98 [36], EF 05 [114], EGMS 15b [115] and the LQCD results
OU 17 [116]; the number within parentheses is from EMS 15 [117].
Angles are expressed in degrees

EBHLS2 avrg. FKS 98 EF 05 EGMS 15b OU 17

θ0 −8.04 ± 0.39 ± 0.00 −9.2 ± 1.7 −2.4 ± 1.9 −6.9 ± 2.4 ×
θ8 −23.64 ± 0.30 ± 0.27 −21.2 ± 1.6 −23.8 ± 1.4 −21.2 ± 1.9 ×
F0/ fπ 1.190 ± 0.003 ± 0.000 1.17 ± 0.03 1.29 ± 0.04 1.14 ± 0.05 ×
F8/ fπ 1.309 ± 0.003 ± 0.007 1.26 ± 0.04 1.51 ± 0.05 1.27 ± 0.02 ×
φ 38.52 ± 0.29 ± 0.44 39.3 ± 1.0 41.4 ± 1.4 (38.3 ± 1.6) 39.8 ± 2.2 ± 2.4

Fq/ fπ 1.058 ± 0.004 ± 0.008 1.07 ± 0.02 1.09 ± 0.03 1.03 ± 0.04 0.960 ± 0.037 ± 0.046

Fs/ fπ 1.417 ± 0.004 ± 0.012 1.34 ± 0.06 1.66 ± 0.06 1.36 ± 0.04 1.363 ± 0.27 ± 0.006

Fs/ fK 1.190 ± 0.003 ± 0.009 × × × 1.143 ± 0.023 ± 0.005

It is, of course, worth comparing our results with other
determinations. For this purpose, we have selected a limited
set of data and refer the reader to the corresponding papers
to track back to former references; the comparison can be
easily performed by looking at Table 12.

In order to facilitate the comparisons, the first data column
in Table 12 displays the averages of the values derived using
solutions A+ and A− under condition C which can be found
in Table 11; half their difference is given as an estimate of
the systematic uncertainty and shown as the second error.

The agreement is clearly satisfactory with FKS 98 [36]
– based on meson decays involving Pγ γ and J/ψ decays
to η and η′. EF 05 [114] produces several parameter values
depending on the information implemented. For instance,
also using the P → γ γ and J/ψ → (η/η′)γ decays only,
together with the ChPT prediction F8 = 1.28 fπ , Escribano
and Frère derive:
{
θ8 = (−22.2 ± 1.8)◦, θ0 = (−8.7 ± 2.1)◦,

F0/ fπ = 1.18 ± 0.04} , (107)

in very good agreement with FKS 98 and EBHLS2. Introduc-
ing, in addition, a parameterization64 of the coupling con-
stants (η/η′)V γ , where V = ρ0, ω, φ, they can use the cor-
responding tabulated decays widths to produce the numbers
displayed in the third data column of Table 12. As for the
singlet-octet parameters, the comparison with others is not
as satisfactory; nevertheless, the quark flavor scheme param-
eters compare reasonably well.

Analyzing the asymptotic behavior of the η/η′ meson
transition form factors F(η/η′)γ ∗γ (Q2) and using the Padé
approximant method, EMS 15 [117] derive two solutions;
that based on the asymptotics of Fηγ ∗γ (Q2) is in good accord
with our results, and the value for the φ angle is displayed

64 The η′V γ couplings are explicitly involved in the data of the
EBHLS2 bunch; the ηV γ couplings are treated as part of the e+e− →
ηγ annihilation cross sections.

in Table 12. The solution based on the Fη′γ ∗γ (Q2) asymp-
totics, improved soon after, is given in Table 12 under the tag
EGMS 15b [115]; their evaluations are in good accord with
ours, as well as with those in FKS 98. On the other hand,
they also obtain:

φq = [39.6 ± 2.3]◦ and φs = [40.8 ± 1.8]◦,

which are consistent with φq = φs at a 1σ level. Finally, the
ETM Lattice QCD Collaboration has derived the numbers
given in the last data column tagged OU 17 [116]. Our results
are consistent with these LQCD evaluation at the � 1σ level.

One more piece of information can be of interest which
could mimic higher-order effects. Using solution F , which
slightly violates the Kroll conditions, φq and φs become
slightly different; they allow us to derive:

φq − φs

φq + φs
= [0.50 ± 0.24] × 10−2 << 1 (108)

as expected.

21 Isospin breaking effects in the π0 − η − η′ system

Table 13 collects the main EBHLS2 results related to isospin
breaking effects in the [π0, η, η′] mixing. In contrast to Sect.
20, the parameter values returned by the different solutions
may be very different and, then, averaging can often be mis-
leading. On the other hand, to our knowledge, there are very
few external evaluations of these parameters to compare with.

