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We consider a local phenomenological model to explain a nonlocal gravity scenario which has been
proposed to address dark energy issues. This nonlocal gravity action has been seen to fit the data as well as
Λ-CDM and therefore demands a more fundamental local treatment. The induced gravity model coupled
with higher-derivative gravity is exploited for this proposal, as this perturbatively renormalizable model has
a well-defined ultraviolet (UV) description where ghosts are evaded. We consider a generalized version of
this model where we consider two coupled scalar fields and their nonminimal coupling with gravity. In this
simple model, one of the scalar field acquires a vacuum expectation value (VEV), thereby inducing a mass
for one of the scalar fields and generating Newton’s constant. The induced mass however is seen to be
always above the running energy scale thereby leading to its decoupling. The residual theory after
decoupling becomes a platform for driving the accelerated expansion under certain conditions. Integrating
out the residual scalar generates a nonlocal gravity action. The leading term of which is the nonlocal gravity
action used to fit the data of dark energy.
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I. INTRODUCTION

Dark energy (DE) has been a puzzling problem which is
observed in the Universe in the era of large distance scale
where the Universe is seen to be undergoing accelerated
expansion [1,2]. There has been several efforts in order to
explain at a fundamental level this observed phenomenon
of accelerated expansion at large cosmic distances:
quintessence [3–7], Λ-CDM, K-essence [8–10]. But so
far Λ-CDM seems to have the best fit with the data.
However, a good fundamental explanation is currently
still lacking.
The idea of explaining accelerated expansion in the late

time Universe with a cosmological-constant like term in the
action goes back to the last century. However, the reali-
zation that such a term could play a role in explaining the
observed accelerated expansion (as it give rise to negative
pressure) is not very old. To explain the cause of this
accelerated expansion which is obtained either by a
constant energy-density term in the action or by some

field whose energy density asymptotically approaches a
constant is known as dark energy.
A good and simple way to get an accelerated expansion

is by making use of a scalar field where its slow variation
with respect to cosmic time give rise to negative pressure.
This is the usual scenario in the quintessence model [3–7]
and k-essence model [8–10]. Of course, there are other
procedures too which involves additional vector or bimetric
gravity. Recently an interesting proposal using nonlocality
has been suggested, as a way to get accelerated expansion
[11–13]. It is seen that for a certain kind of nonlocality the
accelerated expansion achieved in late-time Universe fits
the data as nicely as Λ-CDM [14,15]. However so far the
explanation for the appearance of this nonlocality does not
exist, in the sense that it is not known whether it can arise
from some fundamental local theories. Although it has been
argued that similar kind of nonlocalities can arise in
quantum theory where the energy dependence in the
renormalization group running of couplings has been
generalized such that gðμÞ → gð−□Þ, where □ is the
square of covariant derivative while g is some coupling
of the theory [16,17]. Here the infrared behavior of the
running couplings is argued to lead to nonlocal modifica-
tion of gravity. In this paper, we aim to address this issue of
nonlocality by proposing a local model where such a
nonlocality arises naturally when the fields decouple from
the system. Such decoupling gives the nonlocal action
which at late times results in accelerated expansion.
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The idea we exploit here is that in the higher-derivative
induced gravity model, the quantum corrections give
scalars an induced mass when scale-symmetry is broken
via Coleman-Weinberg procedure [18]. However, the
induced mass of scalar is seen to be always above the
running energy scale resulting in a decoupling phenomenon
[19–22]. In a model where there are more than one scalar, it
is possible to achieve a phase of accelerated expansion at
late times. In these cases if one of the scalar gets an induced
mass after symmetry breaking and eventually decouples
from the system, then the residual system can execute an
era of accelerated expansion. We show that integrating out
the extra scalar from the residual action results in a nonlocal
action whose leading term matches with the nonlocal action
considered by [12,13,15].
The outline of paper is as follows. In Sec. II we give a

brief review of the nonlocal gravity. In Sec. III we give a
brief outline of induced and higher-derivative gravity.
In Sec. IV we present the model which reduces to the
nonlocal gravity model. Finally, the conclusion is presented
in Sec. V.

II. NONLOCAL GRAVITY

Here in this section we will give a short review about
the nonlocal gravity model which has been investigated in
[12,13,15]. In this proposal the gravitational equation of
motions are modified at long distances by a nonlocal term.
This was first suggested in [23] where the general relativity
(GR) equations were phenomenologically modified to

ð1 − μ2□−1ÞGμν ¼ 8πGTμν: ð1Þ

Here μ2 dictates the characteristic length scale at which
nonlocality enters, Gμν is the Einstein tensor for the metric,
G is the gravitational coupling constant, and Tμν is the
energy-momentum tensor. However, an immediate problem
that arises here is that the energy-momentum tensor is not
automatically conserved as the covariant derivative∇μ does
not commute with□−1 on a curved space-time. It was soon
realized that if one demands that energy-momentum tensor
Tμν should be covariantly conserved then one has to modify
the equations of motions to

Gμν − μ2ð□−1GμνÞT ¼ 8πGTμν: ð2Þ

Here T in the superscript denotes the transverse part of the
tensor in brackets [24]. This modification implies that Tμν

is conserved but it leads to unstable cosmological evolution
[25,26]. The first successful nonlocal model, free of
instabilities was given by [25].

