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1 Introduction

Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy

(STM) experiments are valuable tools for investigating strongly correlated electrons in

solids, such as topological materials and unconventional superconductors. They trace prop-

erties of single-particle spectral functions, revealing information about the electronic band

structure, the quasi-particle excitation spectrum and the Fermi surface in a material. Thus,

the comparison of ARPES and STM measurements to spectral functions computed with

holographic methods provides a test of holography as a viable framework for describing

strongly correlated electron matter. In turn, holographic computations have the potential

to shed light on the fundamental mechanisms driving such systems.

The earliest studies of fermionic response in holography focused on homogeneous cases

which respect translational invariance (see [1–6] for pioneering works and e.g. [7] for a

review). However, to describe real materials characterized by strong lattice potentials

one must work with setups in which translational symmetry is broken. Several mecha-

nisms for encoding lattice effects have been put forth within holography, with the simplest
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one being the homogeneous holographic lattices of [8–10], which simulate the effects of

translational symmetry breaking while retaining the homogeneity of the spacetime ge-

ometry. However, homogeneous lattices are unable to capture the physics of Umklapp,

motivating the need to work with periodic lattices, as argued by [11]. This was done

first in [12] through a perturbatively small periodic modulation of the chemical poten-

tial and later generalized to the fully backreacted case in [13]. Both of these studies

identified an anisotropic Fermi surface and the appearance of a band gap at the Bril-

louin zone boundary. However, in both of these constructions the lattice periodicity was

put in by hand and was irrelevant in the infrared. Nevertheless, a number of striped

quantum phases are generated spontaneously in strongly correlated electron systems [14],

such as charge density wave (CDW), spin density wave (SDW) and pair density wave

(PDW) phases. These spontaneous orders are believed to play an important role in the

rich phase diagram of strongly correlated systems, and in particular in high temperature

superconductors.

Building on this work, we recently extended [15] the analysis of fermionic spectral

functions to the case in which translational invariance is broken spontaneously — with and

without an underlying ionic lattice. Thus, our construction in [15] provided a holographic

realization of spontaneous crystallization in the presence of a background lattice, and al-

lowed us to ask under which conditions a Fermi surface forms and how it evolves in the

presence of strong correlations. The most intriguing feature that emerged from [15] was

the suppression of the fermionic spectral function once the translational symmetry break-

ing became sufficiently strong. In particular, for large enough values of the amplitude of

the ionic lattice the Fermi surface gradually disappeared — along the direction of broken

translational symmetry — leaving behind disconnected segments. This phenomenon is

reminiscent of the Fermi arcs [16–18] observed experimentally in the pseudo-gap phase of

the high temperature superconductors, suggesting that the Fermi surface in these phases

may be open and segmented. The spectral function suppression and Fermi arc-like features

have also been observed in a homogeneous background by considering a strong Q-lattice

deformation in one spatial direction [19] or by introducing a dipole-couling between bulk

fermionic and gauge fields [20, 21].

In the temperature range examined in [15], the fermionic spectral weight suppression

was observed in the striped phase only in the presence of an ionic lattice, i.e. when the

breaking of translations is explicit. Unfortunately, because of numerical challenges, in

the purely spontaneous symmetry breaking case in [15] we could not reach temperatures

low enough to see the analogous effect. However, our expectation was that the spectral

weight suppression is a general property in holography and therefore that it should not

be very sensitive to the specific type of spatial modulation present in the system. At low

temperatures, a sufficiently strong spontaneously generated periodic lattice should also lead

to such a suppression.

Here we explore this question in further detail by constructing the fermionic spectral

function in several holographic models of lattices and (striped) phases with broken trans-

lational invariance. Our goal is to ask whether the spectral weight suppression is a generic

effect, independently of whether translations are broken spontaneously or explicitly. To this
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end, we examine the structure of the Fermi surface and its dependence on the fermionic

charge and lattice strength.

In the context of Fermi liquid theory, a Fermi surface can be reconstructed by identi-

fying singularities in the spectral function A(ω,k) at k = kF and ω = 0 (with the energy

defined relative to the chemical potential), at zero temperature. The poles denote low-

energy excitations slightly outside or slightly inside the Fermi surface — quasi-particles

and quasi-holes, respectively. In strongly correlated systems in which Fermi liquid theory

breaks down, one can still adopt a working definition of a Fermi surface as the surface in

momentum space where there are gapless excitations, resulting in non-analytic behavior

of A(ω,k) at k = kF and ω = 0 (see e.g. the discussion in [7]). Moreover, when one is

not strictly at zero temperature, the poles are replaced by peaks that must be sufficiently

sharp and narrow as compared to the temperature scale in the system (generalized Fermi

surface criteria at finite temperature were outlined in [22]).

In our analysis we have adopted this working definition and identified the location and

shape of the Fermi surface by inspecting the behavior of A(ω,k) for ω ∼ 0 and singling

out the appropriate peak structure. In all the examples we have studied the fermionic

spectral function is suppressed when the translational symmetry breaking is sufficiently

strong, independently of the particular symmetry breaking mechanisms. This includes

cases in which the symmetry breaking is purely spontaneous. Thus, our study confirms

and generalizes the results of [15], and provides strong numerical evidence to our previous

observation: in strongly correlated systems Fermi surfaces can be suppressed when the

inhomogeneity effect is strong enough. Moreover, this phenomenon occurs only when the

Fermi surface extends beyond the first Brillouin zone, suggesting that the suppression may

be the result of an interaction between Fermi surface branches belonging to different zones.

The structure of the paper is as follows. Section 2 describes the gravitational models we

will work with and the holographic techniques to extract the fermionic spectral functions.

Secion 3 contains our numerical results using the extended zone scheme and section 4 is

a summary of results and open questions. Appendix A contains the numerical results

adopting a “folded” representation of the spectral function, which might be appropriate to

describe the band structure in the reduced zone scheme. The preliminary analysis of the

energy distribution of the spectral function is presented in appendix B.

2 Holographic method

We will work within the Einstein-Maxwell-scalar framework, and consider models that can

be captured by examining various cases of

S =
1

2κ2N

∫
d4x
√
−g
[
R+

6

L2
+ Lm

]
,

Lm = −1

2
∂µχ∂

µχ− ZA(χ)

4
FµνF

µν − ZB(χ)

4
F̃µνF̃

µν − ZAB(χ)

2
FµνF̃

µν

−K(χ)(∂µθ − qAAµ − qBBµ)2 − V (χ) , (2.1)
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where Fµν = ∂µAν − ∂νAµ and F̃µν = ∂µBν − ∂νBµ are the field strengths of the U(1)

vector fields Aµ and Bµ, respectively. The scalar field χ generically couples to both vectors

via a Stückelberg term, which is introduced to realize the spontaneous breaking of the U(1)

symmetry [23–26].