Regarding the [m2
dd −m2

uu] evaluations, they are all much
larger than the estimates based on meson masses we sketched
above; whether this is due to higher-order corrections that are
unaccounted for is unclear; in this case, one may expect the
fit to take them effectively into account to accommodate the
data. Related to this, fits performed using conditions C ′ (ε =
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Table 13 Isospin breaking effects within EBHLS2 using condition C to relate ε and ε′. See text for definitions and notations. The entry for
[m2

dd − m2
uu] is in GeV2. The main fit properties are noted at the bottom end of the Table

EBHLS2 (BS) Sol. F Sol. A+ Sol. A− Sol. A+ Sol. A−
ε = κ0 and ε′ = κ ′

0 ε and ε′ free

102 × [m2
dd − m2

uu] 2.65 ± 0.25 2.49 ± 0.15 3.01 ± 0.14 × ×
102 × ε 3.67 ± 0.32 3.48 ± 0.20 4.16 ± 0.20 2.28 ± 0.30 3.62 ± 0.30

102 × ε′ 0.93 ± 0.09 0.86 ± 0.05 1.05 ± 0.05 −1.20 ± 0.30 0.17 ± 0.27

102 × ε 4.92 ± 0.37 5.80 ± 0.31 1.24 ± 0.32 4.33 ± 0.34 0.95 ± 0.36

102 × ε′ 1.94 ± 0.26 2.66 ± 0.18 −1.30 ± 0.23 0.40 ± 0.28 −2.00 ± 0.32

fu/ fπ 1.070 ± 0.015 1.131 ± 0.009 1.020 ± 0.005 1.114 ± 0.009 1.020 ± 0.005

fd/ fπ 1.006 ± 0.006 1.014 ± 0.005 1.170 ± 0.012 1.012 ± 0.005 1.157 ± 0.012

102 × zKroll 3.24 ± 0.95 5.86 ± 0.58 −7.49 ± 0.72 5.13 ± 0.58 −6.86 ± 0.69

χ2/Npts 1280/1366 1309/1366 1289/1366 1292/1366 1286/1366

Probability 85.9% 70.6% 82.5% 80.1% 83.5%

�0 and ε′ = � ′
0) return the following piece of information:

⎧
⎪⎪⎨

⎪⎪⎩

Solution A+ : ε0 = [2.02 ± 0.11] × 10−2,

Prob. 74.0%,

Solution A− : ε0 = [2.39 ± 0.11] × 10−2,

Prob. 83.4%,

(109)

while the quark mass estimate expects ε0 � 1.2 × 10−2.
Therefore, the picture looks somewhat confusing and may
indicate that our evaluations for [m2

dd − m2
uu] and ε0 absorb

higher-order (or other kinds of) effects to accommodate the
data.

The issue just raised obviously propagates to the evalua-
tions for the η and η′ fractions inside the physical π0. Here
also, the values for ε and ε′ are found to be much larger
than expected. Related to this, Kroll [118] quoted an esti-
mate for ε = [3.1 ± 0.2] × 10−2 coming from a ratio of65

�(2S) → J/ψP decay widths, in line with our own find-
ings.

Regarding zKroll , our A+ and A− evaluations are con-
sistent which each other up to the sign – which is the key
feature of these solutions; its absolute magnitude is found in
the [6 ÷ 8]% range. Finally, fu and fd are found very close
to fπ when considering their uncertainty ranges.

Stated otherwise, the picture in the realm of isospin break-
ing effects involved in the π0 − η − η′ system provided by
phenomenology is somewhat confusing.

22 Summary and conclusions

Three main topics have been addressed in the present paper:
the treatment of τ dipion spectra, the update of the HVP-

65 We know of no update of this old result.

LO using global fit methods and the mixing properties of the
[π0, η, η′] system showing up in the EBHLS2 framework.

• Regarding the τ dipion spectra:
In the previous version of the broken HLS model – named
BHLS2 [19] – the difficulty of the basic solution (BS)
satisfactorily addressing the dipion spectrum collected
by the Belle Collaboration [21] was noted; it was partly
compensated by the primordial mixing (PM) of the vector
fields, which led to the so-called reference solution (RS).
However, the treatment of the Belle spectrum – which
carries a statistics larger by a factor of � 50 than Aleph
[22] or Cleo [23] – deserves improvement. On the other
hand, the analysis of the lineshape of the three τ dipion
spectra clearly shows that there is no tension among them
– as already noted in a previous study [41] – or with
the other channels embodied inside our HLS framework,
except for the spacelike spectra [54].
However, the present analysis clearly shows that the
assumption which best fits the whole EBHLS2 refer-
ence data set simultaneously – including the Belle spec-
trum – is slightly more involved than a mere rescaling. It
is found that the kinetic breaking mechanism66 defined
in Sect. 4 allows for a fair description of each of the
Aleph, Belle and Cleo dipion spectra and, likewise, for
the whole physics channels included inside the EBHLS2

framework, in particular the pion form factor Fe
π (s) in

the spacelike and timelike regions.
On the other hand, the relevance of a kinetic breaking
term – involving simultaneously components along the
T0, T3 and T8 basis matrices of the canonical Gell–Mann

66 A kinetic breaking effect going beyond the usual ’t Hooft determinant
term – which only provides a correction to the singlet term – has been
proposed by other authors using different Lagrangians, see [59] for
instance.
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U (3) algebra – is also strengthened by considering prop-
erties related to the [π0, η, η′] system as it comes inside
the EBHLS2 framework. This led us to examine the con-
sequences following from imposing conditions to matrix
elements of the axial currents as expressed by Kroll [38]:

< 0|Jqμ |[q ′q ′](p) >= i pμ fqδqq ′, {[qq], q = u, d, s}

where the various Jqμ are the axial currents associated
with the leading [qq] terms occurring in the Fock expan-
sion of the [π0, η0, η8] bare fields.
Within the EBHLS2 context, these conditions relate the
mixing properties of the [π0, η, η′] system and the τ dip-
ion spectrum because of the π0 meson. More precisely,
it is proven in Sect. 16 that the solutions satisfying the
Kroll conditions written just above generate nontrivial
correlations between Fτ