Gμν −
μ2

3
ðgμν□−1RÞT ¼ 8πGTμν; ð3Þ

where the factor of 1=3 was introduced to have a conven-
ient normalization for the mass parameter. In this model,
there is no Veltman-Zakharov discontinuity and it smoothly
makes a transition to GR when μ2 → 0. Also, at cosmo-
logical scales, its evolution is stable during radiation and
matter dominated era. At later times the nonlocal term
behaves as dark energy giving rise to an accelerated
expansion [25,26]. Moreover, its cosmological perturbations
arewell behaved both in scalar [27] and tensor sector [15,28].
Further investigations of this model reveals that it is con-
sistent with CMB, supernova, baryon acoustic oscillations
(BAO), and structure formation data [27,29,30]. A detailed
comparison with Λ-CDM shows that this nonlocal model
fits the data at a level which is statistically indistinguishable
from Λ-CDM [14,15]. This was named RT-model where R
stands for Ricci scalar while T refers to the transverse part.
Currently an action for (3) does not exist. However, this

model is closely related to following nonlocal action,

SNL ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

μ2

6
R□−2R

�
; ð4Þ

whereMP is the reduced Planck mass. This action generates
equation-of-motions (EOM) which on linearizing around
flat space-time matches the one obtained after linearizing
Eq. (3). However at the nonlinear level the two models are
different. This model works very well at the background
level [11] and matches nicely with data [15,27] (although it
does not fit as well as Λ-CDM). This model is known as the
RR-model (see [31] for its dynamical system analysis).
However, there are some arbitrariness in the sense of

describing the nonlocal model given by Eq. (3) at the level
of the action. This gives one freedom to consider various
kinds of nonlocal actions. But the restrictions coming from
stable cosmic evolution limit the number of allowed terms
in the nonlocal modified action. It was shown that the
following nonlinear extension

SNL ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

μ2

6
Rð−□þ ξRÞ−2R

�
; ð5Þ

(where ξ is a dimensionless parameter) does a very good
job in matching the data. Such nonlinear extensions are
inspired from the realization that the RT-model is a
nonlinear extension of the RR-model [12]. This model
has been studied extensively and can fit the DE data nicely
(statistically as well as Λ-CDM).

III. INDUCED GRAVITY MODEL

Here we present a small review of the induced gravity
model where we consider a nonminimally coupled
scalar field with higher-derivative gravity action. The
higher-derivative gravity action we consider is of the
fourth order. The quantum theory of this is known to be
renormalizable to all loops [32,33], and was recently

GAURAV NARAIN and TIANJUN LI PHYS. REV. D 97, 083523 (2018)

083523-2



shown to be unitary [34,35] (see also references therein).
This then offers a sufficiently simple quantum field
theory of gravity which can be used to investigate physics
at ultrahigh energies.
This scale-invariant model is like an induced gravity

model [18], where a scalar acquires a VEV and in turn
gives rise to the gravitational coupling as well as gen-
erating masses for other fields. The scale-invariant system
consists of only dimensionless couplings. This makes the
theory perturbatively renormalizable to all loops in four-
dimensional space-time by power-counting [36,37] (for
classical picture of these theories see [32,38]). Scale-
invariant gravitational systems coupled with matter have
been investigated in the past. Some of the first studies
were done in [36,37,39–41], where the renormalization
group running of various couplings was computed and
fixed point structure was analyzed. Further investigation
for more complicated systems were done in [42–49]
(see also the book [50] for more details).
Recently the topic has gained some momenta and these

models have been reinvestigated [51–55]. The purpose of
these papers was to see if it is possible to generate a scale
dynamically starting from a scale-invariant system. In [51]
the authors called their model “Agravity,” where the Planck
scale is dynamically generated from the VEVof a potential
in the Einstein frame (not the Jordan frame). They achieve a
negligible cosmological constant, generate the Planck’s
scale, and addresses naturalness [51,56] and inflation [57],
but unitarity issues were not explored.1 In [18] it was
realized that the induced mass of the ghost is always above
the energy scale and hence is innocuous. In [52–55] the
authors studied the issue of dynamical generation of scale
via dimensional transmutation in the presence of back-
ground curvature. This also induces Einstein-Hilbert grav-
ity and generates Newton’s constant, but the unitarity
problem was not addressed. An interesting idea has been
suggested in [59,60] by assuming an analogy with QCD,
where the authors addressed the problem of ghosts and
tachyons using the wisdom acquired from nonperturbative
sector of QCD, as it is argued that the gravitational theory
enters a nonperturbative regime below the Planck scale.
The idea of induced gravity goes back a long time.