We are interested in non-linear solutions describing uni-directional striped black

branes, which depend on the holographic radial coordinate z and on one of the spatial

coordinate, chosen for concreteness to be x. We will use the DeTurk trick [27] to construct

the corresponding background geometry. The following ansatz suffices to accommodate

the solutions of interest,

ds2 =
r2h

L2(1−z2)2

[
−F (z)Qtt dt

2+
4z2L4Qzz
r2hF (z)

dz2+Qxx(dx−2z(1−z2)2Qxzdz)2+Qyy dy
2

]
,

χ= (1−z2)φ, At =µz2α, Bt = z2β, (2.2)

where the eight functions Q = (φ, α, β,Qtt, Qzz, Qxx, Qyy, Qxz) depend on both z and x.

By taking φ = β = Qxz = 0 and α = Qtt = Qzz = Qxx = Qyy = 1 one recovers the

standard AdS-RN black brane solution,

ds2 =
r2h

L2(1− z2)2

[
−F (z)dt2 +

4z2L4

r2hF (z)
dz2 + (dx2 + dy2)

]
,

F (z) = z2
[
2− z2 + (1− z2)2 − L2µ2

4r2h
(1− z2)3

]
, At = µ z2,

(2.3)

which will be chosen to be the reference metric for the DeTurck method. In the present

coordinate system the horizon is located at z = 0 and the AdS boundary at z = 1. The

black brane temperature is given by

T =
rh
4π

[
3

L2
− µ2

4r2h

]
. (2.4)

To study the fermionic response, we introduce a probe Dirac fermion ζ with charge q

and a field dependent mass term M(χ),

SD = i

∫
d4x
√
−g ζ

[
Γaeµa

(
∂µ +

1

4
(ωab)µΓab − iqAµ

)
−M(χ)

]
ζ . (2.5)

While throughout the analysis we will consider mostly cases in which the fermion mass is

constant, we will also examine a model for which M(χ) = m+nχ2 with m and n constants.

Here (µ, ν) and (a, b) denote, respectively, the bulk spacetime and tangent indices, Γa are

gamma matrices with Γbc = 1
2 [Γb,Γc] and eµa is the vielbein, with (ωab)µ = eaν∇µeνb the

associated spin connection. We can obtain the retarded Green’s function for the fermionic

operator of the strongly coupled field theory by solving the bulk Dirac equation with in-

falling boundary conditions at the horizon.
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For the phase described by the striped geometry (2.2), following the same choice of

vielbein and gamma matrixes of [15] we obtain the Dirac equation(
∂z + 2z(1− z2)2Qxz∂x + Π1 ∓

2MLz

1− z2

√
Qzz
F

)[
A1

B1

]
±Π2

[
B1
A1

]
(2.6)

+i
2L2z

rh

√
Qzz
FQxx

(∂x + Π3)

[
B1
A1

]
+

2L2z

rh

√
Qzz
FQyy

ky

[
B2
A2

]
= 0,

(
∂z + 2z(1− z2)2Qxz∂x + Π1 ∓

2MLz

1− z2

√
Qzz
F

)[
A2

B2

]
±Π2

[
B2
A2

]
(2.7)

−i2L
2z

rh

√
Qzz
FQxx

(∂x + Π3)

[
B2
A2

]
+

2L2z

rh

√
Qzz
FQyy

ky

[
B1
A1

]
= 0,

with

Π1 = z(1− z2)2[2i kxQxz(z, x) + ∂xQxz(z, x)] ,

Π2 =
2L2z

rhF (z)

√
Qzz(z, x)

Qtt(z, x)
[ω + qµz2 α(z, x)] ,

Π3 = i kx −
∂xQxx(z, x)

4Qxx(z, x)
+
∂xQzz(z, x)

4Qzz(z, x)
.

(2.8)

Note that we have made the transformation

ζ =

(
L(1− z2)

rh

)3/2

(FQttQxxQyy)
−1/4

[
Ψ1

Ψ2

]
, (2.9)

and have expanded each two-component spinor,

Ψα(t, z, x, y) ∼

[
Aα(z, x)

Bα(z, x)

]
e−iωt+kxx+kyy, α = 1, 2 . (2.10)

Taking into account the periodicity of the background along the x direction, which is

fixed by an “Umklapp wave vector” K, the solution to the Dirac equation can be expanded

using Bloch’s theorem as

Aα(z, x) =
∑

n=0,±1,±2,···
A(n)
α (z) einKx, Bα(z, x) =

∑
n=0,±1,±2,···

B(n)α (z) einKx, (2.11)

with n characterizing the momentum level or Brillouin zone. Near the z = 1 AdS boundary

the asymptotic expansion is of the form[
A(n)
α

B(n)α

]
= a(n)α (1− z)−mL

[
1

0

]
+ b(n)α (1− z)mL

[
0

1

]
+ · · · , (2.12)
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where (a
(n)
α , b

(n)
α ) are constants for a given (ω, kx, ky) and we have assumed that the mass

term M(χ) approaches a constant m at the AdS boundary. The retarded Green’s function

can then be obtained from the following relation [12, 13],

b(n)α (ω, kx, ky) =
∑
α′,n′

GRα,n;α′,n′(ω, kx, ky) a
(n′)
α′ (ω, kx, ky) , (2.13)

from which one extracts [15] the spectral density (a.k.a. the spectral function) A(ω, kx, ky).

To provide a representation of the band structure in the extended zone scheme we

work with the following “unfolded” expression for the spectral function,

A(ω, kx = k0 + nK, ky) = Tr Im[GRα,n;α′,n(ω, k0, ky)] , (2.14)

with k0 ∈ [−K
2 ,

K
2 ] restricted to the first Brillouin zone, but kx ranging over the entire

system. The integer n denotes once again the momentum level or Brillouin zone number.

Since this spectral function representation doesn’t implement any folding procedure, it will

allow for a more direct comparison of our results with the ARPES measurements, which

are a direct probe of the electronic band structure in the extended Brillouin zone scheme.

We will use (2.14) in the main body of the paper, to facilitate the discussion of the features

which are reminiscent of Fermi arcs. On the other hand, for completeness in appendix A

we will adopt a different expression for the spectral function, which provides a description

of the band structure in the reduced zone scheme and is given by

A(ω, kx, ky) =
∑

n=0,±1,±2,···
Tr Im[GRα,n;α′,n(ω, kx, ky)] , (2.15)

where kx ∈ [−K
2 ,

K
2 ] is restricted to be in the first Brillouin zone. By summing over all val-

ues of n, we ensure that all the branches outside the first Brillouin zone are folded back into

it. As we will show in this paper, our main result, i.e. the spectral weight suppression in the

presence of strong lattice inhomogeneity, is independent of which representation we adopt.