π (s = 0) and the �1 parame-
ter traditionally included in EChPT to break the U (3)

symmetry of the chiral Lagrangian [32,33,37] via a sole
singlet term �1/2∂μη0∂

μη0.
As a matter of fact, the Kroll conditions imposed on the
EBHLS2 Lagrangian relate the breaking of U (3) sym-
metry in the PS sector and the violation of CVC in the τ

decay which explains the observed Belle spectrum; this
CVC violation is invisible in the Aleph and Cleo spectra
because of their lower statistics, but our fits illustrate that
Aleph and Cleo absorb it quite naturally, as is obvious
from Table 1.
It is clear that this unexpected property deserves confir-
mation, and a forthcoming high statistics τ dipion spec-
trum is welcome to answer this question. On the other
hand, the picture which emerges from EBHLS2 indicates
that using τ data to estimate the isospin breaking effects
involved in Fe

π (s) is not straightforward outside a global
fit context.

• The EBHLS2 update of the muon HVP-LO raises several
topics:

1. Using the EBHLS2 model, we examine the two
recently published data samples of interest in the HLS
energy range (≤ 1.05 GeV).
The BESIII e+e− → π0π+π− cross section [24]
is important as it doubles the statistics covering this
annihilation channel. Once the energies of this spec-
trum are appropriately67 recalibrated to match the
energy scale of the (> 50) data samples already
included in our standard sample set, it is shown that

67 It is shown that this results in mere energy shifts, albeit different
between the ω and φ peak regions; both values are found consistent with
BESIII expectations. A possible origin for this difference is discussed
in Appendix D.

the EBHLS2 framework leads to fairly good global
fit properties.
The SND Collaboration running on the new VEPP-
2000 facility has produced a new spectrum [25] for
the e+e− → π+π− cross section covering the HLS
energy range which may allow us to readdress the
KLOE–Babar controversy.
Indeed, comparing the SND spectrum properties with
those of the samples already belonging to our ref-
erence benchmark gives us the opportunity to re-
emphasize our sample analysis method.
Importantly, our approach is based on a few salient
properties: (i) we stick to using in fits only the uncer-
tainty information provided by each experiment and
refrain from using any additional input such as error
inflation factors; (ii) we treat canonically the normal-
ization uncertainty [75]; (iii) preliminary fits allow us
to identify the reference benchmark data samples by
their satisfactory fit properties; the reference bench-
mark is found to include more than 90% of the avail-
able data samples covering all the channels addressed
by EBHLS2.
Then, any newcomer sample is appended to the sta-
tistically consistent reference benchmark within a
global fit: If its fit quality is satisfactory, it becomes
part of the reference benchmark; otherwise, having
detected inconsistencies between the newcomer and
the reference benchmark samples, we discard the
newcomer, in this way preserving the statistical con-
sistency of the reference benchmark.
The outcome can be summarized as follows: Naming
H the set of all reference data samples except for the
dipion spectra from KLOE and BaBar, it is shown
that the most consistent combinations we can define
are HK = {H + KLOE} and HB = {H + BaBar},
the goodness of fit clearly favoring HK compared to
HB ; moreover, the goodness of fit for each of HK

and HB is much better than those for HK B = {H +
KLOE + BaBar}. To deal with the muon HVP-LO
issue, this observation has led us to perform separate
analyses forHK andHB and avoid usingHK B , which
returns a poor probability and is found to produce
significant biases compared to eitherHK orHB . This
is further discussed below.
On the other hand, when a new data sample cover-
ing the e+e− → π+π− annihilation channel is pub-
lished, the issue is always to re-examine whether it
may or may not favor one of the HK and HB sample
combinations. It has been found previously that the
dipion spectra referred to above as NSK and Cleo-c
do not substantially modify the fit picture of either
of the HK or HB combinations; the BESIII sam-
ple – recently corrected [27] – is reported to rather
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favor HK over HB , but nothing is really conclusive.
The question is thus whether the SND spectrum [25]
modifies the picture. The main results of our study
are gathered68 in Fig. 7; the fit properties displayed
therein indicate a better consistency with the HK

combination over the HB one; however, there is still
something unclear with the reported SND uncertainty
information – or its dealing with – which, for now,
leads us to use it only to estimate systematics.
To conclude this topic, we should note that our ref-
erence set of data samples contains 1366 pieces
of information. Besides the data samples covering
the six annihilation channels already listed and the
τ dipion spectra, one finds the partial widths for
the P → γ γ decays and the V Pη′ couplings not
involved in the listed annihilation channels; the PDG
value for the ratio of decay constants fK / fπ is also
included. Stated otherwise, EBHLS2 treats consis-
tently the largest set of data and physics channels
ever submitted to a unified description in the non-
perturbative QCD region. Global fits have been per-
formed under various conditions and return proba-
bilities in the range of 80% to 90% for the HK set
combination and � 40% for theHB combination; the
results based on HK are discussed in Sect. 10, and
their results gathered in Table 4, those based on the
HB combination, are the matter of Sect. 11.5.