It was first proposed in [61,62], where the quantum matter
fluctuations at high energy generate gravitational dynam-
ics at low energy inducing the cosmological and Newton’s
gravitational constant. Another proposal suggested in
[63–65] induces Einstein gravity spontaneously via sym-
metry breaking along the lines of the Higgs mechanism.
Later in [66–70] the idea of generation of Einstein gravity
via dynamical symmetry breaking was considered, following

the methodology of Coleman-Weinberg [71]. In [70], metric
fluctuations were also incorporated in the generation of
induced Newton’s constant. Around the same time an
induced gravity from Weyl-theory was studied [72–76] as
well. Phase-transitions leading to the generation of Einstein-
Hilbert gravity due to loop-effects from a conformal factor
coupled with a scalar field were studied in [77]. In [78,79]
the renormalization group improved effective-potential of
the dilaton leads to running of VEV thereby inducing mass
scale (along with Einstein-Hilbert gravity). Furthermore,
the authors make a proposal along lines of [39,80] to tackle
ghost and tachyons.
The renormalizable and UV well defined scale-invariant

action that one considers here is

SGR ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π

�
−

1

f2

�
RμνRμν −

1

3
R2

�
þ ω

6f2
R2

�

þ 1

2
∂μϕ∂μϕ−

λ

4
ϕ4−

ξ

2
Rϕ2

�
; ð6Þ

where the coupling parameters f2, ω, λ and ξ are all
dimensionless, and the geometric quantities (curvature and
covariant-derivative) depend on metric gμν. If one decom-
poses the metric gμν ¼ ḡμν þ hμν, where ḡμν is the back-
ground metric and hμν is the fluctuation, then one can
compute the propagator of the fluctuation field hμν and its
various couplings. If the background metric is flat then the
quantum metric fluctuations in momentum space (for the
Landau gauge condition ∂μhμν ¼ 0) is given by,

Dμνρσ ¼ðΔ−1
G Þμνρσ ¼ð16πÞf

2

q4

�
−2Pμνρσ

2 þ 1

ω
Pμνρσ
s

�
; ð7Þ

where Pμνρσ
2 and Pμνρσ

s are spin projectors. They can be
written in flat space-time in momentum space in a simple
form given by

ðP2Þμναβ ¼
1

2
½Tμ

αTν
β þ Tμ

βTν
α� − 1

d − 1
TμνTαβ; ð8Þ

ðPsÞμναβ ¼
1

d − 1
TμνTαβ; ð9Þ

where

Lμν ¼
qμqν
q2

; Tμν ¼ ημν −
qμqν
q2

: ð10Þ

These are basically the projector for projecting out various
components of a vector field. They satisfy qμTμν ¼ 0 and
qμLμν ¼ qν. Using them the projectors for the rank-2 tensor
field can be constructed. The sign of couplings are taken in
such a way so that the system does not generate any
tachyons after the symmetry breaking [18]. This implies
that f2 > 0, ω > 0, λ > 0, and ξ > 0 (for the details on this

1In [58] a quantum mechanical treatment of 4-derivative
theories was suggested, which when suitably extended can tackle
more complicated field theoretic systems. This can perhaps
address issues of ghosts and unitarity in a more robust manner.
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choice of signs see [18,81]). For these choice of signs the
system remains stable and tachyons free.
Due to quantum corrections a VEV is generated in the

effective potential of the scalar field, which then becomes a
new vacuum. The original φ2 ¼ 0 vacuum becomes unsta-
ble under quantum corrections and the field migrates to the
new vacuum which occurs at φ2 ¼ κ2. It is given by [18]

d
dφ2

ReðVeffÞ
				
φ2¼κ2

¼ 0: ð11Þ

The generation of VEV consequently gives mass to scalar
and generates an effective Newton’s constant with the right
sign, if the parameter ξ was of opposite sign then the
Newton’s constant generated is of wrong sign [18]. The
generated mass and Newton’s coupling can be expressed in
terms of VEV κ2 and all the other couplings as

m2
s ¼

3

2
λκ2; G−1 ¼ 8πξκ2: ð12Þ

The graviton propagator after the symmetry breaking is
following [18]