3 Numerical results

We are now ready to compute the spectral density (2.14) in the presence of strong spatial

modulations, for various holographic models described by different cases of (2.1). We refer

the reader to [15] for further details on the numerical procedure used in this analysis. In

the present study we will work in the grand canonical ensemble with the chemical potential

µ = 1 and fix the AdS radius to be L = 1/2. We will take m = 0 and consider different

values of the charge q as well as the mass term n for the spontaneous symmetry breaking

case, which corresponds to scanning through different dual boundary field theories.

3.1 Explicit lattice

We start by examining the case in which translational invariance is broken explicitly by

turning on a source in the ultraviolet (UV) of the theory. First, we consider pure Einstein-

Maxwell theory with a spatially modulated chemical potential which mimics a harmonic

– 6 –
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potential, thus playing the role of an ionic lattice. We then move on to a simple Einstein-

Maxwell-scalar model with a spatially inhomogeneous boundary condition for the scalar

field, describing a scalar lattice. In both instances we will see a sharp decline in the

fermionic spectral density when the lattice amplitude is increased sufficiently.

3.1.1 Ionic lattice

The simplest setup we can consider is the standard Einstein-Maxwell theory

Lm = −1

4
FµνF

µν , (3.1)

which is obtained from the large class of models (2.1) by consistently setting χ = Bµ = 0

with ZA = 1 and ZB = ZAB = K = V = 0. The ionic lattice is introduced through a

spatially varying chemical potential, which can be viewed as representing the potential felt

by electrons in an array of ions. In holography the chemical potential is identified with the

boundary value of the temporal component At of the gauge field. At the AdS boundary

z = 1, we choose

µ(x) = At(z = 1, x) = µ[1 + a0 cos(pI x)] , (3.2)

which describes a uni-directional single harmonic potential with wave vector pI and relative

amplitude a0.

The momentum distribution of the spectral density is shown in figure 1 for q = 2

and figure 2 for q = 2.3, near zero frequency, ω = 10−6. One immediately finds that the

spectral density (2.14) is not periodic in the extended zone. However, there is a particularly

interesting feature visible from our numerics: when the peaks appearing in each Brillouin

zone in the extended zone representation (2.14) are sufficiently sharp, they differ from each

other by the Umklapp wave vector K. This ceases to be the case when the lattice effects

become sufficiently strong. As a typical example, let’s consider the ionic lattice case with

a0 = 1 (red curve) in the left plot of figure 1. The sharpest, dominant peak (which we

would associate with a point on the Fermi surface) is located at kx ≈ −1.297 (kx ≈ 1.297).

There are additional peaks that are sharp but have a much smaller amplitude,1 located

at kx ≈ 0.703 (kx ≈ −0.703) and kx ≈ 2.703 (kx ≈ −2.703). Interestingly, they differ

from the Fermi momentum kx ≈ −1.297 (kx ≈ 1.297) by the Umklapp wave vector K = 2.

Next, consider the green curve corresponding to a larger amplitude, a0 = 0.3. We now

see smoother peaks located at kx ≈ −1.329, kx ≈ 0.661 and kx ≈ 2.667, and the distance

between them is slightly different from the Umklapp wave vector K = 2. For the even

larger lattice a0 = 0.6 (the blue curve in figure 1), one can only see two smooth bumps

centered at kx ≈ ±1.382. Thus, when the lattice effect is large enough we lose the feature

of secondary peaks differing from the Fermi momentum (the dominant peak) by an integral

multiple of the Umklapp wave vector K.

The fact that the fermionic spectral function in the extended zone is not necessarily

periodic was already noted in [12], which argued that such non-periodicity is expected

for non-Fermi liquids. Indeed, for the latter single particle momentum is not a meaningful

quantum number and thus the system need not be precisely periodic2 in the extended single

1It would be interesting to track their behavior at T = 0, i.e. in the ground state geometry, to determine

if they persist and become sharper, or are no longer present.
2We thank Jan Zaanen for pointing this out to us.
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Figure 1. Momentum distribution of the spectral density along the kx axis (left panel) and the ky
axis (right panel) for varying values of the amplitude of the ionic lattice. Translational invariance

is broken explicitly in the x direction and the first Brillouin zone boundary is at kx = ±1. The red,

green and blue curves correspond to a0 = 0.1, 0.3 and 0.6, respectively. We have fixed ω = 10−6,

q = 2, T = 0.0069 and wave vector pI = 2. Since the vertical axis is logarithmic, the red curve

describes a very sharp peak which is indicative of a Fermi surface.
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A

Figure 2. Momentum distribution of the spectral density for q = 2.3 for lattice amplitudes a0 = 0.1

(red curve) and a0 = 0.6 (blue curve). The vertical axis is logarithmic. The remaining parameters

are chosen as in figure 1.

particle momentum Brillouin zone (unlike for free fermions and Fermi liquids, for which the

periodicity of the potential in real space leads to a perfect periodicity in momentum space

in the structure of the extended Brillouin zone). Thus, the non-periodicity is a generic

feature and a direct probe of the non-Fermi liquid nature of electron matter, and it would

be very interesting to test it experimentally.

Let’s now discuss the main new feature of our work, the spectral density suppression

and Fermi surface segmentation. In figure 1 we see a sharp peak characteristic of a Fermi

surface when the amplitude of the ionic lattice is fairly small (a0 = 0.1). As the lattice

amplitude increases, we find a sharp reduction of spectral weight along the x-axis, the

direction of broken translational symmetry, while the peaks along the y-direction remain

roughly unchanged. When the fermionic charge is increased sufficiently, additional peaks

start to develop, which would eventually turn into new Fermi surfaces if the charge became

large enough. This behavior is more visible in figure 2, where a secondary peak appears,

too small and smooth to indicate a formed Fermi surface. As in figure 1, here we also

see a clear disappearance of the spectral weight with increasing lattice strength. From the

behavior of the two peaks in figure 2, the Fermi surface suppression appears to be unrelated

to the presence of the (growing) secondary peak (see also the discussion in [15]).
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Figure 3. Momentum distribution of the spectral density for q = 1.5 for ionic lattice amplitudes

a0 = 0.1 (red curve), a0 = 0.6 (blue curve) and a0 = 0.9 (purple curve). All remaining parameters

were chosen as in figure 1. The inset in the left panel zooms into the location of the three peaks,

which all lie within the first Brillouin zone. We see no spectral weight suppression as the lattice

amplitude is increased.