2. Regarding model dependence of the HLS estimates
for the muon HVP-LO:
In order to determine possible model dependence
effects, the most appropriate approach is to compare
the information derived from our fits with the cor-
responding information derived by others using so-
called direct numerical integration methods – which
are also far from being free of assumptions.
Table 5 collects the numerical estimates for aμ(ππ)

over the range s ∈ [0.35, 0.85] GeV2 derived by
the KLOE Collaboration itself [80] for the differ-
ent data samples they published (KLOE08, KLOE10,
KLOE12) and their combination (KLOE85). Includ-
ing each of these samples as single representative of
the ππ channel within the EBHLS2 fitting procedure,
one gets the numbers displayed in the second data
column, with fit properties shown in the third data
column. Except for KLOE08, which yields a poor
goodness of fit, each “experimental” central value is
distant from its EBHLS2 analog by only a fraction of

68 The 0.60 ÷ 0.71 GeV region of the BaBar spectrum has been elim-
inated from the fit to stay close to what SND suggests [25], whereas
no cut has been applied in the global fit involving the KLOE spectra;
this obviously enhances the probability of the (SND20+Babar) combi-
nation.

the relevant σexp; moreover, the gain in precision by
performing global fitting is especially striking here,
as the uncertainty of the fitted aμ(ππ) values is sig-
nificantly smaller than their corresponding σexp’s.
Comparing different methods of combining data is
the subject of Table 6. This illustrates that, besides
the selection of data samples, the way to deal with the
reported normalization uncertainty is a much more
significant source of bias than the choice of a model,
even if ours, by correlating different channels with
ππ , allows for a much improved uncertainty for the
ππ contribution – which is just the purpose for pro-
moting global fit methods.

3. Evaluations of the muon HVP: KLOE versus BaBar.
The matter of Sect. 11.2 is to deal with various esti-
mates for the HVP-LO derived from EBHLS2 under
various fit conditions. Table 7 displays specifically
our results concerning the energy region up to 1.05
GeV and has to be completed with information given
in Table 8 to derive the full HVP-LO. The content
of Table 7 is associated with using for the fits what
was named above in this section the {H + KLOE}
sample set. Similarly, Sect. 11.5 provides the analog
evaluation based on using the {H + BaBar} sample
set. One gets for the muon HVP-LO:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{H + KLOE} �⇒ aHV P−LO
μ = 687.48 ± 2.93 f i t

+
[+2.31
−0.69

]

syst
, 90% Prob.

{H + BaBar} �⇒ aHV P−LO
μ = 692.53 ± 2.95 f i t

+
[+2.31
−0.69

]

syst
, 40% Prob.

in units of 10−10. These are displayed together with
other estimates in Fig. 9. One observes the strong
effect of using {H + BaBar} preferably to {H +
KLOE} despite the better goodness of fit of the latter
set. We should note that the {H+BaBar} evaluation of
the HVP-LO differs from the KNT19 evaluation [91]
by only 0.42 × 10−10. However, taking into account
the 5.47 × 10−10 difference between the BaBar and
KLOE based evaluations, it may appear hazardous to
perform any kind of combination of these.
Nevertheless, it seems interesting to quote the results
derived from a fit based solely on the H sample set;
indeed, H only includes the NSK, Cleo-c and BESIII
samples as representatives of the π+π− annihilation
channel for which there is a commonly shared con-
sensus. One thus gets

{H} �⇒ aHV P−LO
μ = 689.43 ± 3.08 f i t

+
[+2.31
−0.69

]

syst
, 91% Prob.

from a fit which also returns χ2/Npts = 1137/1231.
This evaluation, just midway between the {H +
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KLOE} and {H + BaBar} estimates, still benefits
from a very good uncertainty and from a probabil-
ity as good as those of the {H + KLOE} fit.
Compared to the average experimental value [4] for
aμ and taking into account the systematic uncertain-

ties, we find for the difference �aμ = aexpμ −a pheno.
μ

a significance greater than 5.3σ (KLOE) or 4.4σ

(BaBar). It is worth noting that the difference between
these evaluations is not a model effect but a pure
reflection of the tension between the BaBar and
KLOE evaluations differing by 1.9σ f i t from each
other.
Regarding the hiatus between the LQCD evaluation
[3] for the muon HVP-LO and any of the evaluations
based on dispersive methods shown in Fig. 9, it looks
uneasy yielding a missing δaμ � (10 ÷ 20) × 10−10

from annihilation data below � 1 GeV.

• Regarding the [π0, η, η′] mixing properties:
The EBHLS2 Lagrangian provides a convenient frame-
work for also examining the mixing properties of the
[π0, η, η′] system. As this Lagrangian allows us to derive
the various axial currents, it is possible to explicitly con-
struct the parameterizations in the so-called octet-singlet
and quark flavor bases. It is found that, at leading order
in breakings, one recovers the known expressions – com-
pare to [32,37] for instance – somewhat generalized to
also include the λ8 and λ3 terms.
Related to this, it has been found worthwhile to examine
in detail how the Kroll conditions noted at the begin-
ning of this section can be fulfilled by the EBHLS2

Lagrangian. It is found that two solutions – named A± –
among the four possible ones lead to fair descriptions of
our whole reference set of data. The A+ and A− solutions
return similar fit parameter values, and the A− solution
is slightly favored compared69 to A+.
However, an unexpected aspect appears: the kinetic
breaking term of the PS fields which is usually a deter-
minant term leading to solely a PS singlet contribution
∂μη0∂μη0 cannot come alone and should be comple-
mented by quadratic terms also involving the π0 and η8

field derivatives. It thus follows that the Kroll conditions
generate a violation of CVC in the dipion spectrum of
the τ lepton decay, as already noted. One may expect
that these conclusions are not specific to the broken HLS
modelings.
Using the fit results derived by running the A+ and A−
solutions to the Kroll conditions, the octet-singlet and
quark flavor basis parameterization of the [π0, η, η′] mix-
ing are computed (see Table 11) and compared with other