Dμν;αβ ¼ 16πG ·

�ð2P2 − PsÞμν;αβ
q2 þ iϵ

þ ðPsÞμν;αβ
q2 −M2=ωþ iϵ

−
2ðP2Þμν;αβ

q2 −M2 þ iϵ

�
; ð13Þ

where now G is the induced Newton’s constant and is
defined using Eq. (12). The masses M2 and M2=ω are
given by

M2 ¼ 8πf2 · ξκ2;
M2

ω
¼ 8π

f2

ω
ξκ2: ð14Þ

From here we immediately note that ifω < 0 then there will
be tachyons in the theory signaling an instability. The only
way this catastrophe is avoided is when the parameter
ω > 0 [18,34,35,81].
From the propagator in the broken phase (13) we realize

that the last term has a wrong sign leading to trouble
with unitarity. This is the consequence of having higher-
derivatives term in the action, resulting in ghosts. The
generation of mass for the various modes allows one to
investigate whether the induced mass for this ghost and
its subsequent running can be such that it is always above
the running energy scale. If the running of the parameters
in the theory is such that the induced mass of the ghost
remains always above the running energy scale, then the
ghost mode never gets excited during the RG flow of the
couplings. In the case of pure higher-derivative gravity
without matter [34,35], it was indeed noticed from the RG
running of parameters that there exists a large domain of
coupling parameters where the ghost mass is always above

the RG energy scale, and is innocuous. This phenomena
was also witnessed in the case of induced gravity model
investigated in [18]. The range of energy where the ghost
remains physically unrealizable is quite large, extending
from very high in the ultraviolet (at or more than Planck’s
scale) to very deep in infrared (almost cosmological scales).
This range of energy is set by the parameter ωwithin which
it remains positive and changes sign outside this range.
For the system to be stable and tachyons free it is required
that the parameter ω should remain positive [34,35]. The
signs and stability of such higher-derivative systems have
been discussed in more details in [81].
In the case of induced gravity [18], although the induced

mass of the ghost is such that it is always above the energy
scale, the occurrence of this phenomena leads to an
interesting behavior for the scalar. The induced scalar mass
is seen to be always above the energy scale leading to its
decoupling in the same manner as for the higher-derivative
ghost. It turns out that if one avoids ghosts to make the
theory unitary then under appropriate choice of parameters,
it is seen that the scalar gets also decoupled from the
system. This decoupling of the scalar will have natural
consequences in cosmology. In the following, we consider
a generalization of this induced gravity action by incor-
porating an additional scalar field. One of the scalar gets a
VEVand generates Newton’s constant and masses, and gets
decoupled. The leftover scalar in the residual action plays
an interesting dynamics.

IV. MODEL

In this section we present the idea of how the nonlocal
action given in Eq. (5) can possibly arise from a local model
via decoupling. This kind of nonlocal action can be safely
embedded in the induced gravity scenario, which has an
elegant UV completion [18]. The simple idea is that in the
higher-derivative induced gravity action the scalar field
gets completely decoupled from the system under certain
circumstance when the ghosts are avoided. This decoupling
can then be exploited to construct models which can give
rise to nonlocalities in far infrared. As this model has a
sensible UV completion, it becomes a good unified picture
explaining some of the UV and IR physics together.
We consider the following two-scalar field model

coupled nonminimally to gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ΦTξΦRþ 1

2
ΦTð−□ÞΦ − VðΦTΦÞ

�

þ
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
−

1

f2

�
RμνRμν −

1

3
R2

�
þ ω

6f2
R2

�
;

ð15Þ

where Φ ¼ fϕ; χg is a two real scalar field doublet. This
model is an extension of the induced gravity model stated
in Eq. (6), where the gravitational couplings are taken to
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have the same sign as before in order to ensure stability of
system by no generating tachyons. The parameter ξ is now
a matrix whose entries are given by,

ξ ¼
�

ξ1 ξ12

ξ21 ξ2

�
; ð16Þ

where the entries of this matrix are all dimensionless. This
is a simple two-scalar field model where the two scalar
fields are not only coupled with each other but also have
nonminimal coupling with gravity. It is a scale-invariant
action which is renormalizable to all loops [33,36,37].2

As this model is just a minor extension (by inclusion of an
additional scalar) of the induced gravity model stated in
Eq. (6) where ghosts are evaded [18], so this model inherits
the same virtues of the induced gravity model in which
higher-derivative ghost are innocuous.
The potential is taken to be of ϕ4 type as in four

dimensions it is the only allowed term which obeys scale
symmetry and renormalizability (similar kind of models
were also considered in [82,83]). The form of potential is
given by