In the two cases discussed above the fermionic charge q is large enough so that the Fermi

surface crosses the first Brillouin zone. One could ask if the spectral weight suppression

comes from the interaction between Fermi surface branches belonging to different Brillouin

zones. To test whether this is the case, we can check if we still find a suppression when the

Fermi surface is contained entirely within the first Brillouin zone and does not cross it. The

case corresponding to q = 1.5, for which the peaks are inside the Brillouin zone,3 is shown

in figure 3. It is clear that there is no spectral weight suppression as the lattice amplitude

is increased. An easy way to obtain a sharp spectral density peak that lies completely

inside the first Brillouin zone is to broaden the zone itself, which can be done by increasing

the wave vector pI of the ionic lattice (3.2). When the Brillouin zone is sufficiently large

as compared to the Fermi momentum one expects a Fermi surface that is almost isotropic.

This is indeed the case shown in figure 4, where we plot the spectral density for pI = 3.6

but with the same charge q = 2 as in figure 1.

Comparing the two red curves in figure 1 and figure 4, we see that the location of the

Fermi surface along the ky direction is almost unchanged (the Fermi momentum kFy ≈ 1.297

for pI = 2 and kFy ≈ 1.294 for pI = 3.6). This is expected since there is no lattice in the y

direction and we have also chosen the same charge and temperature. As the amplitude of

the ionic lattice is increased up to a0 = 0.9, for which the Fermi surface is still within the

first Brillouin zone, we don’t see any spectral weight suppression (on the other hand the

spectrum is slightly enhanced). This is similar to the behavior observed in figure 3.

Although we still do not understand the fundamental physical reasons behind the

generic suppression of the spectral weight at large lattice deformation, our analysis sug-

gests that it might due to some kind of interaction between bands. We shall return to this

point later.

3Even though the amplitude of the peaks of figure 3 is a few times smaller than in the two cases above,

it is still sufficient to identify the location of the Fermi surface.
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Figure 4. Momentum distribution of the spectral density along the kx axis (left panel) and the

ky axis (right panel) for varying values of the amplitude of the ionic lattice with the wave vector

pI = 3.6. Translational invariance is broken explicitly in the x direction and the first Brillouin

zone boundary is at kx = ±1.8. The red and purple curves correspond to a0 = 0.1 and a0 = 0.9,

respectively. We have fixed ω = 10−6, q = 2, T = 0.0069. Since the vertical axis is logarithmic, the

two curves describe very sharp peaks indicative of a Fermi surface.

3.1.2 Scalar lattice

Another example of an explicit lattice can be constructed by restoring the scalar field χ

and considering the following matter sector,

Lm = −1

2
∂µχ∂

µχ− 1

4
FµνF

µν − V (χ) , (3.3)

which can be obtained from (2.1) by turning off Bµ and choosing the scalar couplings to be

ZA = 1 and ZB = ZAB = K = 0. For numerical convenience, we take the scalar potential

to describe a mass term of the form V = − 2
L2χ

2. With this choice, the asymptotic behavior

of the rescaled scalar φ = χ/(1− z2) introduced in (2.2) near the AdS boundary is

φ = φs(x) + (1− z2)φv(x) + · · · . (3.4)

A scalar lattice is then introduced by adopting a spatially inhomogeneous boundary con-

dition for φ. We focus on the single harmonic case by specifying

φs(x) = A0 cos(pS x) , (3.5)

which corresponds to a periodic source for the dimension-two scalar operator dual to χ.

Figure 5 displays the same spectral weight suppression seen in the case of the ionic

lattice. Indeed, the sharp Fermi surface peak visible in the red curve in the kx momentum

distribution broadens and weakens as the lattice strength A0 is increased, until one would

no longer interpret the peak as describing a Fermi surface. Once again the structure along

the ky direction remains unchanged, and overall the behavior of the spectral function is

analogous to that of the ionic lattice. Thus, the analysis of this section indicates that

— independently of which type of explicit lattice one considers — the spectral function

along the symmetry broken direction is suppressed once the amplitude of the lattice is

sufficiently large. As we observed in our previous paper [15], this suppression then leads

to a disconnected Fermi surface and to the appearance of features partially reminiscent of

Fermi arcs.
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Figure 5. Momentum distribution of the spectral density along the kx axis (left panel) and the ky
axis (right panel) for varying values of the amplitude of the scalar lattice. Translational invariance

is broken explicitly in the x direction and the first Brillouin zone boundary is at kx = ±1. The

vertical axis is logarithmic. In both plots the red, green and blue curves correspond to A0 = 3, 6

and 11, respectively. We have chosen ω = 10−6, q = 2, T = 0.0069 and wave vector pS = 1.

3.2 Spontaneously generated lattice

Next, we turn our attention to models in which spatial modulations are generated by the

spontaneous breaking of translational symmetry, without the use of any explicit source.

Within the framework of (2.1) two cases are particularly interesting. The first one is the

realization of a particular example of intertwined orders, in which a U(1) symmetry and

translational invariance are broken spontaneously at the same time [28, 29]. Since in the

broken symmetry phase this construction mimics certain features of PDW phases, we will

refer to it as the PDW case.4 The second case describes the spontaneous breaking of

translations while retaining the U(1) symmetry, and corresponds to a pure CDW state. It

can be obtained from (2.1) by setting qA = qB = 0 and consistently truncating θ [31, 32].

In our previous work [15] we found — in the temperature range that could be reached

in that analysis — that the Fermi surface did not display spectral weight suppression when

only spontaneous order was considered (i.e., in the “pure PDW” case). In contrast, when

adding to the pure PDW construction the ionic UV lattice (3.2), the spectral function along

the symmetry broken direction was suppressed once the amplitude of the lattice became

sufficiently large. This suppression then led to a disconnected Fermi surface [15], as in

the cases analyzed in this paper. We believe that the difference between the two cases is

due to the fact that at the temperatures examined in [15] the spontaneously generated IR

modulation was not strong enough — as compared to the explicit UV modulation — and

thus didn’t leave an observable imprint. Indeed, we expect that at very low temperatures

a sufficiently strong spontaneous modulation would lead to a similar suppression of the

fermionic spectral density.

Constructing the striped background geometries numerically at temperatures low

enough to see this effect is particularly challenging, and we haven’t been able to do so.

To circumvent this difficulty, we will adopt another mechanism to amplify the effect of the

spontaneously generated modulations on the fermion. A particularly simple way is to in-

4Another holographic PDW model which describes a superconducting phase intertwined with charge,

current, and parity orders can be found in [30].
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Figure 6. Momentum distribution of the spectral density along the kx axis (left panel) and along

the ky axis (right panel) for varying values of the coupling constant n. Translational invariance

is broken spontaneously along the x direction and the first Brillouin zone boundary is at kx = 1.