69 In case the kinetic breaking term given by Eq. (21) is replaced by
Eq. (22), the Kroll conditions yield a unique nontrivial solution.

available estimates (see Table 12). A good agreement is
observed with the other estimates, although here also with
better precision for the EBHLS2 evaluations. The isospin
breaking effects which can affect the [π0, η, η′] system
[38] are also derived (see Table 13), but here there is lit-
tle external information with which to make comparisons
and form conclusions.
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Appendices

Appendix A: The AAP and VV P anomalous sectors

A.1 The AAP Lagrangian

The AAP Lagrangian is given by:

LAAP = −3αem

π fπ
(1 − c4) εμναβ∂μAν∂α AβTr

[
Q2P

]
, (110)

where Q is the quark charge matrix and P denotes the U (3)

symmetric matrix of the bare pseudoscalar fields. Let us
define:

λ′
0 =

[

λ3 + λ0

√
2
3

5z2
A+1

3z2
A

]

,

λ′
8 =

[

λ3 + λ8
1√
3

5z2
A−2

3z2
A

] (111)

and the angle δP :

⎧
⎪⎨

⎪⎩

sin θP = 1√
3

(
cos δP + √

2 sin δP

)

cos θP = 1√
3

(√
2 cos δP − sin δP

) (112)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


184 Page 48 of 54 Eur. Phys. J. C (2022) 82 :184

which measures the departure from ideal mixing (θI =
arctan 1/

√
2 � 35◦): δP = θP − θI . Defining:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gπ0γ γ = 1

6

{

1 − 5

6
�A + λ3

2

[
λ3 − λ′

0 − λ′
8
]
}

+ ε

6
√

3

{
5zA − 2

3zA
cos θP − √

2
5zA + 1

3zA
sin θP

}

+ ε′
6
√

3

{
5zA − 2

3zA
sin θP + √

2
5zA + 1

3zA
cos θP

}

,

gηγ γ = − ε

6
+ cos δP

36zA

{
−2

√
2 + √

3λ0λ′
0

−√
6λ8λ′

8 − 5z2
A+4

3z2
A

λ0λ8

}

+ sin δP

36

{
3�A − 10 + √

6λ0λ′
0

+√
3λ8λ′

8 + √
2

10z2
A−1

3z2
A

λ0λ8

}

,

gη′γ γ = − ε′
6

− cos δP

36

{
3�A − 10 + √

6λ0λ′
0

+√
3λ8λ′

8 + √
2

10z2
A−1

3z2
A

λ0λ8

}

+ sin δP

36zA

{
−2

√
2 + √

3λ0λ′
0 − √

6λ8λ′
8

− 5z2
A+4

3z2
A

λ0λ8

}

,

(113)

the coupling constants of the physical pseudoscalar fields to
a photon pair, π0γ γ , ηγ γ and η′γ γ , are given by:

GP0γ γ = −3αem

π fπ
(1 − c4)gP0γ γ . (114)

A.2 The VV P Lagrangian

The VV P Lagrangian is given by:

LVV P = − 3g2

4π2 fπ
c3 εμναβTr

[
∂μVν∂αVβ P

]
,

C = −Ncg2c3

4π2 fπ
. (115)

A.2.1 The V Vπ Lagrangians

The VVπ Lagrangians relevant for our phenomenology are
given by:

LVV P (π±) = C

2
εμναβ

{[(

1 + 2ξ0 + ξ8

3

)

∂μωI
ν

+
√

2

3
(ξ0 − ξ8)∂μφ I

ν

]

×
[
∂αρ+

β π− + ∂αρ−
β π+]

}

(116)

and:
LVV P (π0) = C

2
εμναβ

{

G0∂μρ I
ν ∂αωI

β + G1

[
2∂μρ−

ν ∂αρ+
β + ∂μρ I

ν ∂αρ I
β + ∂μωI

ν ∂αωI
β

]

+G2∂μ�I
ν∂α�I

β + G3∂μρ I
ν ∂α�I

β

}

π0 (117)

where:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0 =
[

1 − λ2
3

2 + 2ξ0+ξ8
3 + ξ3

]

,

G1 = − 1
4
√

3

[√
3�A + λ3(

√
2λ0 + λ8)

]

+ 1
2

[
ε′ cos δP − ε sin δP

]
,

G2 = − λ3

2z2
A

√
6

[
λ0 − √

2λ8

]

− 1
zA

√
2

[
ε′ sin δP + ε cos δP

]
,

G3 =
√

2
3 (ξ0 − ξ8).

(118)

As actually, one imposes ξ0 = ξ8, one has G3 = 0.

A.2.2 The V Vη Lagrangian

The VVη Lagrangian is given by:

LVV P (η) = C

2
εμναβ

{

K1∂μρ−
ν ∂αρ+

β + K2∂μρ I
ν ∂αρ I

β

+K3∂μωI
ν∂αωI

β + K4∂μ�I
ν∂α�I

β

+K5∂μωI
ν∂α�I

β + K6∂μρ I
ν ∂αωI

β

}

η.