VðΦTΦÞ ¼ 1

4
ðΦT · λ ·ΦÞ2 ð17Þ

where the coupling λ is a matrix

λ ¼
�

λ1 λ12

λ21 λ2

�
ð18Þ

consisting of only dimensionless entries. In this model when
the scalar ϕ acquires a VEV then it will generate mass terms
for the various fields and will induce Newton’s constant.
Here we will not discuss the process through which VEV for
ϕ gets generated but we assume that scale-symmetry break-
ing has already occurred resulting in a generation of nonzero
VEV κ for the scalar ϕ. The paper [18] gives a detailed

description of generation of VEV via a Coleman-Weinberg
procedure, where the quantum fluctuations leads to sym-
metry breaking. The fluctuation of ϕ around the VEV are
denoted by φ. Here in this paper we are interested in the
aftermath of the symmetry breaking mechanism to know the
behavior of this model at late times. The higher-derivatives
gravity terms can be ignored as in the deep infrared they do
not play a role and gets heavily suppressed [18]. This action
can be written in an alternative form after opening up the
matrix as follows

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕð−□þ ξ1RÞϕþ χð−□þ ξ2RÞχ

þ ϕð−2□þ ξ12Rþ ξ21RÞχ

−
1

2
fλ1ϕ2 þ ðλ12 þ λ21Þϕχ þ λ2 χ

2g2
�
: ð19Þ

If ϕ-field acquires a VEV then it generates Newton’s
constant giving rise to the usual gravitational dynamics.
However the fluctuation field φ around the VEV of ϕ
couples with the other scalar field χ. The action after
symmetry breaking is given by,

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
κ2ξ1Rþ 2κξ1φRþ φð−□þ ξ1RÞφ

þ κðξ12 þ ξ21ÞRχ þ φð−2□þ ξ12Rþ ξ21RÞχ

þ χð−□þ ξ2RÞχ −
1

2
fλ1κ2 þ 2λ1κφþ ðλ12 þ λ21Þκχ

þ λ1φ
2 þ ðλ12 þ λ21Þφχ þ λ2 χ

2g2
�
: ð20Þ

The potential piece written in the second line when expanded
will generate mass terms for the fields beside generating
interactions. The mass term can be written in an elegant form
in matrix notation as follows

−
1

2
ðφ χ Þ ·M ·

�
φ

χ

�
¼ −

1

4
κ2ðφ χ Þ ·

 
6λ21 λ1ðλ12 þ λ21Þ

λ1ðλ12 þ λ21Þ ðλ12 þ λ21Þ2 þ 2λ1λ2

!
·

�
φ

χ

�
: ð21Þ

The interactions are given by

I ¼ −
1

4
λ21κ

4 −
λ1κ

3

2
f2λ1φþðλ12þ λ21Þχg−

κ

2
f2λ21φ3þ 3λ1ðλ12þ λ21Þχφ2þððλ12þ λ21Þ2 þ 2λ1λ2Þφχ2þðλ12þ λ21Þλ2 χ3g

−
1

4
fλ21φ4 þððλ12þ λ21Þ2þ 2λ1λ2Þφ2χ2þ 2λ1ðλ12þ λ21Þφ3χþ 2λ2ðλ12þ λ21Þφχ3 þ λ22 χ

4g: ð22Þ

2Higher-derivatives gravity terms ensures renormalizability of theory which remains unaffected by inclusion of renormalizable matter
couplings.
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Here the first term is a like a vacuum energy term, the linear
in fields will give rise to tadpoles in the quantum theory
which can be absorbed via field redefinitions, the cubic and
quartic interactions will give rise to nonlinear interactions.
In special scenario where ðλ12 þ λ21Þ ¼ 0, the mass matrix
acquires a simple diagonal form while also simplifying
the interaction pieces. We will consider this special case in
the following. For this special case, the fields have the
following masses (no mixing),

m2
1 ¼ 3λ21κ

2; m2
2 ¼ λ1λ2κ

2: ð23Þ

These are the induced masses for the fields φ and χ. The
interaction piece for this special case is

I ¼ −
1

4
λ21κ

4 − λ21κ
3φ − λ1κφfλ1φ2 þ λ2 χ

2g

−
1

4
fλ21φ4 þ 2λ1λ2φ

2χ2 þ λ22 χ
4g: ð24Þ

One can then compute the equation of motion for the fields
φ (fluctuation) and χ, respectively, by varying the full
residual action as follows