In both plots the red curve corresponds to n = 0, while the green, and purple curves correspond

to n = 10 and 30, respectively. We have fixed ω = 10−6, q = 2 and chosen T = 0.014 for the

PDW geometry.

troduce a coupling between the scalar χ and the fermion ζ. Here we consider the coupling

nχ2ζζ, with n a constant, which means that the effective mass of the scalar appearing

in (2.5) is of the form

M(χ) = m+ nχ2 . (3.6)

The effect of the spontaneously broken translational symmetry felt by the bulk fermion

then becomes stronger as the size n of the interaction term is increased. As we will see

below, this is sufficient to see the spectral weight suppression.

3.2.1 Pair density wave case

We start with a setup that allows us to break spontaneously both the U(1) symmetry and

translational invariance — through the same mechanism and at the same time. In this

case, which we refer to as the PDW, we take the couplings in (2.1) to be given by

ZA(χ) = 1 + 2χ2, ZB(χ) = 1, ZAB(χ) = −2.34χ ,

V (χ) = − 1

L2
χ2, K(χ) =

1

2
χ2 ,

(3.7)

with qA = 1, qB = 0. As we showed in [28, 29], striped order will develop spontaneously

below a certain critical temperature, with an intrinsic wavelength k. As a typical example,

we focus on the k =1 branch, with the corresponding critical temperature being Tc = 0.016.

The corresponding momentum distribution of the spectral density along the symmetry

breaking direction is shown in the left plot of figure 6, for different values of the coupling n.

Very sharp peaks indicative of a Fermi surface are present for small values of n. However,

as the strength of the coupling is increased — i.e. the effect of the spontaneously generated

modulation on the fermion becomes large — the peak of the spectral density becomes

weaker and broader. In contrast to the suppression of the spectral density along the

symmetry breaking direction kx, the behavior along ky is not affected by the new coupling

and the Fermi surface is still present as n is increased (see the right plot of figure 6).
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This is qualitatively analogous to the behavior seen in the explicit lattice cases studied in

section 3.1. Thus, from this analysis we conclude that when the inhomogeneity effect is

strong enough, Fermi surfaces can be suppressed even in the case of purely spontaneous

symmetry breaking, leaving behind disconnected Fermi surface segments reminiscent of

Fermi arcs.

We stress that the behavior in this particular model is due entirely to the strength of

the spontaneous IR stripes. Indeed, if the gradual disappearance of the Fermi surface were

caused by the new interaction term χ2ζζ, and not by the strong IR modulation, the spectral

density along the ky direction would also be suppressed with increasing n. Since it is clear

from the right plot of figure 6 that it isn’t, we conclude that the segmentation phenomenon

is inherently due to the strong IR inhomogeneity. Also, we note that the interaction term

causes the outer Fermi surface to shrink, while at the same time triggering and enhancing

the inner secondary Fermi surface. Such kind of behavior can be seen more clearly from

the density plot of the spectral function momentum distribution for the CDW case, as we

discuss below.

3.2.2 Charge density wave case

We now restrict our attention to a pure CDW state, in which the U(1) symmetry is not

broken (we set qA = qB = 0 and consistently truncate θ). We take the couplings in (2.1)

to be given by

ZA(χ) = 1 + 2χ2, ZB(χ) = 1, ZAB(χ) = −2.15χ ,

V (χ) = − 1

L2
χ2, K(χ) = 0 .

(3.8)

The behavior of the Fermi surface as the strength of the inhomogeneity is increased is

shown in figures 7, 8 and 9 for, respectively, q = 2, q = 2.2 and q = 2.5. In all of these

plots we have used the spectral density representation (2.14). It is immediately clear that

there is an asymmetry across the Brillouin zone boundary. In particular, we identify what

looks like a pocket near the zone boundary (e.g. see the n = 20 and n = 30 cases of

figure 7), with one half of the pocket clearly brighter than the other half. This asymmetry

is reminiscent of the ARPES Fermi arc experimental measurements, which also display a

similar structure across the zone boundary.

As one can see, the band gap at the Brillouin zone boundaries grows with the size of

the parameter n. Moreover, increasing the effect of the IR spontaneous modulation does

cause a gradual disappearance of the Fermi surface along the symmetry breaking direction,

eventually leading to the formation of small disconnected Fermi surface segments.5 This

trend is particularly clear from the last two plots of figure 8. For this value of the charge

(q = 2.2) the behavior of the “secondary Fermi surface,” the blurry bump visible in figure 8,

is more striking. As n is increased, the inner bump becomes larger and sharper along the

ky direction, while it is suppressed along the kx direction. This behavior is clearly visible

in the corresponding momentum distribution of the spectral density along the kx and ky

5Note, however, that when n = 50 the q = 2 Fermi surface in figure 7 is almost entirely contained inside

the first Brillouin zone, and appears to be completely closed, as expected from the discussion of 3.1.1.
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Figure 7. The density plot of the momentum distribution of the spectral function in the (kx, ky)

plane for q = 2 and ω = 10−6. The brightest points correspond to the location of the Fermi surface.

The first Brillouin zone boundary is denoted by the vertical dashed lines at kx = ±1, and the CDW

background geometry has T = 0.02144 and k = 1. The four plots correspond to the parameter

n = 0, 20, 30, and 50.

directions, which is given in figure 10. In addition to the segmentation of the Fermi surface

being generic with strong translational symmetry breaking, increasing the strength of the

interaction term also appears to enhance the (inner) secondary Fermi surface. However,

the detailed behavior of the latter seems to be somewhat model dependent. For instance,

the structure of the Fermi surface in figure 9 corresponding to q = 2.5 is even more

elaborate than in the previous cases. The trend common to all the examples is the gradual

disappearance of some of the vertical portions of the Fermi surface, which is visible here

as well.

From the cases we have studied here and in [15] we conclude that, while the fine

structure of the Fermi surface is very sensitive to the details of the theory (the detailed

dependence on the charge q and on the mass term n is rather complicated), in strongly

correlated systems Fermi surfaces can be generically suppressed when the inhomogeneity

effect is strong enough. Since we also observe a similar spectral density suppression in the

CDW case without the U(1) symmetry breaking, the broken U(1) doesn’t play a key role in

the process. Despite the strong numerical evidence, however, the real origin of the spectral

weight suppression is still unclear.
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Figure 8. The density plot of the momentum distribution of the spectral function in the (kx, ky)

plane for q = 2.2 and ω = 10−6. The brightest points correspond to the location of the Fermi

surface. The first Brillouin zone boundary is denoted by the vertical dashed lines at kx = ±1,

and the CDW background geometry has T = 0.02144 and k = 1. The four plots correspond to

the parameter n = 0, 10, 20, and 40. As n is increased, some vertical parts of the Fermi surface

gradually vanish.