(119)

Defining:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H1 = 1

12zA
κ0κ8,

H2 = 1

12

[
κ2

0 − 6
]
,

H3 =
√

2

12z3
A

[
κ2

8 − 2z2
A(3 + 2ξ0 + 4ξ8)

]
,

(120)

where:

κ0 = √
2λ0 + λ8 and κ8 = λ0 − √

2λ8, (121)

the VVη couplings are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 = 2 [H1 cos δP + H2 sin δP ] ,

K2 = H1 cos δP + (H2 − ξ3) sin δP ,

K3 = H1 cos δP +
[

H2 − 2ξ0 + ξ8

3

]

sin δP ,

K4 = H3 cos δP +
√

2

zA
H1 sin δP ,

K5 = − (ξ0 − ξ8)

3zA

[
2 cos δP + zA

√
2 sin δP

]
,

K6 = λ3κ8

2zA
√

3
cos δP + 1

2
√

3

[√
3�A + λ3κ0

]
sin δP − ε.

(122)
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A.2.3 The V Vη′ Lagrangian

The VVη′ Lagrangian is given by:

LVV P (η′) = C

2
εμναβ

{

K ′
1∂μρ−

ν ∂αρ+
β + K ′

2∂μρ I
ν ∂αρ I

β

+K ′
3∂μωI

ν∂αωI
β + K ′

4∂μ�I
ν∂α�I

β

+K ′
5∂μωI

ν∂α�I
β + K ′

6∂μρ I
ν ∂αωI

β

}

η′,

(123)

the VVη′ couplings are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K ′
1 = 2 [−H2 cos δP + H1 sin δP ] ,

K ′
2 = −(H2 − ξ3) cos δP + H1 sin δP ,

K ′
3 = −

[

H2 − 2ξ0 + ξ8

3

]

cos δP + H1 sin δP ,

K ′
4 = H3 sin δP −

√
2

zA
H1 cos δP ,

K ′
5 = − (ξ0 − ξ8)

3zA

[
−zA

√
2 cos δP + 2 sin δP

]
,

K ′
6 = − 1

2
√

3

[√
3�A + λ3κ0

]
cos δP + λ3κ8

2zA
√

3
sin δP − ε′.

(124)

Appendix B: The AP P P and V P P P anomalous sectors

B.1 The APPP Lagrangian

The APPP Lagrangian is given by:

LAPPP

= D εμναβ AμTr
[
Q∂νP∂αP∂β P

]
,

D = −i
Nce

3π2 f 3
π

[

1 − 3

4
(c1 − c2 + c4)

]

. (125)

Limiting oneself to the Lagrangian pieces relevant for our
purpose, it can be written:

LAPPP = Dεμναβ Aμ

{
gγπ0∂νπ

0 + gγ η∂νη + gγ η′∂νη
′}

∂απ−∂βπ+, (126)

in terms of fully renormalized PS fields. Defining:

κ0 = √
2λ0 + λ8 and κ8 = λ0 − √

2λ8, (127)

the couplings can be written:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gγπ0 = − 1
4

[
1 − �A

2 − λ3

2
√

3

(
κ0 + √

3λ3

)

−ε sin δP + ε′ cos δP
]
,

gγ η = − κ0+
√

3λ3
24zA

[κ8 cos δP + zAκ0 sin δP ]

+ sin δP
4

(
1 − �A

2

)
+ ε

4 ,

gγ η′ = κ0+
√

3λ3
24zA

[zAκ0 cos δP − κ8 sin δP ]

− cos δP
4

(
1 − �A

2

)
+ ε′

4 .

(128)

B.2 The VPPP Lagrangian

The V PPP Lagrangian is given by:

LV PPP = E εμναβTr
[
Vμ∂ν P∂αP∂β P

]
,

E = −i
Ncg

4π2 f 3
π

[c1 − c2 − c3] . (129)

Its relevant part can be rewritten:

LV PPP = E εμναβ
∑

V=(ρ I ,ωI ,φ I )

Vμ

×
{
gVπ0∂νπ

0 + gVη∂νη + gVη′∂νη
′}

∂απ−∂βπ+, (130)

in terms of ideal vector fields and fully renormalized PS
fields. The corresponding couplings are:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gρ Iπ0 = 1
4

[
�A
2 + 1

2
√

3
λ3κ0

+ε sin δP − ε′ cos δP
]
,

gρ I η = − κ0
24zA

[κ8 cos δP + zAκ0 sin δP ]

+ sin δP
4 (1 + ξ3) ,

gρ I η′ = κ0
24zA

[zAκ0 cos δP − κ8 sin δP ]

− cos δP
4 (1 + ξ3) ,

(131)

and:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gωIπ0 = − 3
4

[

1 − λ2
3

2 + 2ξ0+ξ8
3

]

,

gωI η = −λ3
√

3
8zA

[κ8 cos δP + zAκ0 sin δP ]

− 3�A
8 sin δP + 3

4ε,

gωI η′ = λ3
√

3
8zA

[zAκ0 cos δP − κ8 sin δP ]

+ 3�A
8 cos δP + 3

4ε′.

(132)

Finally, we also have:

gφ Iπ0 = −
√

2

4
(ξ0 − ξ8) , gφ I η = 0, gφ I η′ = 0. (133)

It should be noted that the condition Fe
π (0) = 1 + O(δ2)

leads to ξ0 = ξ8.