ð−□þ ξ1R −m2
1Þφþ ðξ1R − λ1κ

2Þκ

þ 1

2
ð−2□þ ξ12Rþ ξ21RÞχ − λ1κð3λ1φ2 þ λ2 χ

2Þ
− λ1φðλ1φ2 þ λ2 χ

2Þ ¼ 0; ð25Þ

ð−□þ ξ2R −m2
2Þχ þ

1

2
ðξ12 þ ξ21ÞκR

þ 1

2
ð−2□þ ξ12Rþ ξ21RÞφ − 2λ1λ2κφχ

− λ2 χðλ1φ2 þ λ2 χ
2Þ ¼ 0; ð26Þ

where each equation contains linear and nonlinear inter-
actions terms. These are coupled differential equations.
If the interaction strength is small (which is the case in
cosmological scenarios) then one can solve the equations
perturbatively. Moreover, in the scenario when the scalar
φ gets entirely decoupled from the system, the set of
equations are greatly simplified. This is the approximation
where massm2

1 is very large. In the induced gravity, higher-
derivative model considered in Eq. (6), such a phenomena
naturally occurs when the scale-symmetry is broken. This
breaking of scale symmetry not only induces the gravita-
tional coupling (Newton’s constant) but also induces mass
for the various fields. Under the renormalization group
running it is seen that the induced mass of the scalar is
always above the running energy scale (under certain
conditions [18]), resulting in a decoupling phenomena.
This means that m2

1=E
2 > 1 (E is the running energy).

This condition means that the particle never goes on-shell.
In infrared it is seen that this ratio m2

1=E
2 ≫ 1, which will

imply that m2
1 ≫ □. This also means that in quantum

theories when such a particle appears inside a loop then it
does not contribute to the imaginary part of the forward
scattering amplitude (Cutkowsky cut), as it never goes
on-shell. Here in this paper we will exploit this knowledge
in our favor to decouple the scalar field fluctuation φ from
the system.
Under this decoupling approximationm2

1 ≫ □, the equa-
tion of motion for field φ acquires a simplified expression.
Keeping only the leading order terms we get

φ ¼ −
1

3
κ −

1

m2
1

�
□χ −

ðξ12 þ ξ21ÞRχ
2

�
: ð27Þ

The other equation of motion for the field χ gets similarly
simplified when the reduced equation of motion for φ is
plugged in it. This is given by,

�
−□þ ξ2R −

4

9
m2

2

�
χ þ ðξ12 þ ξ21ÞR

3
κ ¼ 0; ð28Þ

where higher order nonlinear terms are ignored. This residual
linear equation can be solved easily by inverting the operator,

χ ¼ −
κðξ12 þ ξ21Þ

3

�
−□þ ξ2R −

4

9
m2

2

�
−1
R: ð29Þ

This appears as a constraint in the system after decoupling
of the scalar mode φ has occurred. Here the inversion acts
on the Ricci scalar R. One can then plug the solution for φ
from Eq. (27) back in the action of the theory, given in
Eq. (20). This generates leading and subleading terms in the
action. Under the decoupling approximation one can safely
ignore the subleading part [which are of Oð1=m2

1Þ], as the
dominant role will be played by leading part of the action.
The leading part of the action is given by,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

4

81
m2

1κ
2 þ 2ξ1

9
κ2Rþ ξ12 þ ξ21

3
κRχ

þ 1

2
ð∂χÞ2 þ ξ2

2
Rχ2 −

2

9
m2

2 χ
2 −

1

4
λ22 χ

4

�
: ð30Þ

This is the action where the decoupling of field φ has
occurred. This residual action contains only terms which
are dominant after the decoupling (ignoring the contribu-
tion from Oð1=m2

1Þ). Here the field χ is coupled non-
minimally with the background space-time. In the process
of symmetry breaking a large cosmological constant is
generated which remains present in the residual action for
the field χ. However, the effects of this large cosmological
constant gets shielded if the gravitational coupling dictat-
ing the behavior of metric under the influence of cosmo-
logical constant, goes to zero. This situation actually
occurs in the current case of induced gravity coupled with
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higher-derivatives (see Eq. (73), Fig. 7, Fig. 11 and Fig. 13
of [18]). Here it is noticed that renormalization group
running of induced Newton’s constant is such that it goes
to zero in deep infrared. This behavior of gravitational
Newton’s constant was also witnessed in pure higher-
derivative gravity [34,35] (and in higher-derivative gravity
coupled with gauge fields [84,85]). In then implies that
in infrared as the gravitational coupling strength weakens,
the backreaction of vacuum energy gets severely shielded
making the large cosmological constant innocuous.
In the following we will therefore ignore the generated
cosmological constant term.
The field χ slow rolls for the case when coupling λ2

and mass m2
2 is small. In which case the kinetic term of

the field χ can be ignored. This action has a simple form
given by,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2ξ1
9

κ2Rþ ξ12 þ ξ21
3

κRχ þ ξ2
2
Rχ2

−
2

9
m2

2 χ
2 −

1

4
λ22 χ

4

�
: ð31Þ

In this slow-roll regime the field χ no longer has
dynamics. It couples with the background curvature
driving the dynamics of space-time. In this if the follow-
ing approximation holds