Our analysis also shows that strong lattice effects lead to a segmentation and gradual

destruction of the “Fermi pocket” near the Brillouin zone and along the kx axis — it is clear

from our numerics that there is no sharp spectral density near ω = 0. There are different

possible explanations for this behavior. Since the Fermi surface, by definition, lies at the

intersection between the dispersion relation ω(kx, ky) and the Fermi level ω = 0 (measured

relative to the chemical potential), it is possible that increasing the lattice amplitude might

lift the energy band above the Fermi level, due to the strong Umklapp eigenvalue repulsion.6

This could cause the Fermi pockets to become smaller and eventually disappear. On the

other hand, the poles of the Green’s function in the presence of a strong lattice might

move to the complex-ω plane. If this were the case at ω = 0 one would only see a residual

bump from the spectral density — see, for example, the last plot of figure 9. More work

is needed to isolate the different possible contributions to the process of the broadening of

6We are grateful to Alexander Krikun and Koenraad Schalm for raising this point with us.
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Figure 9. The density plot of the momentum distribution of the spectral function in the (kx, ky)

plane for q = 2.5 and ω = 10−6. The brightest points correspond to the location of the Fermi

surface. The first Brillouin zone boundary is denoted by the vertical dashed lines at kx = ±1,

and the CDW background geometry has T = 0.02144 and k = 1. The four plots correspond to

the parameter n = 0, 20, 40, and 60. As n is increased, some vertical parts of the Fermi surface

gradually vanish.

the peaks. Preliminary results on the energy distribution function, i.e. the spectral density

as a function of ω, are presented in appendix B. As we will see, there seems to be an energy

gap opening near ω = 0 due to strong lattice effects.

4 Summary of results and discussion

In this paper we have extended the analysis of our earlier work [15] to several holographic

models of lattices and (striped) phases with broken translational invariance. We have

constructed the fermionic spectral function A(ω,k) and adopted a working definition [22]

of the Fermi surface as being identified (at finite temperature) by sufficiently sharp peaks

indicative of gapless excitations and non-analytic behavior at k = kF and ω = 0. We have

focused on examining its dependence on the fermionic charge and on the strength of lattice

effects (or the strength of stripe order). We summarize our analysis and main results here:
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Figure 10. Momentum distribution of the spectral density along the kx axis (left panel) for ky = 0

and along the ky axis (right panel) for kx = 0 for varying values of the coupling constant n.

Translational invariance is broken spontaneously along the x direction and the first Brillouin zone

boundary is at kx = 1. In both plots the red curve corresponds to n = 0, while the green, blue and

purple curves correspond to n = 10, 20 and 40, respectively. We have fixed ω = 10−6, q = 2.2 and

chosen T = 0.02144 for the CDW geometry.

• A Fermi surface forms when the charge q of the fermion is sufficiently large. For

systems with translational symmetry broken along one of the spatial directions (we

have focused on uni-directional stripes oriented along the x direction) the Fermi

surface is anisotropic and, when it is larger than the first Brillouin zone, it typically

displays a band gap7 at the zone boundary, due to standard eigenvalue repulsion.

The opening of the gap was observed early in the holographic literature [12, 13],

and more recently in [15]. Additional Fermi surfaces are expected to form once the

charge is increased further, resulting in patterns of various complexity (see [33] for an

analytical study exhibiting multiple Fermi surfaces). Introducing the effective mass

term M(χ) ∼ nχ2 also appears to trigger new Fermi surfaces.

• In every example we have studied, the fermionic spectral function is suppressed when

the symmetry breaking becomes sufficiently strong, independently of whether trans-

lational invariance is broken explicitly or spontaneously. In particular, unlike in [15]

we have now constructed a model where the suppression is present when the sym-

metry breaking is purely spontaneous (we have done so by coupling the fermionic

field to a scalar through an interaction term that acts as an effective mass for the

fermion). Thus, our analysis indicates that the suppression of the fermionic spectral

weight with strong lattice effects is a universal feature, confirming and generalizing

the results of [15]. However, this phenomenon happens only when the Fermi surface

extends beyond the first Brillouin zone.8 Indeed, this indicates that the suppression

is a result of some kind of interaction between Fermi surface branches belonging to

different zones.
7Note that this is not a superconducting gap — it is due to the broken translational invariance.
8This seems quite natural, since when the Brillouin zone is sufficiently large as compared to the Fermi

momentum, the Fermi surface is entirely within the first Brillouin zone and therefore the effect of the

lattice on the fermion response is small. As a consequence, the Fermi surface should be almost isotropic,

as confirmed by figure 4.
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• We have computed the spectral function using two different definitions. The first,

given in (2.14) and used throughout the main text of the paper, does not implement

any folding procedure and can be thought of as the analog of the extended scheme.

By using (2.14) we retain the asymmetric properties of the Fermi surface across the

zone boundaries, thus facilitating the comparison with ARPES measurements, which

directly probe the electronic band structure in the extended zone. In particular,

notice that in the density plot of figure 7 one can clearly see a feature similar to a

Fermi arc.

The second definition, given in (2.15) and adopted in the appendix, ensures that

the branches outside the first Brillouin zone are folded back into it and provides

a representation of the band structure in the reduced zone scheme. The resulting

Fermi surface is by construction automatically symmetric across the Brillouin zone

boundary. Interestingly, the spectral function in the extended zone scheme in our

model is not necessarily periodic, as discussed already in the earlier work [12], which

argued that such non-periodicity is expected for non-Fermi liquid. In particular, the

lack of periodicity is more visible when lattice effects are strong. As a side effect, any

sharp spectral density peak associated with the Fermi surface is enhanced in the folded

representation (see the discussion in appendix A). In turn this implies that the folded

version (2.15) makes it slightly easier to see if the spectral weight is indeed suppressed.

Nonetheless, we stress that the suppression in the presence of strong inhomogeneity

occurs independently of which spectral function representation we adopt.

• The cases that involve multiple Fermi surfaces are interesting in their own right

and lead to more elaborate patterns. This is visible for example in figures 8 and 9,

where a secondary Fermi surface forms as the lattice strength is increased. In these

examples the suppression of the fermionic spectral function with strong lattice ef-

fects still occurs, but its detailed structure is now complicated by the presence of

the secondary Fermi surface (see also the energy distribution of the spetral func-

tion, shown in figure 21). The latter appears to interact non-trivially with the first

Fermi surface branch, leading to more complex patterns of spectral weight suppres-

sion. The detailed role of the secondary Fermi surface does not appear to be generic,

but rather model dependent and begs for further understanding. Still, we don’t

think that the appearance of a secondary Fermi surface plays a fundamental (model-

independent) role in the spectral weight suppression process (see also the discussion

in [15], where we provided examples in which the suppression clearly occurred even

when the secondary Fermi surface peaks were very well separated from the main

Fermi surface peaks).