Appendix C: The e+e− → π0π+π− cross section

The amplitude for the γ ∗ → π0π+π− transition involves
most of the FKTUY Lagrangian pieces; it can be written:

T (γ ∗ → π0π+π−) = TAPPP + TV PPP + TVV P , (134)

labeling each term by the particular piece of the FKTUY
Lagrangian from which it originates. As already noted,
because c3 = c4 is assumed, there is no TAV P piece.
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The TAPPP contribution to the full T (γ ∗ → π0π+π−)

is:

TAPPP = CAPPP [1 − G(δP )] εμναβ εμ(γ )pν
0 , pα− pβ

+,

CAPPP = − ie

4π2 f 3
π

[

1 − 3

4
(c1 − c2 + c4)

]

, (135)

where εμ(γ ) is the off-shell photon polarisation vector, the
other notations being obvious. One has also defined:

G(δP ) =
[
�A

2
+ ε sin δP − ε′ cos δP

]

+ λ3

2
√

3
(
√

3λ3 + √
2λ0 + λ8) . (136)

Three pieces come from the V PPP:

TV PPP = CV PPP

⎡

⎣
∑

V=ρ,ω,φ

Fe
V γ (s)

DV (s)
gR
Vπ (s)

⎤

⎦ εμναβ

×εμ(γ )pν
0 p

α− pβ
+, (137)

where the renormalized vector couplings gR
Vπ (s) to three

pions have been derived using the vector relation:

gR
Vπ (s) = R(s)gIVπ , (138)

R(s) being the matrix given in Eq. (38) or in Eq. (43) of
the BHLS2 companion paper [19] depending on whether the
primordial breaking is discarded or not. The components of
the gIVπ vector which refer to the coupling of the ideal vector
field combinations are:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gIρπ = 1
4

[
�A
2 + ε sin δP − ε′ cos δP

+ λ3

2
√

3
(
√

2λ0 + λ8)
]
,

gIωπ = − 3
4

[

1 + 2ξ0+ξ8
3 − λ2

3
2

]

,

gIφπ = −
√

2
4 (ξ0 − ξ8).

(139)

The V − γ amplitudes Fe
V γ (s) and the inverse ρ propa-

gators have been constructed in Sect. 11 of [19]. The inverse
propagators for the ω and φ mesons have been discussed
and defined in Sect. 9 of the same reference. We have also
defined:

CV PPP = − 3ige

4π2 f 3
π

[c1 − c2 − c3] . (140)

The VV P Lagrangian piece in Eq. (117) given in terms
of ideal vector fields has to be re-expressed in terms of
their renormalized partners as developed in Sect. 12 of
[19] – see Eqs. (70-75) therein. The simplest way to write
T (γ ∗ → π0π+π−) in a way easy to code within our global
fit procedure is displayed just below.

We first define the Hi (s) functions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(s) = 1,

H1(s) = 1

Dρ(s+−)
+ 1

Dρ(s0+)
+ 1

Dρ(s0−)
,

H2(s) = 1

Dρ(s+−)
,

H3(s) = α̃(s+−)

[
1

Dρ(s+−)
− 1

Dω(s+−)

]

,

(141)

where s is the incoming squared energy and the si j ’s indi-
cate the invariant mass squared of the corresponding outgo-
ing (i, j) pairs; the tilde mixing angles are those defined by
Equation (43) in [19]. TVV P depends on the three functions
(Hi (s), i = 1 · · · 3) with the s-dependent coefficients Fi (s)
given below.

Collecting all terms, the full amplitude is written as:

T (γ ∗ → π0π+π−)

=
[

F0(s)H0(s) + CVV P

∑

i=1···3
Fi (s)Hi (s)

]

×εμναβ εμ(γ )pν
0 p

α− pβ
+, (142)

with:

CVV P = −i
3egm2

8π2 f 3
π

(1 + 
V )c3 . (143)

In this way, to write the full amplitude, the various Fi (s) func-
tions only depend on the incoming off-shell photon energy
squared s; the dependence upon the various sub-energies si j
is, instead, only carried by the Hi (s) functions as clear from
Eq. (141). One has:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0(s) = CAPPP
[
1 − G(δP )

]

+CV PPP

[
FR
ργ (s)
Dρ (s) gRρπ (s) + FR

ωγ (s)
Dω(s) gRωπ (s) + FR

φγ
(s)

Dφ(s) gR
φπ

(s)

]

,

F1(s) = α̃(s)
FR
ργ (s)

Dρ(s)
+
[

1 − λ2
3

2

][

1 + 2ξ0 + ξ8
3

]

× FR
ωγ (s)
Dω(s) +

[√
2

3 (ξ0 − ξ8) + γ̃ (s)
] FR

φγ
(s)

Dφ(s) ,

F2(s) =
[

ε′ cos δP − ε sin δP − �A
2

− λ3
2
√

3
(
√

2λ0 + λ8)
] FR

ργ (s)
Dρ (s) + 2ξ3

FR
ωγ (s)
Dω(s) ,

F3(s) = FR
ργ (s)

Dρ(s)
,

(144)

where α̃(s) = α(s)+ψω and γ̃ (s) = γ (s)+ψ0, to possibly
keep track of the primordial breaking [19], α(s) and β(s)
being the angles generated by the dynamic mixing mecha-
nism [14,19].

A global fit to all cross sections but e+e− → π0π+π−
allows us to obtain the relevant parameters with a good
approximation; then, having at hand all ingredients defin-
ing the Fi (s)’s, a first minimization run [75] including the
e+e− → π0π+π− cross section can be performed to also
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derive a first estimate for c1 − c2. The output of this minuit
minimization run is then used as input for a next minimization
step. This initiates an iteration procedure involving all cross
sections which is carried on up to convergence – when some
criterion is met, e.g. generally �χ2 ≤ 0.3 – for the global
χ2 of all the processes involved in the EBHLS2 procedure.