2ξ1
3ðξ12 þ ξ21Þ

≫
χ

κ
≫

2ðξ12 þ ξ21Þ
3ξ2

ð32Þ

then the linear χ term does not contribute compared to
quadratic and quartic pieces and the induced Einstein-
Hilbert piece.
The approximation in Eq. (32) is not unreasonable in the

case of induced gravity coupled with higher-derivative
gravity [18]. This model is a perturbatively renormalizable
model in four dimensional space-time where the RG
analysis does not put any constraint on the required values
of the parameters ξ1, ξ2, ξ12, and ξ21. This means that these
parameters can be chosen freely. Exploitation of this
freedom into choosing those values of the parameters ξ1,
ξ2, ξ12, and ξ21 such that the condition stated in Eq. (32) is
fulfilled, suppresses the linear term in χ in the residual
action stated Eq. (31). This will then leave us with the
induced Einstein-Hilbert term, and quadratic terms in the
fields plus the interaction pieces. This action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2ξ1
9

κ2Rþ ξ2
2
Rχ2 −

2

9
m2

2 χ
2 −

1

4
λ22 χ

4

�
:

ð33Þ

This action of the field χ is achieved once the decoupling of
the heavy scalar has occurred, and the field χ starts to slow
roll where it satisfies the condition Eq. (32). This results in

a nondynamical action of χ field which couples with the
background dynamical geometry. This action comes along
with the constraint imposed in the Eq. (29). This constraint
when plugged back into the residual action leads to the
nonlocal action of the theory

SNL ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2ξ1
9

κ2R−
2m2

2κ
2ðξ12þξ21Þ2
81

×R

�
−□þξ2R−

4

9
m2

2

�
−2
Rþξ2κ

2ðξ12þ ξ21Þ2
18

×R

�
−□þξ2R−

4

9
m2

2

�
−1
R

�
−□þξ2R−

4

9
m2

2

�
−1
R

−
λ22κ

4

324
ðξ12þξ21Þ4

��
−□þξ2R−

4

9
m2

2

�
−1
R

�
4
�
:

ð34Þ

Here the first term is the induced gravitational term while
other terms are generated under decoupling and approx-
imations. This can be seen as a heuristic derivation of the
nonlocal action that has been studied extensively in [12,13,
15,28] and has been argued to reproduce dark energy data
as good as Λ-CDM.
If we define the induced Newton’s constant as

9=ð32πGÞ−1 ¼ ξ1κ
2, then one can pull out the factor of

Planck’s mass and write the action in a form which can be
compared to the existing models given in [12,13,15,28].
This will become

SNL ¼ M2
p

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

μ2

6
R

�
−□þ ξ2R −

4

9
m2

2

�
−2
R

þ ρ21R

�
−□þ ξ2R −

4

9
m2

2

�
−1

× R

�
−□þ ξ2R −

4

9
m2

2

�
−1
R

− ρ22

��
−□þ ξ2R −

4

9
m2

2

�
−1
R

�
4
�
; ð35Þ

where M2
P ¼ ð4ξ1κ2Þ=9 is the reduced Planck’s mass and

μ2 ¼ 2ðξ12 þ ξ21Þ2m2
2

3ξ1
;

ρ21 ¼
ξ2ðξ12 þ ξ21Þ2

4ξ1
;

ρ22 ¼
λ22M

2
Pðξ12 þ ξ21Þ4
32ξ21

; ð36Þ

where these entities are defined to make connection with
the nonlocal model defined in Eq. (5). It was observed in
[12,13,15,28] that the parameter μ should be a very small
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quantity [of the OðH0Þ], in order to explain current
accelerated expansion of the Universe. Following their
work, it is seen one can still expect reasonable values ofm2

2

by appropriately choosing ξ1 and ðξ12 þ ξ21Þ. The freedom
allowed by the renormalizability of the theory allows one to
choose these factors freely.
At this point one can make an order of estimate for the

parameter m2
2 by using the values of μ2 considered in

[12,13,15,28]. From their analysis it is known that μ is of
the order of current Hubble radius H0. This is a very small
quantityOð10−32Þ eV. The authors of [12,13,15,28] further
mentions that even though μ (in their model) is a small
quantity, but it does not describe the fundamental length
scale that enters the physical system. This fundamental
length scale is ΛRR and is related to μ2 via M2

P in the
following manner,

Λ4
RR ¼ M2

P

12
μ2: ð37Þ

For our present case this will imply thatΛRR is related to the
m2 and κ in the following way