Many open questions and challenges remain. While from our analysis we can conclude

that the spectral weight suppression with strong lattice effects appears to be generic,9 we

9This suppression could be a universal property of any correlator — when different modes interact and

momentum conservation is strongly relaxed, one can expect that all quasiparticles decay fast. We thank

Elias Kiritsis for bringing up this point.
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still don’t understand its basic origin. Our results indicate that it is related to the interplay

between Fermi surface branches belonging to different Brillouin zones — indeed, the effect

disappears when the Fermi surface lies entirely within the first Brillouin zone. Precisely how

the interaction between different branches leads to the segmentation of the Fermi surface

is an important process we still don’t understand. The appearance of secondary Fermi

surfaces adds an additional complication to this story and begs for further study, but at this

stage does not seem to lead to universal features. Moreover, preliminary data on the energy

distribution of the spectral function shown in appendix B (right panel of figure 21) displays

the opening of an energy gap when the lattice is sufficiently strong, which appears to be due

to a combination between a shift of the energy band and the presence of multiple bands.

As we have seen, many factors contribute to the process of the Fermi surface segmen-

tation and disintegration, and there may be competing mechanisms. Thus, it is important

to disentangle the role played by each one, and to identify more precisely which features

are inherent to strong coupling or tied to the breaking of translational invariance, as well

as to the existence of multiple Fermi surfaces interfering with each other in a non-trivial

way. Moreover, we would like to better understand how our results complement — and fit

into — what is currently known about the behavior of Fermi surfaces in strongly correlated

systems in condensed matter, with the Fermi arcs seen in high temperature superconduc-

tors providing a natural starting point. It would also be interesting to extend our analysis

to the case with two periodic lattices that are incommensurate with each other,10 and ask

if the incommensurability leads to any qualitatively new features [36]. Finally, it would

be desirable to identify the quasi-normal mode spectrum in these systems, and better un-

derstand the nature of the low-energy excitations and their dispersion. In particular, it

would be interesting to check if the spectral function exhibits a distinctive “pole-zero” line

shape, which has been argued to be a very general feature of quantum systems containing

the continuum as a subpart [37]. We leave these questions to future work.
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A The spectral density with folding

In the main text we have shown the momentum distribution of the spectral density using

the extend zone representation (2.14) without implementing any folding procedure. In

this appendix we give the corresponding spectral density in terms of the reduced zone

representation (2.15), which takes into account the folding of the Fermi surface by summing

the diagonal components of the Green’s function. Since the spectral density is an even

function of kx and ky, we show the spectral density for positive kx and ky from figures 11

to 16 as well as figure 20 without any loss of generality. For the density plots of the

momentum distribution in the (kx, ky) plane from figures 17 to 19, we periodically extend

the data from the first Brillouin zone to the other ones. Thus, all plots in this section will

display a perfect symmetry between different sides of the Brillouin zone.

For the case where the Fermi surface (or a sharp peak of the spectral density) is within

the first Brillouin zone, the reduced zone representation (2.15) gives very similar results.

This can be seen by comparing figure 3 with figure 13, as well as figure 4 with figure 14.

In contrast, when the Fermi surface crosses the first Brillouin zone, the branches outside of

the latter are folded back into it in the reduced zone representation (2.15). Although the

spectral density is not at all periodic in the extended zone, a particularly interesting point is

that if the peaks appearing in each Brillouin zone in the extend zone representation (2.14)

are sufficiently sharp, after folding they will be located at the same kx in the reduced

zone representation (2.15). But this ceases to be the case when the lattice effects become

sufficiently strong. Therefore, any sharp spectral density peak associated with the Fermi

surface turns out to be enhanced in the folded representation. In turn this tells us that

using the reduced zone representation it is quite easy to see if the spectral weight will be

suppressed by strong lattice effects.

Another reason for adopting the reduced zone representation (2.15) is the valid concern

that, by working only with the diagonal components of the Green’s function, one would

neglect interactions between different Brillouin zones. Indeed, as the strength of the spatial

modulation increases, so do the non-diagonal components of the Green’s function. To

diagonalize the system via a unitary transformation is quite non-trivial, since the system

contains the full range of Bloch indices n = 0,±1,±2, . . . . However, we note that the trace

of a matrix is invariant under unitary transformations and implicitly contains the effects

associated with the non-diagonal components in the original basis. Moreover, our main

purpose in this paper is to examine whether the spectral density is suppressed or not. As

we have shown in this paper, the spectral weight is suppressed when the inhomogeneity

effect is strong enough, independently of which representation we have adopted.

A.1 Ionic lattice case

Recall that this case was described by a spatially varying chemical potential,

µ(x) = At(z = 1, x) = µ[1 + a0 cos(pI x)] , (A.1)

used to represent the potential felt by electrons in an array of ions. Figures 11, 12 and 13

and 14 are the analog of, respectively, figures 1, 2, 3 and 4 but obtained using the reduced

zone representation (2.15).
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Figure 11. Momentum distribution of the spectral density (2.15) along the kx axis (left panel)

and the ky axis (right panel) for varying values of the amplitude of the ionic lattice. Translational

invariance is broken explicitly in the x direction and the first Brillouin zone boundary is at kx = 1.

The red, green and blue curves correspond to a0 = 0.1, 0.3 and 0.6, respectively. We have chosen

ω = 10−6, q = 2, T = 0.0069 and pI = 2. Since the vertical axis is logarithmic, the red curve

describes a very sharp peak, indicative of a Fermi surface.
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Figure 12. Momentum distribution of the spectral density (2.15) for q = 2.3 for lattice amplitudes

a0 = 0.1 (red curve) and a0 = 0.6 (blue curve). The vertical axis is logarithmic. The remaining

parameters are chosen as in figure 11.

A.2 Scalar lattice case

The scalar lattice was introduced by adopting spatially inhomogeneous boundary condition

for the scalar field φ in the matter sector (3.3), given by

φs(x) = A0 cos(pS x) , (A.2)

and corresponding to a periodic source for the dual scalar operator. Figure 15 represents

the analog of figure 5, computed using the spectral function (2.15).

A.3 Pair density wave case

In the PDW case, which corresponds to the choice of couplings (3.7) for the scalar sector

of (2.1), the U(1) symmetry and translational invariance are both broken spontaneously.

Figure 16 below corresponds to figure 6, but using the reduced zone representation (2.15).
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Figure 13. Momentum distribution of the spectral density (2.15) for q = 1.5 for ionic lattice

amplitudes a0 = 0.1 (red curve), a0 = 0.6 (blue curve) and a0 = 0.9 (purple curve). Here the

vertical axis is not logarithmic. All remaining parameters were chosen as in figure 11. The inset in

the left panel zooms into the location of the three peaks.
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Figure 14. Momentum distribution of the spectral density (2.15) along the kx axis (left panel) and

the ky axis (right panel) for varying values of the amplitude of the ionic lattice with the wave vector

pI = 3.6. Translational invariance is broken explicitly in the x direction and the first Brillouin

zone boundary is at kx = 1.8. The red and purple curves correspond to a0 = 0.1 and a0 = 0.9,

respectively. We have fixed ω = 10−6, q = 2, T = 0.0069. Since the vertical axis is logarithmic, the

two curves describe very sharp peaks indicative of a Fermi surface.