This method converges in a couple of minimization steps
[75]. What makes such a minimization procedure unavoid-
able is that the e+e− → π0π+π− cross section expression
implies integrating over the si j ’s at each step. This is obvi-
ously prohibitively computer time-consuming for a negligi-
ble gain. Hence, at each step, one starts by tabulating coef-
ficient functions, exhibited in the next expression between
curly brackets:

σ(e+e− → π0π+π−, s) = αem s2

192π2

×
[{∫

Gdxdy

}

|F0(s)|2

+C2
VV P

∑

i, j=1···3
Fi (s)F

∗
j (s)

{∫

GHi H
∗
j dxdy

}

+CVV P

∑

i=1···3

(

F0(s)F
∗
i (s)

{∫

GH∗
i dxdy

}

+F∗
0 (s)Fi (s)

{∫

GHidxdy

})]

(145)

and these tables are used all along the next step. Equation
(145) uses the Kuraev–Silagadze parameterization [119] and
its kernel G(x, y) function; these are noted in Appendix H
of [14].

Appendix D: Energy shift of resonances and secondary
ISR photons

For the BESIII data sample [24] of concern here, pho-
ton radiation effects have been unfolded by utilizing the
PHOKHARA code [120], which also includes second-order
photon emission.70 In the leading ISR process,

√
s = 3.773

GeV is the energy at which the primary ISR photon is emit-
ted. Here we address the emission of a second photon near
the φ and ω resonances, where the corresponding radiation
effect appears resonance-enhanced.

The effect of a photon radiated off a Breit–Wigner (BW)
resonance is well known from the Z resonance physics at
LEP I [123–126]. A specific analysis for the process e+e− →
π+π− may also be found in [127,128]. The leading effect is
due to initial state radiation, where the observed cross section

70 For a discussion of the radiative correction tools see [121,122].

Table 14 The energy shifts in keV of the resonance locations by local
ISR photon emission at s = M2

R . We adopted PDG resonance parameter
values (in MeV). The values for (δE)fit are obtained in a global fit
involving all 3π data samples (BESIII+NSK)

MR �R δE (δE)fit

ω 782.65 8.49 −403 −486 ± 72

φ 1019.46 4.26 −213 −135 ± 59

is given by a convolution71:

σ obs(s) =
∫ 1

0
dkρini (k) σphys(s(1 − k)), (146)

where k = Eγ /Ee is the energy emitted by the photon in units
of the electron or positron energy Ee at which the resonance
is formed, and s = 4E2

e . The photon spectral function is

ρini (k) = βkβ−1 (1 + δv+s
1 + · · · ) + δh1 + · · · , (147)

with β = 2α
π

(L − 1), L = ln s
m2
e

and the photon radiation

corrections for the virtual + soft (v+s) and the hard (h) parts
read:

δv+s
1 = α

π

(
3

2
L + π2

3
− 2

)

; δh1 = α

π
(1 − L)(2 − k). (148)

Let us consider the narrow resonances ω and φ which are
well parameterized by the Breit–Wigner (BW) formula:

σBW(s) = 12π�e� f

M2
R

s

(s − M2
R)2 + M2

R�2
R

, (149)

which has its maximum at
√
s = MR (1 + γ 2)

1
4 with γ =

�R/MR . The peak value is σmax = 12π�e� f

M2
R�2

R
(1 + 1

4γ 2) and

the half maximum locations read (
√
s)± = MR (1 + 3

8γ 2)±
�R
2 (1 − 1

8γ 2). The leading photon radiation modifies these
resonance parameters to

√
smax = MR + βπ�R

8
− 1

4
γ 2 MR, (150)

ρ = σ obs

σBW
=
(

�R

MR

)β

(1 + δv+s
1 ), (151)

√
s+ − √

s− = �R

[

1 − π

2
βγ − 5

8
γ 2

+
(

π

4
β + β

2
ln 2

)(
1 + β + π

4
β
)]

. (152)

The physical resonance appears wider, with a reduced peak
cross section, and the position of the observed peak is shifted

71 Here one only considers the ISR part at order O(α) which yields the
main shift between the observed and the physical peak cross sections.
For a more complete discussion of photon radiation effects see e.g.
Eq. (39) ff in [127]. The final state radiation piece contributing to the
π+π−π0 cross section has been taken into account in the BES III
measurement.
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towards higher energies. Considering the emission of a sec-
ond photon, s′ = s(1 − k) in the convolution formula (146)
turns into s′′ = s′(1 − k2), where s′ = s(1 − k1) ∼ M2

R ,
i.e. s = M2

R in the relations listed before. This second pho-
ton shifts the peak energy of the ω and φ by δE as given in
Table 14.

The last data column here displays, correspondingly, the
values for the shifts δEω

BESI I I and δEφ
BESI I I returned by a

global EBHLS2 fit involving all data and, especially for the
3π channel, both the NSK and the BESIII samples; these fit
values differ from the corresponding calculated ones by only
1σ .

Interestingly, the calculated leading order shifts quite
effectively reproduce the shifts found by optimizing the fits
of the BESIII data (about a 1σ distance only for both signals).
Therefore, the question is whether BESIII has included (or
not) the corresponding corrections when unfolding the raw
data from radiation effects.
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