Λ4
RR ¼ 2

81
ðξ12 þ ξ21Þ2m2

2κ
2: ð38Þ

According to the estimates made in works [12,13,15,28],
it is seen that for the reduced Plank mass MP, if μ ∼
OðH0Þ then ΛRR ∼ 10−3 eV. In GUT (grand unified theory
models) scenarios, if the scale symmetry broke around the
GUT scale resulting in generation of induced Newton’s
constant, then this will imply that κ ∼ 1016 GeV and
correspondingly ξ1 ∼ 100. This knowledge further leads
to the mass of the scalar field χ (m2

2) following Eq. (38),
which gives m2 ∼ 10−30ðξ12 þ ξ21Þ−1 eV. Exploiting the
freedom offered in the choice of values of parameters
ðξ12 þ ξ21Þ, allows one to have a reasonable m2. This
particular model which has a well-defined UV completion
and is free of ghosts can be seen to offer an interesting
picture where low-energy nonlocal interaction emerges
leading to accelerated expansion in late time Universe.

V. CONCLUSION

We tried to understand dark energy and the accelerated
expansion it causes at late times of the Universe. We
present a local unified model of a modified theory of
gravity with a coupled system of scalar fields in Eq. (15).
This scale-invariant model has a well-defined UV behavior
in the sense that the theory is perturbatively renormalizable
to all loops [33,36,37] and in tachyons free regime higher-
derivative ghosts have been excised out [18,34,35,39,80].
In this model we would like to seek whether it can explain
late time cosmic acceleration observed in the Universe.
We considered a two coupled real scalar field model which
also interacts nonminimally with gravity. One of the scalar

acquires a VEV and in turn generates Newton’s constant
and masses for the fields. This scalar gets decoupled from
the system as its mass becomes very large in the infrared,
leaving behind a simple system.
Although breaking of scale-symmetry generates cosmo-

logical constant in the theory but its effect are shielded from
affecting the dynamics of space-time due to the weakening
of induced gravitational coupling constant in the infrared.
This weakening of induced gravitational coupling is indeed
observed in [18] (and for Einstein-Hilbert coupled with
higher-derivatives in [34,35,84,85]), where such infrared
vanishing of Newton’s constant shield the effect of large
cosmological constant. For the case of small coupling λ2
and small mass, the field χ starts to slow roll, implying that
its kinetic term can be ignored in the action. At this point
the action for field χ consist of only nondynamical pieces
and their interaction with the space-time. The RG running
of the of parameters as seen in [18] is such that the
approximation stated in Eq. (32) is satisfied if one chooses
large values of ξ1 and ξ2. This does not hamper the
renormalizability as explained in [18]. Under this condition
the linear term in χ can be ignored over the quadratic and
quartic piece. The integrating out of this leftover scalar
from the simplified action leads to a nonlocal version of
theory whose leading term matches the nonlocal gravity
action studied extensively by [12–15,30] where it was
noticed that it explain the late-time cosmic acceleration as
well as Λ-CDM. This local scale-invariant system is then a
good model which not only has a good UV completion but
also leads to nonlocal gravity theory which can explain
dark energy. In the papers [12–15,30] the authors intro-
duced a controllable parameter μ2 (or ΛRR) whose value
was fixed by matching with the dark-energy data. However,
an explanation for a possible origin of this length-scale was
lacking. Here we derive the parameter μ2 (or ΛRR) in terms
of parameters present in the local model which is given in
Eq. (38). This indicates a possible origin for length scale μ2

(or ΛRR).
Generalized nonlocal gravity actions are also favorable

in the sense that they offer superrenormalizability of the
full theory, implying that the quantum theory is free of
UV divergences [86–90]. The nonlocality present in these
theories provides an extra suppression factor in the propa-
gator at high-energies leading to a well defined UV
behavior. Such nonlocal theories also arise at low energy
from a more fundamental UV complete theory such as
string theory. It will be interesting to see whether the model
proposed in this paper can be elegantly extended to include
these generalized nonlocal theories. This will be considered
in a future publication.
The model presented here is UV complete (perturba-

tively renormalizable to all loops [33,36,37] where ghosts
are evaded [18,34,35,39,80]) and approximations have
been made in an attempt to arrive at the nonlocal form of
the action. Perhaps an inclusion of additional symmetry
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incorporated at the level of local action might be able to
give better handle over the scalar sector of the theory
where the assumptions considered here will naturally
arise. It may be possible that the residual scalar χ is a
composite of some fundamental fermions, in which case
dark energy arises when the condensate is formed [91].
This scenario will be explored in the future. Moreover, it
will be interesting to investigate the modification of the
behavior of infrared gravitational field theory (classical
and quantum) under the inclusion of such nonlocalities.
In particular the effect on gravitational waves (GW)
created by such infrared nonlocal modification of gravity

is worthy of investigation. Using future GW detectors one
can possibly test such models [92,93]. This will be
presented in future publication.
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