A.4 Charge density wave case

We conclude with the CDW case, in which the U(1) symmetry is preserved (qA = qB = 0

and θ truncated out). Figures 17, 18 and 19 are density plots of the momentum distribution

of the spectral function (2.15) corresponding to q = 2, q = 2.2 and q = 2.5, respectively

(the first two plots of figure 17 can be compared to figure 5 and figure 9 of our previous

paper [15])). They are the analogs of figures 7, 8 and 9, but using the reduced zone rep-

resentation. Similarly, figure 20 shows the momentum distribution of the spectral density

(along the kx axis in the left panel and along the ky axis in the right panel) for varying

values of the coupling constant n and is the analog of figure 10.
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Figure 15. Momentum distribution of the spectral density 5 along the kx axis (left panel) and

the ky axis (right panel) for varying values of the amplitude of the scalar lattice. Translational

invariance is broken explicitly in the x direction and the first Brillouin zone boundary is at kx = 1.

The vertical axis is logarithmic. In both plots the red, green and blue curves correspond to A0 = 3, 6

and 11, respectively. We have chosen ω = 10−6, q = 2, T = 0.0069 and wave vector pS = 1.
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Figure 16. Momentum distribution of the spectral density (2.15) along the kx axis (left panel)

and along the ky axis (right panel) for varying values of the coupling constant n. Translational

invariance is broken spontaneously along the x direction and the first Brillouin zone boundary is

at kx = 1. In both plots the red curve corresponds to n = 0, while the green, and purple curves

correspond to n = 10 and 30, respectively. We have fixed ω = 10−6, q = 2 and chosen T = 0.014

for the PDW geometry.

B Energy distribution of the spectral density

In this section we include preliminary results on the energy distribution function, i.e. the

spectral density as a function of ω, to shed some light on the origin of the Fermi surface

segmentation. In appendix A of our previous paper [15] we showed the energy distribution

function for different choices of momentum. We were interested in how the spectral density

evolves as the momentum is varied, in order to probe the formation and evolution of the

Fermi surface itself. One interesting feature we observed [15], which appears to be in

agreement with ARPES experiments on the cuprates, is the “peak-dip-hump” structure in

the energy distribution function at fixed momentum.
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Figure 17. Density plot of the momentum distribution of the spectral function (2.15) in the

(kx, ky) plane for q = 2 and ω = 10−6. The brightest points denote the location of the Fermi

surface. We have periodically extended the data from the first Brillouin zone to the other ones.

The first Brillouin zone boundary is denoted by the vertical dashed lines at kx = ±1, and the CDW

geometry has T = 0.02144 and k = 1. The four plots correspond to n = 0, 20, 40 and 60.

Here we focus on the CDW case and adopt the reduced zone representation (2.15).

Although there is some tension between the two representations, as we have discussed in

previous sections, it turns out to be more convenient to use the reduced zone representation

in order to see the structure of the peaks in the spectral function. The left plot of figure 21

shows the energy distribution of the spectral density for q = 2.2, n = 0 (corresponding

to the first plot of figure 8 as well as figure 18). The intersections between the horizontal

dashed line (at ω = 0) and the brightest lines give the location of the Fermi surface. One

finds that near the Fermi surface the dispersion relation along the kx direction behaves

quite linearly.

The energy distribution for n = 20 is shown in the right plot of figure 21, which

corresponds to the third plot of figure 8 as well as figure 18. We now see the opening

an “energy gap” near ω = 0, due to the increase in the strength of the lattice. Indeed, in

contrast to the n = 0 case, there is no intersection between the ω = 0 horizontal dashed line

and the brightest points. Thus, there is no longer a Fermi surface at that particular location.

We note that the shape of the dispersion relation is now quite non-trivial, and is complicated

by the presence of multiple bands. There is also a sharp asymmetry between positive and
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Figure 18. Density plot of the momentum distribution of the spectral function (2.15) in the

(kx, ky) plane for q = 2.2 and ω = 10−6. The brightest points denote the location of the Fermi

surface. We have periodically extended the data from the first Brillouin zone to the other ones.

The first Brillouin zone boundary is denoted by the vertical dashed lines at kx = ±1, and the CDW

geometry has T = 0.02144 and k = 1. The four plots correspond to n = 0, 10, 20 and 40. As n

increases, some of the vertical parts of the Fermi surface gradually vanish.

negative frequency modes. As the lattice strength (controlled by n) is increased, two

different effects seem to be at play. One is the lifting of a single band above the Fermi

level, the other is the formation of additional bands. The interplay between these two

effects then leads to the opening of the band gap, which in turn is associated with the

disappearance of a particular segment of the Fermi surface. We postpone a more detailed

analysis of this behavior to future work.
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Figure 19. Density plot of the momentum distribution of the spectral function (2.15) in the

(kx, ky) plane for q = 2.5 and ω = 10−6. The brightest points denote the location of the Fermi

surface. We have periodically extended the data from the first Brillouin zone to the other ones.

The first Brillouin zone boundary is denoted by the vertical dashed lines at kx = ±1, and the CDW

geometry has T = 0.02144 and k = 1. The four plots correspond to n = 0, 20, 40, and 60. As n

increases, some of the vertical parts of the Fermi surface gradually vanish.

– 26 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
4

0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

10

100

1000

kx

A

0.0 0.5 1.0 1.5

0.001

0.100

10

1000

ky

A

Figure 20. Momentum distribution of the spectral density (2.15) along the kx axis (left panel) for

ky = 0 and along the ky axis (right panel) for kx = 0 for varying values of the coupling constant n.

Translational invariance is broken spontaneously along the x direction and the first Brillouin zone

boundary is at kx = 1. In both plots the red curve corresponds to n = 0, while the green, blue and

purple curves correspond to n = 10, 20 and 40, respectively. We have fixed ω = 10−6, q = 2.2 and

chosen T = 0.02144 for the CDW geometry.

Figure 21. Density plots of the energy distribution of the spectral function (2.15) along the kx axis.

The intersections between the horizontal dashed line (ω = 0) and the brightest points correspond to

the location of the Fermi surface. In the right plot there is an “energy gap” opening near ω = 0 due

to increasing the lattice strength. We have periodically extended the data from the first Brillouin

zone to the other ones. The first Brillouin zone boundary is denoted by the vertical dashed lines at

kx = ±1, and the CDW background geometry has T = 0.02144 and k = 1.
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